
11

Introduction to
Object Oriented Programming in

C#

Class and Object

22

Objectives

You will be able to:
1. Write a simple class definition in C#.
2. Control access to the methods and

data in a class.
3. Create instances of a class.
4. Write and use class constructors.
5. Use the static keyword to create

class members that are not
associated with a particular object.

33

What is a class?

Essentially a struct with built-in functions

class Circle
{

double radius = 0.0;

double Area()
{
 return 3.141592 * radius * radius;
}

 }

44

Encapsulation

By default the class definition encapsulates,
or hides, the data inside it.

Key concept of object oriented programming.

The outside world can see and use the data
only by calling the build-in functions.
 Called “methods”

55

Class Members

Methods and variables declared inside a class
are called members of that class.

 Member variables are called fields.
 Member functions are called methods.

In order to be visible outside the class definition,
a member must be declared public.

As written in the previous example, neither the
variable radius nor the method Area could be
seen outside the class definition.

6

Access Modifiers

In order to be visible outside the class definition,
a member must be declared as one of the
following:

1. “+”: Public
2. “ -”: Private
3. “ *“: Protect
4. “~“: Package

77

Making a Method Visible

To make the Area() method visible outside we would write
it as:

public double Area()

{

return 3.141592 * radius * radius;

}

Unlike C++, we have to designate individual members as
public.

Not a block of members.

We will keep the radius field private.

8

A Naming Convention

 By convention, public methods and
fields are named with the first letter
capitalized.
 Also class names.

 Private methods and fields are
named in all lower case.

 This is just a convention.
 It is not required, and it means nothing to the compiler.

99

Interface vs. Implementation

 The public definitions comprise the
interface for the class
 A contract between the creator of the

class and the users of the class.
 Should never change.

 Implementation is private
 Users cannot see.
 Users cannot have dependencies.
 Can be changed without affecting

users.

1010

Creating Objects

 The class definition does not allocate
memory for its fields.
(Except for static fields, which we will discuss later.)

 To do so, we have to create an instance
of the class.

static void Main(string[] args)

{

Circle c;

c = new Circle();

}

1111

Objects

An instance of a class is called an object.

You can create any number of instances of
a given class.

 Each has its own identity and lifetime.
 Each has its own copy of the fields associated

with the class.

When you call a class method, you call it
through a particular object.

The method sees the data associated with that
object.

1212

Using Classes and Objects

 Classes and objects are used much
like traditional types and variables:

 Declare variables
 Like pointers to structs

 Circle c1;
 Can be member variables in other classes

 Assignment
c2 = c1;

 Function arguments
picture1.crop(c1);

1313

Program Circle Demo

 Demonstrate creating Program
Circle in Visual Studio.

 Demonstrate adding a class to a
project

 Students: Try this for yourself!

14

Create a New Project

15

Create a New Project

16

Program Template

1717

Adding a Class to a Program

 Each class definition should be a
separate file.

 In Visual Studio.
 Project menu > Add Class
 Use class name as file name.

18

Add a Class to the Project

19

Adding Class Circle

20

Initial Source File

21

Fill in Class Definition

22

Fill in Main()

Call function Area() of Circle object
c1

23

Build and Run

24

Program circle_demo in Action

Area of Circle c1

2525

So far we have no way to set or change the
value of radius of a Circle.

We can use a constructor to set an initial
value.

A constructor is a method with the same
name as the class. It is invoked when we
call new to create an instance of a class.

In C#, unlike C++, you must call new to create an object.

Just declaring a variable of a class type does not create an
object.

Constructors

2626

A Constructor for Class Circle

We can define a constructor for Circle so
that it sets the value of radius.

class Circle
{

private double radius;
...
public Circle (double r)
{
 radius = r;
}
...

}

Note: Constructors have no return type.

27

Using a Constructor

Calls
constructor

28

Program Running

Area of Circle c1

2929

Multiple Constructors

A class can have any number of constructors.

All must have different signatures.

(The pattern of types used as arguments.)

This is called overloading a method.

Applies to all methods in C#. Not just constructors.

Different names for arguments don’t matter,

Only the types.

3030

Default Constructor

If you don’t write a constructor for a class, the
compiler creates a default constructor.

The default constructor is public and has no
arguments.

 c = new Circle();

The default constructor sets numeric variables
to zero and Boolean fields to false.

In constructors that you write, the same is true
for any variables that you don’t initialize.

3131

Creating multiple objects of the same type

32

Program Running

3333

Good Programming Practice

 All member variables should be
private.

 except const variables

 Users of the class can use them and
manipulate them only by invoking
the public methods of the class.

 Only way for users to do anything
with an object.

3434

Class Circle

 Let's extend class Circle by
providing names for circle objects.

 Also provide accessor functions
 Public functions that let the outside

world access attributes of an object.

35

Class Circle

New member

New constructor

Accessor
Methods

3636

Getting User Input

 What if we want the user to specify the
radius of a Circle at run time?
 Could overload the constructor and provide

a version that asks for input.
 Better to provide a separate function

outside the class definition.
 Separate User Interface from class logic.

 Let’s write a function that asks the user
for a name and a radius and creates a
Circle of that radius with that name.

3737

Getting User Input

static Circle Create_Circle()

{

 String name, temp;

 double radius;

 Console.Write("Please enter name for new Circle: ");

 name = Console.ReadLine();

 Console.Write("Please enter radius: ");

 temp = Console.ReadLine();

 radius = double.Parse(temp);

 return new Circle(name, radius);

}

In class Program (along with
Main())

38

Main()

static void Main(string[] args)

{

 Circle c1 = Create_Circle();

 Console.Write("Circle " + c1.Name());

 Console.WriteLine(" created with radius " + c1.Radius());

 Console.WriteLine("Its area is " + c1.Area());

 Console.ReadLine(); // Keep window open.

}

3939

Running Program Circle

End of Section

4040

Passing Objects to a Function
 Let's extend class Circle with a

method to compare one Circle to
another.

 In class Circle ...

 public bool Is_Greater_Than(Circle other)

 {

 if (this.Radius() > other.Radius())

 {

 return true;

 }

 else

 {

 return false;

 }

 }

Note keyword "this" Call Radius() in Circle
object passed as
argument.

4141

Using "Is_Greater_Than" Method

static void Main(string[] args)

{

 Circle Circle_A = Create_Circle();

 Console.Write ("Circle " + Circle_A.Name());

 Console.WriteLine (" created with radius " + Circle_A.Radius());

 Console.WriteLine ("Its area is " + Circle_A.Area());

 Circle c2= Create_Circle();

 Console.Write ("Circle " + c2.Name());

 Console.WriteLine (" created with radius " + c2.Radius());

 Console.WriteLine ("Its area is " + c2.Area());

4242

Using "Is_Greater_Than" Method

if (c1.Is_Greater_Than(c2))

{

 Console.Write ("Circle " + c1.Name() + " is greater than ");

 Console.WriteLine("Circle " + c2.Name());

}

else if (c2.Is_Greater_Than(c1))

{

 Console.Write ("Circle " + c2.Name() + " is greater than ");

 Console.WriteLine("Circle " + c1.Name());

}

else

{

 Console.Write("Circle " + c1.Name() + " and Circle " + c2.Name());

 Console.WriteLine (" are the same size.");

}

43

Program Running

End of Section

4444

Static Fields

Sometimes we need a single variable
that is shared by all members of a
class.

Declare the field static.

You can also declare a field const in order
to ensure that it cannot be changed.

Not declared static – but is a static variable
 There is only one instance

4545

Static Fields
class Math

{

...

public const double PI = 3.14159265358979;

}

In class Circle --
public double Area()

{

return Math.PI * radius * radius;

}

Class name rather than object name.

4646

Static Methods

 Sometimes you want a method to be
independent of a particular object.

 Consider class Math, which provides
functions such as Sin, Cos, Sqrt, etc.

 These functions don’t need any data from
class Math. They just operate on values
passed as arguments. So there is no
reason to instantiate an object of class
Math.

4747

Static Methods

 Static methods are similar to
functions in a procedural language.
 The class just provides a home for the

function.

 Recall Main()
 Starting point for every C# program
 No object

4848

Static Methods

Example:

class Math

{

public static double Sqrt(double d)

{

...

}

...

}

4949

Static Methods

To call a static method, you use the
class name rather than an object
name.

Example:

double d = Math.Sqrt(42.24);

Note: If the class has any nonstatic
fields, a static method cannot refer to
them.

50

Static Class

 A class that is intended to have only
static members can be declared
static.

 The compiler will ensure that no
nonstatic members are ever added
to the class.
 Class cannot be instantiated.

 Math is a static class.
 Book says otherwise on page 138. According to the

VS2008 documentation this is incorrect.

End of Section

51

Partial Classes

 In C#, a class definition can be divided
over multiple files.
 Helpful for large classes with many

methods.
 Used by Microsoft in some cases to

separate automatically generated code
from user written code.

 If class defintion is divided over
multiple files, each part is declared as
a partial class.

52

Partial Classes

In file circ1.cs
partial class Circle

{

// Part of class defintion

...

}

In file circ2.cs
partial class Circle

{

// Another part of class definition

...

}

53

Anonymous Classes

 You can define anonymous classes
in the latest version of C#.
 Class without a name.

 Described on pages 141 – 142.

 Useful in special situations.
 Ignore for now.

5454

Summary

 A class consists of data declarations
plus functions that act on the data.
 Normally the data is private
 The public functions (or methods) determine

what clients can do with the data.

 An instance of a class is called an
object.
 Objects have identity and lifetime.
 Like variables of built-in types.

5555

Summary

 Static members belong to the class as
a whole rather than to specific objects.
 variables
 methods

 const variables are automatically static

End of Presentation

	Introduction to Object Oriented Programming in C#
	Objectives
	What is a class?
	Encapsulation
	Class Members
	Slide 6
	Making a Method Visible
	A Naming Convention
	Interface vs. Implementation
	Creating Objects
	Objects
	Using Classes and Objects
	Program Circle Demo
	Create a New Project
	Slide 15
	Program Template
	Adding a Class to a Program
	Add a Class to the Project
	Adding Class Circle
	Initial Source File
	Fill in Class Definition
	Fill in Main()
	Build and Run
	Program circle_demo in Action
	Constructors
	A Constructor for Class Circle
	Using a Constructor
	Program Running
	Multiple Constructors
	Default Constructor
	Creating multiple objects of the same type
	Slide 32
	Good Programming Practice
	Class Circle
	Slide 35
	Getting User Input
	Slide 37
	Main()
	Running Program Circle
	Passing Objects to a Function
	Using "Is_Greater_Than" Method
	Slide 42
	Slide 43
	Static Fields
	Slide 45
	Static Methods
	Slide 47
	Slide 48
	Slide 49
	Static Class
	Partial Classes
	Slide 52
	Anonymous Classes
	Summary
	Slide 55

