Introduction to
Object Oriented Programming in

! C#

Class and Object

Objectives

You will be able to:
1. Write a simple class definition in C#.

2. Control access to the methods and
data in a class.

3. Create instances of a class.
4. Write and use class constructors.

5. Use the static keyword to create
class members that are not
associated with a particular object.

What Is a class?

Essentially a struct with built-in functions

class Circle

{

double radius = 0.0;

double Area()
{

return 3.141592 * radius * radius;

}

Encapsulation

+

By default the class definition encapsulates,
or hides, the data inside it.

Key concept of object oriented programming.

The outside world can see and use the data
only by calling the build-in functions.

= Called “methods”

* Class Members

Methods and variables declared inside a class
are called members of that class.

= Member variables are called fields.
= Member functions are called methods.

In order to be visible outside the class definition,
a member must be declared public.

As written in the previous example, neither the
variable radius nor the method Area could be
seen outside the class definition.

* Access Modifiers

In order to be visible outside the class definition,

a member must be declared as one of the
following:

1. “+4+": Public
2. “-": Private
3. “*": Protect
4. “~": Package

Making a Method Visible

To make the Area() method visible outside we would write
it as:

public double Area()
{

return 3.141592 * radius * radius;

}

Unlike C++4, we have to designate individual members as
public.

Not a block of members.

We will keep the radius field private.

+

A Naming Convention

= By convention, public methods and
filelds are named with the first letter
capitalized.

= Also class names.

" Private methods and fields are
named in all lower case.

= This Is just a convention.

= |t is not required, and it means nothing to the compiler.

i Interface vs. Implementation

"= The public definitions comprise the
Interface for the class

= A contract between the creator of the
class and the users of the class.

= Should never change.

= Implementation is private
= Users cannot see.
= Users cannot have dependencies.

= Can be changed without affecting
users.

Creating Objects

" The class definition does not allocate

memory for its fields.
(Except for static fields, which we will discuss later.)

= To do so, we have to create an instance
of the class.

static void Main(string[] args)

{

Circle c;

c = new Circle();

10

Objects

An instance of a class is called an object.

You can create any number of instances of
a given class.
= Each has its own identity and lifetime.

= Each has its own copy of the fields associated
with the class.

When you call a class method, you call it
through a particular object.

The method sees the data associated with that
object.

11

& Using Classes and Objects

= (lasses and objects are used much
like traditional types and variables:

= Declare variables
= Like pointers to structs
Circle cl;
= Can be member variables in other classes

= Assignment
c2 = cl;

= Function arguments
picturel.crop(cl) ;

12

i Program Circle Demo

= Demonstrate creating Program
Circle in Visual Studio.

= Demonstrate adding a class to a
project

= Students: Try this for yourself!

13

Create a New Project

#0 Microsoft Yisual Studio =10] x|

File iEu:Iit Wiewe Tools Window Community Help

[0 MewProject... CbShieA |o | o) - oo o S L] b |) min B
W Mew Web Sie. . i er
] MewFil... Chrl+N =

Open Projeck,., Chrl+Shifk+0

Cpen Wweb Site. .,

e OF £

Cpen File. .. Chrl+C

Close

Close Project

Save Selected Ikems Chrl+5

Save Selected Ikems As. ..

w @O A

Save all Crrl+3hift+5

Export Template. ..

Page Setup...
Prink... Chrl+P

=

Recent Files

Recent Projects

Exit

Ready i

Create a New Project

ew Project llﬂ

|

o | &-o-
Project types: Templates: I'NET Framework 3.5 j es F
=) Wisual C# ¥isual Studio installed templates
- Aindows
- Weh L #]windows Farms Application (] Class Library
- Smatt Device @WPF Application [5G WPF Browser Application
[OFfice L}gCDnsale application [cF| Ernplky Project
- Database IE'-.-'-.-'inu:lu:ul.-ws Service & WPF Custorn Control Library
- Reporting [&#|WPF User Control Library 7] windows Forms Control Libeary
- Tesk
- WCF My Templates
- tarkFlow
[Other Languages i 5earch Online Templates. ..
[#- Other Prajeck Types
[#]- Test Projects

& praject For creating a cormmand-line application (O MNET Framewaork 3.5)

Mame; I circle_demo
Locakion: I uments and Settingsiturnerr CSEEYMy Documentsivisual Studio 2008\Projects)2009_Fall_350| j Browse. .. |
Saolution Marme: I circle_dermo ¥ create directory For solution

| Ik I Zancel |

Program Template

20 circle_demo - Microsoft ¥isual Studio - o =]

File Edit ‘iew Project Buld Debug Data Tools Test MWindow Help

Eléﬂvlia'ﬁlgﬁ|¥—:ﬁjﬁl‘-’]*r‘-‘*;ﬂv:ﬁ:ﬂbDebug * Ay CPU vlm

BRbhae | EE=S 00883850,

- Progranm.cs f Stark Page =

Solution Explorer - circle_demo -1 X

X

g circle_demo.Pragram =] | g9 mainistringl] args) - RESEa |
: olution ‘circle_demo' rojec
LHusing System; _ _ = Efﬁ (1 project)
2 | using system.Collections.Generic; - [Properties
3 | using System.Ling; - [References
4 Lusing System.Text;] Program.cs
5
6 - hamespace circle_demo
70 {
89-] class Program
9
104 static void Main(string[] args) —
11 {
12 - }
13 - }
14 L}
15

Ready 4

& Adding a Class to a Program

= Fach class definition should be a
separate file.

" |In Visual Studio.
" Project menu > Add Class
= Use class nhame as file name.

17

Add a Class to the Project

@2 circle_demo - Microsoft ¥isual Studio

Wiews | Projeck | Build Debug Data Tools

File Edit

Test Window Help

e AR
"-'L[‘E_T.A..-:|

Program.cs |: ke

g circle_dema.Prog

iEED
2 U
3| U
4: Ly
5
6
7
8
9

i
(]
o]

& L [B

Add windows Form...
Add User Contral...

Add Component. .,

F) b Debug - any CPU

b5 R

in(stringl] args)

Solukion E::-::|:|I|:|r'er' - |Iir|I|E_|:|EI'|'||:|

=25 E A

=10l x|

-0 x

ns.Generic;

Shift+-al+C
Add Mews Ttem. .. Ctrl+Shift+4
Add Existing Item... Shift+al+a
Mews Folder
Show All Files

Unload Project

Add Reference. ..
Add Service Reference...

Set as Startlp Project

Refresh Project Toolbox Tkems

1in(string[] args)

circle_demo Properties. ..

|l el el el
W= O
T 1 —{——0
et P |

}

Lo) L =

m Solution 'circle_demo' {1 project)
BB circle_demo |

=d| Properties

|« References

- ﬁﬁl Program.cs

Ready

18

Adding Class Circle

dd New Item - circle_demo el |

|

Categoties: Templates:
= Visual C# Items ¥isual Studio installed templates

- Code
- Data #] Class #] Code File
- Gaeneral 31& Interface
-~ Weh
- indows Forms My Templates
- Reporting i Search Online Templates. ..
- WorkFlov

I an empky class definition

Mame: Circle

add Zancel

Initial Source File

#2 circle_demo - Microsoft Yisual Studio

File Edit ‘iew
S e % SR 9 E-E | b Debug = Any CPU
DHRbheEEfZ2 038885 R

Refactor Project Build Debug Data Tools Test Window Help

Circle.cs | Program.cs | Start Page |

Solution Explorer - .., = & X

=10 x|

:Lxﬁu:ircle_demu.':ircle j I | @E | =l 69'1
: = m Solution 'circle_demo' {1 p
1 =] P’IS-I ng SYStem ; ||| =- @ circle_demo
2 | using System.Collections.Generic; — - [24) Propetties
3 | using System.Ling; = E_Effrences
-; using System.Text; ™ é P::;:njcs
6 - namespace circle_demo
7o
8 class Circle
9 { |
10 }
11 L}
12
1 | _’l_l 1| I
Ready Ln 1 Col 1 Chi INS i

20

Fill in Class Definition

#% circle_demo - Microsoft Yisual Studio

File

@*d*ﬁﬂﬂl&b 'f?s"lﬁ|"3‘[‘-‘*v__:}';| b Debug

Edit iew Refactar Project Build Debug Data Tools Test MWindow Help

Dake FFEZ20P8a8a5R,
- Eircle.cs*} Program.cs | Start Page |

- Any CPU

=10l %]

Solution Explorer - ... = B X

ﬁgcircle_demu.l:ircle j IJO radius j | E:PE-IH = g‘ll
I using system; q Pam
2 — =d| Properties
3 o namespace circle_demo - [References
491 { ----- zl;] Circle.cs
T | I 1=j| Program.cs
S5iE class Circle
6 {
7 private double radius = 0.0;
8
95 public double Area()
10 { .
11 return Math.PI * radius * radius;
12 }
13 - }
14 L}
15
4 _"|_I «| | B
Ready Ln 2 Col 1 Chi v

21

Fill in Main()

@0 circle_demo - Microsoft ¥isual Studio =101l
File Edit Wiew FRefactor Project Buld Debug Data Tools Test Windomw Help
- E- S| % RR|(9-0 - F-E | b Debug » Any CPU v | [table B R -
Baha|EEf =2 0P8 8885 R,
- X 5|:||IJti|:| Exp... » & X
ﬁgcircle_demn.F‘rogram j Ig@Main(string[] args) j
1] using System; |t P
2 (i |=d| Properties
3 namespace circle_demo B [References
4 .[e] Cirdle.cs
e ‘,ﬂ Program.cs
5 class Program
6 {
e static void Main(string[] args)
8 {
9 Circle cl;
10
11 cl = new Circle();
12
13 double cl_Area = cl.Area(); Call function Area() of Circle object
14
15 Console.wWriteLine(cl_Area); cl
16
17 Console.ReadLine(); // keep window open.
13})
19 - }
20 L}
21
< | _'I—I 1 | v
Itemis) Sawved Ln 15 ol 1 hi S

Build and Run

‘::, circle_demo - Microsoft Yisual Studio I]
File Edit “iew Refactor Project | Build | Debug Data Tools Test Window Help
B RREE RN = N NEEREERN i Suild circle_demo "B H ok A |EE=E2 O ;'
Rebuild circle_demo T | @3-
. -]
Clean circle_demo
1 using System; Publish circle_demo = | & 3B E &
2 Canfiguration Manager... = @ circle_demo
3 Enamespace circle_demo & 5 Properties
4 _[= = References
5 class Program & Circle.ce
5 { g] Program.cs
i = static void Main(string[] args)
8
9 Circle cl;
10
11 ¢l = new Circle(); |
12
13 double cl_area = cl.Area();
14
15 Console.wWriteLine(cl_area);
16
17 console.ReadLine(); // Keep window open.
18 + }
19 - }
20 L}
21 =
4| | _>|_I &y Solutio.. & Propeties

Build succeeded Ln 1 Col 14 Chi4 NS 5

Program circle demo in Action

- Area of Circle c1

24

Constructors

So far we have no way to set or change the
value of radius of a Circle.

We can use a constructor to set an initial
value.

A constructor is a method with the same
name as the class. It is invoked when we
call new to create an instance of a class.

In C#, unlike C++, you must call new to create an object.

Just declaring a variable of a class type does not create an
object.

25

i A Constructor for Class Circle

We can define a constructor for Circle so
that it sets the value of radius.

class Circle

{

private double radius;

public Circle (double r)
{

radius = r;

}

}
Note: Constructors have no return type.

26

Using a Constructor

&0 circle_demo - Microsoft ¥isual Studio

File Edit Wiew FRefactor Project Buld Debug Data Tools Test Window Help
E@"ﬂ’ﬁgﬂ|&%ﬁlq’wvv___-'i';liDebug - Any CPU v||3table
Baha|EEfZ 2 0P8 a83&85 R,
Start Page }/W - X ':_||:||IJti|:| Exp... » & X
i circle_dema.Program j Ig@Main(string[] args) j
- - — DSDIution ‘circle_demol
1 usi ng SyStem ' = 5 (5] circle_demo
=d| Properties
3 E namespace circle_demo el [References
4 _[e :E'l Circle.cs
5 class Program 4 - &) Program.cs
6 {
e static void Main(string[] args)
8 {
9 Circle cl;
10
11 cl = new Circle(5.0); Calls
12 | constructor —
13 double cl_Area = cl.Area(ls
14
15 Console.wWriteLine(cl_Area);
16
17 console.ReadLine(); // keep window open.
18- }
19 L }
20/ L}
21
< | _'I—I 1 | »
Itemis) Sawved Ln 11 ol 32 h3z NS A

Program Running

c:v | file:// /C:/Documents and Settings/turnerr.C5EE/My Documents,¥isual Studio 2008 /Projects/2009_Fall_SsSD; circle_demo/circle” demo;bin/Dekbi

78.5398163397448

Area of Circle c1

=101%]

28

Multiple Constructors

+

A class can have any number of constructors.

All must have different signatures.
(The pattern of types used as arguments.)

This is called overloading a method.

Applies to all methods in C#. Not just constructors.

Different names for arguments don’t matter,
Only the types.

29

i Default Constructor

If you don’t write a constructor for a class, the
compiler creates a default constructor.

The default constructor is public and has no
arguments.

c = new Circle();

The default constructor sets numeric variables
to zero and Boolean fields to false.

In constructors that you write, the same is true
for any variables that you don’t initialize.

30

Creating multiple objects of the

same type

@0 circle_demo - Microsoft ¥isual Studio

File Edit “iew Project Build Debug Data Tools Test Window Help
@'d'ﬁlﬂ@l,ﬁ —;:-1:.3|~"."f.‘va-:ﬂ-__j';|PDebug ~ Any CPU vlwtable
BRlke fE 2 0P8 aBan Ry

- EERRE G

=0l]

Start Page r’m - X SI:TJHDH Explorer
ﬁgcircle_demo.Program j I-Li,QMain(string[] args) j _ ————
I using systen; |
2 I |=d| Properties
3o namespace circle_demo i [References
4 { ----- iﬁ] Circle.cs
5 class Program " 2] Programcs
6 {
V= static void Main(string[] args)
8 {
9 Circle cl;
10 Circle c2;
11
12 cl = new Circle(5.0); -
13 c2 = new Circle(10.0);
14
15 double cl_Area = cl.Area();
16
17 Console.writeLine(cl_Area);
18 Console.wWriteLine(c2.Area());
19
20 console.ReadLine(); // keep window open.
211 }
22 }
23 - } -
1| | LlJ 1 | >
Ready s

31

Program Running

e |file:/ / /C:/Documents and Settings,/turnerr.CSEE /My Documents/¥isual Studio 2008,/ Projects/2009_Fall_SSD/ circle_demo; circle” demo s bin: D
78.5398163397448

314.159265358979

32

* Good Programming Practice

= All member variables should be
private.

= except const variables

= Users of the class can use them and
manipulate them only by invoking
the public methods of the class.

= Only way for users to do anything
with an object.

33

Class Circle

+

= | et's extend class Circle by

providing names for circle objects.

= Also provide accessor functions

= Public functions that let the outside
world access attributes of an object.

34

Class Circle

@2 circle_demo - Microsoft ¥isual Studio =101l
File Edit ‘iews Refactor Project Buld Debug Data Tools Test Window Help
E@v'ﬂvﬁﬂﬂl&'lﬁg:j|")v{“vv___-'i';liDebug - Any CPU vlﬁ-table vlﬂﬁﬁ‘}b;
BRba|fEf=2 0088885 R,
Circle.cs | Pragrar.cs Su:ulutiu:u Explorer
g drcle_dema.Circle j I @ freal) j | 2 B | =)
- — |: Solution 'circle_demo' {1 project)
1 usi ng SyStem : «| |5 (F circle_demo
(i |=d| Properties
3 F namespace circle_demo - 3l References
49] { ----- :ﬂ Circle.cs
5 class circle W =) Frogram.cs
6 {
7 private string name; New member
8 private double radius = 0.0;
9
109 public Circle(string n, double r) New constructor
11 { £
12 name = n;
13 radius = r;
141 }
15 A
16 public string Name() { return name; } ccessor
17 public double Radius() { return radius; } Methods
18
1995 public double Area()
20 {
21 return Math.PI * radius * radius;
22 }
23 =
l | LlJ 1 | ¥
Build succeeded Lm 18 Caol 9 Cha 4

Getting User Input

= What if we want the user to specify the
radius of a Circle at run time?

= Could overload the constructor and provide
a version that asks for input.

= Better to provide a separate function
outside the class definition.

* Separate User Interface from class logic.

= | et’s write a function that asks the user
for a name and a radius and creates a
Circle of that radius with that name.

36

Getting User Input

In class Program (along with
Main())

static Circle Create Circle()
{
String name, temp;
double radius;
Console.Write("Please enter name for new Circle:
name = Console.ReadLine() ;
Console.Write ("Please enter radius: ") ;
temp = Console.ReadLline() ;
radius = double.Parse (temp) ;

return new Circle (name, radius);

");

37

Main()

static void Main(string[] args)
{
Circle cl = Create Circle();
Console.Write("Circle " + cl.Name()) ;
Console.WriteLine (" created with radius " + cl.Radius());

Console.WritelLine("Its area is " + cl.Area()):

Console.ReadLine(); // Keep window open.

Running Program Circle

e file:/ / /C:/Documents and Settings/Rollins /™My Documents¥isual Skudio2

=10l x|
Please enter name fTor new Circle: A EJ
Please enter radius: 10
Circle A created with radius 10
Its area is 314.159265358979
.| | AW

Passing Objects to a Function

= | et's extend class Circle with a
method to compare one Circle to

another.
" |n class Circle ...

public bool Is_Greater Than(Circle other)

{ 51 N
if is.Radius () > other.Radxrs())

Note keyword "this" | Call Radius() in Circle
eturn true; :
object passed as

}
argument.

else

{

return false;

}

40

Using "Is Greater Than" Method

static void Main(string[] args)
{
Circle Circle A = Create Circle();
Console.Write ("Circle " + Circle A.Name());
Console.WriteLine (" created with radius " + Circle A.Radius());

Console.WriteLine ("Its area is " + Circle A.Area());

Circle c2= Create Circle();
Console.Write ("Circle " + c2.Name());
Console.Writeline (" created with radius " + c2.Radius());

Console.Writeline ("Its area is " + c2.Area());

41

Using "Is Greater Than" Method

if (cl.Is_Greater Than(c2))

{

Console

Console

}

else if (c2.

{

Console
Console

}

else

{

Console
Console

.Write ("Circle " + cl.Name() + " is greater than ");
.WriteLine("Circle " + c2.Name())

Is Greater Than(cl))

.Write ("Circle " + c2.Name() + " is greater than ");
.WriteLine("Circle " + cl.Name())

.Write("Circle " + cl.Name() + " and Circle " + c2.Name())
.WritelLine (" are the same size.");

42

Program Running

o file:/ f /C:/Documents and Settings,/Rollins /My Documents Yisual Stud - | I:Ilil

Please enter name for new Circle: A
Please enter radius: 5§

Circle A created with radius 5

Its area is 78.5398163397448

Please enter name for new Circle: B
Please enter radius: 10

Circle B created with radius 10

Its area is 314.159265358979

Circle B 1s greater than Circle A

al |

43

+

Static Fields

Sometimes we need a single variable
that is shared by all members of a
class.

Declare the field static.

You can also declare a field const in order
to ensure that it cannot be changed.

Not declared static - but is a static variable
= There is only one instance

44

Static Fields

class Math
{

public const double PI = 3.14159265358979;

In class Circle --

public double Area()
{

return Math.PI * radius * radius;

Class name rather than object name.

45

+

Static Methods

= Sometimes you want a method to be
iIndependent of a particular object.

= Consider class Math, which provides
functions such as Sin, Cos, Sqgrt, etc.

®" These functions don’t need any data from
class Math. They just operate on values
passed as arguments. So there is no
reason to instantiate an object of class
Math.

46

& Static Methods

= Static methods are similar to
functions in a procedural language.

" The class just provides a home for the
function.

= Recall Main()
= Starting point for every C# program
* No object

47

Static Methods

+

Example:

class Math

{
public static double Sqrt(double d)

{

48

Static Methods

+

To call a static method, you use the
class name rather than an object
name.

Examp
doub

e:
e d = Math.Sqrt(42.24);

Note: If the class has any nonstatic

fields,
them.

a static method cannot refer to

49

Static Class

4

= A class that is intended to have only
static members can be declared
static.

= The compiler will ensure that no
nonstatic members are ever added
to the class.

= Class cannot be instantiated.

= Math Is a static class.

= Book says otherwise on page 138. According to the
VS2008 documentation this is incorrect.

50

Partial Classes

=" |[n C#, a class definition can be divided
over multiple files.

= Helpful for large classes with many
methods.

" Used by Microsoft in some cases to
separate automatically generated code
from user written code.

= |f class defintion is divided over
multiple files, each part is declared as
a partial class.

51

Partial Classes

In file circl.cs

partial class Circle

{

// Part of class defintion

In file circ2.cs
partial class Circle

{
// Another part of class definition

52

Anonymous Classes

+

"= You can define anonymous classes
In the latest version of C#.

= Class without a name.

= Described on pages 141 - 142.

= Useful in special situations.
= |gnore for now.

53

* Summary

= A class consists of data declarations
plus functions that act on the data.

* Normally the data is private

" The public functions (or methods) determine
what clients can do with the data.

" An instance of a class is called an
object.

" Objects have identity and lifetime.
= Like variables of built-in types.

54

Summary

+

= Static members belong to the class as
a whole rather than to specific objects.

= variables
" methods

= const variables are automatically static

55

	Introduction to Object Oriented Programming in C#
	Objectives
	What is a class?
	Encapsulation
	Class Members
	Slide 6
	Making a Method Visible
	A Naming Convention
	Interface vs. Implementation
	Creating Objects
	Objects
	Using Classes and Objects
	Program Circle Demo
	Create a New Project
	Slide 15
	Program Template
	Adding a Class to a Program
	Add a Class to the Project
	Adding Class Circle
	Initial Source File
	Fill in Class Definition
	Fill in Main()
	Build and Run
	Program circle_demo in Action
	Constructors
	A Constructor for Class Circle
	Using a Constructor
	Program Running
	Multiple Constructors
	Default Constructor
	Creating multiple objects of the same type
	Slide 32
	Good Programming Practice
	Class Circle
	Slide 35
	Getting User Input
	Slide 37
	Main()
	Running Program Circle
	Passing Objects to a Function
	Using "Is_Greater_Than" Method
	Slide 42
	Slide 43
	Static Fields
	Slide 45
	Static Methods
	Slide 47
	Slide 48
	Slide 49
	Static Class
	Partial Classes
	Slide 52
	Anonymous Classes
	Summary
	Slide 55

