
7

DATA MODELING TO
DATABASE DESIGN

CHAPTER OBJECTIVES

. Make the transition from data modeling to database design

. Focus on the relational data model as the logical model of choice

. Study significant fundamentals of the relational model

. Examine the leading transition approaches

. Provide in-depth coverage of the model transformation method

. Walk through transformation of each model component

In an earlier chapter, we reviewed the different information levels that exist in an

organization. You need to model the information requirements of the organization at

these levels to satisfy different purposes. We looked at data models at the different infor-

mation levels. We started with an introduction to the conceptual data model. This is at the

highest level of abstraction. A conceptual data model serves as a communication tool to

converse about and confirm information requirements with domain experts.

Elaborate coverage of the conceptual data model spread over the previous chapters.

This data model provides the initial expression and representation of the data content of

the eventual database. Therefore, we studied the components of the conceptual data

model in great detail. However, we now need to proceed further on the path toward data-

base design and implementation. The next step in the process consists of creating a logical

data model. Naturally, the logical data model has to be derived from the conceptual data

model. The steps following logical data modeling consummate in designing the physical

details and implementing the database.

229

Data Modeling Fundamentals. By Paulraj Ponniah
Copyright # 2007 John Wiley & Sons, Inc.



For us, the relational data model will be the logical model of choice. As you know, the

logical data model is to serve as a blueprint for database construction. We have selected

the relational model because this has proved to be superior to other models such as hier-

archical and network models. Relational databases are the most popular ones, and these

work based on the relational data model.

Figure 7-1 shows the data models at different levels. Note how the figure illustrates the

transition from one level to the next.

Before we deal with the transition of a conceptual to a relational data model, we need to

cover the fundamentals of the relational model in sufficient detail. We have to study the

various components of that model so that you may appreciate the transition steps. After

the comprehensive coverage of the fundamentals, we will move into the mapping and

transformation of model components from conceptual to logical. This method is the

model transformation method.

We will also consider another method for creating a relational data model—a more

traditional or informal method. That method has elements of intuition, and trial and

error. We will do a quick review of the data normalization method. In a way, this is rela-

tional data modeling from scratch.

The above figure shows physical data modeling as a final modeling step. Physical data

modeling comes very close to implementation. Specific target DBMS and hardware con-

figurations directly influence physical design. Considerations of specific commercial

DBMSs or hardware components do not fall within the scope of our discussions in this

book. Therefore, we will exclude physical data modeling from our scope. You may

consult the several good books available on database design and implementation to

learn about that topic.

FIGURE 7-1 Data models at different levels.

230 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



RELATIONAL MODEL: FUNDAMENTALS

The relational model uses familiar concepts to represent data. In this model, data is

perceived as organized in traditional, two-dimensional tables with columns and rows. You

find the rigor of mathematics incorporated into the formulation of the model. It has its

theoretical basis in mathematical set theory and first-order predicate logic. The concept

of a relation comes from mathematics and represents a simple two-dimensional table.

The relational model derives its strength from its simplicity and the mathematical foun-

dation on which it is built. Rows of a relation are treated as elements of a set. Therefore,

manipulation of rows may be based on mathematical set operations. Dr. Codd used this

principle and provided two generic languages for manipulating data organized as relations

or tables.

A relation or two-dimensional table forms the basic structure in the relational model.

What are the implications? In requirements gathering, you collect much information

about business objects or entities, their attributes, and relationships among them. You

create a conceptual data model as a replica of information requirements. All of these

various pieces of information can be represented in the form of relations. The entities,

their attributes, and even their relationships are all contained in the concept of relations.

This provides enormous simplicity and makes the relational model a superior logical

data model.

Basic Concepts

We will begin our examination of the relational data model by studying its basic concepts.

You need to review the inherent strengths of this model so that you can appreciate why it is

so widespread. Having grounding in solid mathematics, data represented as a relational

model renders itself for easy storage and manipulation.

Simple modeling concepts constitute the data model. When you need to transform a

conceptual data model into a relational data model, the transition becomes easy and

straightforward. We will also note how the mathematical concept of a relation serves as

the underlying modeling concept.

Strengths of the Relational Model. Before we proceed to explore the relational

model in detail, let us begin with a list of its major strengths. This will enable you to

appreciate the superiority of the model and help you understand the features in a better

light. Here is a summary of the strengths:

Mathematical Relation. The model uses the concept of a mathematical relation or two-

dimensional table to organize data; rests on solid mathematical foundation.

Mathematical Set Theory. The model applies the mathematical set theory for manipu-

lation of data in the database. Data storage and manipulation depend on a proven and

precise approach.

Disciplined Data Organization. The model rests on a solid mathematical foundation;

data organization and manipulation are carried out in a disciplined manner.

RELATIONAL MODEL: FUNDAMENTALS 231



Simple and Familiar View. The model provides a common and simple view of data in

the form of two-dimensional tables. Users can easily perceive how data is organized;

they need not be concerned with how data is actually stored in the database.

Logical Links for Relationships. Other data models such as hierarchical and network use

physical links to relate entities. If two entities such as CUSTOMER and ORDER are

related, you have to establish the relationship by means of physical addresses embedded

within the stored data records. In striking contrast, the relational model uses logical

links to establish relationships. This is a major advantage.

Mathematical Foundation. We have mentioned that the relational model rests on a

solid mathematical foundation. Specifically, in a relational model, the principles of

matrix theory apply. Relational model tables are similar to mathematical matrices

arranged as rows and columns. Thus, concepts of matrix manipulations can be applied

to the rows and columns in a relational table.

Again, the principles and operations of mathematical set theory may be applied to the

relational data model. The rows of a relational table are analogous to members of a mathe-

matical set. If you need to work with data rows in two relational tables, you may consider

these as members of two sets and apply set operations.

Figure 7-2 illustrates how mathematical principles can apply to relational tables. First,

notice the similarity between elements placed in a mathematical matrix and data in the

form of a relational table. Next, look at the two sets and their representations. Individual

entity instances may be taken as members of sets.

Single Modeling Concept. As mentioned earlier, a relation or table is the primary

data modeling concept in the relational mode. A table is a collection of columns that

describe a thing of interest to the organization. For example, if COURSE is a conceptual

thing of interest in a university, then a two-dimensional table or relation will represent

FIGURE 7-2 Mathematical foundation of relational model.

232 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



COURSE in the relational data model for the university. Figure 7-3 shows a plain two-

dimensional table whose format represents an entity or object.

Note the following features about a relation or two-dimensional table:

. Relation is table, representing data about some entity type or object.

. Relation is not any random table, but one that conforms to certain relational rules.

. Relation consists of a specific set of columns that can be named and an arbitrary

number of rows.

. Each row contains a set of data values.

. Table names and column names are used to understand the data. The table or relation

name indicates the entity type; the column names, its characteristics.

Structure and Components

As we have been repeatedly saying, the relational data model possesses a simple structure.

What can you say about a simple two-dimensional table? The table has rows; the table has

columns. Somehow, the usual components of a data model—entity types, attributes,

relationships, and so on—must be mapped to the simple structure of a relational table.

Let us go over the basic form of a relational table. We will note which part of the table

would represent what component of a data model. What are the meanings of the rows,

columns, column headings, and the data values in the rows and columns? Which ones

are the attributes, attribute values, identifiers, and relationships?

Relation or Table. In the relational data model, a table stands for an entity type. Each

entity type in a conceptual data model gets represented by a separate table. If you have 15

entity types in your conceptual data model, then usually the corresponding relational

modelwill contain15 tables.Aswewill see later, additional tablesmaybebecomenecessary.

Nevertheless, an entity type in a conceptual model maps into a table or relation.

See Figure 7-4 representing the entity type called EMPLOYEE. The name of the table

is the name of the entity type.

FIGURE 7-3 Relation or two-dimensional table.

RELATIONAL MODEL: FUNDAMENTALS 233



Columns as Attributes. Figure 7-5 presents a relation representing an entity type

EMPLOYEE.

Make note of the following about the columns in a relation as illustrated in the figure.

. Each column indicates a specific attribute of the relation.

. The column heading is the name of the attribute.

. In the relationalmodel, the attributes are referred to by the columnnames andnot by their

displacements in a data record. Therefore, no two columns can have the same name.

. For each row, the values of the attributes are shown in the appropriate columns.

. For a row, if the value of an attribute is not known, not available, or not applicable, a

null value is placed in the specific column. A null value may be replaced with a

correct value at a later time.

. Each attribute takes its values from a set of allowable or legal values called the

attribute domain. A domain consists of a set of atomic values of the same data

type and format.

. The number of columns in a relation is referred to as the degree of the relation.

FIGURE 7-4 Employee relation or table.

FIGURE 7-5 Employee relation: attributes.

234 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



Rows as Instances. Rows, also referred to by the mathematical name of tuples, indi-

cate the occurrences or instances of the entity type represented by a relation. In a relation,

each row represents one instance of the entity type. Each column in that row indicates one

piece of data about the instance.

Figure 7-6 shows the rows or tuples for the EMPLOYEE relation.

If there are 10,000 employees in the organization, the relation will contain 10,000 rows.

The number of tuples in a relation is known as the cardinality of the relation. For an

EMPLOYEE relation with 10,000 rows, the cardinality is 10,000.

Now, because a relation is considered as a mathematical set, this EMPLOYEE relation

is a set of 10,000 data elements. Manipulation of data in the EMPLOYEE relation, there-

fore, becomes a set operation. Each row represents a particular employee. Look at the row

for the employee Carey Smith. Note the value shown under each column in this row.

Each of the values in the columns describes the employee Carey Smith. Each value rep-

resents one piece of data about the employee. All data for the employee is contained in

the specific row.

Primary Key. As mentioned above, in a relation, each tuple represents one instance of

the relation. In an EMPLOYEE relation with 10,000 rows, each row represents a particular

employee. But, how can we know which row represents an employee we are looking for?

In order to identity a row uniquely, we can use the attribute values. We may say that, if the

value of the attribute EmployeeName is “Carey Smith,” then that row represents this par-

ticular employee. What if there is another Carey Smith in the organization? Thus, you need

some attribute whose values will uniquely identify individual tuples. Note that the attribute

SocSecNumber can be used to identify a tuple uniquely.

Given below are definitions of keys or identifiers in a relation:

Superkey. A set of columns whose values uniquely identify each tuple in a relation;

however, a superkey may contain extra unnecessary columns.

Key. A minimal set of columns whose values uniquely identify each tuple in a relation.

Composite Key. A key consisting of more than one column.

Candidate Key. A set of columns that can be chosen to serve as the key.

FIGURE 7-6 Employee relation: rows.

RELATIONAL MODEL: FUNDAMENTALS 235



Primary Key. One of the candidate keys actually selected as the key for a relation.

Surrogate Key. A key that is automatically generated for a relation by the computer

system; for example, CustomerNumber, generated in sequence by the system and assigned

to CUSTOMER rows. Surrogate keys ensure that no duplicate values are present in the

relation. Surrogate keys are artificial keys.

Relationship Through Foreign Keys. You have noted earlier that the relational

model is superior to other conventional data models because it does not use physical

links to establish relationships. The relational model uses logical links. How is this

done? What is a logical link?

Figure 7-7 presents two relations EMPLOYEE and DEPARTMENT. Obviously, these

two relations are related to each other because there are associations between employees

and departments. One or more employees are assigned to a particular department; an

employee is assigned to a specific department.

Observe the links shown between tuples in EMPLOYEE relation to corresponding

tuples in DEPARTMENT relation. The DeptCode attribute in EMPLOYEE relation is

called a foreign key attribute. Especially, note the value of the foreign key attribute and

the value of the primary key attribute of the related row in the other relation.

Let us summarize how relationships are established in the relational data model.

. Relationships in the relational data model are established through foreign keys, not

physical pointers.

. The logical link between a tuple in the first relation to a tuple in a second relation is

established by placing the primary key value in the tuple of the first relation as the

FIGURE 7-7 Department and employee relations: relationship.

236 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



foreign key value in the corresponding tuple of the second relation. The first relation

may be referred to as the parent relation and the second as a child.

. If tuples of a relation are related to some other tuples of the same relation, then the

foreign key attribute is included in the same relation. This is a recursive relationship.

For example, in an EMPLOYEE relation, some tuples representing employees may

be related to other tuples in the same relation representing supervisors.

. Foreign key attributes need not have the same names as the corresponding primary

key attributes.

. However, a foreign key attribute must be of the same data type and length of the

related primary key attribute.

In the above figure, you notice that some tuples show null values for the foreign key

attributes. What is the significance of the null values?

Optional Relationship. Consider a tuple in EMPLOYEE relation with null value in the

foreign key column. This shows that the specific tuple is not linked to any tuple in

DEPARTMENT relation. This means that this particular employee is not assigned to

any department. He or she could be a new employee not yet assigned to a department

or an employee on special assignment not tied to a specific department. Null value in

the foreign key column indicates the nature of the relationship. Not all employees need

be associated with a department. Null values in foreign key indicate an optional relation-

ship between the two relations.

Mandatory Relationship. In EMPLOYEE relation, suppose that null values are not

allowed in the foreign key. This requires specific discrete values to be present in all the

tuples of this relation. Every tuple in EMPLOYEE relation, therefore, points to a

related tuple in DEPARTMENT relation. In other words, every employee must be

related to a department. If null values are not allowed in the foreign key, the relationship

between the two relations is a mandatory relationship.

Relational Model Notation. Figure 7-8 gives an example of relational tables.

Figure 7-9 presents a standard notation used to represent this relational data model.

Note the following description of the notation:

. Notation for each relation begins with the name of the relation. Examples: WORKER,

ASSIGNMENT, BUILDING, SKILL.

. For each relation, the column names are enclosed within parentheses. These are the

attributes for the relation.

. Primary key attributes are indicated with underscores. Examples: BuildingID,

SkillCode.

. Statements immediately following the notation of a relation indicate the foreign key

within that relation. Example: Foreign Keys: SkillCode references SKILL.

. The foreign key statement includes the name of the foreign key and the name of the

parent relation.

. Note the foreign key SupvID indicating a recursive relationship.

RELATIONAL MODEL: FUNDAMENTALS 237



Data Integrity Constraints

It is essential that a database built on any specific data model must ensure validity of data.

The data structure must be meaningful and be truly representative of the information

requirements. Constraints are rules that make sure proper restrictions are imposed on

the data values in a database. The purpose is to regulate and ensure that the data

content is valid and consistent. For example, in order to preserve the uniqueness of

each tuple in a relation, the constraint or rule is that the primary key has unique values

in the relation. Another example is a domain constraint that requires that all values of a

specific attribute be taken from the same set or domain of permissible values.

As mentioned earlier, a relational data model consists of tables or relations that conform

to relational rules and possess specific properties. We will now discuss the constraints and

properties that ensure data correctness and consistency in a relational data model. First, let

FIGURE 7-8 Relational tables.

FIGURE 7-9 Relational data model: notation.

238 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



us establish the reasons for ensuring data integrity. A database is said to possess data integ-

rity if the data values will provide a correct and valid representation of the characteristics

of the entities or objects. Data integrity includes consistency of data values. Data values

derived from one business process must match up correctly with the same values

derived from another process.

Why Data Integrity? Let us summarize the reasons for data integrity and examine how

the relational data model must ensure data integrity

. In a mathematical set, no two elements can be the same. Similarly, in the relational

model that is based on set theory, no two rows can be exactly the same.

. Each tuple must represent one specific entity. There must be no ambiguity in identi-

fication of the tuple for each specific entity.

. The values in all tuples for any single attribute must be of the same data type, format,

and length. There must not be variations, confusion, or unpredictability in the values

for every attribute.

. The columns must be identified only by names and not by position or physical order in

a relation.

. A new row may be added anywhere in the table so that the content does not vary with

the order of the rows or tuples in a relation.

. The model should express relationships correctly and without any room for

exceptions.

. The data model must consist of well-structured relations with minimum data

redundancy.

. Data manipulations in a relational database must not result in any data

inconsistencies.

First, we will consider the basic relational properties that support data integrity and data

consistency. Next, we will address three special cases that further enhance data integrity.

Basic Relational Properties. Following is a list of the significant relational properties

that govern the relations in a relational model.

Row Uniqueness. Each row or tuple is unique—no duplicate rows with the same set of

values for the attributes are allowed. No two rows are completely identical.

Unique Identifier. The primary key identifies each tuple uniquely.

Atomic Values. Each value of every attribute is atomic. That is, for a single tuple, the

value of each attribute must be single-valued. Multiple values or repeating groups of attri-

butes are not allowed for any attribute in a tuple.

Domain Constraint. The value of each attribute must be an atomic value from a certain

domain.

Column Homogeneity. Each column gets values from same domain.

RELATIONAL MODEL: FUNDAMENTALS 239



Order of Columns. The sequence of the columns is insignificant. You may change the

sequence without changing the meaning or use of the relation. The primary key may be

in any column, not necessarily in the first column. Columns may be stored in any sequence

and, therefore, must be addressed by column names and not by column positions.

Order of Rows. The sequence of the rows is insignificant. Rows may be reordered or

interchanged without any consequence. New rows may be inserted anywhere in the

relation. It does not matter whether rows are added at the beginning, or middle, or at

the end of a relation.

Entity Integrity. Consider the relation EMPLOYEE. The rows in the relation represent

individual employees in an organization. The rows represent real-world entities. Each row

represents a specific employee. Similarly, a row in the relation CUSTOMER stands for a

particular customer. In other words, each tuple or row in a relation must be uniquely identi-

fied because each tuple represents a single and distinct entity. Entity integrity rule in the

relational data model establishes this principle for an entity.

But, how is a specific row or tuple in a relation uniquely identified? As you know, the

primary key serves this function. The primary key value of each tuple or row uniquely

identifies that row. Therefore, entity integrity rule is a rule about the primary key that is

meant to identify rows uniquely. The rule applies to single relations.

Entity integrity rule

No part of the primary key of any tuple in a relation can have a null value.

Figure 7-10 presents three relations EMPLOYEE, PROJECT, and ASSIGNMENT.

Relations EMPLOYEE and PROJECT have primary keys with single attributes; two attri-

butes make up the primary key for the ASSIGNMENT relation. The figure explains how

violation of entity integrity rule affects the integrity of the data model.

Note the null values present in a few rows, and because of these rows the entity integrity

rule is violated in the relation. If two or more rows have nulls as primary key values, how

can you distinguish between these rows? Which row denotes which specific entity? In the

case of the relation ASSIGNMENT, even if part of the primary key contains nulls for any

rows, the entity integrity rule is violated.

Referential Integrity. You have noted that foreign keys establish relationships between

tables or relations. The value placed in the foreign key column of one table for a specific

row links to a row with the same value in the primary key column in another table.

Figure 7-11 shows two relations DEPARTMENT and EMPLOYEE.

Note how the values in the foreign key column DeptNo in EMPLOYEE relation and in

the primary key column DeptNo in DEPARTMENT relation link related rows in the two

relations. In the figure, employee Charles is assigned to department Accounting; employee

Eldon, to Marketing. What about employee Mary who is supposed to be assigned to

department D555? But, the database does not have department D555. Look at the row

for employee Paul. This row has a null value in the foreign key column. Is this

allowed? What do nulls in foreign key columns indicate? You know that nulls in

foreign key columns denote optional relationships. That means employee Paul is not

assigned to any department.

240 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



When one relation is related to another through foreign key values, the references of the

relationship must be clearly indicated. There should not be any ambiguities. A foreign key

value must clearly indicate how that row is related to a row in the other relation. Referen-

tial integrity rule addresses the establishment of clear references between related tables.

Referential integrity rule, therefore, applies to sets of two relations.

Referential integrity rule

The value of a foreign key in a table must either be null or be one of the values of the primary

key in the related table.

FIGURE 7-10 Entity integrity rule.

FIGURE 7-11 Referential integrity rule.

RELATIONAL MODEL: FUNDAMENTALS 241



Functional Dependencies. Let us use EMPLOYEE, PROJECT, and ASSIGNMENT

relations shown in Figure 7-10 to examine the concept of functional dependency. The

notion of functional dependency in a relation arises because the value of one attribute

in a tuple determines the value for another attribute. Let us look at some examples.

In the EMPLOYEE relation of Figure 7-10, note the tuple with key value 213-36-7854.

This determines that the tuple represents a distinct employee whose name is Samuel Kahn

and whose position is Analyst. Now, look at the tuple with key value 311-33-4520. This

key value uniquely identifies an employee whose name is Kaitlin Hayes and whose

position also happens to be Analyst. Let us inspect the dependencies.

Values of which attribute determine values of other attributes? Does the value of the

primary key uniquely and functionally determine the values of other attributes?

. Key value 213-36-7854 uniquely and functionally determines a specific row repre-

senting Samuel Kahn with position Analyst.

. Key value 311-33-4520 uniquely and functionally determines a specific row repre-

senting Kaitlin Hayes with position Analyst.

Let us ask the questions the other way around. Does the value of the attribute Position

uniquely and functionally determine the value of the primary key attribute?

. Attribute value Analyst does not uniquely determine a key value—in this case, it

determines two values of the key, namely, 213-36-7854 and 311-33-4520.

What you see clearly is that the value of the primary key uniquely and functionally

determines the values of other attributes, and not the other way around.

Let us express this concept using a functional dependency notation,

FD: SocSecNumber ! EmployeeName

FD: SocSecNumber ! Position

In the ASSIGNMENT relation, two attributes SocSecNumber and ProjectID together

make up the primary key. Here, too, the values of the other attribute in a tuple are uniquely

determined by the values of the composite primary key.

FD: SocSecNumber, ProjID ! StrtDate

The discussion of functional dependencies leads to another important rule or constraint

about the primary key of a relation.

Functional dependency rule

Each data item in a tuple of a relation is uniquely and functionally determined by the primary

key, by the whole primary key, and only by the primary key.

TRANSITION TO DATABASE DESIGN

From the discussion so far, you have captured the significance of the relational data model.

You have understood how it stands on a solid mathematical foundation and is, therefore, a

242 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



disciplined approach to perceiving data. The view of data in the form of the common two-

dimensional tables adds to the elegance and simplicity of the model. At the same time,

relational constraints or rules, to which the two-dimensional tables must conform,

ensure data integrity and consistency.

Commercial relational database management systems are implementations of the rela-

tional data model. So, in order to develop and build a relational database system for your

organization, you need to learn how to design, put together a relational data model, and

make the transition to database design. Although the model appears to be simple, how

do you create a relational data model from the requirements? The previous chapters

covered details of creating data models. We went through the methods and steps for creat-

ing a conceptual data model using the E-R modeling technique. Now, the task is to create a

relational data model, which is not the same as one of designing the conceptual data model.

Why do you need to create a relational data model? If you are developing a relational data-

base system, then you require your information requirements represented in a relational

data model. Let us explore the methods for creating a relational data model.

Design Approaches

From the previous chapters, you know how to create a conceptual data model from the

information requirements. A conceptual data model captures all the meanings and

content of information requirements of an organization at a high level of abstraction.

Being a generic data model, a conceptual data model is not restricted by the structure

and format rules of the conventional data models such as hierarchical, network, or rela-

tional data models. Representing information requirements in the form of a conceptual

data model is the proper way to start the data modeling process.

Well, what are the steps between creating a conceptual data model and the implemen-

tation of a relational database system for your organization? You know that the conceptual

data model, if created correctly, will represent every aspect of the information that needs to

be found in the proposed database system. The next steps depend on the extent and com-

plexity of your database system. Let us examine the options.

Database practitioners adopt one of two approaches to design and put together a rela-

tional data model. The relational data model must, of course, truly represent the infor-

mation requirements. In the simplest terms, what is a relational data model? It is a

collection of two-dimensional tables with rows and columns, and with relationships

expressed within the tables themselves through foreign keys. So, in effect, designing

and creating a relational data model reduces to creating the proper collection of two-

dimensional tables.

Figure 7-12 presents the two design approaches for creating a relational data model.

Note how in one approach, you go through the steps of creating a conceptual data model

first and then transform the conceptual model into a relational data model. The other

approach appears to be a short-cut method bypassing the conceptual data model. In this

approach, you go to the task of creating the relational data model straight from require-

ments definitions. However, you may still want a conceptual data model to serve as the

communication vehicle between data modelers and user groups. Let us examine the

basics of the two approaches.

Conceptual to Relational Model

The first method shown in Figure 7-12 takes you through the conceptual data model. In this

approach, first you complete the conceptual data model. For creating the conceptual data

TRANSITION TO DATABASE DESIGN 243



model, you may use the E-R data modeling technique. Some other modeling techniques

would also produce conceptual data models.

Here are the general steps in this design approach:

. Gather the information requirements of the organization.

. Create a conceptual data model to truly represent the information requirements.

. Review the overall conceptual data model for completeness.

. Take each component of the conceptual data model at a time and examine it.

. Transform each component of the conceptual data model into a corresponding com-

ponent of the relational data model.

. Pull together all the components of the relational data model resulting from the trans-

formation from the conceptual data model.

. Complete the relational data model.

. Review the relational data model for completeness.

The next major section of this chapter elaborates on this approach to designing the rela-

tional data model. We will list the components of the conceptual model and the corre-

sponding components of the relational model. We will determine how each component

of the conceptual data model must be mapped to its corresponding component in the rela-

tional data model.

Traditional Method

Before the introduction and standardization of data modeling techniques, traditionally

database practitioners had adopted a different method. A relational data model is, after

all, a set of two-dimensional tables. Why not look at the information requirements and

try to come up with the necessary tables to represent the data that would satisfy the

FIGURE 7-12 Relational data model: design approaches.

244 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



information requirements? Why do you need an intermediary step of creating a conceptual

data model? Does it not appear to be a practical design approach?

Although this approach is deceptively simple, as you will note in the next chapter, this

method is subject to serious problems if the tables are not defined properly. You are likely

to end up with a faulty set of tables in your relational data model with a high potential for

data corruption and inconsistency.

Dr. Codd suggested an orderly methodology for making this design approach work.

After an initial set of tables is put together intuitively, you must go through a step-by-step

process of normalization of the initial tables. After completing the normalization steps,

your relational data model will result in a set of tables that are free from redundancies

and errors.

Here are the steps in this design approach:

. Gather the information requirements of the organization.

. Review the information requirements to determine the types of tables that would be

needed.

. Come up with an initial set of tables.

. Ensure that your initial set of tables contains all the information requirements.

. Normalize the tables using a step-by-step methodology.

. Review the resulting set of tables, one by one, and ensure that none of the tables has

potential redundancies or errors.

. Complete the relational data model.

. Review the relational data model for completeness.

Chapter 8 covers the data normalization method. In that chapter, we will have a detailed

discussion of this approach to designing the relational data model. You will realize the

need and motivation for the normalization process. We will list the normalization steps

and show how to apply a single normalization principle at each step. You will note

how, after each step, the set of tables gets closer to being the correct set of tables and

being part of the final relational data model.

Evaluation of Design Methods

Naturally, when there are two ways for arriving at the same place, which path should you

take? If both methods produce the same desired result, which method is more appropriate?

The answers to these questions depend on the circumstances of the design process.

Note the following points about the two methods while making the choice between the

two ways:

Same Result. If you carry out the transformation of the conceptual data model into a

relational model or adopt the traditional method using normalization, you will arrive at

the same relational data model. However, either method must be used carefully, making

sure that every task is executed properly.

One Method Intuitive. In the traditional method, you are supposed to come up with an

initial and complete set of tables. But, how do you come up with the initial set? Using what

method? There is no standard method for arriving at an initial set of tables. You have to

TRANSITION TO DATABASE DESIGN 245



look at the information requirements and arrive at the initial set of tables mostly through

intuition. You just start with the best possible set that is complete. Then you go and nor-

malize the tables and complete the relational data model.

Other Method Systematic. The method of creating the conceptual data model first and

then transforming it into the required relational data model is a systematic method with

well-defined mapping algorithms. Creation of the conceptual data model is through

clearly defined data modeling techniques. Then you take the components of the conceptual

data model, one by one, and transform these in a disciplined manner.

Choosing Between the Two Methods. When can you adopt the traditional method?

Only when you can come up with a good initial set of tables through intuition. If the infor-

mation requirements are wide and complex, by looking at the information requirements it

is not easy to discern the tables for the initial set. If you attempt the process, you are likely

to miss portions of information requirements. Therefore, adopt the traditional approach

only for smaller and simpler relational database systems. For larger and complex relational

database systems, the transformation method is the prudent approach. As data modelers

gain experience, they tend to get better at defining the initial set of tables and go with

the normalization method.

MODEL TRANSFORMATION METHOD

This method is a straightforward procedure of examining the components of your concep-

tual data model and then transforming these components into components of the required

relational data model. A conceptual model is a generic model. We have chosen to trans-

form it into a relational model.

Let us study the transformation of a conceptual model created using E-R technique into

relational data model. The discussions here may also be adapted to a conceptual model

created using any other modeling technique. The transformation principles will be similar.

The Approach

Obviously, first you need to firm up your requirements definition before beginning any

data modeling. We had discussed requirements gathering methods and contents of require-

ments definition in great detail. Requirements definition drives the design of the concep-

tual data model.

Requirements definition captures details of real-world information. After the require-

ments definition phase, you move to conceptual data modeling to create a replica of infor-

mation requirements. From conceptual data modeling, you make the transition to a

relational data model. This completes the logical design phase. Physical design and

implementation follow; however, these are not completely within the purview of our study.

Merits. Why go through the process of creating a full-fledged conceptual model first and

then transforming it into a relational data model? Does it not sound like a longer route to

logical design? What are the merits and advantages of this approach? Although we have

addressed these questions earlier in bits and pieces, let us summarize the merits and ration-

ale for the model transformation approach.

246 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



Need for Conceptual Model. You must ensure that your final database system stores and

manages all aspects of information requirements. Nothing must be missing from the data-

base system. Everything should be correct. The proposed database system must be able to

support all the relevant business processes and provide users with proper information.

Therefore, any data model as a prelude to the proposed database system must be a true

replica of information requirements.

A general data model captures the true and complete meaning of information require-

ments at a high level of abstraction understandable by user groups. The model is made up

of a complete set of components such as entity types, attributes, relationships, and so is

able to represent every aspect of information requirements. If there are variations in

entity types or relationship types in the information requirements, a generic data model

can correctly reflect such nuances.

Limitations of Implementation Models. Consider the conventional data models such as

the hierarchical, network, or relational data models. These are models that are

implemented in commercial database systems. You have hierarchical, network, and rela-

tional databases offered by vendors. The conventional or implementation models are the

ones that stipulate how data is perceived, stored, and managed in a database system.

For example, the relational data model lays down the structure and constraints on how

data can be perceived as two-dimensional tables and how relationships may be established

through logical links. As such, the implementation data models address data modeling

from the point of view of storing and managing data in the database system.

However, the objectives of database development are to ensure that any data model

used must truly replicate all aspects of information requirements. The conventional data

models do not directly perceive data from the point of view of information requirements;

they seem to come from the other side. Therefore, a conventional data model is not usually

created directly from information requirements. Such an attempt may not produce a com-

plete and correct data model.

Need for Generic Model. Imagine a process of creating a conventional data model from

information requirements. First of all, what is the conventional data model that is being

created? If it is a hierarchical data model, then you as a data modeler must know the com-

ponents of the hierarchical data model thoroughly and also know how to relate real-world

information to these model components. On the other hand, if your organization opts for a

relational data model, again, you as a data modeler must know the components of the rela-

tional data model and also know how to relate real-world information to the relational

model components.

However, data modeling must concentrate on correctly representing real-world infor-

mation irrespective of whether the implementation is going to be hierarchical, network,

or relational. As a data modeler, if you learn one set of components and gain expertise

in mapping the real-world to this generic set of components, then your concentration

will be on capturing the true meaning of real-world information and not on variations

in modeling components.

Simple and Straightforward. Theattraction for themodel transformationmethod for creat-

ing a relational model comes from the simplicity of the method. Once the conceptual data

model gets completed with due diligence, the rest of the process is straightforward. There

are no complex, convoluted steps. You have to simply follow an orderly sequence of tasks.

MODEL TRANSFORMATION METHOD 247



Suppose your organization desires to implement a relational database system.

Obviously, information requirements must be defined properly no matter which type of

database system is being implemented. Information requirements define the set of real-

world information that must be modeled. A data modeler who specializes in conceptual

data modeling techniques creates a conceptual data model based on information require-

ments. At this stage, the data modeler need not have any knowledge of the relational data

model. All the data modeler does is to represent information requirements in the form of a

conceptual model. The next straightforward step for the data designer is to review the com-

ponents of the conceptual data model and change each component to a component of the

relational data model.

Easy Mapping of Components. A conceptual data model is composed of a small dis-

tinct set of components. It does not matter how large and expansive the entire data

model is; the whole data model is still constructed with a few distinct components. You

may be creating an E-R data model for a large multinational corporation or a small

medical group practice. Yet, in both cases, you will be using a small set of components

to put together the E-R data model.

What then is the implication here? Your conceptual data model, however large it may

be, consists of only a few distinct components. This means you just need to know how to

transform a few distinct components. From the other side, a relational data model also con-

sists of a few distinct components. So, mapping and transforming the components

becomes easy and very manageable.

When to Use this Method. When there is more than one method for creating a rela-

tional data model, a natural question arises as to how do you choose and adopt one

method over the other? When do you use the model transformation method and not the

normalization method? In a previous section, we had a few hints. The model transform-

ation method applies when the normalization method is not feasible. Let us now list the

conditions that would warrant the use of the model transformation method.

Large Database System. When a proposed database system is large and the data model

is expected to contain numerous component pieces, the model transformation method is

preferable.

Complex Information Requirements. Some set of information requirements may

require modeling complex variations and many types of generalization and specialization.

There may be several variations in the relationships, and the attributes themselves may be

of different types. Under such conditions, modeling complex information requirements

directly in the relational model bypassing the conceptual data model proves to be very

difficult.

Large Project. A large project requires many data modelers to work in parallel to com-

plete the data modeling activity within a reasonable time. Each data modeler will work on

a portion of information requirements and produce a partial conceptual data model. When

a project is large and the data model is expected to contain numerous partial models, the

model transformation method is preferable. The partial conceptual data models are inte-

grated and then transformed into a relational data model.

248 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



Steps and Tasks. Figure 7-13 presents the major steps in the model transformation

method. Study these major steps and note how each major step enables you to proceed

toward the final transformation of the data model.

Mapping of Components

While creating an E-R data model, the data modeler uses the components or building

blocks available in that technique to put together the data model. You have studied

such components in sufficient detail. Similarly, in order to create a relational model, the

building blocks are the ones available in the relational modeling technique. You reviewed

these components also. Essentially, transforming an E-R data model involves finding

matching components in the relational data model and transferring the representation of

information requirements from one model to the other. Model transformation primarily

consists of mapping of corresponding components from one data model to the other.

Let us recapitulate the components or building blocks for each of the two models—the

E-R and the relational data models. The list of components makes it easier to begin the

study of component mapping and model transformation.

Conceptual Data Model

ENTITY-RELATIONSHIP TECHNIQUE

Entity types

Attributes

Keys

Relationships

Cardinality indicators

Generalization/specialization

FIGURE 7-13 Model transformation: major steps.

MODEL TRANSFORMATION METHOD 249



Relational Data Model

Relations or tables

Rows

Columns

Primary key

Foreign key

Generalization/specialization

Just by going through the list of components, it is easy to form the basic concepts for

mapping and transformation. The conceptual data model deals with the things that are

of interest to the organization, the characteristics of these things, and the relationships

among these things. On the other hand, the relational model stipulates how data about

the things of interest must be perceived and represented, how the characteristics must

be symbolized, and how the links between related things must be established.

First, let us consider the mapping of things and their characteristics. Then we will move

on to the discussion of relationships. As you know, a major strength of the relational model

is the way it represents relationships through logical links. We will describe the mapping

of relationships in detail and also take up special conditions. Mapping involves taking the

components of the conceptual data model, one by one, and finding the corresponding com-

ponent or components in the relational data model.

Entity Types to Relations

Let us begin with the most obvious component—entity type in the E-R data model. What

is an entity type? If employee is a “thing” the organization is interested in storing infor-

mation about, then employee is an entity represented in the conceptual data model. The

set of all employees in the organization about whom data must be captured in the proposed

relational database system is the entity type EMPLOYEE.

Figure 7-14 shows the mapping of entity type EMPLOYEE. The mapping shows the

transformation of entity type represented in E-R modeling notation to a relation denoted

in relational data model notation.

From the figure, note the following points about the transformation from E-R data

model to relational data model:

. Entity type is transformed into a relation.

. Name of the entity type becomes the name of the relation.

. The entity instances perceived as present inside the entity type box transform into the

rows of the relation.

. The complete set of entity instances becomes the total set of rows of the relation or table.

. In the transformation, nothing is expressed about the order of the rows in the trans-

formed relation.

Attributes to Columns

Entities have intrinsic or inherent characteristics. So, naturally the next component to be con-

sidered is the set of attributes of an entity type. Figure 7-15 shows the transformation of

attributes.

250 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



Make note of the following points with regard to the transformation of attributes:

. Attributes of an entity type are transformed into the columns of the corresponding

relation.

. The names of the attributes become the names of the columns.

. Domain of values of each attribute translates into the domain of values for corres-

ponding columns.

. In the transformation, nothing is expressed about the order of the columns in the trans-

formed relation.

. A single-valued or a derived attribute becomes one column in the resulting relation.

FIGURE 7-14 Mapping of entity type.

FIGURE 7-15 Mapping of attributes.

MODEL TRANSFORMATION METHOD 251



. If a multivalued attribute is present, then this is handled by forming a separate relation

with this attribute as a column in the separate relation.

. For a composite attribute, as many columns are incorporated as the number of com-

ponent attributes.

Identifiers to Keys

In the E-R data model, each instance of an entity type is uniquely identified by values in

one or more attributes. These attributes together form the instance identifier. Figure 7-16

indicates the transformation of instance identifiers.

Note the following points on this transformation:

. The set of attributes forming the instance identifier becomes the primary key of the

relation.

. If there is more than one attribute, all the corresponding columns are indicated as

primary key columns.

. Because the primary key columns represent instance identifiers, the combined value

in these columns for each row is unique.

. No two rows in the relation can have the same values in the primary key columns.

. Because instance identifiers cannot have null values, no part of the primary key

columns can have null values.

Transformation of Relationships

Methods for conceptual data modeling have elegant ways for representing relationships

between two entity types. Wherever you perceive direct associations between instances

FIGURE 7-16 Mapping of instance identifiers.

252 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



of two entity types, the two entity types are connected by lines with a diamond in the

middle containing the name of the relationship. How many instances of one entity type

are associated with how many instances of the other? The indication about the numbers

is given by cardinality indicators, especially the maximum cardinality indicator. The

minimum cardinality indicator denotes whether a relationship is optional or mandatory.

You know that a relational data model establishes relationships between two relations

through foreign keys. Therefore, transformation of relationships as represented in the con-

ceptual model involves mapping of the connections and cardinality indicators into foreign

keys. We will discuss how this is done for one-to-one, one-to-many, and many-to-many

relationships. We will also go over the transformation of optional and mandatory con-

ditions for relationships. While considering transformation of relationships, we need to

review relationships between a superset and its subsets.

One-to-One Relationships. When one instance of an entity type is associated with a

maximum of only one instance of another entity type, we call this relationship a one-to-one

relationship. Figure 7-17 shows a one-to-one relationship between the two entity types

CLIENT and CONTACT-PERSON.

If a client of an organization has designated a contact person, then the contact person is

represented by CONTACT-PERSON entity type. Only one contact person exists for a

client. But some clientsmay not have contact persons, inwhich case there is no corresponding

instance in CONTACT-PERSON entity type. Now we can show the relationship by placing

the foreign key column in CLIENT relation. Figure 7-18 illustrates this transformation.

Observe how the transformation gets done. How are the rows of CLIENT relation

linked to corresponding rows of CONTACT-PERSON relation? The values in the

foreign key columns and primary key columns provide the linkage. Do you note some

foreign key columns in CLIENT relation with null values? What are these? For these

clients, client contact persons do not exist. If the majority of clients do not have assigned

contact persons, then many of the rows in CLIENT relation will contain null values in the

foreign key column. This is not a good transformation. A better transformation would be to

place the foreign key column in CONTACT-PERSON relation, not in CLIENT relation.

Figure 7-19 presents this better transformation.

Foreign key links two relations. If so, you must be able to get answers to queries invol-

ving data from two related tables by using the values in foreign key columns. From

Figure 7-19, examine how results for the following queries are obtained.

Who Is the Contact Person for Client Number 22222?. Read CONTACT-PERSON

table by values in the foreign key column. Find the row having the value 22222 in the

foreign key column.

FIGURE 7-17 One-to-one relationship.

MODEL TRANSFORMATION METHOD 253



FIGURE 7-18 Transformation of one-to-one relationship.

FIGURE 7-19 Better transformation of one-to-one relationship.

254 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



Who Is the Client for Contact Person Number 345?. Read CONTACT-PERSON table

by values in the primary key column. Find the row having the value 345 in the primary key

column. Get the foreign key value of this row, namely, 55555. Read CLIENT table by

values in the primary key column. Find the row having the value 5555 for the primary

key attribute.

Let us summarize the points about transformation of one-to-one relationships.

. When two relations are in one-to-one relationship, place a foreign key column in

either one of the two relations. Values in the foreign key column for rows in this

table matches with primary key values in corresponding rows of the related table.

. The foreign key attribute has the same data type, length, and domain values as the

corresponding primary key attribute in the other table.

. It does not really matter whether you place the foreign key column in one table or the

other. However, to avoid wasted space, it is better to place the foreign key column in

the table that is likely to have the less number of rows.

One-to-Many Relationships. Let us begin our discussion of one-to-many relationship

by reviewing Figure 7-20. This figure shows the one-to-many relationship between the two

objects CUSTOMER and ORDER.

The figure also indicates how individual instances of these two entity types are associ-

ated with one another. You see a clear one-to-many relationship—one customer can have

one or more orders. So how should you transform this relationship? As you know, the

associations are established through the use of a foreign key column. But in which table

do you place the foreign key column? For transforming one-to-one relationship, you

noted that you might place the foreign key column in either relation. In the same way,

let us try to place the foreign key in CUSTOMER relation. Figure 7-21 shows this trans-

formation of one-to-many relationship.

What do you observe about the foreign keys in the transformed relations? In the CUS-

TOMER relation, the row for customer 1113 needs just one foreign key column to connect

FIGURE 7-20 CUSTOMER and ORDER: one-to-many relationship.

MODEL TRANSFORMATION METHOD 255



to order 1 in the ORDER relation. But the row for customer 1112 seems to need two

foreign key columns, and the row for customer 1111 seems to require three foreign key

columns. What if there is a customer with 50 orders? How many foreign key columns

are sufficient in the CUSTOMER relation? How will you search for a particular

ORDER from the several foreign key columns in the CUSTOMER relation? Obviously,

this transformation is not right.

We can try another solution by placing the foreign key column in the ORDER relation

instead of including the foreign key column in the other related table. Figure 7-22 illus-

trates the correct solution.

Examine this figure. First, you notice that there is no need for multiple foreign keys to

represent one relationship. Multiple rows in ORDER relation have the same value in the

foreign key column. This indicates the several orders related to the same customer. The

values in the foreign key column link the associated rows. From the figure, let us

examine how queries involving data from two related tables work.

Which Are the Orders Related to CUSTOMER Number 1112? Read ORDER table

by values in the foreign key column. Find the rows having the value 1112 in the

foreign key column.

What Is the Name of the Customer for Order Number 5? Read ORDER table by

values in the primary key column. Find the row having the value 5 for the primary key

attribute. Get foreign key value of this row, namely, 1112. Read CUSTOMER table

by values in its primary key column. Find the row having the value 1112 in the primary

key column.

FIGURE 7-21 Transformation of one-to-many relationship.

256 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



Let us summarize the points about transformation of one-to-many relationships.

. When two relations are in one-to-many relationship, place the foreign key column in

the relation that is on the “many” side of the relationship. Values in foreign key

column for rows in this table match with primary key values in corresponding

rows of the related table.

. The foreign key attribute has the same data type, length, and domain values as the

corresponding primary key attribute in the other table.

Many-to-Many Relationships. As you know, in a many-to-many relationship, one

instance of an entity type is related to one or more instances of a second entity type,

and also one instance of the second entity type is related to one or more instances of

the first entity type. Figure 7-23 presents an example of a many-to-many relationship.

One employee is assigned to one or more projects simultaneously or over time. Again,

one project is related to one or more employees. Let us try to transform the E-R data model

to a relational data model and establish the many-to-many relationship. For establishing the

relationship, you have to create foreign key columns. While transforming a one-to-many

relationship, we placed the foreign key column in the relation on the “many” side of the

relationship; that is, we placed the foreign key column in the child relation.

In a many-to-many relationship, which of the two relations is the child relation? It is not

clear. Both relations participate in the relationship in the same way. Look at the associ-

ations shown in Figure 7-23. Transform the entity types into relations and place the

foreign key column in PROJECT relation. Figure 7-24 shows this transformation with

the foreign key column placed in PROJECT relation.

Note the foreign keys in the transformed relations? In PROJECT relation, the rows for

projects 1 and 4 need three foreign key columns, whereas the rows for projects 2, 3, and 4

FIGURE 7-22 Correct transformation of one-to-many relationship.

MODEL TRANSFORMATION METHOD 257



need two foreign key columns each. You get the picture. If some projects are related to

many employees, as many as 50 or so, how many foreign key columns must PROJECT

relation have? So, it appears that this method of transformation is not correct.

Let us determine how queries involving data from two related tables work.

Which Are the Projects Related to Employee 456? Read PROJECT table by values in

the foreign key columns But which foreign key columns? All of the foreign columns?

Right away, you note that finding the result for this query is going to be extremely difficult.

FIGURE 7-23 Example of many-to-many relationship.

FIGURE 7-24 Transformation of many-to-many relationship: first method.

258 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



What Are the Names of Employees Assigned to Project 1?. Read PROJECT table by

values in the primary key column. Find the row having the value 1 for the primary key

attribute. Get foreign key values of this row, namely, 123, 234, and 345. Read

EMPLOYEE table by values in the primary key column. Find the rows having the

values 123, 234, and 345 for its primary key attribute. Getting the result for this query

seems to be workable.

Because the transformation from the first method does not work, let us try another sol-

ution by placing the foreign key columns in the EMPLOYEE relation instead of including

the foreign key columns in the other related table. Figure 7-25 illustrates this method of

transformation.

Where are the foreign keys in the transformed relations? In the EMPLOYEE relation,

the row for employee 123 needs two foreign key columns, whereas the rows for employees

234 and 456 need three foreign key columns each and the rows for employee 345 needs

four foreign key columns. By the reasoning similar to the one for the first method, if an

employee is related to 25 projects over time, then you need to have that many foreign

key columns in the EMPLOYEE relation.

Let us examine how queries involving data from two related tables work.

Which Are the Projects Related to Employee 456? Read EMPLOYEE table by values

in the primary key column Find the row having the value 456 for the primary key attribute.

Get foreign key values of this row, namely, 2, 3, and 4. Read PROJECT table by values in

the primary key column. Find the rows having the values 2, 3, and 4 for its primary key

attribute. Getting the result for this query seems to be workable.

What Are the Names of Employees Assigned to Project 1? Read EMPLOYEE table

by values in the foreign key columns But which foreign columns? All of the foreign

FIGURE 7-25 Transformation of many-to-many relationship: second method.

MODEL TRANSFORMATION METHOD 259



columns? Right away, you note that finding the result for this query is going to be very

difficult.

It is clear that the second method of transformation also does not work. We seem to be

in a quandary. Where should you place the foreign key column—in which of the two

related tables? Placing foreign key columns in either table does not seem to work. So,

this second method of transformation is also not correct.

Note the pairs of related primary key values shown in Figures 7-24 and 7-25. Each pair

represents a set of a project and a corresponding employee. Look at the pairs (1,123) and

(1,234). Each pair indicates a set of related rows from the two tables. For example, the pair

(1,123) indicates that the row for project 1 is related to employee 123, the pair (1,234) indi-

cates that the row for project 1 is related to employee 234, and so on. In fact, you note that

the complete set of pairs represents all the associations between rows in the two tables. In

other words, the set of pairs establishes the many-to-many relationship. But, the values in

the pairs are not present as foreign keys in either of the two tables. In our above two

attempts at transformation, the real problem is that we do not know where to place the

foreign keys—whether in the PROJECT relation or in the EMPLOYEE relation. What

if you make a separate table out of these pairs of related values and use the values in

the pairs as foreign key values? Then this new table can establish the many-to-many

relationship. This elegant technique is the standard method for representing many-to-many

relationships in the relational data model.

Figure 7-26 illustrates the correct method of transforming many-to-many relationship.

The table containing the pairs of related values of primary keys is known as the intersec-

tion table.

FIGURE 7-26 Transformation of many-to-many relationship: correct method.

260 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



Note the primary key for the intersection table. The primary key consists of two parts:

one part, the primary key of PROJECT table and the other part the primary key of

EMPLOYEE table. The two parts act separately as the foreign keys to establish both

sides of the many-to-many relationship. Also, observe that each of the two relations

PROJECT and EMPLOYEE is in a one-to-many relation with the intersection relation

ASSIGNMENT.

Now, let us review how queries involving data from the two related tables work.

Which Are the Projects Related to Employee 456? Read intersection table by values

in one part of the primary key column, namely, EmpNo attribute showing values for

employee key numbers. Find the rows having the value 456 for this part of the primary

key. Read PROJECT table by values in its primary key column. Find the rows having

the values 2, 3, and 4 for primary key attribute. Getting the result for this query seems

to be workable.

What Are the Names of Employees Assigned to Project 1? Read intersection table by

values in one part of the primary key column, namely, ProjID attribute showing values for

project key numbers. Find the rows having the value 1 for this part of the primary key.

Read EMPLOYEE table by values in its primary key column. Find the rows having the

values 123, 234, and 345 for primary key attribute. Getting the result for this query is

straightforward and easy.

To end our discussion of transformation of many-to-many relationships, let us summar-

ize the main points.

. Create a separate relation, called the intersection table. Use both primary keys of the

participating relations as the concatenated primary key column for the intersection

table. The primary key column of the intersection table contains two attributes: one

attribute establishing the relationship to one of the two relations and the other attri-

bute linking the other relation.

. Each part of the primary key of the intersection table serves as a foreign key.

. Each foreign key attribute has the same data type, length, and domain values as the

corresponding primary key attribute in the related table.

. The relationship of the first relation to the intersection relation is one-to-many; the

relationship of the second relation to the intersection relation is also one-to-many.

In effect, transformation of many-to-many relationship is reduced to creating two

one-to-many relationships.

Mandatory and Optional Conditions. The conceptual model is able to represent

whether a relationship is optional or mandatory. As you know, the minimum cardinality

indicator denotes mandatory and optional conditions. Let us explore the implications of

mandatory and optional conditions for relationships in a relational model. In our discus-

sions so far, we have examined the relationships in terms of maximum cardinalities. If

the maximum cardinalities are 1 and 1, then the relationship is implemented by placing

the foreign key attribute in either of the participating relations. If the maximum cardinal-

ities are 1 and �, then the relationship is established by placing the foreign key attribute in

the relation on the “many” side of the relationship. Finally, if the maximum cardinalities

MODEL TRANSFORMATION METHOD 261



are � and �, then the relationship is broken down into two one-to-many relationships by

introducing an intersection relation. Let us consider a few examples with minimum cardin-

alities and determine the effect on the transformation.

Minimum Cardinality in One-to-Many Relationship. Figure 7-27 shows an example of

one-to-many relationship between the two entity types PROJECT and EMPLOYEE.

Note the cardinality indicators (1,1) shown next to PROJECT entity type. Intentionally,

the figure does not show the minimum cardinality indicator next to EMPLOYEE. We will

discuss the reason very shortly. What is the meaning of the cardinality indicators next to

PROJECT entity type? The indicators represent the following condition:

An employee can be assigned to a maximum of only one project.

Every employee must be assigned to a project. That is, an employee instance must be

associated with a minimum of 1 project instance. In other words, every employee

instance must participate in the relationship. The relationship as far as the employee

instances are concerned is mandatory.

Now look at the foreign key column in the EMPLOYEE table. If every employee is

assigned to a project, then every EMPLOYEE row must have a value in the foreign key

column. You know that this value must be the value of the primary key of the related

row in the PROJECT table. What does this tell you about the foreign key column? In a

mandatory relationship, the foreign key column cannot contain nulls. Observe the

Foreign Key statement under relational notation in the figure. It stipulates the constraints

with the words “NOT NULL” expressing that nulls are not allowed in the foreign key

attribute.

FIGURE 7-27 One-to-many relationship: mandatory and optional.

262 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



Next, consider the optional condition. Suppose the cardinality indicators (0,1) are

shown next to PROJECT entity type. Then the indicators will represent the following

condition:

An employee can be assigned to a maximum of only one project.

Not every employee need be assigned to a project. That is, some employee instances

may not be associated with any project instance at all. At a minimum, an employee

instance may be associated with no project instance or with zero project instances. In

other words, not every employee instance needs to participate in the relationship.

The relationship as far as the employee instances are concerned is optional.

It follows, therefore, that in an optional relationship of this sort, nulls may be allowed in

the foreign key attribute. What do the rows with null foreign key attribute in the

EMPLOYEE relation represent? These rows represent those employees who are not

assigned to a project.

Minimum Cardinality in Many-to-Many Relationship. Figure 7-28 shows an example

of many-to-many relationship between the two entity types PROJECT and EMPLOYEE.

Note the cardinality indicators (1,�) shown next to PROJECT entity type and (1,�)
shown next to EMPLOYEE entity type. What do these cardinality indicators represent?

The indicators represent the following condition:

An employee may be assigned to many projects.

A project may have many employees.

FIGURE 7-28 Many-to-many relationship: minimum cardinality.

MODEL TRANSFORMATION METHOD 263



Every employee must be assigned to at least one project. That is, an employee instance

must be associated with a minimum of 1 project instance. In other words, every

employee instance must participate in the relationship. The relationship as far as

the employee instances are concerned is mandatory.

Every project must have at least one employee. That is, a project instance must be

associated with a minimum of 1 employee instance. In other words, every project

instance must participate in the relationship. The relationship as far as the project

instances are concerned is mandatory.

Carefully observe the transformed relations described in the figure. Look at the inter-

section relation and the concatenated primary key of this relation. As you know, each

part of the primary key forms the foreign key. Notice the two one-to-many relationships

and the corresponding tables showing attribute values. As discussed in the previous sub-

section on one-to-many relationship, the foreign keys in the intersection table, that is,

either of the two parts of the primary key table, cannot be nulls. You may stipulate the

constraints with the words “NOT NULL” in the Foreign Key statement for the intersection

table. However, the two foreign keys are part of the primary key and because the primary

key attribute cannot have nulls, the explicit stipulation of “NOT NULL” may be omitted.

Next, let us take up optional conditions on both sides. Suppose the cardinality indicators

(0,�) are shown next to PROJECT and EMPLOYEE entity types. Then the indicators will

represent the following condition:

An employee may be assigned to many projects.

A project may have many employees.

Not every employee need be assigned to a project. That is, some employee instances

may not be associated with any project instance at all. At a minimum, an employee

instance may be associated with no project instance or with zero project instances. In

other words, not every employee instance needs to participate in the relationship.

The relationship as far as the employee instances are concerned is optional.

Not every project needs to have an employee. That is, some project instances may not

be associated with any employee instance at all. At a minimum, a project instance

may be associated with no employee instance or with zero employee instances. In

other words, not every project instance needs to participate in the relationship.

The relationship as far as the project instances are concerned is optional.

It follows, therefore, that in an optional relationship of this sort, nulls may be allowed in

the foreign key columns. However, in the way the transformation is represented in

Figure 7-28, allowing nulls in foreign key columns would present a problem. You have

noted the foreign key attributes form the primary key of the intersection relation, and

no part of a primary key in a relation can have nulls according to the integrity rule for

the relational model. Therefore, in such cases, you may adopt an alternate transformation

approach by assigning a separate primary key as shown in Figure 7-29.

What do the rows with null foreign key attributes in the ASSIGNMENT relation rep-

resent? These rows represent those employeeswho are not assigned to a project or those pro-

jects that have no employees. In practice, youmaywant to include such rows in the relations

to indicate employees already eligible for assignment but not officially assigned and to

denote projects that usually have employees assigned but not yet ready for assignment.

264 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



Aggregate Objects as Relationships. Recall that in relationships, the participating

entity types together form an aggregate entity type by virtue of the relationship itself. Let

us discuss how such aggregate entity types are transformed into the components of a rela-

tional data model. Figure 7-30 illustrates such a transformation of an aggregate entity type

ASSIGNMENT.

Notice the intersection relation and the attributes shown in this relation. These are the

attributes of the aggregate entity type. You will note that the aggregate entity type becomes

the intersection relation.

Identifying Relationship. While discussing conceptual data modeling, you studied

identifying relationships. A weak entity type is one that depends on another entity type

for its existence. A weak entity type is, in fact, identified by the other entity type. The

relationship is, therefore, called an identifying relationship.

Figure 7-31 illustrates the transformation of an identifying relationship. Especially note

the primary key attributes of the weak entity type.

Supersets and Subsets. While creating conceptual data models, you discover objects

in the real world that are subsets of other objects. Some objects are specializations of other

objects. On the other hand, you realize that individual entity types may be generalized in

supertype entity types. Each subset of a superset forms a special relationship with its

superset.

Figure 7-32 shows the transformation of a superset and its subsets. Notice how the primary

key attribute and other attributes migrate from the superset relation to subset relations.

FIGURE 7-29 Many-to-many relationship: alternative approach.

MODEL TRANSFORMATION METHOD 265



FIGURE 7-30 Transformation of aggregate entity type.

FIGURE 7-31 Transformation of identifying relationship.

266 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



Transformation Summary

By now, you have a fairly good grasp of the principles of transformation of a conceptual

data model into a relational data model. We took each component of the conceptual data

model and reviewed how the component is transformed into a component in the relational

model. Let us list the components of the conceptual data model and note how each com-

ponent gets transformed.

Components of the conceptual data model and how they are transformed into relational

data model:

Entity Type

STRONG

Transform into relation.

WEAK

Transform into relation. Include primary key of the identifying relation in the primary key

of the relation representing the weak entity type.

Attribute

Transform into column.

Transform attribute name into column name.

Translate attribute domains into domains for corresponding columns.

SIMPLE, SINGLE-VALUED

Transform into a column of the corresponding relation.

FIGURE 7-32 Transformation of superset and subsets.

MODEL TRANSFORMATION METHOD 267



COMPOSITE

Transform into columns of the corresponding relation with as many columns as the

number of component attributes.

MULTIVALUED

Transform into a column of a separate relation.

DERIVED

Transform into a column of the corresponding relation.

Primary Key

SINGLE ATTRIBUTE

Transform into a single-column primary key.

COMPOSITE

Transform into a multicolumn primary key.

Relationship

ONE-TO-ONE

Establish relationship through a foreign key attribute in either of the two participating

relations.

ONE-TO-MANY

Establish relationship through a foreign key attribute in the participating relation on the

“many” side of the relationship.

MANY-TO-MANY

Transform by forming two one-to-many relationships with a new intersection relation in

between the participating relations. Establish relationship through foreign key attributes

in the intersection relation.

OPTIONAL AND MANDATORY CONDITIONS

Set constraint for the foreign key column. If nulls are not allowed in the foreign key

column, it represents a mandatory relationship. Allowing nulls denotes an optional

relationship. Mandatory and optional conditions apply only to the participation of the

relation on the “many” side of a one-to-many relationship, that is, to the participation of

rows in the relation that contains the foreign key column.

268 CHAPTER 7 DATA MODELING TO DATABASE DESIGN



CHAPTER SUMMARY

. The relationalmodelmaybeused as a logical datamodel.The relationalmodel is a popular

and widely used model that is superior to the earlier hierarchical and network models.

. The relational model rests on a solid mathematical foundation: it uses the concepts of

matrix operations and set theory.

. The relation or two-dimensional table is the single modeling concept in the relational

model.

. The columns of a relation or table denote the attributes and the rows represent the

instances of an entity type.

. Relationships are established through foreign keys.

. Entity integrity, referential integrity, and functional dependency rules enforce data

integrity in a relational model.

. There are two approaches to design from modeling: model transformation method

and traditional normalization method.

. Model transformation method from conceptual to logical data model: entity types to

relations, attributes to columns, identifiers to keys, relationships through foreign key

columns.

. One-to-one and one-to-many relationships are transformed by introducing a foreign

key column in the child relation.

. Many-to-many relationships are transformed by the introduction of another intersec-

tion relation.

. Optional and mandatory conditions in a relationship are indicated by allowing or dis-

allowing nulls in foreign key columns of relations.

REVIEW QUESTIONS

1. Match the column entries:

1. Relation tuples A. Primary key

2. Foreign key B. Conceptual to logical

3. Row uniqueness C. Relation

4. Entity integrity D. Column in separate relation

5. Model transformation E. Entity instances

6. Entity type F. Primary key not null

7. Identifier G. Order not important

8. Optional condition H. Establish logical link

9. Multivalued attribute I. Nulls in foreign key

10. Relation columns J. No duplicate rows

2. Show an example to illustrate how mathematical set theory is used for data

manipulation in the relational data model.

REVIEW QUESTIONS 269



3. What is a mathematical relation? Explain how it is used in the relational model to

represent an entity type.

4. Describe in detail how columns in a relation are used to represent attributes. Give

examples.

5. Using an example, illustrate how foreign key columns are used to establish

relationships in the relational data model.

6. Discuss the referential integrity rule in the relational model. Provide an example to

explain the rule.

7. What are the two design approaches to create a logical data model? What are the

circumstances under which you will prefer one to another?

8. Describe the features of the model transformation method.

9. Describe how many-to-many relationships are transformed into the relational

model. Provide a comprehensive example.

10. Discuss the transformation of a one-to-one relationship. Indicate with an example

where the foreign key column must be placed.

270 CHAPTER 7 DATA MODELING TO DATABASE DESIGN




