
programming lab. 1st year omar L. Khaleed

Fortran Interface Components :

1- Title bar

2- Menu bar : file – view – build

 variables naming Conditions:

1- Variable name must begin with a letter (not number or symbol) .

2- Variable name can’t include a space between the sentence and

instead that the program use the underscore (F95 , F_95).

3- Variable name should not overtake 30 characters .

4- Fortran is sensitive to characters case , not distinguishing between

the case of large or small letters (A = 6, a = 6).

Data types :

1- Integer : (-1 , 0 , 1)

2- Real : (1.4 , -1.4 , 1.4e2 . 1.4e-2)

3- Complex : (real numbers) and (imaginary part) == Z = X + Yi ,
for example : Complex (2.0 , -1.0) === 2.0 – 1.0i

4- Logical : (. true . and . false .)

5- Characters : (‘signal quotes’ , “double quotes”)

define variables in fortran :

Integer :: hours

Real :: Temp

Integer :: hour , minute , second

Real :: temp , dew_point , wind_speed , total , averages

Character (len = 20) :: name

Character (20) :: name , line

Character :: first_initial*10

 Real , parameter :: pi = 3.14

Complex :: cx

Logical :: done

Integer :: total

Total = 7.6

Average = average2

Done = . true .

Line = “this is a line “

Cx = (1.0 , 2.0) ! 1.0 + 2.0i

Cx = cmplx (1.0/2.0 , -3.0) ! cx = 1.0 + 2.0i

programming lab. 1st year omar L. Khaleed

Cx = cmplx (x , y) ! cx = x + yi

Note :

 (c , j , k , l , m , n) are integers and the rest are real

 (!) this symbol is use to add a note on the program steps

 (&) this symbol is use to continue the line , for example :

Cos (alpha) = b*b – c*c - & 2*b*c*cos(gama)

Arithmetic operation in Fortran :

Symbol Result Example

** Raise to power 2**3

* Multiply 2*3

/ Divide 2/3

+ addition 2+3

- subtraction 2-3

Priorities of Math Operations in Fortran:

1- Arches

2- powers (from right to left)

3- Multiplication and division

4- Addition and subtraction

Homework :: find that [(4 + 8**2) / 2 , 2**2**3 , 3*(1+2) , 3*2+1]

Input and Output :

1- Input : input list , read*

2- Output : print*, result_list or write (*,*)

Example 1 :

Program sum

! Example of program structure

Implicit none

Example 2 :

Program io

Real :: x , y , z

Print *, ‘enter the values x
, y and z’
Read *, x , y , z

Print *, ‘ the values you
type are for z , y , x are : ‘
, z , y , x

programming lab. 1st year omar L. Khaleed

Real :: answer , x , y

Print *, ‘enter two numbers’
Read *, x

Read *, y

Answer = x+y

Print *, ‘ the total is ‘ , answer

End program sum

Example 3 :

Program bug

Real :: a , b , c

Read *, b , c

a = b+c

print *, a

end program bug

Homework : write a Fortran program to compute the equations :

1-
୶+୷୶+ଶ

 ݖݕݔ -2

 ଶݕݔ -3

ଷݔ√ -4 + ଷݕ

5- sin ݔ cos ݕ

Mathematical functions :

1- Exponential Functions

Operation Function in fortran form Example

Exponential function exp(x)
>> exp(0)

1

Natural logarithmic function log(x) >> log(1)

programming lab. 1st year omar L. Khaleed

0

logarithmic function base 10 log10(x)
>> log10(2)

0.3010

logarithmic function log (x)
>> log (2)

1

Square rote function Sqrt(x)
>> sqrt(4)

2

Absolute function Abs(x)
Abs(5)

5

2- Trigonometric Functions :

Type of result Type of argument Fortran forms

real real sin(angle)

real real cos(angle)

real real tan(angle)

real real atan(angle)

real real sinh(angle)

real real cosh(angle)

real real tanh(angle)

Note : All of the trigonometric functions above are measured by radian

deg. In order to converting from degrees to radian, multiply the function

by 180 (pi)

Real − �ʹ� ≤ ݐ𝑙ݑݏ𝑒ݎ ≤ −𝜋/ʹ

Real −ͳ ≤ ݔ ≤ ͳ Asin(x)

Real Ͳ ≤ ݐ𝑙ݑݏ𝑒ݎ ≤ 𝜋

Real −ͳ ≤ ݔ ≤ ͳ

Acos(x)

Complex numbers :

Take a single formula (real number) and (imaginary number) : z = x +

yi

Complx (x , y) : this function is use to define the complex number in

fortran

Example :

Program dd

programming lab. 1st year omar L. Khaleed

complex::cn

cn=cmplx(5.0,8.9)

print*,cn

end program dd

Routing & Remainder functions:

1- floor : Round toward negative infinity (- ∞) : floor (-3.4) = -4 ,

floor (3.4) = 3

2- int : Converts any number to an integer : int(0.3)=0 , int(-0.3)=0 ,

int(3.9)=3

3- nint : Round to nearest integer : nint(5.9)=6 , nint(-5.9)=-6

4- real : Convert number to real : real(-1.5)=-1.5000 , real(8)=8.000

5- mod : Modulus after division : mod(a,b) = a-int(a/b)*b ::

mod(4,2)=0 , mod(9,4)=1

6- modulo : Remainder after division : modulo(a,b)== a-floor(a/b)*b

:: modulo(8,10)=8 , modulo(-1,20)=-1

homework : Mod(6,10) , int(4.3) , floor(5.4) , nint(6.9) , modulo(8,10) ,

real(2.4) , nint(-3.4) Mod(5,8) , int(6.8) , floor(5.5) , nint(9.6) ,

modulo(8,10) , real(9/9) , nint(-3.5)

Flowcharts :

Flowcharts are written with program flow from the top of a page to the

bottom. Each command is placed in a box of the appropriate shape, and

arrows are used to direct program flow. The following shapes are often

used in flowcharts:

programming lab. 1st year omar L. Khaleed

Pseudocode : is a method of describing computer algorithms using a

combination of natural language and programming language. It is

essentially an intermittent step towards the development of the actual

code. It allows the programmer to formulate their thoughts on the

organization and sequence of a computer algorithm without the need for

actually following the exact coding syntax. Although pseudo code is

frequently used there are no set of rules for its exact implementation. In

general, here are some rules that are frequently followed when writing

pseudo code:

1. The usual Fortran symbols are used for arithmetic operations (+, -,

*, / , **).

programming lab. 1st year omar L. Khaleed

2. Symbolic names are used to indicate the quantities being

processed.

3- Certain Fortran keywords can be used, such as PRINT, WRITE,

READ, etc.

4- Indentation should be used to indicate branches and loops of

instruction.

Here is an example problem, including a flowchart, pseudocode, and the

final Fortran 90 program. This problem and solution are from Nyhoff, pg

206:

For a given value, Limit, what is the smallest positive integer Number for

which the sum

Sum = 1 + 2 + ... + Number

is greater than Limit. What is the value for this Sum?

Pseudocode:

Input: An integer Limit

 Ouput: Two integers: Number and Sum

1. Enter Limit

2. Set Number = 0.

3. Set Sum = 0.

4. Repeat the following:

 a. If Sum > Limit, terminate the repitition, otherwise.

 b. Increment Number by one.

 c. Add Number to Sum and set equal to Sum.

5. Print Number and Sum.

Flowchart:

programming lab. 1st year omar L. Khaleed

Fortran 90 code:

PROGRAM Summation

! Program to find the smallest positive integer Number

 ! For which Sum = 1 + 2 + ... + Number

 ! is greater than a user input value Limit.

IMPLICIT NONE

! Declare variable names and types

INTEGER :: Number, Sum, Limit

! Initialize Sum and Number

Number = 0

 Sum = 0

! Ask the user to input Limit

PRINT *, "Enter the value for which the sum is to exceed:"

 READ *, Limit

! Create loop that repeats until the smallest value for Number is found.

DO

 IF (Sum > Limit) EXIT ! Terminate repetition once Number is

found

 ! otherwise increment number by one

 Number = Number + 1

 Sum = Sum + 1

 END DO

programming lab. 1st year omar L. Khaleed

! Print the results

PRINT *, "1 + ... + ", Number, "=", Sum, ">", Limit

END PROGRAM Summation

Homework : write F95 program to solve and draw flowchart of example

(1-2-3)

