PHYS-2010: General Physics I Course Lecture Notes Section II

Dr. Donald G. Luttermoser East Tennessee State University

Edition 2.5

Abstract

These class notes are designed for use of the instructor and students of the course PHYS-2010: General Physics I taught by Dr. Donald Luttermoser at East Tennessee State University. These notes make reference to the *College Physics*, 9th Edition (2012) textbook by Serway and Vuille.

II. Mathematical Techniques

A. Dimensional Analysis.

- 1. <u>Always</u> make sure that all terms in an equation have the same dimensions (*i.e.*, units).
- Then try to reduce a parameter in an equation to a combination of the three basic concepts: length [L], mass [M], and time [T].
- **3.** For example, the acceleration of a body in a gravitational field is proportional to the mass of the primary body and inversely proportional to the square of the distance:

$$a = G \frac{M}{r^2}$$

where G is a constant. From this formula, find the dimensions of G.

$$[a] = \mathbf{L} \mathbf{T}^{-2} \quad [M] = \mathbf{M} \quad [r] = \mathbf{L} ,$$

where **L** represents *length*, **M** represents *mass*, and **T** represents *time*. Then

$$G = \frac{ar^2}{M} \implies [G] = \frac{[a] [r]^2}{[M]} = \frac{\mathbf{L} \mathbf{T}^{-2} \mathbf{L}^2}{\mathbf{M}} = \mathbf{L}^3 \mathbf{M}^{-1} \mathbf{T}^{-2}$$

or the dimensions of G in the basic (i.e., fundamental) units in SI are $m^3/kg/s^2$.

4. When a symbol or variable has square brackets around it, this means: what are the dimensions (i.e., units) of this symbol or variable?

B. Algebra Review.

- 1. Cross multiplication: $mx = ny \iff \frac{x}{y} = \frac{n}{m}$.
- **2.** Factoring: $y = mx + mb \iff y = m(x+b)$.
- **3.** Powers & Roots:
 - a) $a \times a \times a \times a \times a \times a \times a = a^7$ or $a \times a \times \cdots (m - \text{times}) \cdots \times a = a^m$ "a" is raised to the "mth" power.

b)
$$a^{1/m} = \sqrt[m]{a} \Longrightarrow "m^{\text{th}"} \text{ root of "a."}$$

c) $a^0 \equiv 1$ (note that the " \equiv " symbol means "defined to be").

d)
$$a^{-m} = \frac{1}{a^m}$$
.

e)
$$(ab)^m = a^m b^m, \quad \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m} = a^m b^{-m}$$

f)
$$a^m a^n = a^{m+n}, \quad \frac{a^m}{a^n} = a^{m-n}$$

g)
$$(a^m)^n = a^{mn}, \sqrt[n]{a^m} = a^{m/n}.$$

4. Exponentials and Logarithms:

$$y = a^x$$
 (base "a" to power "x")
 $x = \log_a y$ (the exponent of "a" that yields "y")

a) Product:
$$\log_a(xy) = \log_a x + \log_a y$$
.

- **b)** Quotient: $\log_a\left(\frac{x}{y}\right) = \log_a x \log_a y$.
- c) Power: $\log_a (y^n) = n \log_a y$.

- d) Two common bases:
 - i) Base $10 \Rightarrow$ common logarithms:

$$\log_a = \log_{10} \equiv \log$$

$$x = \log y \quad \Longleftrightarrow \quad y = 10^x \; .$$

ii) Base $e = 2.71828... \Rightarrow$ natural logarithms:

$$\log_a = \log_e \equiv \ln$$

$$x = \ln y \quad \Longleftrightarrow \quad y = e^x$$
.

C. Basic Trigonometry.

1. Right-angle triangle relationships:

2. Generic triangle relationships:

a) Law of sines:

$\sin A$	$\sin B$	$\sin C$
a	$-{b}$	<i>c</i>

b) Law of cosines:

$$a^{2} = b^{2} + c^{2} - 2bc \cos A ,$$

$$b^{2} = a^{2} + c^{2} - 2ac \cos B ,$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos C .$$

- **3.** Additional useful trigonometric identities.
 - a) Angle-sum and angle-difference relations:

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$
$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

b) Double-angle relations:

$$\sin 2\alpha = 2\sin\alpha \cos\alpha = \frac{2\tan\alpha}{1+\tan^2\alpha}$$
$$\cos 2\alpha = \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha$$
$$= \frac{1 - \tan^2\alpha}{1 + \tan^2\alpha}$$
$$\tan 2\alpha = \frac{2\tan\alpha}{1 - \tan^2\alpha}$$

D. Scalars and Vectors.

- 1. A scalar has magnitude but <u>no</u> directional information (*e.g.*, 'v' is a scalar).
 - a) 4 kg and 600 K are scalars.
 - b) 420 km/s is a scalar (*i.e.*, speed).
- 2. A vector has <u>both</u> magnitude and directional information (*e.g.*, \vec{v} ' is a vector).
 - a) 420 km/s to the NW (northwest) is a vector (*i.e.*, velocity).
 - **b)** 420 km/s NW is <u>not</u> equal to 420 km/s SE (southeast)!
 - c) Note that in these course notes I will always represent a vector with an arrow over the variable letter $(e.g., \vec{A})$, whereas your textbook indicates a vector with a boldface letter (e.g., A).
 - d) Arithmetic for scalars and vectors are handled <u>differently</u> with respect to each other. We will describe vector arithmetic in §IV of these notes.