
Topic-6 Syntax Analysis- Parsing Techniques Third Stage 2018-2019

58 Mustansiriyah University / College of Science/ Computer Dep. By: Dr. Basim Jamil

Parsing Techniques

Parsers

A parser for grammar G is a program that takes as input a string w

and produces as output either a parse tree for w, if w is a sentence of G, or

an error message indicating that w is not a sentence of G.

There are two basic types of parsers for context-free grammars are Top-

Down and Bottom-Up. As indicated by their names, top-down parsers

start with the root and work down to the leaves, while bottom-up parsers

build parse trees from the bottom (leaves) to the top (root). In both cases

the input to the parser is being scanned from left to right, one symbol at a

time.

Top-Down Parsing

Top-down parsing can be viewed as an attempt to find a leftmost

derivation for an input string. Equivalently, it can be viewed as an

attempt to construct a parse tree for the input starting from the root and

creating the nodes of the parse tree in preorder.

The general form of top-down parsing, called recursive descent, the

recursive descent can be divided to two cases. First case that may involve

Backtracking, which is, making repeated scans of the input and second

case, is No Backtracking (Predictive Parser). The types of top-down

parsing are depicted below:

Topic-6 Syntax Analysis- Parsing Techniques Third Stage 2018-2019

59 Mustansiriyah University / College of Science/ Computer Dep. By: Dr. Basim Jamil

Backtracking: It means, if one derivation of a production fails, the

syntax analyzer restarts the process using different rules of same

production. This technique may process the input string more than once

to determine the right production.

Example: Consider the grammar

S cAd

 A ab | a

and the input string w = cad. To construct a parse tree for this string top-

down.

1) Create a tree consisting of a single node labeled S.

2) An input pointer points to c, the first symbol of w. We then use the

first production for S to expand the tree and obtain the tree of

Figure below.

The leftmost leaf, labeled c, matches the first symbol of w.

S

A c d

Topic-6 Syntax Analysis- Parsing Techniques Third Stage 2018-2019

60 Mustansiriyah University / College of Science/ Computer Dep. By: Dr. Basim Jamil

3) Advance the input pointer to a, the second symbol of w, and

consider the next leaf, labeled A. We can then expand A using the

first alternative for A to obtain the tree of Figure below. We now

have a match for the second input symbol.

4) Advance the input pointer to d, the third input symbol, and com-

pare d against the next leaf, labeled b. Since b does not match d,

we report failure and go back to A to see whether there is another

alternative for A that we have not tried but that might produce a

match.

5) In going back to A, we must reset the input pointer to position 2,

the position it had when we first came to A, we now try the second

alternative for A to obtain the tree of figure below.

The leaf a matches the second symbol of w and the leaf d matches the

third symbol. Since we have produced a parse tree for w, we halt and

announce successful completion of parsing.

S

A c d

a

Topic-6 Syntax Analysis- Parsing Techniques Third Stage 2018-2019

61 Mustansiriyah University / College of Science/ Computer Dep. By: Dr. Basim Jamil

Note: A left-recursive grammar can cause a recursive-descent parser,

even one with backtracking, to go into an infinite loop. That is, when we

try to expand A, we may eventually find ourselves again trying to expand

A without having consumed any input.

Example2: Consider the following CFG:

 S → rXd | rZd

X → oa | ea

Z → ai

For an input string: read, a top-down parser will behave like this:

It will start with S from the production rules and will match its yield to

the left-most letter of the input, i.e. „r‟. The very production of S → rXd

matches with it. So the top-down parser advances to the next input letter

i. e. „e′. The parser tries to expand non-terminal „X‟ and checks its

production from the left X → oa. It does not match with the next input

symbol. So the top-down parser backtracks to obtain the next production

rule of X, X → ea.

Now the parser matches all the input letters in an ordered manner. The

string is accepted.

Topic-6 Syntax Analysis- Parsing Techniques Third Stage 2018-2019

62 Mustansiriyah University / College of Science/ Computer Dep. By: Dr. Basim Jamil

Predictive Parser

In many cases, by carefully writing a grammar, eliminating left recursion

from it, and left factoring the resulting grammar, we can obtain a

grammar that can be parsed by a recursive-descent parser that needs no

backtracking, i.e., a predictive parser.

Transition Diagrams for Predictive Parser

 Transition diagrams are useful for visualizing predictive

parsers. Several differences between the transition diagrams for a lexical

analyzer and a predictive parser are immediately apparent.

In the case of the parser, there is one diagram for each nonterminal. The

labels of edges are tokens (terminal) and nonterminals. A transition on

a token (terminal) means we should take that transition if that token is

the next input symbol. A transition on a nonterminal, A is a call of the

procedure for A.

To construct the transition diagram of a predictive parser from a

grammar, first eliminate left recursion from the grammar, and then left

factor the grammar. Then for each nonterminal A do the following:

1) Create an initial and final (return) state.

2) For each production A X1X2 …. Xn, create a path from the

initial to the final state, with edges labeled X1X2 …. Xn.

The predictive parser working off the transition diagrams behaves as

follows. It begins in the start state for the start symbol. If after some

actions it is in state s with an edge labeled by terminal a to state t, and if

the next input symbol is a, then the parser moves the input cursor one

position right and goes to state t. If, on the other hand, the edge is labeled

Topic-6 Syntax Analysis- Parsing Techniques Third Stage 2018-2019

63 Mustansiriyah University / College of Science/ Computer Dep. By: Dr. Basim Jamil

by a nonterminal A, the parser instead goes to the start state for A,

without moving the input cursor. If it ever reaches the final state for A, it

immediately goes to state t, in effect having "read" A from the input

during the time it moved from state s to t. Finally, if there is an edge from

s to t labeled ϵ, then from state s the parser immediately goes to state t,

without advancing the input.

Example: Design the transition diagram of predictive parser for the

following grammar:

 E TE'

 E' +TE' | ∈

 T FT'

 T' *FT' | ∈

 F (E) | id

The figure in below shows an equivalent transition diagram for E'.

Topic-6 Syntax Analysis- Parsing Techniques Third Stage 2018-2019

64 Mustansiriyah University / College of Science/ Computer Dep. By: Dr. Basim Jamil

Predictive parser is a recursive descent parser, which has the capability to

predict which production is to be used to replace the input string. The

predictive parser does not suffer from backtracking. To accomplish its

tasks, the predictive parser uses a look-ahead pointer, which points to the

next input symbols. To make the parser back-tracking free, the predictive

parser puts some constraints on the grammar and accepts only a class of

grammar known as LL(k) grammar.

Components of Predictive Parser

Predictive parser has an input buffer, a stack, a parsing table, and an

output stream. The model of predictive parser is shown the in figure

below:

1) The input buffer contains the string to be parsed, followed by $, a

symbol used as a right end-marker to indicate the end of the input

string.

2) The stack contains a sequence of grammar symbols with $ on the

bottom, indicating the bottom of the stack. Initially, the stack

contains the start symbol of the grammar on top of $.

3) The parsing table is a two-dimensional array M [A, a], where A is

a nonterminal, and a is a terminal or the symbol $.

 a + b $

Predictive Parser

Program

Parser Table

M[A,a]

Output

 Model of Predictive Parser

Input Buffer

Stack

X

Y

Z

$

Topic-6 Syntax Analysis- Parsing Techniques Third Stage 2018-2019

65 Mustansiriyah University / College of Science/ Computer Dep. By: Dr. Basim Jamil

The parser is controlled by a program that behaves as follows. The

program considers X, the symbol on top of the stack, and a, the

current input symbol. These two symbols determine the action of the

parser. There are three possibilities.

a) If X = a = $, the parser halts and announces successful

completion of parsing.

b) If X = a ≠ $, the parser pops X off the stack and advances

the input pointer to the next input symbol.

c) If X is a nonterminal, the program consults entry M[X, a]

of the parsing table M. This entry will be either an X-

production of the grammar or an error entry. If, for

example, M[X, a] = {X UVW}, the parser replaces

X on top of the stack by WVU (with U on top).

4) As output, we shall assume that the parser just prints the

production used; any other code could be executed here. If

M[X, a] = error, the parser calls error recovery routine.

Construction of Predictive Parsing Tables

The following algorithm can be used to construct a predictive parsing

table for a grammar G.

Algorithm: Construction of a predictive parsing table.

 Input: Grammar G.

Output: Parsing table M.

Method:

1. For each production A α of the grammar, do steps 2 and 3.

2. For each terminal a in FIRST (α), add A α to M [A, a].

Topic-6 Syntax Analysis- Parsing Techniques Third Stage 2018-2019

66 Mustansiriyah University / College of Science/ Computer Dep. By: Dr. Basim Jamil

3. If ϵ is in FIRST (α), add A α to M [A, b] for each terminal b

in FOLLOW (A). If ϵ is in FIRST (α) and $ is in FOLLOW (A),

add A α to M [A, $].

4. Make each undefined entry of M be error.

Example: Parse the string id + id * id by using predictive parser for the

following grammar: E -> E + T | T ; T -> T * F | F ; F -> (E) | id

 E TE'

 E' +TE' |

 T FT'

 T' *FT' |

 F (E) | id

FIRST (E) = FIRST (T) = FIRST (F) = {(, id}

FIRST (E') = {+,}

FIRST (T') = {*,}

FOLLOW (E) = FOLLOW (E') = {), $}

FOLLOW (T) = FOLLOW (T') = {+,), $}

FOLLOW (F) = {*, +,), $}

Predictive Parsing Table M For Above Grammar

 i/p Symb.

id + * () $
NonTerm.

E E -> TE' E -> TE'

E' E' -> +TE' E' -> E' - >

T T -> FT' T -> FT'

T' T' -> T' -> *FT' T' -> T' ->

F F id F (E)

Topic-6 Syntax Analysis- Parsing Techniques Third Stage 2018-2019

67 Mustansiriyah University / College of Science/ Computer Dep. By: Dr. Basim Jamil

Note: Blanks are error entries; non-blanks indicate a production with

which to expand the top nonterminal on the stack.

Moves made by predictive parser on the input id + id * id is:

Predictive parser accepts the given input string. We can notice that $ in

input and stuck, i.e., both are empty, hence accepted.

Note: In recursive descent parsing, the parser may have more than one

production to choose from for a single instance of input, whereas in

predictive parser, each step has at most one production to choose. There

might be instances where there is no production matching the input string,

making the parsing procedure to fail.

Stack Input Output

$ E id + id * id$

$ E'T id + id * id$ E TE'

$ E'T'F id + id * id$ T FT'

$ E'T' id id + id * id$ F id

$ E'T' + id * id$

$ E' + id * id$ T'

$ E'T+ + id * id$ E' +TE'

$ E'T id * id$

$ E'T'F id * id$ T FT'

$ E'T' id id * id$ F id

$ E'T' * id$

$ E'T'F* * id$ T' *FT'

$ E'T'F id$

$ E'T' id id$ F id

$ E'T' $

$ E' $ T'

$ $ E'

Topic-6 Syntax Analysis- Parsing Techniques Third Stage 2018-2019

68 Mustansiriyah University / College of Science/ Computer Dep. By: Dr. Basim Jamil

LL (1) Grammars

Algorithm construction of a predictive parsing table can be applied

to any grammar G to produce a parsing table M. For some grammars,

however, M may have some entries that are multiply-defined. For

example: if G is left recursive or ambiguous, then M will have at least

one multiply-defined entry.

Example: Let us consider the following grammar:

S iEtSS' | a

S' eS |

E b

NonTerminal First Follow

S {i, a} {e, $}

S' {e, } {e, $}

E {b} {t}

Predictive Parsing Table M For the above Grammar is

From the M- table, we can see:

The entry for M[S',e] contains both S' eS and S' , since

FOLLOW(S') = {e, $}. The grammar is ambiguous and the ambiguity is

manifested)تجلى(by a choice in what production to use when an e is seen.

Therefore this grammar is not LL (1).

NONTER-

MINALS

INPUT SYMBOL

a b e i t $

S S a S iEtSS'

S'
S'

S' eS

S'

E E b

Topic-6 Syntax Analysis- Parsing Techniques Third Stage 2018-2019

69 Mustansiriyah University / College of Science/ Computer Dep. By: Dr. Basim Jamil

Definition of LL (1):

A grammar whose parsing table has no multiply-defined entries is

said to be LL (1). The first "L" in LL(1) stands for scanning the input

from left to right, the second "L" for producing a leftmost derivation, and

the "1" for using one input symbol of lookahead at each step to make

parsing action decisions. LL (1) grammars have several distinctive

properties. No ambiguous or left- recursive grammar can be LL (1).

The grammar is LL (1) if satisfy the following Conditions :

For all productions A α1 | α2 | …… | αn

1. FIRST (αi) ∩ FIRST (αj) = for all i ≠ j and

2. If αi

 , Then FIRST (αj) ∩ FOLLOW(A)= for all i ≠ j

 Example1: Is the following grammar LL (1)?

 A iBte

 B SB |

 S [ec] | •i
Solution:

Rule 1:

 B SB |

 FIRST (SB) ∩ FIRST () = {[, •} ∩ {} =

 S [ec] | •i

 FIRST ([ec]) ∩ FIRST (•i) = {[} ∩ {•} =

Rule 2:

 B SB |

 FIRST (SB) ∩ FOLLOW (B) = {[, •} ∩ {t} =

This grammar is LL (1).

Topic-6 Syntax Analysis- Parsing Techniques Third Stage 2018-2019

70 Mustansiriyah University / College of Science/ Computer Dep. By: Dr. Basim Jamil

Example2: Is the following grammar LL (1)?

S XS| aY

X a | b

Y (S)

Sol:

Rule 1:

 S XS | aY

 FIRST (XS) ∩ FIRST (aY) = {a, b} ∩ {a} = {a}

This grammar is not LL (1). And it is not suitable for constructing parser

table.

Example3: Is the following grammar LL (1)?

S Aa | bB

A aBmS | C

B (S)

C

Sol:

Rule 1:

 S Aa | bB

 FIRST (Aa) ∩ FIRST (bB) = {a, } ∩ {b} =

 A aBmS | C

 FIRST (aBmS) ∩ FIRST (C) = {a} ∩ {} =

Rule 2:

 A aBmS | C Since C , Then

 FIRST (aBmS) and FOLLOW (A) must be disjoint.

 FIRST (aBmS) ∩ FOLLOW (A) = {a} ∩ {a} = {a}

This grammar is not LL (1).

Topic-6 Syntax Analysis- Parsing Techniques Third Stage 2018-2019

71 Mustansiriyah University / College of Science/ Computer Dep. By: Dr. Basim Jamil

H.W: Which of the following grammars is LL (1) or not?

1) S aSbS | bSaS | ϵ

2) S aABb ; A c | ϵ ; B d | ϵ

3) S A | a ; A a

4) S aB | ϵ ; B bC | ϵ ; C cS | ϵ

5) S AB ; A a | ϵ ; b | ϵ

6) S aSA | ϵ ; A c | ϵ

7) S A ; A Bb | Cd ; B aB | ϵ ; C cC | ϵ

8) S aA | a | ϵ ; A abS | ϵ

9) S iEtSS' ; S' eS | ϵ ; E b

Error recovery in predictive parsing

• An error may occur in the predictive parsing (LL(1) parsing)

– if the terminal symbol on the top of stack does not match with

the current input symbol.

– if the top of stack is a non-terminal A, the current input symbol is

a, and the parsing table entry M[A,a] is empty.

• What should the parser do in an error case?

– The parser should be able to give an error message (as much as

possible meaningful error message).

– It should be recovered from that error case, and it should be able

to continue the parsing with the rest of the input.

• Panic-mode error recovery is based on the idea of skipping

symbols on the input until a token in a selected set of

synchronizing tokens.

• Synchronizing token: All the terminal-symbols in the follow set of

a non-terminal can be used as a synchronizing token set for that

non-terminal.

Topic-6 Syntax Analysis- Parsing Techniques Third Stage 2018-2019

72 Mustansiriyah University / College of Science/ Computer Dep. By: Dr. Basim Jamil

• “synch” indicating synchronizing tokens obtained from FOLLOW

set of the nonterminal in question.

• How the error- recovery in LL (1) Parsing work?

 If the parser looks up entry M [A, a] and finds that it is blank,

the input symbol a is skipped.

 If the entry is synch, then the nonterminal on top of the stack is

popped.

 If a token on top of the stack does not match the input symbol,

then we pop the token from the stack.

Example:

Consider the following

First (E) = First (T) = First (F) = {(, id}

First (E') = {+, ϵ}

First (T') = {*, ϵ}

Follow (E) = Follow (E') = {), $}

Follow (T) = Follow (T') = {+,), $}

Follow (F) = {+, *,), $}

Parsing Table with Synchronizing Tokens

 id + * () $

E E->TE' E->TE' synch synch

E' E'-

>+TE'

 E'->ϵ E'->ϵ

T T->FT' synch T->FT' synch synch

T' T'->ϵ T'-

>*FT'

 T'->ϵ T'->ϵ

F F->id synch synch F->(E) synch synch

Consider the following input symbols:

Input symbols=) id * + id $

Topic-6 Syntax Analysis- Parsing Techniques Third Stage 2018-2019

73 Mustansiriyah University / College of Science/ Computer Dep. By: Dr. Basim Jamil

Parsing and error recovery moves made by predictive parser

H.W

1) Construct a predictive parsing table for the given grammar or

Check whether the given grammar is LL(1) or not.

S iEtSS' | a

S' eS | ϵ

E b

2) Construct the FIRST and FOLLOW and predictive parse table

for the grammar:

 S AC$; C c | ϵ; A aBCd | BQ | ϵ ; B bB | d ; Q q

 Then, check whether the given input string (abdcdc$) is accepted by

the predictive parser or not?

