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At the same temperature, the He, O, and Xe molecules all have the same average kinetic
energy; lighter molecules move faster to compensate for their smaller masses. These rms
speeds convert to 3050, 1080, and 532 mph, respectively. The average molecule moves
along quite rapidly at room temperature!

Related Problems: 41, 42, 43, 44

It is useful to have a complete picture of the entire distribution of molecular
speeds. This turns out to be important when we study chemical kinetics (see Chap-
ter 18), where we will need to know what fraction of a sample of molecules has
kinetic energy above the minimum necessary for a chemical reaction. In particular,
we would like to know what fraction of molecules, AN/N, have speeds between u
and # + Aw. This fraction gives the speed distribution function f{x):
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The speed distribution of the molecules in a gas has been measured experimen-
tally by an apparatus sketched in Figure 9.13. The entire apparatus is enclosed in
a large vacuum chamber. The molecules leak out of their container to form a m0-
lecular beam, which passes into a speed analyzer. The analyzer consists of two ro-
tating plates, each with a notch in its edge, separated by the fixed distance L. The
plates are rotated so the notches align and permit molecules to pass through both
to reach the detector only for a short time interval, Ar. Only those molecules with
speeds in the range Au = L/At reach the detector and are counted. The entire speed
distribution can be mapped out by progressively varying the duration of the mea-
surement time interval, At. :

The function f(x) was predicted theoretically by Maxwell and Boltzmann about
60 years before it was first measured. It is called the Maxwell-Boltzmann speed
distribution for a gas of molecules of mass 7 at temperature T and it has the fol-
lowing form:

3
flu) = 477(27::37") u? exp(fmul/ZkBT") [9-17]

where Boltzmann’s constant kg was defined in Equation 9.14. This distribution is
plotted in Figure 9.14 for several temperatures. As the temperature is raised, the
entire distribution of molecular speeds shifts toward higher values. Few molecules
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FIGURE 9.13 A device for measuring the distribution of molecular speeds. Only those molecules with the correct velocity to pass
through both rotating sectors will reach the detector, where they will be counted. Changing the rate of rotation of the sectors al-
lows the speed distribution to be determined.
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FIGURE 9.14 The Maxwell-
Boltzmann distribution of molecular
speeds in nitrogen at three tempera-
tures. The peak in each curve gives
the most probable speed, Up,;,, Which
is slightly smaller than the root-mean-
square speed, U, The average speed
u,, (obtained simply by adding the
speeds and dividing by the number of
molecules in the sample) lies in be-
tween. All three measures give com-
parable estimates of typical molecular
speeds and show how these speeds in-
crease with temperature.
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have either very low or very high speeds; thus, f(x) is small in these limits and has
a maximum at some intermediate speed.

An alternative interpretation of the Maxwell-Boltzmann speed distribution is
helpful in statistical analysis of the experiment. Experimentally, the probability
that a molecule selected from the gas will have speed in the range Au is defined as
the fraction AN/N discussed earlier. Because AN/N is equal to f(#) Au, we inter-
pret this product as the probability predicted from theory that any molecule se-
lected from the gas will have speed between # and # + Aw. In this way we think of
the Maxwell-Boltzmann speed distribution f(x) as a probability distribution. It is
necessary to restrict Au to very small ranges compared with # to make sure the
probability distribution is a continuous function of #. An elementary introduction
to probability distributions and their applications is given in Appendix C.6. We
suggest you review that material now. '

A probability distribution gives a quick visual indication of the likely outcome
of the experiment it describes. The most probable speed u,,, is the speed at which
f(u) has its maximum. For the Maxwell-Boltzmann distribution function, this is
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A probability distribution enables us to calculate the average of the values ob-
tained in several repetitions of the experiment it describes. The procedure is de-
scribed in Appendix C.6. For the Maxwell-Boltzmann distribution, this
calculation gives the average speed %, which is
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If a probability distribution is symmetrical about its maximum, like the familiar
“bell curve,” the most probable value and the average value are the same. The
Maxwell-Boltzmann distribution is not symmetrical; the area under the curve to
the right of the maximum is somewhat larger than the area under the curve to the
left of the maximum. (The next paragraphs use the mathematical form of the dis-
tribution to explain this fact.) Consequently, # will be larger than the most proba-
ble value of .

The root-mean-square value can be calculated from the probability distribu-
tion, as shown in Appendix C.6. For a symmetrical distribution, this would be



FIGURE 9.15 Mathematical form of
the Maxwell-Boltzmann speed distrib-
ution. The factor u? cuts off the distri-
bution at small values of u, whereas
the exponential factor causes it to die
off at large values of u. The competi-
tion between these effects causes the
distribution to achieve its maximum
value at intermediate values of u.
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equal to the average value. For the Maxwell-Boltzmann distribution, we have al-

ready seen that
o |3ksT  [3RT
ul'IHS m W.M,

which verifies that # < 2.

There are several possible ways to characterize a non-symmetrical probability
distribution by a single number. The three different speeds discussed above serve
this purpose for the Maxwell-Boltzmann distribution. Because the distribution is
non-symmetrical, they are close to each other but are not equal. They stand in the
ratio:

s W s = 1.000:1.128:1.1225

It is not important for you to memorize these ratios. But you should understand
that each quantity is a measure of the “average” speed of the molecules described
by the distribution. Different applications require different choices among these
quantities. You will learn how to make these connections in more advanced work.

The Maxwell-Boltzmann distribution is not symmetrical because it has the
following mathematical form

flu) < u* exp(—mu*/2kgT)

which describes a competition between the two factors that depend on u*. The
competition arises because these factors behave oppositely, for physical reasons,
as the value of # changes. We can get a great deal of physical insight into the
distribution by studying the behavior of these factors separately while T is held
constant.

The exponential factor can be viewed graphically as the right half of a bell
curve with its maximum at # = 0 (Fig. 9.15). At low values of , this factor be-
haves as exp(—mu*/2ksT) —> exp(—0) = 1. At very large values of #, this factor
behaves as exp(—mu*/kgT) = 1/[exp(mu’lksT)] —> 1/ = 0. The role of this fac-
tor is to describe the statistical weight given to each value of « in relation to T.
The limits we have just examined shows this factor gives large statistical weight to
small values of #, and increasingly small weight to large values of %, eventually
forcing the distribution to fall off to zero at extremely high values of «. This is ex-
actly what we expect on physical grounds.

The factor #* can be viewed as the right half of a parabola with its minimum
at u = 0 (see Fig. 9.15). The value of this factor approaches zero as # decreases
towards 0, and it grows without bound as # becomes extremely large. Although
we do not provide all the details, the role of this factor is to count the number of
different ways molecules in the gas can achieve a particular value of the speed, u.
With Avogadro’s number of molecules moving around the vessel, it is physically
sensible that many different combinations of velocity vectors correspond to a

? flu) = exp(—mu® | 2kgT)

fiu) = = utexp(—mu? 2kyT)
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given value of the speed. And, we expect the number of such combinations to in-
crease as the value of the speed increases. The shape of this factor strongly favors
molecules with large values of # and it rapidly cuts off the distribution for small
values of u.

The net result of these two competing factors is to keep the probability small
for both extremely large and extremely small values of . The probability will
have a maximum at some intermediate value of # where the increasing effect of
u® is just balanced by the decreasing effect of the exponential factor (see
Fig. 9.15). This is the most probable value of u, denoted by #,,, and it can be
identified by setting to zero the derivative of the curve with respect to u. Because
u* approaches zero for small values of # more rapidly than the exponential fac-
tor approaches zero for large values of u, the probability is larger to the right
side of the maximum. The area under the curve to the right of the maximum
is somewhat larger than the area under the curve to the left of the maximum.
Consequently, the average value of # denoted by # will be larger than the most
probable value of u. This is illustrated in Figure 9.14, which shows that
ump < E < urmS'

The behavior of these competing factors also explains why the distribution be-
comes broader and its maximum moves to a higher value of u as the temperature in-
creases (see Fig. 9.14). The maximum increases because the value of # at which the
parabolic factor 2 is cut off by the exponential factor increases as T increases. This
happens because a particular value of # that would make exp(—mu’/2ksT) < 1 at
low T will now make exp(—mu*/2ksT) —> exp(—0) = 1 at higher T. The distribu-
tion broadens because the falloff after the maximum is slower at high T than at low
T. The reason is that as T increases, the value of # at which exp(—mu’/2ksT) —> 0
also increases. The net effect at higher T is that larger values of # become accessible,
so the molecules are spread over a broader range of speeds.

The Maxwell-Boltzmann speed distribution defines temperature in the kinetic
theory of gases as proportional to the average kinetic energy per molecule
through Equation 9.14. Unless the molecular speed distribution for a given gas
corresponds to the Maxwell-Boltzmann distribution, temperature has no mean-
ing for the gas. Temperature describes a system of gaseous molecules only when
their speed distribution is represented by the Maxwell-Boltzmann function. Con-
sider a closed container filled with molecules whose speed distribution is not
“Maxwellian.” Such a situation is possible (for example, just after an explosion),
but it cannot persist for long. Any distribution of molecular speeds other than a
Maxwell-Boltzmann distribution quickly becomes Maxwellian through molecu-
lar collisions that exchange energy. Once attained, the Maxwell-Boltzmann dis-
tribution persists indefinitely (or at least until some new disturbance is applied).
The gas molecules have come to thermal equilibrium with one another, and we
can speak of a system as having a temperature only if the condition of thermal
equilibrium exists.

A DEEPER LOOK

9.6 Distribution of Energy
among Molecules

The kinetic molecular theory of gases relates the macroscopic
properties of a gas to the structure of the constituent molecules,
the forces between them, and their motions. Because the number

of molecules in a sample of gas is so incredibly large—28 g nitro-
gen contains 6.02 X 10* molecules—we give up the idea of fol-
lowing the detailed motions of any one molecule and rely on a
statistical description that gives the probability of finding a mole-
cule in the gas at a certain position, with a certain speed, with a
certain value of energy, and so on. Treating the molecules as point
masses obeying classical mechanics and using simple statistical
arguments, the kinetic theory shows that the temperature of the



gas is proportional to the average kinetic energy per molecule.
This relation not only provides a microscopic interpretation of
the concept of temperature, but it also indicates the typical values
of molecular kinetic energy that occur in a gas at a particular
temperature.

Now we want to determine the relation between tempera-
ture and the energy involved in other kinds of molecular motions
that depend on molecular structure, not just the translation of
the molecule. This relation is provided by the Boltzmann energy
distribution, which relies on the quantum description of molecu-
lar motions. This section defines the Boltzmann distribution and
uses it to describe the vibrational energy of diatomic molecules
in a gas at temperature T.

The Boltzmann energy distribution is one of the most widely
used relations in the natural sciences, because it provides a reli-
able way to interpret experimental results in terms of molecular
behavior. You should become skilled in its applications.

The Boltzmann Energy Distribution

Just as in the previous section, we start with a model system in
which gaseous molecules move around inside a container held at
temperature T. The molecules collide with the container walls
but not with one another. We can achieve this condition by set-
ting up the experiment with sufficiently low pressure in the sys-
tem. But this time we assume that the molecules have quantum
states described by a quantum number 7 and represented on an
energy level diagram where the energy of each state is labeled &,,.
After the system has settled down to equilibrium, how many of
the molecules are in their ground state? To what extent are the
excited states populated? The answers depend on the probability
that a molecule in the gas is in the quantum state 7, which is
given by the Boltzmann energy distribution:

P(n) = C exp(—¢,/ksT) [9.20]

where C is a normalization factor and kg is Boltzmann’s con-
stant. This equation was derived for classical systems by Ludwig
Boltzmann even before quantum mechanics had been invented.
Max Planck used a version of the Boltzmann distribution in for-
mulating his theory of blackbody radiation (see Section 4.2) to
obtain the probability that his quantized oscillators would radi-
ate energy when the blackbody was at temperature T. We do not
derive the distribution, but illustrate its application and interpre-
tation.

VIBRATIONAL ENERGY DISTRIBUTION

We apply the Boltzmann distribution to describe the probability
of finding molecules in each of the vibrational states in a sample
of CO held at temperature T. We describe the vibrational
motions using the harmonic oscillator model, for which the
allowed energy levels are

1
g, = (n + E)hv

where » = 0, 1, 2, 3, . . . and the vibrational frequency is
related to the force constant by

L\/E
27N 1

p =
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and p is the reduced mass. These equations define the energy
level diagram, which has uniformly spaced levels separated by

h k
hv ==

= 21
TN [9.21]

We calculate the reduced mass of '*C'°O using the isotopic
masses in Table 19.1 to be
mcmo

me + mo

_(12.00)(15.99)amu ( 1g )( 1 kg)
27.99 6.02 X 102 amu/\10° g

w=1.14 X 107*°kg

The value of the force constant for CO is 1902 N m™, as mea-
sured in vibrational spectroscopy. The value of the energy level
separation is then
i <6.63 X 10‘3“Js>(1.902 X 103Nm"‘)”2
8 27 1.14 x 10 * kg

hv = 4.52 X 1072%]

The relative probability of finding molecules in the excited
state 7 and in the ground state #» = 0 is given by

M i C eXP('—{;‘"/kBT)

P(0) - Cexp(—go/kBT) = exp(=[s, — 80]/kBT)

[9.22]

Inserting the energy level expression for the harmonic oscillator
gives

M = exp(—[(n + = Vhy — %hu]/kBT) = exp(—nhv/kgT)

P(0) 2
[9.23]

The relative populations of the first excited state # = 1 and
the ground state are determined by the ratio hv/kgT. We know
from Chapter 4 that hv is the quantum of vibrational energy
needed to put a CO molecule in its first excited state, and we have
calculated that value to be kv = 4.52 X 1072° J. From Section 9.5
we know that the average kinetic energy of a molecule in the gas
is (3/2)ky T, which is (1/2)kgT for each of the x, 3, and z directions
of motion. Therefore, we interpret kxT as a measure of the aver-
age energy available to each molecule in a gas at temperature T.
So, the ratio Av/kgT determines whether there is sufficient energy
in the gas to put the molecules into excited states. At 300 K, the
value of kxT is 4.14 X 1072! J, which is a factor of 10 smaller
than the vibrational quantum of CO. Inserting these numbers
into Equation 9.23 gives the relative probability as 3.03 X 107>.
This means that only 3 molecules in a group of 100,000 are in the
first excited state at 300 K. At 1000 K, the value of kgT is 1.38 X
1072° J, which is closer to the value of the CO vibrational quan-
tum and gives a relative population of 4.41 X 1072

This case study shows that CO molecules do not have signif-
icant vibrational energy unless the temperature is quite high.
This happens because CO has a triple bond and, therefore, a
large force constant (k = 1902 N m ™). The correlation between
force constant and bond order in diatomic molecules is
explained by molecular orbital theory, and is summarized in Fig-
ure 6.20. Other diatomic molecules will behave differently, as
determined by their structure and the Boltzmann distribution.
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