
A Freshman C++ Programming Course

Dr. Ali H. Al-Saedi

Mustansiriyah University, Baghdad, Iraq

November 4, 2018

1 Number Systems and Base Conversions

Before studying any programming languages, students should be fa-

miliar with number systems, base conversions and computer data rep-

resentations. There are several number systems which we typically

study and use, such as decimal, binary, octal and hexadecimal.

Mostly, we are familiar with the decimal number system. Any of these

systems is classified according to the values of the base of the number

system.

1.1 The Decimal System

The decimal number system has the value of the base as 10. Thus, in

the decimal system we have 10 different digits, which are 0, 1, 2, 3, 4, 5, 6, 7, 8,

1

and 9. For example,

87310 = 800 + 70 + 3 = 8 · 102 + 7 · 101 + 3 · 100.

The decimal number system is great for calculations done by humans,

but it is not a suitable system for a computer to use.

1.2 The Binary System

A digital computer contains elements that can be in either of two

states: on or off. We sometimes even see an electrical switch with

two numbers 0 and 1 where 0 means off while 1 means on. Thus,

in digital computers, calculations are most conveniently done using

binary numbers 0 and 1 where each binary digit (bit) can be repre-

sented by one state of a binary switch that is either on or off. However

for humans, binary numbers are hard to read because of their length.

The binary number system is also a positional notation numbering

system, but in this case, the base is not ten, but is instead two. Each

digit position in a binary number represents a power of two. So,

when we write a binary number, each binary digit is multiplied by

an appropriate power of 2 based on the position in the number. For

2

examples,

1011012 = 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

= 1 · 32 + 0 · 16 + 1 · 8 + 1 · 4 + 0 · 2 + 1 · · · 1

= 32 + 8 + 4 + 1.

The number in the above example is a 6 bit number.

1.3 Conversion between Decimal and Binary numbers

Converting a number from binary to decimal is quite easy. All that

is required is to find the decimal value of each binary digit position

containing a 1 and add them up.

Example. Convert the following binary numbers to decimal:

101102, 110112, 100010112, 1000100

Solution:

101102 = 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20

= 1 · 16 + 0 · 8 + 1 · 4 + 1 · 2 + 0 · 1

= 16 + 4 + 2

= 22.

3

110112 = 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20

= 1 · 16 + 1 · 8 + 0 · 4 + 1 · 2 + 1 · 1

= 16 + 8 + 2 + 1

= 27.

11110112 = 1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20

= 64 + 32 + 16 + 8 + 2 + 1

= 123.

10001002 = 1 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 0 · 20

= 64 + 4

= 68.

The method for converting a decimal number to binary is one that

can be used to convert from decimal to any number base. It involves

using successive division by the base until the dividend reaches 0. At

each division, the remainder provides a digit of the converted number,

starting with the least significant digit.

Example. Convert the following decimal numbers to binary:

3710, 2610, 9310

4

Solution:

37/2 = 18 remainder 1

18/2 = 9 remainder 0

9/2 = 4 remainder 1

4/2 = 2 remainder 0

2/2 = 1 remainder 0

1/2 = 0 remainder 1

The resulting binary number is 1001012.

26/2 = 13 remainder 0

13/2 = 6 remainder 1

6/2 = 3 remainder 0

3/2 = 1 remainder 1

1/2 = 0 remainder 1

5

The resulting binary number is 11010.

93/2 = 46 remainder 1

46/2 = 23 remainder 0

23/2 = 11 remainder 1

11/2 = 5 remainder 1

5/2 = 2 remainder 1

2/2 = 1 remainder 0

1/2 = 0 remainder 1

The resulting binary number is 1011101.

Octal Number System

The octal numeral system is the base 8 number system, and uses the

digits 0, 1, 2, . . . , 7. For example, 2168, 5438.

Conversion From Binary to Octal

Octal numerals can be made from binary numerals by grouping con-

secutive binary digits into groups of three (starting from the right)

and add zeros on the left as needed. For examples,

1001010 = (001)(001)(010)

. We easily can see

001 = 1

6

001 = 1

010 = 2

Thus,

1001010 = (001)(001)(010) = 1128

In the octal system each place is a power of eight. For examples:

1128 = 1× 82 + 1× 81 + 2× 80 = 64 + 8 + 2 = 7410

From Octal to Binary

Replace each octal digit with the corresponding 3-bit binary string.

For examples,

2138 = (010)(001)(011) = 100010112

To make it easy, consider the following table:

Octal 0 1 2 3 4 5 6 7

Binary 000 001 010 011 100 101 110 111

more examples,

Octal = 3 4 5

Binary = (011)(100)(101) = 011100101 = 111001012

Binary =001 010 001 011 011 110

7

Octal = 1 2 1 3 3 6 = 121336

From Octal to Decimal

The conversion can be performed in the conventional mathematical

way, by showing each digit place as an increasing power of 8. For

example,

3458 = (3 · 82) + (4 · 81) + (5 · 80) = (3 · 64) + (4 · 8) + (5 · 1) = 22910

Conversion of decimal to octal (base 10 to base 8)

Example. Convert 17710 to octal.

177/8 = 22 remainder 1

22/8 = 2 remainder 6

2/8 = 0 remainder 2

Thus, 17710 = 2618.

Note: the answer is to read from bottom to top as 2618, the same as

with the binary case.

Hexadecimal Number System

In addition to binary, another number base that is commonly used

in digital systems is base 16. This number system is called hex-

8

adecimal, and each digit position represents a power of 16. For

any number base greater than ten, a problem occurs because there

are more than ten symbols needed to represent the numerals for

that number base. Numbers are 0, 1, . . . , 8, 9, A,B,C,D,E, F where

A = 10, B = 11, C = 12, D = 13, E = 14 and F = 15. Note that

160 = 1, 161 = 16, 162 = 256, 163 = 4096, 164 = 65536, . . .

Conversion of hex to decimal (base 16 to base 10)

Example: convert F4C16 to decimal

F4C16 = (F · 162) + (4 · 161) + (C · 160)

= (15 · 256) + (4 · 16) + (12 · 1).

Conversion of decimal to hex (base 10 to base 16)

Example: convert 476810 to hex.

4768/16 = 298 remainder 0

298/16 = 18 remainder 10 = A

18/16 = 1 remainder 2

1/16 = 0 remainder 1

Thus, 476810 = 12A0.

9

2 A General Introduction to C++

2.1 To whom is this course directed?

The main goal of this course is to teach students who want to learn

programming in C++ and do not necessarily have any previous ex-

perience or knowledge of any programming languages or computer

skills. C++ has been developed for more than 50 years and it is re-

ally hard to understand it all, but as a student, you are expected to

devote some time and efforts in order to have a better understanding

of C++.

C++ has two components, the language itself and its associated li-

brary. The key features of the library are:

� I/O support

� strings

� containers or data structures

� algorithms

� numeric

� internationalization

10

2.2 Computer Organization

A computer system has the following logical components:

� Input: obtains data (and programs) from an input device for

processing. Keyboard, mouse, CDROM or DVD drive, scanner,

digital camera...

� Output : takes information from the computer and places it on

an output device monitor screen, printer, tape, DVDWriter. . .

� Central Processing Unit (CPU): Coordinates the operation of the

other sections of the computer.

� Arithmetic and Logical Unit (ALU): where calculations, rela-

tional and logical operations are performed part of the CPU.

� Main Memory : primary memory, primary storage shortterm

main storage area for data and executable programs (RAM).

Ordered sequence of storage locations called memory cells, each

memory cell has a unique address.

� Secondary Storage: secondary memory, permanent memory long

term, secondary storage area for data and programs.

11

2.3 C++ Compilers

A compiler is a translator program that transforms high-level program

code into a low-level machine-level executable program. Compilers

translate the whole program first, then execute the object program.

There are so many compilers for C++ and to mention a few for

examples, Microsoft C++, Borland C++ and CodeWarrior C++.

In this course we will use visual studio C++ which has Microsoft

C++compiler built in by Microsoft.

2.4 Programming

A program is a set of instructions in proper sequence, that causes a

computer to perform a particular task.

2.5 Some Parts of the Program

1. Comments - a type of program documentation

// indicates that the remainder of the line is a comment

/* comments can also look like this */

2. #include < iostream > a preprocessor directive

Tells the pre-processor to include in the program the contents of

the I/O stream header file called iostream.h. This allows us to

use standard stream input and output objects like cout (displays

12

to the screen). As you can see, we need to also code the using

namespace std; statement.

3. int main() main function header

Every C++ program has at least one function, called main and

there is ONLY ONE main. Program execution begins with the

first statement in main

4. { brackets denote the body of the function }

5. ; statement terminator

Every C++ statement must end with a semicolon.

6. << stream insertion operator

Expression to the right of the operator is inserted (sent) to the

cout object (the display screen).

7. \n newline escape sequence

The backslash is an escape character. The character following it

takes on a different meaning. eg,

\\ prints a backslash

\” prints a double quotation mark

8. return exits from the function

In this case control over execution is transferred back to the op-

erating system.

13

The first program beginners write is a program called ”Hello World”,

which simply prints ”Hello World” to your computer screen. Al-

though it is very simple, it contains all the fundamental components

C++ programs have as follows.

Example 1. :

1 // A Hello World program

2 # include < iostream >

3 using namespace std;

4 int main () {

5 cout << ” Hello world ”<< endl;

6 return 0;

7 }

Now, let’s see what those written concepts in this example mean by

looking at each line.

#include <iostream>

C++ follows in the footsteps of C where there is the concept of the

kernel of the language and an additional set of library routines. The

#include line is an instruction to the compiler to make available to

the following program unit what is defined in iostream. . . There is the

concept of compiler preprocessing in C and C++ programs. The #

indicates a preprocessor directive.The <> characters are used to in-

dicate a standard language header file, in this case iostream. I/O is

14

not available in the kernel of the language. It is made available by

the inclusion of iostream in the complete program.

using namespace std;

The C++ standard has introduced the concept of a namespace. Names-

paces provide a way of grouping related items. They are analagous

to the functionality provided by modules in other programming lan-

guages. The above line makes available the standard namespace,

called std. Without this line the above program would have to be

rewritten as:

#include < iostream >

int main()

{

std::cout << ” Hello World ” << std::endl;

return 0;

}

Here we explicitly qualify cout and endl to show that they are to be

found in the standard namespace.

int main()

The next line is the start of the program itself. All programs are

called main in C++. There is also the concept of every program unit

being a function. Functions in C++ either return a value (and in this

case we are defining main to return an integer value) or not. If we do

15

not want a function to return a value (Pascal procedure or Fortran

subroutine) we use void rather than a data type in conjunction with

the function name to indicate this.

The next thing of interest is the { character which indicates the start

of the program.

The next statement cout (pronounced see out) prints some text to the

standard out stream or screen, in this case Hello World.

Text is delimited in C++ with ” marks.

endl is predefined in C++ to generate an end of line.

The << symbols are classified in C++ as an operator. They are used

to separate items in the output stream.

; is the statement separator in C++.

Finally the program terminates with the return 0 statement. When

calling functions, one is used to them returning a value. In the case

of the special main function, the C++ language returns the value 0

to the operating system level. This is very useful when the overall

problem may call for several programs to work together.

The } character signifies the end of the program.

2.6 Arithmetic Operators

C++ uses operators to do arithmetic. It provides operators for five

basic arithmetic calculations: addition, subtraction, multiplication,

16

division, and taking the modulus. Each of these operators uses two

values (called operands) to calculate a final answer. Together, the

operator and its operands constitute an expression. For example,

consider the following statement:

int a = 2 + 4.

The values 4 and 2 are operands, the + symbol is the addition oper-

ator, and 4 + 2 is an expression whose value is 6.

Here are C++’s five basic arithmetic operators:

The + operator adds its operands. For example, 4 + 15 evaluates to

19.

The − operator subtracts the second operand from the first. For

example, 13− 4 evaluates to 9.

The ∗ operator multiplies its operands. For example, 28 ∗ 4 evaluates

to 112.

The / operator divides its first operand by the second. For example,

100/5 evaluates to 20. If both operands are integers, the result is

the integer portion of the quotient. For example, 17/3 is 5, with the

fractional part discarded.

The % operator finds the modulus of its first operand with respect to

the second. That is, it produces the remainder of dividing the first

17

by the second. For example, 19 % 6 is 1 because 6 goes into 19 three

times, with a remainder of 1. Both operands must be integer types;

using the % operator with floating-point values causes a compile-time

error. If one of the operands is negative, the sign of the result depends

on the implementation.

Remark 1. Note that the % operator works only with integers.

2.7 Order of Operators

� ()

� ∗, /, %

� + ,−

If the value

a + b · c− f

g

is to be assigned to variable x, it is coded:

x = a + b ∗ c− f/g

Homework. write the following expressions in C++ environment:

x = y(2 + a)

18

r = a− 4b
c−1

y = 5(7x + 1)(3x− 2)

What is the order of operations in the following expression?

z = x ∗ y % 4 + x/y − 1.

Calculate z when x = 6 and y = 2.

19

2.8 Basic Data Types in C++

Integer (int): represent the set of integer numbers. For a 32-bit ma-

chine, int can represent the numbers in the interval [−(231− 1), 231−

1] = [−2147483648, 2147483647].

Arithmetic operators: +,−, ∗, /,% which are sum, subtraction, inte-

ger division and remainder respectively.

Example: 13/3 = 4, 12/3 = 4, 10%5 = 0, 13%3 = 1.

Real (float or double): represent the set of real numbers. The

double and float types are similar, but they differ in precision and

range. A float is a single precision, 32-bit floating-point data type

that accommodates seven digits. A double is a double-precision, 64-

bit floating-point data type that accommodates 15 to 16 digits.

Arithmetic operators: +,−, ∗, /

Real division: 13.0 / 4.0 = 3.25.

Boolean (bool): represent logic values.

Values: false and true.

Operators: not, and, or.

The logical operators are often used to combine relational expressions

into more complicated Boolean expressions:

20

operator meaning

&& and

|| or

! not

The operators return true or false, according to the rules of logic:

x ! x

true false

false true

x y x && y

true true true

true false false

false true false

false false false

x y x || y

true true true

true false true

false true true

false false false

21

Example: using logical operators (assume x = 6 and y = 2):

!(x > 2)→ false

(x > y) && (y > 0)→ true

(x < y) && (y > 0)→ false

(x < y) || (y > 0)→ true

Character (char): represent letters, digits, punctuation marks and

control characters. For examples ‘A’, ‘b’.

Strings (string): represent sequences of characters. For examples,

“This is a string”, “A”, “3.1416”.

2.9 Relational operators

The values of most data types can be compared using relational op-

erators:

==, ! =, >, >=, <, <=

22

operator meaning

== equal to

! = not equal to

> greater than

>= greater than or

equal to

< less than

<= less than or equal

to

Example:

2 == 2 is true, 5 == 7 is false, 5! = 6 is true, 2.5 <= 7 is true,

−5 >= 0.1 is false, ′J ′ <=′ K ′ is true, ′a′ ==′ A′ is false, “Ali” ==

“Ahmed” is false, “Ali” == “Ali” is true, “Ali” < “Ahmed” is true,

“book” < “booking” is true.

2.10 Declaration of variables

C++ is a strongly-typed language, and requires every variable to be

declared with its type before its first use. This informs the compiler

the size to reserve in memory for the variable and how to interpret

its value. The syntax to declare a new variable in C++ is straightfor-

ward: we simply write the type followed by the variable name (i.e.,

its identifier). For example:

23

int a;

float Mynum;

char A;

string Box;

Several variables can be declared together:

int age, children, cars;

Note: use #include <string> in the header of a program using strings.

3 Algorithm and Flowchart

Before we study C++ in details, we need to understand the flow of

a program and how to analyze a given problem before writing its

code. There are two useful tools one may apply called the algorithm

and flowchart. Algorithm and flow charts are two different tools used

for creating new programs, especially in computer programming. An

algorithm is a step-by-step analysis of the process, while a flowchart

explains the steps of a program in a graphical way. Algorithms can

be presented by natural languages, pseudo code and flowcharts.

Several standard graphics are applied in a flowchart as following:

� Terminal Box - Start / End

Start/End

24

� Input / Output

� Process / Instruction

� Decision (conditional statements)

� Connector / Arrow

Rules for constructing an Algorithm:

� Input: There should be zero or more values which are to be sup-

plied

� Output: At least one result is to be produced.

� Definiteness: Each step must be clear and unambiguous.

� Finiteness: If we trace the steps of an algorithm, then for all cases,

the algorithm must terminate after a finite number of steps.

25

� Effectiveness: Each step must be sufficiently basic that a person

using only paper and pencil can in principle carry it out. In

addition, not only each step is definite, it must also be feasible.

� Comment Session: Comment is additional info of program for eas-

ily modification. In algorithm comment would be appear between

two square bracket [].

Rules of Drawing Flowcharts for Algorithms:

� All boxes of flowcharts are connected with arrows to show the

logical connection between them

� Flowcharts will flow from top to bottom

� All flowcharts start with a start box(ellipse) and end with a ter-

minal box(ellipse).

Example: Write algorithm to calculate the sum and average of two

numbers.

Algorithm:
[
procedure for calculate sum and average of two numbers

]
Step 1 : Start

Step 2 : Read two numbers n,m

Step 3 : Calculate sum=n+m

Step 4 : Calculate avg=sum/2

Step 5 : Print sum,avg

26

Step 6 : End[
End of procedure for calculate sum and average of two numbers

]
Example: Convert temperature from Fahrenheit °F to Celsius °C by

using the formula C = 5/9 ∗ (F − 32).

Algorithm:
[
Procedure for Converting Temperature from Fahrenheit

°F to Celsius °C
]

Step 1: Start,

Step 2: Read temperature in Fahrenheit,

Step 3: Calculate temperature with formula C=5/9*(F-32),

Step 4: Print C

Step 5: End

Flowchart:

27

Example: Let x be a fixed negative integer. Print the integer values

in the interval (x,21).

Algorithm:

Step 1: Start,

Step 2: Initialize integer x < 0,

Step 3: Increment x by 1 (x = x + 1),

Step 4: Print x,

Step 5: If x is less than 20 then go back to step 3,

Step 6: End.

Flowchart:

28

4 The Standard Output Stream (cout)

The predefined object cout is an instance of ostream class. The cout

is used in conjunction with the stream insertion operator, which is

written as << which are two less than signs as shown in the following

examples:

cout <<“Output sentence”; // prints output sentence on screen

cout << 120; // prints number 120 on screen

cout << x; // prints the value of x on screen

Multiple insertion operations (<<) may be chained in a single state-

ment:

int x=2;

cout<<“y ” <<“=” << x;

This last statement would print the expression y = 2.

Chaining insertions is especially useful to mix literals and variables

in a single statement:

int age=20;

cout << “I am ” << age <<“ years old and I live in Baghdad”;

This would print the statement “I am 20 years old and I live in Bagh-

dad.

What cout does not do automatically is add line breaks at the end,

unless instructed to do so. For example, take the following two state-

29

ments inserting into cout:

cout << “Hello my friend.”;

cout << “It is a nice day.”;

The output would be in a single line, without any line breaks in be-

tween as follows:

Hello my friend.It is a nice day.

To insert a line break, a new-line character shall be inserted at the

exact position in order to break the line. In C++, a new-line charac-

ter can be specified as \n. For example:

cout << “Hello my friend.\n”;

cout << “It is a nice day.\n”;

This produces the following output:

Hello my friend.

It is a nice day.

We can use endl to break a line and the example above can be writ-

ten as:

cout << “Hello my friend.”<<endl;

cout << “It is a nice day.”<<endl;

30

5 The Standard Input Stream (cin)

The predefined object cin is an instance of istream class. The cin

object is said to be attached to the standard input device, which is

the keyboard typically. The cin is used together with the extraction

operator >> as shown in the following examples:

Example:

#include <iostream>

using namespace std;

int main() {

int age;

cout <<“Please enter your age: ”;

cin >> age;

cout << “I am ” << age << “ years old.”<<endl;

return 0; }

The output on screen as follows:

Please enter your age: (the number you enter)

I am (the number you enter) years old.

Example: Enter your name as a string

#include <iostream>

using namespace std;

31

int main() {

char name[100];

cout <<“Please enter your name: ”;

cin >> name;

cout << “My name is ” << name <<endl;

return 0; }

Output: suppose that you enter Jacob, then output on screen is as

follows:

Please enter your name: Jacob

My name is Jacob

Question: Write a code for entering someone’s first, middle and last

names then print the full name.

Solution:

32

#include <iostream>

using namespace std;

int main() {

return 0; }

33

Homework:

Q1: Ahmed owns a shipping company of 10 employees. He wants to

know the average of their salaries. Write an algorithm to do so.

Q2: Draw the flowchart of your algorithm in Q1.

Q3: Write a code for the given problem in Q1.

6 Conditional Statements in C++

In C++ programming, if statement is a logical expression and it is

used to test a certain condition. There are various types of if state-

ments in C++ as follows:

� if statement

� if-else statement

� nested if statement

� if-else-if ladder

6.1 if Statement

The C++ if statement tests the condition. It is executed if condition

is true otherwise the next step after the condition shall be executed.

34

if(condition)

{

//the executed code

}

if Statement flowchart

Example: Check if a real number x is greater than 5.

35

#include<iostream>

using namespace std;

int main () {

cout<<”Enter a real number: ”;

float num;

cin >> num;

if (num > 5)

{

cout << num << ”is greater than 5”;

}

return 0;

}

The output: suppose that you enter x=6.5

Enter a real number: 6.5

6.5 is greater than 5

Example: find the largest number among three numbers using if

statement.

36

#include<iostream>

using namespace std;

int main(){

float num1, num2, num3;

cout << ”Enter three numbers: ”;

cin >> num1 >> num2 >> num3;

if(num1 >= num2 && num1 >= num3)

{

cout << ”Largest number: ” << num1;

}

if (num2 >= num1 && num2 >=num3)

{

cout << ”Largest number: ” << num2;

}

if (num3 >= num1 && num3 >= num2)

{

cout << ”Largest number: ” << num3;

}

return 0; }

37

6.2 if-else Statement

if(condition)

{

//code if condition is true

}

else

{

//code if condition is false

}

if-else Statement flowchart

38

Example: Check whether a number is even or odd.

#include<iostream>

using namespace std; //A code for checking whether a number

is even or odd

int main () {

cout<<”Enter a number: ”;

int num;

cin >> num;

if (num % 2 == 0) {

cout << num << ”is even number”; }

else {

cout<< num <<” is odd number”<<endl; }

return 0; }

Output:

Homework:

Q1. Write a code to order two numbers gradually.

Q2. Write a code to enter a number and print “ON” if the given

number is even otherwise print “OFF”.

Q3. Draw the flowcharts of your codes for Q1 and Q2.

39

6.3 if-else-if ladder Statement

if(condition 1){

//code to be executed if condition1 is true }

else if(condition 2){

//code to be executed if condition2 is true }

else if(condition 3){

//code to be executed if condition3 is true }

...

else{

//code to be executed if all the conditions are false }

40

if-else-if ladder Statement flowchart

Example: Check whether a student’s grade is fail, accepted, middle,

good, very good, or excellent.

41

#include <iostream>

using namespace std;

int main () {

int num;

cout<<”Enter a number to check grade:”;

cin>>num;

if (num < 0 || num > 100) { cout<<”wrong number”; }

else if(num >= 0 && num < 50){ cout<< ”Fail”; }

else if (num >= 50 && num < 60){cout<< ”accepted”;}

else if (num >= 60 && num < 70){cout<< ”middle”; }

else if (num >= 70 && num < 80) { cout<< ”good”; }

else if (num >= 80 && num < 90)

{ cout<< ”very good”; }

else (num >= 90 && num <= 100){cout<< ”excellent”;

}

return 0; }

Homework: If a is an integer, find out if a can be divided by 2,3

and 5.

Example: Five alphabets a, e, i, o and u are known as vowels. All

other English alphabets except these five alphabets are consonants.

42

The following program assumes that the user will always enter an

alphabet to check whether the entered alphabet is vowel or constant.

#include<iostream>

using namespace std;

int main () {

cout << ”Enter an alphabet: ”;

char c;

cin >> c;

if (c == ’a’ || c == ’e’ || c == ’i’ || c == ’o’ || c == ’u’)

{

cout << c << ” is a vowel.”;

}

else if (c == ’A’ || c == ’E’ || c == ’I’ || c == ’O’ || c

== ’U’)

{

cout << c << ” is a vowel.”;

}

else { cout << c << ” is a consonant.”;

}

return 0; }

The code above can be rewritten as follows:

43

#include<iostream>

using namespace std;

int main () {

cout << ”Enter an alphabet: ”;

char c;

cin >> c;

// evaluates to 1 (true) if c is a lowercase vowel

LowerVowel = (c == ’a’ || c == ’e’ || c == ’i’ || c == ’o’ || c

== ’u’);

// evaluates to 1 (true) if c is an uppercase vowel

UpperVowel = (c == ’A’ || c == ’E’ || c == ’I’ || c == ’O’ || c

== ’U’);

// evaluates to 1 (true) if either vowel1 or vowel2 is true

if (LowerVowel || UpperVowel)

{

cout << c << ” is a vowel.”;

}

else

{

cout << c << ” is a consonant.”;

}

return 0; }

44

Homework:

Q1. Write the algorithm and also draw the corresponding flowchart

for the above code.

Q2. Write a code to check whether a real number is positive, negative

or zero.

Q3. Write a code to order three numbers gradually.

7 C++ Loops

Loops are used to repeat a block of code. Being able to have your

program repeatedly execute a block of code is one of the most basic

but useful tasks in programming. There are three types of loops:

� for

� while

� do..while

Each of them has their specific uses.

7.1 The C++ For Loop

The C++ for loop is used to iterate a part of the program several

times. The syntax for a for loop is

45

for(initialization; condition; incr/decr){

//code to be executed

}

It executes initial statement once, the test takes place before each it-

eration, then executes statement and iteration expression repeatedly,

until the value of condition becomes false.

For Loop Flowchart:

Example: Print the integer numbers from 1 to 10.

46

#include<iostream>

using namespace std;

int main () {

for(int i=1; i<=10; i++){

cout<< i <<”\ n”;

}

return 0; }

Output:

1

2

3

4

5

6

7

8

9

10

If we replace the statement

47

cout << i << ”\n”;

by

cout << i << ” ”;

we get the following output:

1 2 3 4 5 6 7 8 9 10

Example of nested loops :

#include<iostream>

using namespace std;

int main () {

for(int i=1; i<=3; i++){

for(int j=1;j<=3; j++){

cout<< i << ” ” <<”\ n”;

}

}

return 0; }

Output:

48

1 1

1 2

1 3

2 1

2 2

2 3

3 1

3 2

3 3

Example: display elements of the array (3,6,9,10,15) using for loop.

Note that the array index start with zero. Thus, array(0)=3, ar-

ray(1)=6, array(2)=9, array(3)=10, array(4)=15

#include<iostream>

using namespace std;

int main () {

int arr[]={3,6,9,10,15};

for(int i=0; i<5; i++){

cout<<arr[i]<<endl;

}

return 0; }

49

Output:

3

6

9

10

15

Example: write a program to calculate the following series for any

variable x and integer n,

f(x) = 1 + x + x2 + x3 + · · ·+ xn−1 + xn,

O(x) = x + x3 + x5 + · · ·+ x2n−1 + x2n+1,

E(x) = 1 + x2 + x4 + · · ·+ x2n−2 + x2n.

50

#include<iostream>

#include<math.h> // for the power function pow(x,n)

using namespace std;

int main () {

float x, fx;

int n;

cout<< ”Enter the value of x : ”<<endl;

cin>>x;

cout<< ”Enter the integer value of n: ”<<endl;

cin>>n;

fx=0.0;

for(int i=0; i<=n; i++){

fx=fx+pow(x,i);

}

cout<<”f(x)=”<<fx<<endl;

return 0; }

The rest can be solved the same but changing the power of x.

51

7.2 Break Statement inside a Loop

When the break statement is encountered inside a loop, the loop is

immediately terminated and program control resumes at the next

statement following the loop. If you are using nested loops (i.e., one

loop inside another loop), the break statement will stop the ex-

ecution of the innermost loop and start executing the next

line of code after the block.

break Statement Flowchart:

52

Example: write a program to check whether an integer number is

prime or not.

#include<iostream>

using namespace std;

int main () {

int n;

bool CheckPrime=true;

coot << ”Enter the integer value of n : ”<<endl;

cin >>n;

for(int i=2; i<= n/2; i++){

if(n%i==0){

CheckPrime=false;

break;}

}

if(CheckPrime){cout<<n<<” is a prime \n”;}

else {cout<<n<<” is a not prime\n”;}

return 0; }

53

Example of nested loops break :

#include<iostream>

using namespace std;

int main () {

for(int i=1;i<=3;i++){

for(int j=1;j<=3;j++){

if(j==3){break;}

cout<<i<<” ”<<j<<”\n”;

}

}

return 0; }

Output:

1 1

1 2

2 1

2 2

3 1

3 2

54

Homework: Let x be a real number and n any positive integer.

Write a program using for loop for each of the following :

Q1 Calculate the power value xn.

Q2 Calculate n!.

Q3 Calculate 1 + 2 + 3 + · · ·+ n.

Q4 Display all factors of n.

Q5 Display the squares of the numbers from 1 to n.

Q6 Display the integer numbers between −n and n.

Q7 Display the prime numbers between 1 and n.

Q8 Write the corresponding algorithms and flowcharts for the previ-

ous questions.

7.3 While loop

In C++, while loop is used to iterate a part of the program several

times. If the number of iteration is not fixed, it is recommended to

use while loop than for loop. The syntax of while loops is given by

while(condition){

//code to be executed

}

55

while Loop Flowchart:

Example: Print the real numbers from 1 to 2 by 0.2 increment using

while loop.

#include<iostream>

using namespace std;

int main () {

float x=1.0;

while(x<=2){

cout<<x<< ” ”;

x=x+0.2; }

return 0; }

56

Output:

1 1.2 1.4 1.6 1.8

if we set the step cout << x << ” ”; after the step x = x + 0.2;

then the output is

1 1.2 1.4 1.6 1.8 2

Homework: Let n any positive integer. Write a program using

while loop for each of the following :

Q1 Calculate n!.

Q2 Calculate n1 + n2 + n3 + · · ·+ nn.

Q3 Display the integer numbers between −n and n.

Q4 Write the corresponding algorithms and flowcharts for the previ-

ous questions.

57

7.4 Do - While loop

Do-While Loop The C++ do-while loop is used to iterate a part of

the program several times. If the number of iteration is not fixed and

you must have to execute the loop at least once, it is recommended to

use do-while loop. The C++ do-while loop is executed at least once

because condition is checked after loop body. The syntax of do-while

loops is given by

do{

//code to be executed

}

while(condition);

do - while Loop Flowchart:

58

Example: print the numbers from 1 to 10 using do-while loop.

#include<iostream>

using namespace std;

int main () {

int i=1;

do{ cout<<i<< ” ”;

i++;}

while(i<=10);

return 0; }

Output:

1 2 3 4 5 6 7 8 9 10

Example: check whether an integer number is prime or not using

do-while loop.

59

#include<iostream>

using namespace std;

int main () {

int n;

cout<< ”Enter an integer n: ”;

cin >>n;

bool CheckPrime=true;

int i=2;

do{

if(n!=2 && n%i==0){CheckPrime=false;

cout<<i<< ” divides ”<<n<<endl;

break; }

i++;

} while(i<=n/2);

if(CheckPrime){cout<<n<< ” is a prime”<<endl;}

else {cout<<n<< ” is not a prime”<<endl;}

return 0; }

60

Homework: Let n be any positive integer. Write a program using

do - while loop for each of the following :

Q1 Calculate 2n.

Q2 Calculate 1 + 2n2 + 3n3 + · · ·+ 10n10.

Q3 Calculate 1 + 2n2 + 4n4 + · · ·+ 40n40

Q3 Calculate n1 + 3n3 + 5n5 + · · ·+ 99n99

Q3 Calculate n + (n− 1) + (n− 2) + · · ·+ 2 + 1.

Q4 Write the corresponding algorithms and flowcharts for the previ-

ous questions.

8 C++ Break and Continue Statements

In C++, there are two statements break; and continue; specifically

to alter the normal flow of a program. Sometimes, it is desirable to

skip the execution of a loop for a certain test condition or terminate

it immediately without checking the condition.

8.1 C++ Break Statement

The C++ break is used to break loop or switch statement. It breaks

the current flow of the program at the given condition. In case of

inner loop, it breaks only inner loop.

61

In real practice, break statement is almost always used inside the

body of conditional statement inside the loop.

How break statement works:

For example, you want to loop through data of people to find the first

person aged 20 where the ages stored in array called age[i]. Then you

set a conditional statement for the ages and break the loop once you

get a person of age 20. In C++ language,

if(age[i]==20){

cout<< ”The first person of age 20 is found”;

break;

}

62

Example: Let’s see a simple example of C++ break statement.

#include<iostream>

using namespace std;

int main () {

int i=1;

do{ cout<<i;

if(i==7){ break;}

i++;}

while(i<=10);

return 0; }

Output:

1 2 3 4 5 6 7

C++ Break Statement with Inner Loop

The C++ break statement breaks inner loop only if you use break

statement inside the inner loop. Let’s see the example code:

63

#include<iostream>

using namespace std;

int main () {

for(int i=1;i<= 3;i++){

for(int j=1;j<= 3;j++){

if(i==2&&j==2){break;}

cout<<i<<” ”<<j<<endl;

}

}

return 0; }

Output:

1 1

1 2

1 3

2 1

3 1

3 2

3 3

64

Homework:

Q1. Write a code to find the sum of 10 real numbers and stop when

you enter zero.

Q2. Write a code to find the product of 10 real numbers and stop

when you enter a negative number.

Q3. Write a code to enter 20 numbers and stop if you enter an even

number.

Q4. Use break statement to enter random ages of 10 people, then stop

and print ”Someone is retired” if an entered age is greater than

65.

65

8.2 C++ Continue Statement

It is sometimes necessary to skip a certain test condition within a

loop. In such case, continue; statement is used in C++ program-

ming. It continues the current flow of the program and skips the

remaining code at specified condition. It is almost always used inside

a conditional statement.

How Continue statement works:

Example: C++ program to display integer from 1 to 10 except 6

and 9.

66

#include<iostream>

using namespace std;

int main () {

int i=1;

do{if(i==6 || i==9){ continue;}

cout<<i;

i++;}

while(i<=10);

return 0; }

Output:

1 2 3 4 5 7 8 10

9 C++ Functions

In programming, function refers to a segment that groups code to per-

form a specific task. Depending on whether a function is predefined

or created by programmer, there are two types of functions:

� Library Function

� User-defined Function

67

Library functions are the functions which are declared in the C++

header files such as the functions in the following table:

Function Description Argument Type Return Type Header

sqrt() square root double double cmath

pow(base,exp) powers double double cmath

exp() exponential double double cmath

abs() absolute value int/double int/double cmath

log() natural log double double cmath

ceil() round up value double double cmath

floor() round down value double double cmath

cos() cosine function double double cmath

acos() arc cosine double double cmath

tanh() tanh function double double cmath

rand() random function integer integer cmath

68

Example: the following example shows how to use some of the li-

brary (predefined) functions in C++.

#include<iostream>

#include<cmath>

using namespace std;

int main () {

double num = -3.1;

cout<< ” The absolute value of -3.1 is ”<<abs(num)<<endl;

cout<< ” The natural log of 1 is ”<<log(1.0) <<endl;

cout<< ” The ceiling value of 1.6 is ”<<ceil(1.6) <<endl;

cout<< ” The floor value of 1.6 is ”<< floor(1.6) <<endl;

cout<< ” The square root of 36 is ” << sqrt(36.0) << endl;

cout<< ” 5 to the power 2 is ”<< pow(5.0,2.0) << endl;

cout<< ” The exponential value of 0 is ”<<exp(0.0)<< endl;

cout<< ” Picking a random number: ”<< rand() << endl;

return 0; }

Output:

69

The absolute value of -3.1 is 3.1

The natural log of 1 is 0

The ceiling value of 1.6 is 2

The floor value of 1.6 is 1

The square root of 36 is 6

5 to the power 2 is 25

The exponential value of 0 is 1;

Picking a random number: 41

User-defined functions are the functions which are created by the

C++ programmer, so that he/she can use it many times. It reduces

complexity of a big program and optimizes the code.

Declaration of a function:

The syntax of creating function in C++ language is given below:

return type function name(data type parameters...)

{

The body of the function

}

A C++ function definition consists of a function header and a func-

tion body. Here are all the parts of a function :

Return Type: a function may return a value. The return type is the

70

data type of the value the function returns. Some functions perform

the desired operations without returning a value. In this case, the

return type is the keyword void.

Function Name: this is the actual name of the function. The func-

tion name and the parameter list together constitute the function

signature.

Parameters: a parameter is like a placeholder. When a function is

invoked, you pass a value to the parameter. This value is referred to

as actual parameter or argument. The parameter list refers to the

type, order, and number of the parameters of a function. Parameters

are optional; that is, a function may contain no parameters.

Function Body: the function body contains a collection of state-

ments that define what the function does.

Example: the following is the source code for a function called

max(). This function takes two parameters num1 and num2 and

return the biggest of both.

71

#include<iostream>

// function declaration

int max(int num1, int num2);

using namespace std;

int main () {

// local variable declaration:

int a = 100;

int b = 200;

int ret;

// calling a function to get max value.

ret = max(a, b);

cout << ”Max value is : ” << ret << endl;

return 0; }

// function returning the max between two numbers

int max(int num1, int num2) {

// local variable declaration

int result;

if (num1 > num2){ result = num1;}

else{ result = num2;}

return result;

}

72

Output:

Max value is : 200

Example: Write a C++ program that contains a user defined func-

tion which calculates the average of three variables.

#include<iostream>

// function declaration

float ave(float a, float b, float c);

using namespace std;

int main () {

float a = 3.5, b = 20, c= 15;

float A= ave(a, b, c);

cout << ”The average of three numbers is : ” << A;

return 0; }

// function returning the average of three variables

float ave(float a, float b, float c) {

float sum= a+b+c;

float ave=sum/3.0 ;

return ave; }

Output:

The average of three numbers is : 12.8333

73

Homework:

Q1. Write a code for a user-defined function which calculates the prod-

uct of four variables.

Q2. Write a code for a user-defined function which calculates the prod-

uct of n variables.

Q2. Write a code for a user-defined function which calculates the av-

erage of n variables.

9.1 C++ Recursion

When function is called within the same function, it is known as

recursion in C++. The function which calls the same function, is

known as recursive function.

A function that calls itself, and doesn’t perform any task after func-

tion call, is known as tail recursion. In tail recursion, we generally

call the same function with return statement.

Let’s see an example to print factorial number using recursion in C++

language.

74

#include<iostream>

int factorial(int n);

using namespace std;

int main () {

int fact, num;

cout<<”Enter any integer: ”;

cin>>num;

fact=factorial(num);

cout<<”Factorial of ”<<num<< ” is ”<<fact<<endl;

return 0; }

int factorial(int n) {

if(n<0){ return(-1);} /*Wrong value*/

else if(n== 0) { return(1); } /*Terminating condition*/

else { return (n ? factorial(n-1)); }

}

Output:

Enter any integer: 5

Factorial of 5 is 120

75

10 C++ Arrays

C++ provides a data structure, the array, which stores a fixed-size

sequential collection of elements of the same type. An array is used

to store a collection of data, but it is often more useful to think of an

array as a collection of variables of the same type.

Instead of declaring individual variables, such as num0, num1, ...,

and num99, you declare one array variable such as numbers and use

num[0], num[1], and ..., num[99] to represent individual variables. A

specific element in an array is accessed by an index.

All arrays consist of contiguous memory locations. The lowest address

76

corresponds to the first element and the highest address to the last

element.

10.1 Declaring Arrays

To declare an array in C++, the programmer specifies the type of the

elements and the number of elements required by an array as follows

type arrayName [arraySize];

This is called a single-dimension array. The arraySize must be an

integer constant greater than zero and type can be any valid C++

data type. For example, to declare a 10-element array called balance

of type double, use this statement

double balance[10];

10.2 Initializing Arrays

You can initialize C++ array elements either one by one or using a

single statement as follows

double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};

Note that balance[4] = 50.0; assigns element number 5th in the ar-

ray a value of 50.0. Array with 4th index will be 5th, i.e., last element

because all arrays have 0 as the index of their first element which is

also called base index. Following is the pictorial representation of the

77

same array we discussed above

10.3 Accessing Array Elements

An element is accessed by indexing the array name. This is done

by placing the index of the element within square brackets after the

name of the array. For example

double salary = balance[9];

The above statement will take 10th element from the array and assign

the value to salary variable.

Example: Print out all array elements in the example above.

#include<iostream>

using namespace std;

int main () { int n=0;

double balance[5]={1000.0, 2.0, 3.4, 7.0, 50.0};

while(n<=4){ cout << balance[n] <<endl;

n++; }

return 0; }

78

10.4 Multidimensional Arrays in C++

Multidimensional arrays are also known as array of arrays. The data

in multidimensional array is stored in a tabular form as shown in the

diagram below:

The digram shows two dimensional array which for example can be

declared as follows:

int arr[2][3]={{10, 11 ,12} , {20 ,21 , 22}};

Accessing array elements:

arr[0][0] =10 (first element)

arr[0][1] =11 (second element)

arr[0][2] =12 (third element)

arr[1][0] =20 (fourth element)

arr[1][1] =21 (fifth element)

arr[1][2] =22 (sixth element)

79

Example: two dimensional array in C++

#include<iostream>

using namespace std;

int main () {

int arr[2][3]={{10, 11 ,12} , {20 ,21 , 22}};

for(int i=0; i<2; i++){

for(int j=0; j<3; j++){

cout<<arr[i][j]<<endl;

}

}

return 0; }

Output:

10

11

12

20

21

22

80

Example: passing arrays to a function:

In this example, we are passing two arrays int a[] and int b[]

to the function sum(int a[], int b[]). This function adds the

corresponding elements of both the arrays and display them.

#include <iostream>

using namespace std;

void sum(int arr1[], int arr2[]){

int add[50];

for(int i=0; i<5; i++){

add[i] = arr1[i]+arr2[i];

cout<<add[i]<<endl; }

}

int main(){

int a[5] = {10, 20, 30, 40 ,50};

int b[5] = {1, 2, 3, 4, 5};

sum(a, b);

return 0;

}

Multiplication of two matrices:

Suppose that you have two matrices An,m and Bm,k. The multiplica-

81

tion of these two matrices gives a matrix Mn,k. Thus

Mn,k = An,m ·Bm,k.

The following example calculates the multiplication of two 5x5 ma-

trices.

#include<iostream>

using namespace std;

int main() { int A[5][5], B[5][5], mult[5][5];

cout << ”Enter elements of matrix A :” << endl;

for(i = 0; i < 5; ++i){

for(j = 0; j < 5; ++j){

cout << ”Enter element A” << i + 1 << j + 1 ;

cin >> A[i][j]; }}

// Storing elements of second matrix.

cout << ”Enter elements of matrix B:” << endl;

for(i = 0; i < 5; ++i){

for(j = 0; j < 5; ++j){

cout << ”Enter element B” << i + 1 << j + 1 ;

cin >> B[i][j]; }}

82

// Initializing elements of matrix mult to 0.

for(i = 0; i < 5; ++i){

for(j = 0; j < 5; ++j){ mult[i][j]=0;}}

// Multiplying matrix A and B and storing in array mult.

for(i = 0; i < 5; ++i){

for(j = 0; j < 5; ++j){

for(k = 0; k <5; ++k){

mult[i][j] =mult[i][j]+ A[i][k] * B[k][j];

}

}

}

// Displaying the multiplication of two matrix.

cout << endl << ”Output Matrix: ” << endl;

for(i = 0; i < 5; ++i){

for(j = 0; j < 5; ++j){

cout << mult[i][j];

if(j == 4) {cout << endl;}

}

}

return 0; }

83

Homework:

1. Display the largest number of an array of size n.

2. Write a user defined function to find the sum of elements in an

array of size 10.

3. Write a user defined function to find the smallest number of an

array of size n.

4. Display all negative integers of an array of size n.

5. Find all zeros and their locations of an array of size 20 and print

”All elements are not zero” if there is no zero element.

6. Find the multiplication of two matrix arrays A1xn and Bnx1 where

n is a positive integer.

7. Write a code to display the transpose of a matrix A2,3.

8. Write a code to display the transpose of a matrix An,m.

9. Calculate the average number of array elements.

10.5 Strings in C++ as array of characters

Strings are words that are made up of characters, hence they are

known as sequence of characters. In C++ we have two ways to create

and use strings:

84

1. By creating char arrays and treat them as string.

2. By creating string object.

Array of Characters:

#include <iostream>

using namespace std;

int main(){

char name[50] = ”Ahmed Ali”;

char job[50] = ”Engineer”;

cout<<name<<endl;

cout<<name[0]<<endl;

cout<<name[4]<<endl;

cout<<job<<endl;

return 0; }

Output:

Ahmed Ali

A

d

Engineer

85

References

Textbooks:

1. C++ Lecture Notes by Francois Fleuret.

2. Course notes Standard C++ programming by Virginie F. Ruiz

Online References

www.javatpoint.com

www.cplusplus.com

www.tutorialspoint.com

86

	Number Systems and Base Conversions
	The Decimal System
	The Binary System
	Conversion between Decimal and Binary numbers

	A General Introduction to C++
	To whom is this course directed?
	Computer Organization
	C++ Compilers
	Programming
	Some Parts of the Program
	Arithmetic Operators
	Order of Operators
	Basic Data Types in C++
	Relational operators
	Declaration of variables

	Algorithm and Flowchart
	The Standard Output Stream (cout)
	The Standard Input Stream (cin)
	Conditional Statements in C++
	if Statement
	if-else Statement
	if-else-if ladder Statement

	C++ Loops
	The C++ For Loop
	Break Statement inside a Loop
	While loop
	Do - While loop

	C++ Break and Continue Statements
	C++ Break Statement
	C++ Continue Statement

	C++ Functions
	C++ Recursion

	C++ Arrays
	Declaring Arrays
	 Initializing Arrays
	Accessing Array Elements
	Multidimensional Arrays in C++
	Strings in C++ as array of characters

