(i) Given
(1) $p \wedge q$
(2) $p \rightarrow \sim(q \wedge r)$
(3) $s \rightarrow r$

$$
\therefore \sim \mathrm{s}
$$

Solution:

$1-\mathrm{p} \wedge \mathrm{q}$	$1^{\text {st }}$ hypothesis(premise)
$2-\mathrm{p}$	Inf. (1) Properties of \wedge
$3-\mathrm{q}$	Inf. (1) Properties of \wedge
$4-\mathrm{p} \rightarrow \sim(\mathrm{q} \wedge \mathrm{r})$	$2^{\text {nd }}$ hypothesis(premise)
$5-\sim(q \wedge \mathrm{r})$	Inf. (2),(4)
$6-\sim \mathrm{q} \vee \sim \mathrm{r}$	De Morgan's Law on (5)
$7-\sim \mathrm{r}$	Inf. (3),(6) and Domination Laws
$8-\mathrm{s} \rightarrow \mathrm{r}$	$3^{\text {rd }}$ hypothesis(premise)
$9-\sim \mathrm{r} \rightarrow \sim \mathrm{s}$	Contrapositive Law
$10-\sim \mathrm{s}$	Inf. (7),(9)

(ii) Given
$(1) \sim(p \vee q) \rightarrow r$
(2) $\sim p$
(3) $\sim r$
$\therefore \mathrm{q}$

Solution:

$1-\sim(p \vee q) \rightarrow r \quad 1^{\text {st }}$ hypothesis(premise)
$2-\sim r \quad 3^{\text {rd }}$ hypothesis(premise)
3- $\sim r \rightarrow(p \vee q) \quad$ Contrapositive Law and Double Negation Law
4- p V q Inf. (2),(3)
$5-\sim \mathrm{p} \quad 2^{\text {nd }}$ hypothesis(premise)
6- q Inf. (4),(5)
(iii) Given
(1) $\sim p \rightarrow(r \wedge s)$
(2) $\mathrm{p} \rightarrow \mathrm{q}$
(3) $\sim q$
$\therefore r$

Solution:

$1-\mathrm{p} \rightarrow \mathrm{q} \quad 2^{\text {nd }}$ hypothesis(premise)
$2-\sim \mathrm{q} \quad 3^{\text {rd }}$ hypothesis(premise)
3- $\sim \mathrm{q} \rightarrow \sim \mathrm{p} \quad$ Contrapositive Law on (1)
4-~p
Inf. (2),(3)
5- $\sim \mathrm{p} \rightarrow(\mathrm{r} \wedge \mathrm{s}) \quad 1^{\text {st }}$ hypothesis(premise)
6-r/s
Inf. (4),(5)
7-r
Inf. (6) Properties of \wedge
(iv) Given
(1) $\mathrm{p} \rightarrow(\sim \mathrm{r} \wedge \sim \mathrm{s})$
(2) $\mathrm{p} \vee \sim \mathrm{q}$
(3) s

$$
\therefore \sim \mathrm{q} \wedge \mathrm{~s}
$$

Solution:

$1-\mathrm{p} \rightarrow(\sim \mathrm{r} \wedge \sim \mathrm{s}) \quad 1^{\text {st }}$ hypothesis(premise)
2- $(\mathrm{r} \vee \mathrm{s}) \rightarrow \sim \mathrm{p} \quad$ Contrapositive Law on (1)
3- $\mathrm{p} \vee \sim \mathrm{q} \quad 2^{\text {nd }}$ hypothesis(premise)
4- $\sim \mathrm{p} \rightarrow \sim \mathrm{q} \quad$ Implication Law on (3)
5-(r $\vee \mathrm{s}) \rightarrow \sim \mathrm{q} \quad$ Inf. (2),(4)
6-s
7-r V s
Inf. (6)
8-~ q
Inf. (5),(7)
9-~ q $\wedge s$
Inf. (6),(8)
(v) Given
(1) $\mathrm{p} \vee \mathrm{q}$
(2) $\mathrm{q} \rightarrow \mathrm{r}$
(3) $\sim r$

$$
\therefore \mathrm{p}
$$

Solution:

$1-\mathrm{q} \rightarrow \mathrm{r}$	$2^{\text {nd }}$ hypothesis(premise)
2- $\sim \mathrm{r} \rightarrow \sim \mathrm{q}$	Contrapositive Law on (1)
3- $\sim \mathrm{r}$	$3^{\text {rd }}$ hypothesis(premise)
4- $\sim \mathrm{q}$	Inf. (2),(3)
5- $\mathrm{p} \vee \mathrm{q}$	$1^{\text {st }}$ hypothesis(premise)
6- $(\mathrm{p} \vee \mathrm{q}) \wedge \sim \mathrm{q}$	Inf. (4),(5)
$7-(\mathrm{p} \wedge \sim \mathrm{q}) \vee(\mathrm{q} \wedge \sim \mathrm{q})$	Distributive Law on (6)
$8-(\mathrm{p} \wedge \sim q) \vee \mathrm{F}$	Contradiction Law (7)
$9-(\mathrm{p} \wedge \sim \mathrm{q})$	Identity Law on (8)
$10-\mathrm{p}$	Inf. (9) properties of \wedge

