ថ្វី

MATLAB

- MATLAB هي اختصار للكلمتين <u>Mat</u>rix <u>Lab</u>oratory اي مختبر المصفوفات .
 - ♦ بدا اول اصدار لبرنامج MATLAB في عام 1984 كاول تسويق للمنتج.

* الموقع الخاص لمجموعة الشركات المنتجة (Mathworks Incorporated)

http://www.mathworks.com

الله برمجياً تعرف لغة MATLAB :-

وهي لغة برمجة عالية الاداء تستخدم لإجراء الحسابات التقنية وتقوم بحساب واخراج البيانات ضمن بيئة سهلة البرمجة، حيث يعبر عن المسألة وحلها بأشكال رياضية مشهورة.

البرنامج PROGRAM :- وهو مجموعة الاوامر المتسلسلة Commands or (Commands or : وهو مجموعة الاوامر المتسلسلة Statements) (Statements ، جملة او امر تكتب باحدى لغات البرمجة تعمل على مدخلات البرنامج (INPUT I/P) لها وظيفة محددة ضمن البرنامج للوصول الى النتائج وهي مخرجات البرنامج (OUTPUT O/P).

وظائف لغة MATLAB :-

- 1- اجراء العمليات الرياضية والهندسية .
 2- تطوير الخوارزميات .
 3- النمذجة والمحاكات .
 4- تحليل واظهار المعطيات .
 5- اجراء الرسوم البيانية والهندسية .
 - 6- تطوير التطبيقات

تشغيل برنامج MATLAB :-

بعد الانتهاء من عملية تثبيت برنامج MATLAB ، الان ابدأ بتشغيله للتعرف على اهم سمات بيئة تطويره ، ويمكنك تشغيل برنامج MATLAB باتباع احدى الطرق التالية :-

- قم بالضغط المزدوج بزر الماوس الايسر double click على ايقونة الاختصار short cut
 الخاصة بالبرنامج والموجودة على سطح مكتبك Desktop وتعد هذه الطريقة من اسهل واسرع الطرق لتشغيل برنامج MATLAB.
 - ولنلخص خطوات اظهار ايقونة برنامج MATLAB على سطح المكتب كما يلي :-

This PC \rightarrow C:\Program Files \rightarrow matlab \rightarrow 2018a \rightarrow bin \rightarrow matlab

وباستخدام احدى الطريقتين السابقة لتشغيل برنامج MATLAB سوف تظهر لك الواجهة الرئيسية للبرنامج و هي واجهة التخاطب الاساسية مع المستخدم والتي تسمى سطح مكتب برنامج MATLAB ، وتتضمن هذه النافذة كافة النوافذ المرتبطة بسطح مكتب البرنامج التي سنتعرف عليها بالتفصيل .

واجهة سطح مكتب برنامج MATLAB

The MATLAB Desktop Layout

لا تختلف سمات واجهة برنامج MATLABكثيرا عن سمات البرامج التي تعمل تحت نظام التشغيل WINDOW مثل برامج المكتب Office 2013 او Visual Studio.Net، فكلاهما يستخدم نفس العناصر كشريط القوائم Menu Bar وشريط الادوات Tool strip اضافة الى النوافذ الرئيسية التي يتعامل معها برنامج MATLAB.

يقسم سطح مكتب برنامج MATLAB الى النوافذ الخمسة (white area) التالية:-

- 1- نافذة الأوامر (center) ، حيث ستكتب جميع الأوامر بعد السهم المزدوج |><"
- 2- تاريخ الاوامر (bottom left) ، عرض محفوظات للأوامر بالترتيب الذي كتبته بها.
 - 3- منطقة العمل (Workspace (top right ، والتي سوف تظهر المتغيرات الحالية الخاصة بك.
- 4- المجلد الحالي (Current Folder (left) ، يحتوي على شريط أدوات مع إظهار الدليل الحالي. سيتم حفظ كل عملك في هذا الدليل.
- 5- منقح البر امج Editor ، وتفتح هذه النافذة البر امج المكتوبة بلغة MATLAB ، ولفتح نافذة جديدة يكتب الامر edit بعد علامة edit >> edit .

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
MATLAB R2018a		– 6 ×
HOME PLOTS APPS	EDITOR PUBLISH VIEW	Search Documentation 🔎 Log In
L Compare ↓ Go To ↓ Lew Open Save Deprint ↓ Q Find ↓ Finf ↓ Deprint ↓ Q Find ↓	Insert A Avance Run and Advance Run and Time	
🖬 / B 🛱 🤉 🗢 🗖 🕐		•
🔶 🔄 🔀 🔚 🕨 C: 🕨 Program Files 🕨 MAT	LAB ▶ R2018a ▶ bin ▶	Q +
Surrent Folder 💿	📝 Editor - Untitled	Θ×
🗋 Name 🔺	Untitled × +	
B win64 Windows Batch File deploytool.bat m mbuild.bat m mcc.bat	new sorpt m-me	
B win64 Windows Bath File G deploytool.bat G mbuild.bat G mcc.bat vetails		
Image: Second Sector File Image: Second Sector File Image: Second Se	Command Window	Workspace O
0 win64 Windows Bach File	Command Window >> edit fx >> fx +> fx +> fx +> fx +> fx + fx +	⊕ Workspace

1. نافذة الاوامر: <u>Command Window</u>

تستخدم هذه النافذة لتحرير المدخلات Inputs والأوامر Commands الى البرنامج حيث يظهر بها المحث على الشكل << متبوعا بمؤشر يومض (يظهر ويختفي) بصورة متكررة بحيث يتم كتابة الأوامر Commands الى يمين المحث ، ويعمل برنامج MATLAB على تحليل تلك البيانات ومدى مطابقة المدخلات للوظيفة المطلوبة منها . وفور الانتهاء من كتابة الأمر والضغط على مفتاح Enter يتم الحصول على النتائج المنفذة ويتم عرضها في هذه النافذة .

HOME	PLOTS	APPS		EDITOR	PUBLISH	VIEW								Sea	arch Documentation		🔎 🛛 Log in
New New Script Live Script	New Open	Compare	Import Data	Save Workspace	New Variable	Favorites	Analyze Code	Simulink	Layout	 Preferences Set Path Parallel 	Add-Ons	? Help	Community	iport AB			_
	FILE			VAF	NABLE		CODE	SIMULINK	SELECT	LAYOUT			RESOURCES				
	6 9 C 💆 (0							🔛 D	efault							
: 🗬 🤛 🖬 🖗	a <mark> </mark>	rogram Files 🕨	MAIL	AB • R2018a	bin				IT 🔟	hree Column							
Name A			•	Untitled	× +				🖭 AI	I but Command V	Vindow Min	imized					⊎ ×
Folder Folder m3ireg mireg win32 win64 Windows Bat @ deploy @ mbuil	gistry y tc h File rtool.bat d.bat at		< · · · · · · · · · · · · · · · · · · ·	1				<	Save La Organic SHOW Co W V Pa	ommand Window yout ze Layouts urrent Folder /orkspace anel Titles polstrip	r Only	>					
Details			^						Comma	nd History		>					
Command Histo	ory			Command W	indow				Quick A	ccess Toolbar		>		Workspa	ce		
JX LAB5555	2/2010 11	. 42 AM	^	>> ec	lit				Current	t Folder Toolbar		>		Name 🔺	Valu	e	м
>9 TAB333	.3/2010 11	.45 AM	1	<i>fx</i> >>									,				
\$ 9/1	3/2018 12	:50 PM															
5× LAB333																	
8 10/	12/2018 1	:14 AM															
- EDIT																	
2x edit																	
% 10/	12/2018 6	:34 PM	- II.														
edit			~											<			>
													script			Ln 1	Col 1

ولجعل النافذة ضمن نافذة سطح برنامج MATLAB وفي حالة تغيير شكل النوافذ يمكن الرجوع للشكل القياسي السابق نختار Default من خلال اختيار نفس القوائم المذكورة اعلاه وبهذا سوف تعود نافذة محرر الاوامر الى الوضع الافتراضي لها كما في الشكل التالي :

📣 MATLAB R2018a		- 0 ×
HOME PLOTS APPS		🗟 🔁 🕐 🔹 Search Documentation 🛛 👂 Log In
New New New Open Compare	Image: Sevent	ommunity equest Support earn MATLAB
FILE	VARIABLE CODE SIMULINK SELECT LAVOUT RESOL	JRCES
Current Folder	MAILAB + R2018a + Bin +	Command Hirton
Callier rolade Name ▲ Eoder B erch B m3registry B erch B win32 B win54 Ø epicytotabat G epicytotabat G mbiild/bat G mexcbat G mexcbat G mexcbat	From Layout Select Default Intree Column Intree Column All but Command Window Minimized Command Window Only Save Layout Store Layout SHOW ✓ Current Folder ✓ Workspace ✓ Panel Titles ✓ Toolstrip Command History ✓	<pre>% 9/11/2018 ^ guide clc 2 guide % 9/11/2018 ^ 7 guide % 9/11/2018 guide load('gama_0_1 load('gama_0 % 9/12/2018</pre>
Details	Quick Access Toolbar	6x LAB333
Workspace 1	Current Folder Toolbar	<pre>% 9/12/2018 >9 LAB333 % 9/12/2018 % LAB333 % 9/12/2018 % LAB333 % 9/13/2018 >9 LAB333 % 9/13/2018</pre>

2. نافذة تاريخ الاوامر السابقة : Command History

يتم تسجيل جميع الأوامر التي تم ادخالها في نافذة الأوامر Command Window في نافذة تسجيل الأوامر بالتاريخ والوقت ، حيث يمكن استرجاع هذه الأوامر فيما بعد لتنفيذها مرة اخرى في نافذة الأوامر . كما في الشكل التالي :

مختبر البرمجة والتحليل العددى

× 5

المرحلة الثانية

📣 Start

ğ

Command History	
⊡-% _२ 01:55 -d-6 -d=6	18/06/11%
⊖-% p 03:25 -c1c -a=5 -c1c -2+3	18/06/11%
04:13 م*	18/06/11%
⊡-% , 04:15 └-prefdir	18/06/11%

3. منطقة العمل :Workspace

ويتم فيها عرض اسماء جميع المتغيرات names وقيم هذه المتغيرات values ونوع المتغيرات class وحجم وابعاد هذه المتغيرات size التي تم استخدامها حاليا من قبل المستخدم الى حين اغلاق برنامج MATLAB ، ويمكن من خلالها اعادة تحرير وتعيين قيم هذه المتغيرات ، ولهذا فهي تعد بمثابة الذاكرة المؤقتة لبرنامج MATLAB، ويمكن التحكم في خصائص المتغيرات المسجلة في نافذة العمل وذلك بتنشيط نافذة العمل وبالنقريمينا (Right Click)على شريط اسماء المتغيرات سوف تظهر التالي.

📣 MATLAB R2018a																	-	٥	×
HOME	PLOTS		APPS		EDITOR	PUBLISH		VIEW					6	E	19¢	• ? •	Search Documentation	Q	Log In
New New Script Live Script	New O	Dipen	Find Files	Import Data	Save Workspace	Den Variab	ble 🕶 space 👻	Favorites	Analyze Code	Simulink	Layout	 Preferences Set Path Parallel ENVIRONMENT 	Add-Ons	? Help	Commun	ity Support ATLAB			Ā
Current Folder	► C: ►	Progra	am Files 🕨	MATLAB	 R2018a 	▶ bin ▶	6		lites Hetiled?										• <u>P</u>
Current Polder	14-1			Worksp	lace		e		Jntitled2 × +										w x
	 Na Va Siz By Cla Mi Ma Ra Ma Ma Ma Ma Ma Ma Ma Store 	ame ilue tes ass in ax edian ode ir d	Sh of	ow	/ pr riab	opert les	ies	1											
								Com	mand Window										۲
								fa:	>> edit >>										

فمثلا عند القيام بعملية ادخال متغيرين وجمعهما في نافذة الاوامر سوف يتم خزن جميع المتغيرات الناتجة في نافذة العمل كما في الشكل التالي :

MATLAB R2018a	<u>\</u>										0. 6		-	٥	×
HOME	PLOTS APP:								0	6 6	48 4	. 9 6 🗖 🖓 🗸	Search Documentation	Q	Log
🦆 🤹	🚽 🛄 🗔 Find Fil	es 📩 🗖	8	New Variable	" <u>*</u>	Analyze Code	1		(0) Preferences	2	?	Community			
ew New	New Open 📃 Compa	re Import Sa	ve	Open Variable ▼	Favorites	C Run and Time	Simulink	Layout	Set Path	Add-Ons	Help	Request Support			
cript Live Script	FILE	Data work	space VAI	PIABLE	•	CODE	SIMULINK	•		•	•				
• • • • •	C: Program Files	MATLAB ► R2	018a 🕨	• bin ▶		0002	OMOLITIK		LITTICO MILITI			11200011020			•
urrent Folder	-		Com	mand Window											
📄 Name 🔺															
Folder		^		>> a=5;											
arch m3iregistry				>> h=6.											
■ registry				гг Б О ,											
util win32				>> c=a+b											
∎ win64															
Windows Batch F	ile	_													
mbuild.bat	.uat														
💿 mcc.bat				c –											
mex.bat															
mw_mpiex	ec.bat														
worker.bat		~		11											
etalis															
lame 🛦	Value	Min													
a	5	5	fa	>>											
h	6	6													
		11													

φ

4. نافذة الدليل الحالى : Current Folder تستخدم في ادارة الملفات التنفيذية (مثل ملفات M- Files) كما في الشكل التالي :

MATLAB R201	8a													- 0	×
HOME	PLOTS	APPS									°a (i	1 5 ¢ 🗗 🕐 •	Search Documentation	Q	Log In
New New Script Live Scrip	New Open	Find Files	Import Data W	Save Vorkspace	Favorites	Analyze Code	Simulink	Layout	 Ø Preferences Get Path IIII Parallel ▼ 	Add-Ons	? Help	Community Request Support Learn MATLAB			Ā
4 🔶 🔁 🎘	+ C: + U:	sers ► PC ► E	ocuments	MATLAB ▶ empirical ▶	igures D			D :.				RESOURCES			- Q
Current Folder				Command Window		· Curr	ent	DII	recto	ry					
Name ▲ new11. Mainew12. Mainew13. Mainew21. Mainew21. Mainew21.	m m m mular Vecor.m			<i>, ∱</i> .>>											
Script															
ARR3.n	n W1.m			Ei Ei	loc M	lanador	non	ŧ I							
Circle1.	m					lanagei	iicii	٩.							
emperi	.m cal2.m														
🛀 emperi	cal3.m cal33.m														
🚹 map_p	essure.m														
Details				×											
Workspace															
Name A	Value		Min												
<				>											
.															

كما يقوم الدليل الحالي بعرض مجلد العمل الحالي MATLAB This PC \rightarrow Documents \rightarrow MATLAB وهو الدليل الافتراضي الذي يتم حفظ ملفات البرنامج التنفيذية بداخله ويمكن تغيير المجلد الافتراضى

بمجلد اخر بالضغط على مفتاح الاداة 쬗 للذهاب الى المجلدات الاخرى .

التحكم بنوافذ البرنامج تظهر بعض النوافذ المرتبطة بسطح مكتب برنامج MATLAB مثل Command History, Command Window and Workspace بأحد الوضعين التاليين : 1. Pocked حيث تكون النافذة غير قابلة للتحريك من مكانها (اي تكون ضمن سطح مكتب البرنامج).

المرحلة الثانية

ÿ

2. **Undocked ح**يث تكون النافذة قابلة للتحريك (اي تكون منفصلة عن سطح مكتب البرنامج ويمكن تعديل ابعادها).

ولجعل اي نافذة من النوافذ المذكورة سابقا عائمة Undocked نضغط على زر Undocked ولجعل اي نافذة من النوافذ المذكورة سابقا عائمة Undocked

Exercises: -

1- Use the following commands in command window :-

clc , clear , doc ?

2- Press any letter (A-Z)+ tab ?

Hint :-

ملاحظة :- يستخدم الامر doc للوصول الى دليل الاوامر ، وبالشكل التالي :
 doc اسم الامر doc <

انواع البيانات في برنامج MATLAB

MATLAB Data Types

انواع البيانات : تنقسم انواع البيانات التي يتعامل معها برنامج MATLAB الى ثلاثة انواع اساسية

1. بيانات عددية Numerical Data وتنقسم الى :

- قیم عددیة مفردة Scalars
- Matrices
- Polynomials او منظومات Arrays او كثيرات الحدود Polynomials .

2. بيانات رمزية Symbolic Data وتنقسم الى :

- قیم رمزیة مفردة Symbolic Scalars
- مصفوفات رمزية Symbolic Matrices
- منظومات رمزية Symbolic Arrays او كثيرات الحدود Polynomials .

3. السلاسل الحرفية (Strings)

1- البيانات العددية Numerical Data

Scalars المتغيرات العددية المفردة Scalars

يتم تعريف قيمة عددية مفردة (وحيدة)Scalar في برنامج MATLAB من خلال كتابة اسم المتغير (الذي سنخزن فيه القيمة العددية) ، ثم علامة (=) ، ثم القيمة العددية المفردة . مثلا نكتب الامر a=3 داخل نافذة محرر الاو امر Command Window ثم نضغط على مفتاح enter . و هكذا بالنسبة لبقية المتغير ات ذات القيم المفردة كما مبين في المثال التالي :

>> a=3a =3>> b=5b =5>> c=a+bc =8

المصفوفات Matrix

يتم كتابة عناصر الصف الأول ويتم الفصل بين كل عنصر من عناصر الصف الأول اما باستخدام علامة الفاصلة (,) Comma او بعمل مسافة Space بين كل عنصر والعنصر الذي يليه ، ويتم الفصل بين الصف الأول والصف الذي يليه باستخدام علامة الفاصلة المنقوطة (;) Semicolon او بالضغط على مفتاح Enter في لوحة المفاتيح بحيث يتم ادخال عناصر كل صف على سطر خاص به كما يلي .-

```
>> A=[1 3;6 4]
A =
   1
       3
   6
       4
>> A=[1,3;6,4]
A =
       3
   1
   6
       4
>> A = [1 \ 3]
6 4]
A =
   1
       3
       4
   6
>> A = [1,3]
6,4]
A =
       3
   1
       4
   6
```

نجهات Vectors

هي مجموعة من الارقام توضع في صورة صف واحد وتسمى في هذه الحالة متجهات صفية Row Vectors او عمود واحد وتسمى في هذه الحالة متجهات عمودية Column Vectors وبالتالي فهي تمثل مصفوفة احادية .

يمكن تعريف المتجه الصفي من خلال كتابة اسم المتغير (الذي سنخزن فيه القيمة العددية) ثم علامة (=) ثم نفتح قوس مربع ايسر (]) ثم ندخل قيم عناصر المتجه ، علما بانه يتم الفصل بين كل عنصر والعنصر الذي يليه في المتجه اما بمسافة Space او فاصلة (,)Comma من لوحة المفاتيح ، وبعد الانتهاء من ادخال عناصر المتجه ، نغلق المتجه بقوس مربع ايمن ([) كما يلي : A =

1 2 3 4 5

Ş

المرحلة الثانية

>> A=[1,2,3,4,5] A =1 2 3 4 5 اما المتجهات العمودية فانه كما في الطريقة اعلاه يتم تعريف المتجه العمودي باستثناء طريقة الفصل بين عناصر المتجه فيتم الفصل بين كل عنصرين باستخدام علامة الفاصلة المنقوطة Semicolon (:) او بالضغط على مفتّاح Enter في لوحة المفاتيح كما يلي : >> A=[1;2;3]A =1 2 3 >> A = [1]2 3] A =1 2 3

2- البيانات الرمزية Symbolic Data

Symbolic Scalars القيم الرمزية المفردة

السلاسل الحرفية هي مجموعة من الحروف النصية والارقام والرموز التي يتعامل معها برنامج MATLAB على انها حروف نصية . في حالة اذا كانت القيمة المفردة سلسلة حرفية string فانه يمكن تعريفها من خلال كتابة اسم المتغير (الذي سنخزن فيه السلسلة الحرفية) ثم علامة (=) ثم نكتب الدالة sym ونضع القيمة المفردة بين اقواس صغيرة بداخلها علامتي اقتباس مفردة single بكما هو موضح في الامثلة التالية :

```
>> D=sym('K')
D =
K
>> E=sym('X')+sym('Y')
E =
X+Y
>>sym H
>> H=sym('welcome in MATLAB programming')
H =
welcome in MATLAB programming
```

2 - البيانات الرمزية Symbolic Data

المصفوفات الرمزية Symbolic Matrices

يعرف برنامج MATLAB المصفوفات الرمزية Symbolic Matrices من خلال كتابة الامر syms متبوعا بالرموز المستخدمة في المصفوفة مع الفصل بين كل رمز والرمز الذي يليه بمسافة space ، ثم نكتب اسم المتغير متبوعا بعلامة (=) ، ثم نفتح قوس مربع ايسر (]) ثم ندخل عناصر المصفوفة الرمزية ويتم الفصل بين كل عنصر والعنصر الذي يليه في المصفوفة اما باستخدام Space او فاصلة Comma (,) ، وبعد الانتهاء من ادخال عناصر الصف الاول ، قم بإدخال عناصر الصف الثاني بحيث يتم الفصل بين كل صف والصف الذي يليه بعلامة الفاصلة المنقوطة semicolon ، وبعد الانتهاء من ادخال عناصر المصفوفة تم بغلق عناصر المصفوفة بقوس مربع ايمن (])

>> % Some Examples of Symbolic Matrices Defining >> syms x z y >> M1=[3*x 5*z;7*y 9*x] M1 =[3*x, 5*z][7*y, 9*x] $>> M2 = [x \quad 3^*y \quad -4^*z; z \quad 5^*x \quad -2^*y]$ M2 =[x, 3*y, -4*z][z, 5*x, -2*y] $>> M3=[3/(x+y) \quad 2*y \quad z/x ; x-y \quad (y+z)/3 \quad 3*y-z]$ M3 =2*y, $\int \frac{3}{(x + y)},$ z/x] [x - y, y/3 + z/3, 3*y - z]

♦ ملاحظة :- يستخدم الامر class لمعرفة نوع بيانات المتغير المستخدم في برنامج MATLAB .

>> class(M1)
ans=
char
>>A=[1;2;3];
>>class(A)
ans =
double

ł

انواع المتغيرات في برنامج MATLAB

1. متغيرات مسبقة التعريف في البرنامج Built in (Predefined) Variables

هي مجموعة من الثوابت constants والقيم الخاصة special values المحجوزة في البرنامج حيث تأتي معرفة تلقائيا في بنية البرنامج الداخلية ويمكن استخدامها مباشرة دون ان يتم تعريفها.

هو المتغير الافتر اضي لأي ناتج عملية حسابية في برنامج MATLAB عند عدم اعطاء اسم متغير للقيمة الناتجة، مثلا	
>> 5+3	
ans =	
8	ans
يقوم البرنامج تلقائيا بخزن ناتج عملية الجمع في المتغير ans لأننا لم نعرف اسم متغير لناتح هذه العملية الحسابية	
هي النسبة الثابتة π=22/7 وتعرف في البرنامج على الشكل التالي :	
>> pi	D
ans =	F 1
3.1416	
يعبر عن قيم اللانهاية infinity الناتجة من القسمة على صفر	
>> 1/0	Inf
ans =	1111
Inf	
تعبر عن القيمة التي ليست رقم ، و هي اختصار جملة Not a Number وقد تنتج عندما	
تكون قيمة الناتج يساوي (0/0) او لتعبر عن ان المعلومات مفقودة ، او غير متوفرة ،	
والذي قد يكون سببه فشل البر نامج في الحساب .	
>> 0/0	NaN
Warning: Divided by zero.	
ans =	
NaN	
يتم استخدام احد هذين الرمزين عند تعريف الاعداد المركبة (المعقدة) فهما يمثلان الجزء	
التخيلي للاعداد المركبة حيث يتم استخدامهم على الشكل التالي :	
>> 3+4*i	
ans =	
3.0000 + 4.0000i	i i
>> 3+4*j	ı, j
ans =	
3.0000 + 4.0000i	
مع ملاحظة ان كلا الرمزين يمثلان العدد المركب $1-$	

الحم	ate	قسد

هى قيمة متناهية في الصغر يطلق عليها ايبسلون Epsilon تستخدم في بعض التطبيقات	
الرياضية الخاصة وتساوي (52-)^2 ، وتعرف بالشكل ألتالي :- ``	العدد
>> eps	الطبيعي
ans=	(ϵ)
2.2204e -016	

2. متغيرات تعرف بواسطة المستخدم User- defined Variables

و هي المتغيرات التي يقوم المستخدم بتعريفها بإعطائها قيمة عددية او نصية ،وسيتعرف البرنامج على نوع هذه المتغيرات دون تحديده كما ذكرنا سابقا ، ويتم تسمية المتغير في برنامج MATLAB ضمن شروط معينة .

شروط تسمية المتغيرات داخل برنامج Matlab:-

1. يجب ان يبدأ اسم المتغير بحرف وليس برقم او برمز فمثلا لا يمكن كتابة اسم المتغير على الشكل 5 = 1a وبدلا من ذلك يمكننا كتابة اسم المتغير على الشكل 5 = a1 .

2. لا يمكن ان يحتوي اسم المتغير على مسافة (فراغ)، فمثلا لا يمكن كتابة اسم المتغير على الشكل a val وبدلا من ذلك يمكن استخدام علامة الشرطة السفلية (_) Underscore على الشكل a_val.

3. يجب ان لايحتوي اسم المتغير على بعض الرموز الخاصة مثل ,-, +, *, %, ?, ^, @, #
, <, >, (), [], !, /, /.

4. يجب ان لا يأخذ اسم المتغير اسم امر او دالة محجوزة في برنامج MATLAB ،فمثلا لا يمكن تسمية المتغير if لان هذا الاسم من الكلمات المحجوزة words او الكلمات المفتاحية keywords داخل اللغة ،ولكن يمكن استخدام كلمات شبيهة لها من خلال دمج ارقام معها مثل if1 او جعل اول حرف منها كبيرا capital مثل IF .وهذه قائمة ببعض الكلمات المحجوزة داخل البرنامج

if elseif else end for while break continue return switch case otherwise try catch function global persistent

يتم التعرف على قائمة الكلمات المحجوزة في برنامج MATLAB بكتابة الأمر iskeyword في نافذة الاوامر command window كما يلي :

>> iskeyword ans ='break' 'case' 'catch' 'classdef' 'continue' 'else' 'elseif' 'end' 'for' 'function' 'global' 'if' 'otherwise' 'parfor'

'persistent' 'return' 'spmd' 'switch' 'try' 'while' 3. يجب ان لا يزيد عدد الاحرف التي يتكون منها اسم المتغير عن 63 حرف وسيهمل اي رمز يزيد عن 63 حرف . 3. برنامج MATLAB حساس لحالة الاحرف small letters مثلا عند القيام بتسمية متغير بالاسم a فان برنامج MATLAB يتعامل معه على ان له قيمة مختلف عن المتغير A.

MATLAB كيفية اجراء العمليات الرياضية فى برنامج MATLAB :-

الجدول التالي يبين كيفية اجراء العمليات الحسابية (الرفع الى الاس, الضرب، القسمة الباقي من القسمة، الباقي من القسمة، الجمع، الطرح).

الامثلة	العمليات الرياضية	الرمز في برنامج MATLAB
2^8	الرفع الى القوة او الاس	۸
6*3.14	الضرب	*
19.54/7	القسمة	/
7\19.54=19.54/7	القسمة العكسية	/
16%5	باقي القسمة	rem, mod
3+22	الجمع	+
54.4-16.5	الطرح	-

MATLAB اسبقيات (أولوية) العمليات الرياضية فى برنامج MATLAB :-

1- الاقواس .

2- الرفع الى القوة .

- 3- الضرب والقسمة .
 - 4- الجمع والطرح.

ملاحظة :- تحسب العمليات الرياضية من اليسار الى اليمين التي تحتوي على نفس الاسبقية . Ex:- >>(3 + 22) * (15.7 - 8)

ans= 192.5

14

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
Ex:- >>3 + 22 * 15.7 - 8 (1) (1) (2) (3)		
ans = 340.4		
من الاوامر (المدخلات) نالي : a = 9 >> a=4+5; >> او جزء معين من الفقرات قتة بدلا من حذفها او اعادة وية % ثم يتم كتابة التعليق كما يلي :	;) semicolon في نهاية اي الناتج . لاحظ الفرق في المثال الذ ي تنفيذ بعض الأوامر بصورة مؤ MAT تستخدم علامة النسبة المؤ ة قبل الأمر المراد تعطيل تنفيذه . ocess	 ملاحظات :- عند وضع علامة الفاصلة المنقوطة (السابقة فسوف يتم تنفيذ الامر دون اظهار ا البرمجية للبرنامج ، او قد يحتاج الى تعطيل البرمجية المرنامج ، او قد يحتاج الى تعطيل حتابتها مرة اخرى ، وفي برنامج العلام بعد العلامة مباشرة او تستخدم نفس العلام
>> a=4+5		
a = 9		
>> %a-/1+5		عند كتابة نفس الأمر السابق بالسكل
ر++−2 70 </td <td>ان تم ادخاله في البر نامج وذلك م</td> <td>فلا يتم تنفيذ الامر لأنه متبوع بالرمز %. 3. يمكن استدعاء متغير ومعرفة قيمته بعد والضغط على مفتاح enter كما يلي :</td>	ان تم ادخاله في البر نامج وذلك م	فلا يتم تنفيذ الامر لأنه متبوع بالرمز %. 3. يمكن استدعاء متغير ومعرفة قيمته بعد والضغط على مفتاح enter كما يلي :
>> a		-
a = _		
5		

Ş

المرحلة الثانية

Ş

Ecommand window workspace is a base of the second window workspace is a base of the second window is a base of the

Operation	Function
مسح جميع محتويات نافذة command window فقط دون مسحها من نافذة	Clc
workspace	
مسح جميع محتويات نافذة workspace المتضمنة جميع المتغيرات التي تم	Clear
استخدامها في البرنامج	
مسح المتغير ات a b c فقط من نافذة workspace	clear a b c
مسح جميع المتغير ات الموجودة في نافذة workspace والتي تبدأ بحرف a	clear a*
عرض محتويات نافذة workspace والمتضمنة جميع المتغير ات التي تم استخدامها	Who
في البرنامج	
عرض محتويات نافذة workspace بالتفصيل (الاسم ،الابعاد ، الحجم ،النوع)	Whos
حفظ جميع محتويات نافذة workspace في الملف الافتر اضي matlab.mat	Save

العددى	التحليل	محةو	البر	مختبر
U			_	

ł

الدوال الرياضية :

Exponential Functions:	الأسية	1. الدوال
-------------------------------	--------	-----------

Example	Function in MATLAB form	Operation
>> exp(0)		
ans =	exp(x)	الدالة الاسية
1		
$>> \log(1)$		
ans =	$\log(x)$	دالة اللوغارتيم الطبيعي ln
0		
>> log10(2)		
ans =	$\log 10(x)$	دالة اللوغارتيم للاساس10
0.3010		
>> log2(2)		
ans =	log2(x)	دالة اللوغارتيم للاساس2
1		
>> pow2(3)		
ans =	pow2(x)	دالة الرفع الي قوة للاساس2
8		
>> sqrt(4)		
ans =	sqrt(x)	دالة الجذر التربيعي
2		
>>power(3,3)		
ans =	power(X,Y)	دالة الرفع للاساس x
27		

2.الدوال المثلثية :Trigonometric Functions

مثال	الامر في برنامج MATLAB	الدالة المثلثية
$>> \sin(5)$		
ans =	sin(angle)	الدالة sin
-0.9589		
$>>\cos(5)$		
ans =	cos(angle)	الدالة cos
0.2837		
>> tan(5)		
ans =	tan(angle)	الدالة tan
-3.3805		
>> sec(5)		
ans =	sec(angle)	الدالة 1/cos
3.5253		
$>> \csc(5)$	csc(angle)	1/sin ällull
ans =	(aligic)	1/ SIII - C, E,

مختبر البرمجة والتحليل العددى

ä .:: 11	1 äta	
سىب		المر

الحه	عله د	قسد

-1.0428		
$>> \cot(5)$		
ans =	cot(angle)	الدالة 1/tan
-0.2958		
>> asin(5)		
ans =	asin(angle)	معكوس الدالة sin
1.5708 - 2.2924i		
>> acos(5)		
ans =	acos(angle)	معكوس الدالة cos
0 + 2.2924i		
>> atan(5)		
ans =	atan(angle)	معكوس الدالة tan
1.3734		
>> asec(5)		
ans =	asec(angle)	معكوس الدالة sec
1.3694		
>> acsc(5)		
ans =	acsc(angle)	معكوس الدالة csc
0.2014		
>> acot(5)		
ans =	acot(angle)	معكوس الدالة cot
0.1974		

ملاحظة :- جميع الدوال المثلثية اعلاه مقاسة بالتقدير الدائري Radian degree ، ولغرض تحويل التقدير الى الدرجات degrees فانه يمكن ذلك بثلاث طرق : الاولى :- بإضافة الحرف d قبل اي دالة ،مثلا نكتب دالة sin بالشكل sind. الثانية: - بضرب الزاوية قبل تنفيذ الدالة بالمقدار (pi/180) كما في المثال التالي : >> sind(30) ans =0.5000 OR >> sin(30(pi/180)) ans =0.5000 ولتحويل الزاوية من تقدير الدرجات الى التقدير الدائري فنضرب الزاوية قبل تنفيذ الدالة بالمقدار (180/pi) كما في المثال التالي : >> sin(30)ans =-0.9880 OR >> sind(30*(180/pi)) ans =

e			
	المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
	-0.9880		
	د الامرين التاليين :-	، برنامج MATLAB باستخدام اح	ا لطريقة الثالثة : - يتم تحويل الزاوية في
	ra) الی الدرجات	حويل الزاوية نصف قطرية (dians	: rad2deg -1 يستخدم هذا الامر لة (degrees)
	Example:-		
	There are 180 [°]	in π radians :	
	>>anglout=rad2	2deg(pi)	
	anglout=		
	180		
	deg) الى القياس نصف	تحويل الزاوية من الدرجات (grees	 2- deg2rad :- يستخدم هذا الامر لذ القطري (radians) .
	Example:-		
	Show that there	are 2 radians in full circle :	
	>>2*pi – deg2r	ad(360)	
	ans=		
	0		

	Routin	g & Remainder functio	دوال التدوير والبقيه : ons
	1-fix :- Round tow	ard zero	
		الصفر (اهمال الجزء الكسري)	دالة التقريب الى اقرب رقم صحيح الى

```
Ex:-
>>a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4 + 3.6i]
a =
 Columns 1 through 4
 -1.9000
             -0.2000
                         3.4000
                                    5.6000
 Columns 5 through 6
            2.4000 + 3.6000i
 7.0000
>>fix(a)
ans =
 Columns 1 through 4
                                 5.0000
 -1.0000
                      3.0000
             0
 Columns 5 through 6
          2.0000 + 3.0000i
 7.0
```

2-round :- Round to nearest integer

دالة التقريب الى اقرب عدد صحيح.

Ex:-

>>a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i] a =

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
Columns 1 throug	sh 4 .2000 3.4000	5.6000
Columns 5 throug 7.0000 2.4	;h 6 4000 + 3.6000i	
>>round(a) ans =		
Columns 1 throug	yh 4 0 3.0000	6.0000
Columns 5 throug 7.0000 2.	ch 6 0000 + 4.0000i	
3- floor :- Round to	oward negative infini	ity
	ة التقريب نحو اليسار .	دالة التقريب باتجاه اللانهاية السالبة (∞-), دالة
Ex:-		1
>>a = [-1.9, -0.2, 3 a =	.4, 5.6, 7.0, 2.4+3.61]	
Columns 1 throug -1.9000 -0. Columns 5 throug	gh 4 .2000 3.4000 gh 6	5.6000
7.0000 2. >>floor(a)	4000 + 3.6000i	
ans =	1. 4	
-2.0000 -1.	.0000 3.0000	5.0000
Columns 5 throug7.00002.1	;h 6 0000 + 3.0000i	
4- ceil :- Round toy	ward positive infinity	
مين .	∞+) , دالة التقريب نحو الي	دالة التقريب باتجاه اللانهاية الموجبة (
Ex:-	31 56 7 21+3	6i]
a = [-1.7, -0.2]	, 5.4, 5.0, 7, 2.4 + 5	.01]
Columns 1 throug -1.9000 -0.20 Columns 5 throug 7 0000 2 400	$\frac{1}{2}$ $\frac{1}$.6000
>>ceil(a)	····	
Columns 1 throug	gh 4	
-1.0000 0	4.0000 6.00	000

الثانية	المرحلة
/	

ÿ

قسم علوم الجو

Columns 5 through 6 7.0000 3.0000 + 4.0000i

5- **rem** :- Remainder after division

دالة الباقي من القسمة .

```
R = rem(X,Y) if Y \sim = 0, returns X - (n.*Y) where n = fix(X./Y)
Ex:-
>> rem(8,5)
ans =
  3
>> rem(8,8)
ans =
  0
>> rem(8,10)
ans =
  8
>> rem(-1,20)
ans =
  -1
6- mod :- Modulus after division
                                                          دالة الباقي من القسمة .
M = mod(X,Y) if Y \simeq 0, returns X - (n.*Y) where n = floor(X./Y)
Ex:-
>>mod(13,5)
ans =
  3
>>mod([1:5],3)
ans =
  1
      2
          0
               1
                  2
>>mod(magic(3),3)
ans =
  2
      1
          0
      2
          1
  0
  1
      0
          2
Note:- magic(n) returns an n-by-n matrix constructed from the integers 1
through n^2 with equal row and column sums .
>>magic(3)
ans =
```

Ÿ

- 8 1 6 3 5 7
- 4 9 2

Notes:-

- rem(X,Y) for X~=Y and Y~=0 has the same sign as X.
- mod(X,Y) for X~=Y and Y~=0 has the same sign as Y.
- rem(X,Y) and mod(X,Y) are equal if X and Y have the same sign, but differ by Y if X and Y have different signs.

```
Ex:-
```

```
>>rem(-5,2)
ans=
-1
>>mod(-5,2)
ans=
1
```

```
7-sign :- Signum function
```

دالة الاشارة :-

اذا كان الرقم المرسل اكبر من الصفر فان ناتج الدالة 1 اذا كان الرقم المرسل اصغر من الصفر فان ناتج لدالة 1-اذا كان الرقم المرسل مساوي الى الصفر فان ناتج الدالة 0

```
Ex:-
>> sign(0)
ans =
0
>> sign(-9)
ans =
-1
>> sign(0.1)
ans =
1
```

قسم علوم الجو

ÿ

الاعداد المركبة (العقدية) Complex Numbers:

تأخذ الاعداد المركبة صيغة واحدة و هي تواجد جزء للأعداد الحقيقية Real Numbers وجزء للأعداد التخيلية Imaginary Numbers وتكون على الصورة العامة التالية: Z=X+Y*i 1. ايجاد الجزء الحقيقي من العدد المركب (X). 2. ايجاد الجزء الحقيقي من العدد المركب (Y). 3. ايجاد در اوية الطور ويتم الحصول عليها رياضيا من العلاقة التالية : 4. ايجاد القيمة المطلقة على العلاقة التالية العالية التالية : 5. ايجاد القيمة المطلقة التالية العالية التالية على الاعداد المركبة التالية التالية : 5. ايجاد الجزء الحقيقي من العدد المركب (Y). 5. ايجاد الجزء الطور ويتم الحصول عليها رياضيا من العلاقة التالية : 7. ايجاد القيمة المطلقة المولية التالية المولية التالية التالية : 7. ايجاد القيمة المطلقة التالية التالية التالية التالية : 7. ايجاد القيمة المطلقة التالية التالية المولية التالية التالية التالية المولية التالية المولية التالية المولية المولية المولية المولية التالية التالية المولية المولية التالية المولية التالية المولية المولية التالية المولية التالية المولية المولية التولية التولية التالية المولية التالية المولية المولية المولية التولية التالية المولية التالية المولية التالية المولية المولية المولية التالية التولية التولية التالية المولية المولية المولية المولية المولية المولية المولية التولية المولية المولية التولية المولية المولية التولية التولية المولية التولية المولية التولية التولية المولية المولية المولية المولية المولية التولية التولية التولية التولية المولية التولية التولية التولية التولية المولية التولية المولية المولية التولية التولية التولية التولية المولية التولية التولية التولية التولية المولية المولية التولية المولية المولية المولية المولية التولية المولية المولية التولية التولية التولية التولية المولية التولية المولية التولية المولية المولية التولية المولية التولية المولية الم

Absolute Value =
$$\sqrt{x^2 + y^2}$$

ويمكن تلخيص الدوال التي تقوم بهذه العمليات الرياضية كما يلي بعد ادخال قيمة العدد المركب z : >> z=2+4i

z =

2.0000 + 4.0000i

Example	Operation	Function in MATLAB form
>> real(z)	تستخدم لإيجاد الجزء الحقيقي من	
ans =	العدد المركب z	real(z)
2		
>> imag(z)	تستخدم لإيجاد الجزء الخيالي من	
ans =	العدد المركب z	imag(z)
4		
>> abs(z)	تستخدم لإيجاد القيمة المطلقة للعدد	
ans =	المركب z	abs(z)
4.4721		
>> angle(Z)	تستخدم لإيجاد زاوية الطور phase	
ans =	angle للعدد المركب z مقدرة	
1.1071	بالرادیان radian	angla(z)
>> angle(Z)		angle(Z)
ans =		
1.1071		

ملاحظة : لحساب قيمة زاوية الطور بالدرجات يجب تحويل التقدير من radian الى degree بضرب قيمة الزاوية بالمقدار 180/pi .

مثال / اكتب برنامج بلغة MATLAB لإيجاد ما يلي :-1. الجزء الحقيقي .

 2. الجزء الخيالي .

 3. القيمة المطلقة العدد المركب .

 4. زاوية الطور .

 4. زاوية المركب التالي :

Ex:-Write MATLAB program to calculate the following:-1-Real part 2-Imaging part 3-Absolute Value 4-Angle phase for complex number $C = 5 \sqrt{-9} + 13$ $\frac{Sol.}{C = 1}$ C = 5 * sqrt(-9) + 13C = 13.000 + 15.000 i

```
>> real ( C )
ans =
13
>> imag (C)
ans =
15
>> angle ( C )
ans =
0.8567
>> angle ( C ) * 180 / pi
ans =
49.0856
OR
>> rad2deg ( angle ( C ) )
ans =
49.0856
>> abs (C)
ans =
19.8494
```

المرحلة الثانية

اوامر الادخال والاخراج في برنامج MATLAB Input I/P & Output O/P Commands

اوامر الادخال input :

يطبع الامر input رسالة نصية للمستخدم على الشاشة كطلب إدخال بيانات عددية او حرفية وتعيينها الى متغير يعرفه المستخدم. ويستخدم الامر input على احدى الصورتين التاليتين : اولا : ادخال بيانات عددية

X=input('displayed strings')

Displayed strings: هي مجموعة من الكلمات تمثل رسالة نصية يتم عرضها للمستخدم لتعبر عن القيمة التي سيقوم المستخدم بإدخالها ، X هو المتغير الذي يتم ادخال قيمته.

>> x=input('x=');

x =5

ملاحظة: تستخدم عبارة الادخال هذه عوضا عن الطريقة السابقة للإدخال المباشر للمتغيرات في برنامج MATLAB للتحكم بالقيم المعطاة عند كل تنفيذ للبرنامج، طريقة الادخال المباشر سوف تعطى قيمة ثابتة لا يمكن تغيير ها ولكن باستخدام طريقة الادخال هذه يمكن اعطاء قيم اخرى.

مثال: لإدخال درجة الحرارة وعرض رسالة نصية لتدل على ان المتغير المدخل هو درجة الحرارة >> T=input('Enter the temperature')

Enter the temperature

وبعد ظهور الجملة أعلاه قم بإدخال قيمة T الذي يمثل درجة الحرارة ولتكن 12

12

T =

ثانيا : ادخال بيانات رمزية

X=input("displayed strings','s') تستخدم هذه الصورة لاستقبال سلسلة حرفية يقوم المستخدم بإدخالها، حيث يستخدم الحرف 's' الذي ير مز للكلمة (string) ويفيد تحديد نوع البيانات في تحديد نطاق التخزين المستغل من الذاكرة المؤقتة للبر نامج مما يساعد على عدم اهدار الذاكرة المؤقتة للبر نامج.

مثال: نريد عرض رسالة نصية لتدل على ان درجة الحرارة مقاسة بالمقياس السيليزي >> T=input('enter the measure of temperature ','s') enter the measure of temperature

وبعد ظهور الجملة اعلاه قم بإدخال المقياس وليكن المقياس السيليزي Celsius T =

Celsius

العددى	والتحليل	البرمجة و	مختبر
<u> </u>	• • •		

اوامر الاخراج : disp/display/fprintf تستخدم اوامر الاخراج لعرض قيم وأسماء المتغيرات او التعبيرات النصية في نافذة محرر الاوامر . Command window I الامر disp : يستخدم الامر disp في عرض قيمة المتغير فقط سواء كانت عددية او نصية ،ويستخدم هذا الامر على احدى الصورتين : disp(x)disp('displayed strings') حيث يستخدم الامر الاول لعرض قيمة المتغير X بينما يستخدم الامر الثاني لعرض تعبير نصى معين يتم ادخاله بين علامتي اقتباس single quotation marks . مثال : لعرض قبمة عددية >> x=100; >> disp(x)100 او يكتب اسم المتغير مباشرة OR >> x $\mathbf{x} =$ 100 لعرض تعبير نصبي OR >> disp(' the value of x is ') the value of x is ويمكن وضع القيمة العددية والتعبير النصبي معا بالشكل التالي : disp(['messege',num2str(variable)]) حيث تستخدم الدالة num2str والتي تعنى numerical to string اي تحويل القيمة العددية الي سلاسل حرفية ، وتستخدم في اعطاء القيمة العددية بعد الرسالة (التعبير النصبي) . >> disp(['the value of x is ',num2str(x)]) the value of x is 100 2. الامر display : يستخدم الامر display في عرض اسم المتغير ثم قيمته سواء كانت رقمية او نصية ، ويستخدم على الصورة التالية : display(x)حيث يستخدم هذا الامر لعرض اسم المتغير x ثم قيمته على نافذة command window ، ولفهم الفرق الواضح بين الصورتين السابقتين لأوامر الأخراج لاحظ المثالين التاليين: >> x=5;>> disp(x)% display only variable value 5 >> display(x) % display variable name and value $\mathbf{x} =$ 5

قسم علوم الجو

مثال/مصفوفة الوحدة (التي جميع عناصر ها مكونة من رقم 1) لاحظ الفرق في طريقة عرض النتائج: >> disp(ones(3)) 1 1 1 1 1 1 1 1 1 >> display(ones(3)) ans =1 1 1 1 1 1 1 1 1

نلاحظ انه عندما استخدم الامر (disp(ones(3)) قام البرنامج بعرض قيم عناصر المصفوفة الناتجة فقط ، اما عندما استخدم الامر (display(ones(3)) قام البرنامج بعرض اسم المتغير الافتراضي ans (لان المستخدم لم يقوم بتعيين متغير معين لتخزين المصفوفة الناتجة عن ones(3) ثم يقوم البرنامج بعرض قيم عناصر المصفوفة الناتجة .

.3 الامر (File Print Format).

يستخدم هذا الأمر لتنسيق طباعة النتائج على نافذة command window ، الحرف f في بداية الكلمة fprintf يخص التنسيق البيانات لكي تسهل قراءتها .

fprinf('text') في حالة طباعة تعبير نصبي فان الامر يكتب بالصيغة التالية ('text') مثال :

>> fprintf('the amount of precipitation is')

the amount of precipitation is

اما في حالة طباعة تعبير نصي وقيمة لمتغير فان الامر يكتب بالصيغة التالية :-

fprintf('format string', list of variable)

ونعني بكلمة format هنا تنسيق البيانات ، أماً variable فهي القيمة العددية للمتغير . لتوضيح التنسيق format تستخدم الصيغة التالية :

fprinf('text % -3.1g',variable)

text : يمثل النص المراد طباعته.

٢ : تمثل بداية تغيير تنسبق الرقم ، ويجب ملاحظة ان هذا الرمز هنا ليس للتعليقات كما تم توضيحه سابقا وانما يجب ان يكتب لكل متغير يراد طباعته في هذه الجملة .

- الاشارة : تمكننا من التحكم بتنسيق المخرجات ، كما موضح في الجدول التالي :

الامر وناتج التنفيذ	صيغة MATLAB	المعنى	الرمز
>>fprintf('%-5.2f',9) 9.00 >>	%-5.2f	محاذاة نحو اليسار اي 4g for 1 results in 1xxx- اي ان العدد سيكون الى اليسار وعلى يمين العدد سيكون الفراغ الذي يرمز هنا بالرمز x	'_'
>> fprintf('%+5.2f',9) +9.00>>	%+5.2f	يطبع اشارة العدد سواء كانت + او _	'+'
>> fprintf('% 5.2f',9)	% 5.2f	يترك فراغ قبل طباعة العدد	1 1

قسم علوم الجو

المرحلة الثانية

Ţ

9.00>>			
>> fprintf('%05.2f',9) 09.00>>	%05.2f	يطبع اصفار بدلا من الفراغات	'0'

3 : يمثل عرض الحقل ويمثل اقل عدد يمكن طباعته

.1 : يمثل عدد المراتب بعد الفارزة.

ئال /	الوصف	الصيغة
>> fprintf('%d',a) 5.500000e+000 OR 5.000000>> fprintf('%d',5) 5	يطبع العدد كاملا فيطبعه بدلالة الدالة الاسية اذا كان عشريا ويطبعه كعدد صحيح اذا كان صحيحا	%d Or %i
>> fprintf('%e',a) 5.500000e+000	صيغة اسية باستخدام حالة الاحرف الصغيرة e	%e
>> fprintf('%E',a) 5.500000E+000	صيغة اسية باستخدام حالة الاحرف الكبيرة E	%E
>> fprintf('%f',a) 5.500000	صيغة العدد الحقيقي (العشري)	%f
>> fprintf('%g',a) 5.5 >> fprintf('%G',a) 5.5	صيغة بين f و e اكثر اختصارا ، تظهر العدد كما هو فيطبعه كعدد صحيح او عدد عشري من دون استخدام الدالة الاسية	%g OR %G
>>n='MATLAB'; >> fprintf('%s \n',n) MATLAB	يطبع سلسلة حرفية	% s

مثال :

>> fprintf('the amount of precipitation is %g',0.6)

the amount of precipitation is 0.6

تم طباعة التعبير النصي the amount of precipitation is ثم وضعنا العلامة % التي يجب ان تستخدم لتحديد صيغة العدد الذي سوف يستخدم لاحقا والمتمثلة بالرمز g ، يجب ان يكون كل ذلك بين علامتي اقتباس ' ، ثم وضعنا قيمة المتغير والتي تساوي 0.6 ويمكن ادخال قيمة المتغير مسبقا تحت اسم ما ووضعه بدلا من قيمة الرقم .

المرحلة الثانية

تستخدام الصيغ التالية لتنسيق المخرجات مع الامر fprintf كما في الجدول التالي :-

ناتج التنفيذ	الامر بصيغة MATLAB	الوظيفة	الصيغة
hello	fprintf('hello') fprintf('\n') fprintf('hye')	يذهب لبداية	\n
bye	or >> fprintf('hello \n bye')	سطر جدید	, , , , , , , , , , , , , , , , , , ,
hello bye	fprintf('hello') fprintf('\t') fprintf('bye') or >> fprintf('hello \t bye')	يترك مسافة افقية مساوية لـ Tab	\t
hello\bye	fprintf('hello') fprintf('\\') fprintf('bye') or >> fprintf('hello \\ bye')	يطبع الشكل \	//
Hello%bye	<pre>fprintf('hello') fprintf('\%') fprintf('bye') >> fprintf('hello \% bye')</pre>	يطبع الشكل %	\%

بعض الامثلة المختلفة فى طريقة اظهار النتائج :-

Program	Results
clc	the format for d
a=[12 55.5 43];	12 5.550000e+001 43
fprintf('the format for d')	
fprintf('\n')	
fprintf('%d \t',a)	
clc	the format for 2.2d
a=[12 55.5 43];	12 5.55e+001 43
fprintf('the format for 2.2d')	
fprintf('\n')	
fprintf('%2.2d \t',a)	
clc	the format for e
a=[12 55.5 43];	1.200000e+001 5.550000e+001
fprintf('the format for e')	4.300000e+001
fprintf('\n')	
fprintf('%e \t',a)	
clc	the format for 2.2e
a=[12 55.5 43];	1.20e+001 5.55e+001 4.30e+001

ł

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
fprintf('the format for 2	2.2e')	
fprintf('\n')		
fprintf('%2.2e \t',a)		
clc	the format	t for f
a=[12 55.5 43];	12.000000	0 55.500000 43.000000
fprintf('the format for f	")	
fprintf('\n')		
fprintf('%f \t',a)		
clc	the format	t for 2.2f
a=[12 55.5 43];	12.00 55.	50 43.00
fprintf('the format for 2	2.2f')	
fprintf('\n')		
fprintf('%2.2f \t',a)		
clc	the format	t for g
a=[12 55.5 43];	12 55.5	5 43
fprintf('the format for g	g')	
fprintf('\n')		
fprintf('%g \t',a)		
clc	the format	t for 2.2g
a=[12 55.5 43];	12 56	43
fprintf('the format for 2	2.2g')	يقرب النتائج لأقرب عدد صحيح
fprintf('\n')		
fprintf('%2.2g \t',a)		

Ş

	-:	التالية	البرامج	تنفيذ	جد ناتج	*	•
--	----	---------	---------	-------	---------	---	---

command	Results
fprintf('%d %f %g	5.50000e+000 5.500000 5.5
%2.2e\t',5.5,5.5,5.5,5.5)	5.500000e+000
x=97.5;	it 'works'97.5 % of the time
fprintf('it "works"%g %% of the time\n',x)	
x1=10;	Difference of 10 and 2 is 8
x2=2;	
x3=x1-x2;	
fprintf('Difference of %g and %g is %g	
\n',[x1 x2 x3])	
matrix=[1 2 3;4 5 6;7 8 9];	+++
fprintf('++\n');	1 2 3
fprintf(' %g %g %g \n++	+++
+\n',matrix');	4 5 6
	+++
	7 8 9
	+++

المرحلة الثانية

ÿ

الله طباعة المخرجات الى ملف لحفظ البيانات باستخدام الامر fprintf :-

يستخدم الأمر fprintf لحفظ مخرجات البرنامج بانشاء ملف يمكن استدعاءه فيما بعد بدون تنفيذ البرنامج مرة اخرى ، الصيغة العامة للأمر تكتب بالشكل التالي :- fprintf (' filename' , ' format string ' , list of variables) e.g.

fprintf (' myfile ' , '%g ' , x)

يرسل القيمة x الى ملف اسمه myfile .

Ex:->>x=0:0.1:1; >>A=[x ; exp(x)]; >> fileID=fopen('exp.txt','w'); >> fprintf(fileID,'%6s%12s\n','x','exp(x)'); >> fprintf(fileID,'%6.2f%12.8f\n',A); >> fclose(fileID); >> type exp.txt

Х	exp(x)
0.00	1.00000000
0.10	1.10517092
0.20	1.22140276
0.30	1.34985881
0.40	1.49182470
0.50	1.64872127
0.60	1.82211880
0.70	2.01375271
0.80	2.22554093
0.90	2.45960311
1.00	2.71828183

31

ملفات M النصبة

Script M – Files

ملفات M – Files التي يعمل عليها برنامج <u>ملفات النصية</u> Script Files التي يعمل عليها برنامج MATLAB كوسيلة لإدخال الاوامر والرموز البرمجية ، حيث يتم تحرير اوامر البرنامج في ملف نصي Script File (يسمى هذا الملف "M-File").

انشاء ملف M - File جديد:-

هناك ثلاث طرق لإنشاء ملف جديد لكتابة برنامج MATLABهي: -الطريقة الاولى: -من قائمة Fileاختر الامر Newحيث تظهر قائمة فرعية اختر منها الامر Script في برنامج MATLAB 2010، او الامر Mileهي MATLAB 7 كما في الشكل التالي: -

Desktop V	Vindow Help	
•	Script	Ctrl+N
Ctrl+O	Function	
Ctrl+W	Class	
	Figure	
Ctrl+S	Variable	
Curto	Model	
	GUI	
	Deployment Project	
Ctrl+P		
	Desktop V Ctrl+O Ctrl+W Ctrl+S Ctrl+P	Desktop Window Help Output Script Ctrl+O Function Ctrl+W Class Ctrl+S Figure Variable Output GUI Deployment Project

الطريقة الثانية :- اضبغط على ايقونة الامر New M-File والتي لها شكل ورقة بيضاء والموجودة في شريط الادوات Tool Bar ، كما في الشكل التالي :-

4 I	MATLA	B 7.	10.0 (R2010)a)								
File	e Edir	t I	Debug	j Pa	rallel	Des	ktop	Win	dow	Help			
:] 🔁	¥			2 6	· 🎝	• 武		0	Current Folder	r:	C:\Users\user\Documents\	MATLAB
ŝ	New S	cript	How	to Ad	ld 🛛	Wha	t's Ne	w					

الطريقة الثالثة :- اكتب الامر edit داخل نافذة الاوامر Command Window كما يلي :-

>> edit

وباتباع احدى الطرق الثلاثة السابقة سوف تظهر نافذة جديدة ، تأخذ الشكل التالى :-

المرحلة الثا	قسم علوم الجو	مختبر البرمجة والتحليل العددي
📝 Editor - Unti	tled3	
File Edit T	ext Go Cell Tool	s Debug » ≌ ₹×
: 🎦 🖨 🔳	る事事らる	🔁 • 돈 • 💌 💌 🗖 •
: + = 4 = -	1.0 + ÷ 1.1	× % ² % ² 0
1		
script	Ln	1 Col 1 OVR .::

سوف يحدد برنامج MATLAB اسما افتر اضيا لهذا الملف هو Untitled و عند حفظ هذا الملف يعمل برنامج MATLAB على اضافة الامتداد (m .*) الى اسم هذا الملف .

شروط حفظ ملف M-File :-

- يجب ان يبدأ اسم الملف بحرف وليس برقم او برمز فمثلا لا يمكن كتابة اسم الملف على الشكل 1test.mوبدلا من ذلك يمكننا اسم الملف على الشكل .test
- 2) يجب ان لا يسمى اسم الملف على اسم امرا معروفا او دالة مبنية داخل برنامج MATLAB فمثلا لا يمكن تسمية الملف بالكلمة fiلان هذا الاسم يمثل احدى الدوال الداخلية Built in functions للبرنامج.
- 3) يجب ان لا يحتوي اسم الملف على مسافات فاصلة Space فمثلا لا يمكن كتابة اسم الملف على مسافات فاصلة space فمثلا لا يمكن كتابة اسم الملف على الشكل التالي test a ندلك يمكن استخدام علامة الشارحة التحتية . test_a وسلما (_) على الشكل التالي .
- 4) يجب ان لا يحتوي اسم الملف على بعض الرموز الخاصة مثل * , \ ، / ، ! ، ؟ باستثناء علامة الشارحة التحتية (_) under score حيث يمكن استخدامها سابقا

حفظ ملف M – File -: M

يحفظ ملف برنامج MATLAB المكتوب في صفحة منقح البرامج Editor باتباع احدى الطريقتين التالية :-

الطريقة الاولى :- اذهب الى القائمة File اختر منها امر الحفظ Save او اضغط على مفتاحي File من لوحة المفاتيح Keyboard ، او اختر الامر حفظ باسم Save As ايضا من قائمة File لحفظ نسخة اخرى من الملف ، او اختر امر حفظ الكل Save Al الموجود ضمن قائمة File لحفظ جميع الملفات المفتوحة حاليا كما في الشكل التالي :-

	🦻 C	\Users\user\Documents\MATLAB\prog	ram1.m*	
	File	Edit Text Go Cell Tools D	ebug De	esktop Window Help 🏻 🏻
		New	+	🜩 🈥 🖹 - 🖥 🗶 🗐 🛍 🚽 »
		Open	Ctrl+0	0
		Open Selection	Ctrl+D	ILATE HE NUMBER CONCE
l		Close program1.m*	Ctrl+W	
		Save	Ctrl+S	
		Save As	earro	
		Save All		
		Save File and Publish program1.m		
		Publish Configuration for program1.m	+	
		Source Control	÷	
		Import Data		ntration N')
		Save Workspace As		
		Set Path		
		Preferences		
		Page Setup		Ln 6 Col 36 OVR
		Drint	Ctoly D	

الطرقة الثانية :- اضبغط على ايقونة امر الحفظ Save 😼 الموجودة في شريط الادوات Tool Bar ، كما في الشكل التالي :-

💽 C:	C:\Users\user\Documents\MATLAB\program1.m*						x		
File	Edit T	ext Go	Cell Too	ls Debug	Desktop	Window	Help		۲
: 🛍	i 🔁 🛃	8 🖻 🖻	90	🎍 🗇 🔹	🚧 🖛 🔿	<u>f</u> @ 돈	- 🖻 🗶		- »
: += : =	⊊ <mark>⊟</mark> Sa	ve +	÷ 1.1	× %.	\$ % % Q				

وعند حفظ ملف M - File المتضمن كود البرنامج باستخدام اي من الطرق السابقة يظهر مربع الحوار Save file as لاختيار مسار حفظ الملف M - File (حيث ان المسار الافتراضي لحفظ جميع انواع ملفات البرنامج هو MATLAB\WORK\:)، كما في الشكل التالي :-

المرحلة الثانية		قسم علوم الجو	والتحليل العددي	مختبر البرمجة
🖻 Save				×
Save in:	NORK	•	← 🗈 📸 ▼	
e	Name	*	Date modified	Туре
Recent Places	睯 program1		۰۸:٤٩ ص ۲۰۱۱/۱۰/۱۰ ۲۰	MATLAB
Desktop				
Libraries				
Computer				
Network				
	•			•
	File name:	program1	-	Save
	Save as type:	MATLAB files (*.m)	-	Cancel

اكتب اسم الملف المراد حفظه في حقل File name ، مع مراعاة شروط اختيار اسم الملف السابق ذكرها ، كما نلاحظ ان الملف المحفوظ يأخذ الامتداد (m. *).

تشغيل البرنامج :-

يتم تشغيل برنامج MATLAB المكتوب داخل ملف M – File باتباع احدى الطرق الثلاثة التالية :-

الطريقة الاولى :- اضغط على ايقونة زر التشغيل Run 💌 الموجودة في شريط الادوات Tool Bar في نافذة منقح البرامج Editor , كما موضح في الشكل التالي :-

.		**	
A A - 11	1 1 411	4 - 11	
() /			

الحم	2	عله	قسد
	~		

ł

المرحلة الثانية

الطريقة الثانية :- اذهب الى القائمة Debug اختر الامر Run file_name او اضغط على المفتاح F5من لوحة المفاتيح Keyboard مباشرة ، كما في الشكل التالي :-

C:\Users\user\Documents\MATLAB\WORK\program1.m					
File	Edit Text Go Cell Tools	Deb	Desktop Window Help 🏻 🏻		
: 🛍	😂 📰 🍇 🐂 🛍 🤊 (° 🍇	\checkmark	Open Files when Debugging		
+=	⊊ <mark>≡</mark> − 1.0 + ÷ 1.1		Step F10		
1	% THIS PROGERAM		Step In F11		
2	% ATMOSPHERE (N)		Step Out Shift+F11		
3	% R IS THE UNIVERS		Run program1.m F5		
4	% A IS AVOGADRO '		Run Configuration for program1.m		
5	% KB IS BOLTZMAN		Go Until Cursor		
6	% PIS STANDARD S				
7	% LISTEMPERATUR		Set/Clear Breakpoint F12		
8 -	R=.831;		Set/Modify Conditional Breakpoint		
9 -	A=0.022e-23;		Enable/Disable Breakpoint		
10 -	KB=R/A;		Clear Breakpoints in All Files		
111 -	disp('calculate the num		Stop if Errors/Warnings		
12 -					
13 -			Exit Debug Mode Shift+F5		
14	i i disducsiateb numzs	IT(1)			
	script		Ln 6 Col 36 OVR		

الطريقة الثالثة :- تستخدم هذه الطريق لتشغيل اي ملف برنامج MATLAB مباشرة من نافذة الاوامر Command Window بكتابة اسم الملف في نافذة الاوامر دون الحاجة لفتح نافذة محرر البرامج Editor كما في الشكل التالي :-

ÿ

فتح ملف M – File سبق حفظه :-

تستخدم احدى الطرق الثلاثة التالية لفتح open ملف برنامج MATLAB (M – File) سبق حفظه :-

الطريقة الأولى :- اذهب الى القائمة File اختر امر الفتح Open من نافذة سطح مكتب برنامج MATLAB Desktop او من نافذة منقح البرامج Editor او بالضغط على مفتاحي Ctrl+O من لوحة المفاتيح Keyboard ، كما في الشكل التالي :-

🕑 U	ntitled2									• ×	
File	Edit Text	Go	Cell	Tools	Debug	Desktop	Window	Help			ъ
	New				۱.	4 🗰 🔿	f 🖉 📘	- 🖶	k 💼	•	»
	Open				Ctrl+0	×* 0					
	Open Selection				Ctrl+D						
	Close Untitled2				Ctrl+W						
	Save				Ctrl+S						
	Save As										

الطريقة الثانية :- اضغط على ايقونة الامر Open File 📴 الظاهرة في شريط الادوات Tool Bar على سطح مكتب برنامج MATLAB Desktop او من نافذة منقح البرامج Editor ، كما في الشكل التالي :-

										-	
ે 🕑	Untitled										x
File	Edit	Text	Go	Cell	Tools	Debug	Desktop	Window	Help		Ľ
: *) 🦰 🗖	1	h 1	19	e 🖗	10 •	M 🕈 🕈	f@ 돈	- 🖶 🗶) 🖻 🛍 [- »
+	GOpen	file ⁰	+	÷	1.1	× ‰4	»» 🔍 🔍				

سوف يظهر لك مربع الحوار Open لاختيار اسم الملف المراد فتحه ثم اضغط على مفتاح Open كما في الشكل التالي :-

📣 Open					×
Look in:	MORK		•	← 🗈 💣 📰 ◄	
C.	Name	*		Date modified	Туре
Recent Places	皆 program1			۸:٤٩ ص ۱۰/۱۰/۱۰	MATLAB
Desktop					
Libraries					
Computer					
Network					
	•				•
	File name:	program1		-	Open
	Files of type:	AII MATLAB files		•	Cancel

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
	لتاليين :-	الطريقة الثالثة :- استخدام احد الامرين ا
>>open file_name		
Or		
>>edit file_name		
سابقين متبوعا باسم الملف	Comman اكتب احد الامرين الس	من خلال نافذة الاوامر md Window
		المحفوظ مسبقا .
	المرحلة الثانية >>open file_name Or >>edit file_name سابقين متبو عا باسم الملف	قسم علوم الجو المرحلة الثانية لتاليين :- open file_name Or >>edit file_name اكتب احد الامرين السابقين متبو عا باسم الملف

Ş

قسم علوم الجو

جمل التحكم والشرط والتكرار

PROGRAM CONTROL, CONDITION AND LOOP STATEMENTS

```
1- الجمل الشرطية :-
                                             تقسم جمل الشرط الي نوعين وهي :-
                                      ( if – statement ) جملة اذا الشرطية (1
                                          2- جملة التوزيع ( switch – case )
                          -: ( if - statement ) الشرطية -1
وتستخدم للتحكم بطريقة سير البرنامج اعتمادا على تحقق الشرط ( condition ) ،
                                                     ولها ثلاث صيغ :-
         1- تستخدم if لوحدها في حالة استخدام شرط واحد وبالشكل التالي :-
                 if condition
                 statement
                 end
                 ex:-
                 x=input('enter the number =')
                 if x > 0
                 disp(' x is positive number ')
                 end
2- الجملة (if / else) :- يستخدم الامر else كجزء من جملة الشرط if ، فاذا
تحقق شرط جملة if يترتب عليه تحقيق النتائج التالية لجملة if ( الى ما قبل
جملة else مباشرة ) والا تحقق النتائج ما بعد else ، ويأخذ الصورة التالية
                                                                -:
                 if condition
                 statement(s)
                 else
                 statement(s)
                 end
                 ex:-
                 x=input('enter the number =')
                 if x > 0
                 disp(' x is positive number ')
                 else
                 disp('x is negative number ')
                 end
```

المرحلة الثانية	قسم علوم الجو	يل العددي	ختبر البرمجة والتحل	
جملة الشرط if	الغرض من هذه الصورة من صور	-: (if / elseif) الجملة (-3	
	· من شرط ويأخذ الصيغة التالية :-	هو اختبار مدى تحقق اكثر		
	if condition 1			
	statement 1			
	elseif condition 2			
statement 2				
elseif condition (n-1)				
statement (n-1)				
else				
	statement (n)			
	end			
كان العدد موجب	MATLAB لإدخال عدد ، يبين اذا	مثال / اكتب برنامج بلغة 3	3	
		ام سالب او يساوي صفر ؟		
	x = input ('enter the numl	ber =')		
	if $x > 0$			
	disp (' this number is pos	itive ')		
	elseif $x < 0$			
	disp ('this number is nega	ative ')		
	else	100		
	disp('this number is equa	10')		
مقاربة أو الإدوات	ب الجمل السرطية على أحد أدوات اله المعينية 1 مع المعنية معالى ال	ملاحظة :- يجب أن تحتوي		
صحه في الجدون	Logical or Kelational) سموه	المنطقية (Operators المنطقية (
النالي :-				
	الوظيفة Dperation			
		المعاملات المنطقية		
		<		

اقل من	<
اقل من او يساوي	<=
اکبر من	>
اکبر من او يساوي	>=
يساوي	=
لا يساوي	~
And	&

المرحلة الثانية	قسم علوم الجو	يل العددي	مختبر البرمجة والتحا
Short-c (scalars)	ircuit And للقيم العددية فقط	&&	
	Or		
Short- (scalars)	circuit or للقيم العددية فقط		
]	Not	~	

2- جملة التوزيع (switch – case)

تستخدم للتحكم بطريقة سير البرنامج اعتمادا على قيمة المتغير المعطى لها والصيغة العامة لها :switch variable case value 1 Statement 1 case value2 Statement 2 case value n Statement n otherwise Statement end يبدأ البرنامج او لا بقراءة قيمة المتغير (variable) ثم يبدأ بمقارنتها مع القيم (value) بعد عبارة case اذا كانت قيمة المتغير variable تنطبق مع اي من القيم value يتم تنفيذ الجملة statement بعدها وهكذا ، واذا لا تنطبق اي من القيم value مع قيمة المتغير variable سوف ينتقل الى العبارة otherwise ويتم تنفيذ الجملة بعدها . مثال / اكتب برنامج بلغة MATLAB لحساب قيمة الاطوال بوحدات السنتمتر . clc; clear; close all; disp (' convert L to centimeters '); L=input (' Enter the length :') units= input (' Enter the unit of L :','s'); switch units case {'inch','in'} y=L*2.54; case {'feet','ft'} y=L*2.54*12; case {'meter','m'} y=L*100; 41

المرحلة الثانية

ţ

case {'millimeter','mm'}
y=L/10;
otherwise
 disp('unknown unit');y=nan
end
display([num2str(y) ,' cm ']);

>>file_name convert L to centemeters Enter the length : 5 Enter the unit of L : m 500 cm

تمرين للطالب نفذ البرنامج لأطوال ووحدات اخرى

3- حلقات التكرار (loops statements) وهي مجموعة من الجمل تستخدم لتكرار تنفيذ مجموعة من الاوامر لعدد محدد من المرات ، يحتوي برنامج MATLAB على نوعين من حلقات التكرار هما :-(for ... loops) for -1 (while ... condition) while -2 يستخدم برنامج MATLAB اوامر للتحكم في عملية التكرار هما :-1- امر التوقف break او return 2- امر الاستمرار continue حلقات for :--1 وتستخدم لتنفيذ مجموعة من الاوامر مرات متعددة ، ويتم التحكم بعدد مرات تنفيذ الاوامر باستخدام عداد تحدد له قيمتي البداية والنهاية وكذلك مقدار الزيادة ، والصبيغة العامة لها :for i = n : k : mstatement(s) end حيث ان :i :- قيمة العداد . n :- قبمة البدابة للعداد . k -- مقدار الزبادة للعداد. m :- قيمة نهاية العداد . المثال التالي يجمع الاعداد من 1 الى 10 Ex:-S=0; for i = 1 : 10s=s+i; end disp (s) الحظة :- تهمل مقدار الزيادة k اذا كانت مقدار زيادة العداد هي 1 ، لان القيمة الافتر اضية الا لبرنامج MATLAB هي 1. مثال1 / اكتب برنامج بلغة MATLABلحساب المعادلات التالية: - $S = \sum^{5000} n$ 1) s = 0;for n = 1 : 5000s = s + n; end disp (s) sol.

الثانية	المرحلة

ţ

>>file_name 12502500 $S = \sum^{5000} n^2$ 2) s = 0;for n = 1 : 5000 $s = s + n^{2};$ end disp(s) sol. >>file_name 41.679 $S = \sum_{n=1}^{5000} \frac{1}{n^2}$ 3) s = 0;for n = 1 : 5000 $s = s + 1 / n^2$; end disp(s) sol. >>file_name 1.6447 مثال2 / اكتب برنامج بلغة MATLAB لإيجاد مفكوك العدد !n . % Program Calculate Factorial Number n = input (' the number of factorial = '); fact = 1; for i = 1 : nfact = fact * i ; disp ([i fact]) end >>file_name the number of factorial = 81 1 2 2 3 6 4 24 5 120 44 720 6 7 5040 8 40320

Ţ

(while ... condition) while -2 -2

تستخدم لتنفيذ امر او مجموعة الاوامر مرات متعددة مادام شرط ما متحقق والصيغة العامة لها :while condition statement(s) end مثال / البرنامج التالي يجمع الاعداد من 1 الى 10 وبزيادة مقدار ها 0.5 (مجموع الاعداد 1.5 , 1 . while باستخدام (, 2 , 2.5 , 3 , 3.5 , 4 . . . 10 s = 0;i = 1;while $i \leq 10$ s = s + i;i = i + 0.5; end display (s) sol. >>file_name s =104.500

<u>تمارين</u> س1) اكتب برنامج بلغة MATLAB لحساب المتسلسلات التالية :-1- $1^2 + 2^2 + 3^2 + \ldots + 1000^2$ 2- $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots$ 3- $1/(1^2 \cdot 3^2) + 1/(3^2 \cdot 5^2) + 1/(5^2 \cdot 7^2) + \dots$ 1) $1^2 + 2^2 + 3^2 + \ldots + 1000^2$ s = 0;for k = 1 : 1000 $s = s + k^{2};$ end display (s) نتائج تنفيذ البرنامج >>file_name s = 338350 2) $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots$ s1 = -1; s2 = 0;n = input (' input the number = ') for m = 1 : 2 : ns1 = s1 * -1;s2 = s2 + s1 / m; end display (s2) نتائج تنفيذ البرنامج

>>file_name

ā.	الثاند	حلة	المر

Ş

قسم علوم الجو

مختبر البرمجة والتحليل العددي

 $\neq 0$

input the number = 4

s2 = 0.66673) $1/(1^2 \cdot 3^2) + 1/(3^2 \cdot 5^2) + 1/(5^2 \cdot 7^2) + \dots$ s = 0; m = input (' input the number = ');for i = 3 : 2 : m $s = s + 1 / ((i - 2)^2 * i^2);$ end $disp([m \ s])$ $>>file_name$ input the number = 4 $4.0000 \quad 0.1111$

Q2) a) Write MATLAB program to calculate x, $a x^2 + b x + c = 0$ when a = 0, $x = -\frac{c}{2}$

quadratic formula
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 when a

and a = 2, b = -10, c = 12

<u>sol.</u>

Use the

% This M-file solves the quadratic equation using the quadratic formula

a = 2;

b = -10;

c = 12;

% Different cases for a = 0 and otherwise :

if a == 0 % $a x^2 + b x + c = 0$ x = - c / b % b x + c = 0

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
else		
x(1) = (-b + sqrt (b))	o^2-4*a*c))/(2*a);
x(2) = (-b - sqrt)(b)	o^2-4*a*c))/(2*a);
end		
display (x)		
>> file_name		
x =		

Q2)b) The steady-state current I flowing in a circuit that contains a resistance R=5, capacitance C=10, and inductance L=4 in series is given by

3

2

$$\mathbf{I} = \frac{\mathbf{E}}{\sqrt{R^2 + (2\pi\omega\mathbf{L} - \frac{1}{2\pi\omega\mathbf{C}})^2}}$$

where E =2 and ω =2 are the input voltage and angular frequency respectively. Compute the value of I. (Answer: 0.0396) R = 5; C = 10; L = 4; E = 2; w = 2; I = E / sqrt(R^2 + (2 * pi * w * L - 1 / (2 * pi * w * C))^2)

4) جمل القفز Jamping statements 1) الخروج من جمل التكرار Breaking out of loops ان تكرار while يستمر في العمل حتى يصبح الشرط صحيحا او خاطئا ، وان تكرار for يستمر في العمل حتى ينتهي عدد المرات التي تحددها له ، ولكن قد تحتاج في بعض الاحيان الى الخروج المبكر من التكرار قبل انتهائه ، وفي هذه الحالة يمكننا استخدام الامر break او return ، ويستخدم بالشكل التالي :for / while statement(s) if condition break end . . . end مثال / اطبع مربع الاعداد من 1 - 10 لغاية القيمة 36 ex:clc; clear; close all; for m = 1 : 10if (m^2) >= 36 وفي حالة استخدام while loop break ; clc; clear; close all; end m = 1; display (m); while m < 10end if $(m^{2}) >= 36$ sol. break : >>file_name end m =display (m); 1 m = m + 1; m = end 2 m =3 m =4 m =5

2) جملة continue

يستخدم الأمر continue في داخل الحلقة التكرارية for loop او الحلقة التكرارية المشروطة while loop لانهاء التكرار الحالي ، وتجاوز تنفيذ باقي الأوامر (الجمل البرمجية) الموجودة بداية من الأمر continue ووصولا لنهاية الحلقة المستخدمة باستخدام جملة end ، ويستخدم بالشكل التالي :-

for / while statement(s) if condition continue end end

مثال/ اطبع القيم الزوجية من 1 – 10

<u>ex:-</u>

clc ; clear ; close all ; for n = 1 : 10 if rem (n, 2) ~= 0 continue ; end display (n); end <u>sol.</u> >>file_name n = 2 n = 4

- n = 6 n= 8 n =
- 10

5) صناديق try – catch

يستخدم برنامج MATLAB طريقة الاستثناء exception في معالجة الاخطاء التي من الممكن ان يقع فيها المستخدم اثناء سير البرنامج باستخدام صناديق try – catch والتي تستخدم الصورة التالية :-

try commands1 catch commands2 end

<u>Ex:-</u>

```
clc; clear; close all;
   a = input ('Enter first matrix :');
   b = input (Enter second matrix :');
   try
   c = a * b;
   catch
   c = NaN;
   disp ('wrong dimensions for matrices multiply');
   end
   display (c);
   sol.
   >>file name
   Enter first matrix : [13;24]
   Enter second matrix : [57;68]
   c =
   23 31
   34 46
نلاحظ ان البرنامج ينتج عملية ضرب المصفوفتين بدون عرض اخطاء وذلك لتحقق شرط ضرب
هاتين المصفوفتين و هو تساوي عدد اعمدة المصفوفة الاولى a مع عدد صفوف المصفوفة الثانية
                                                                           . b
                              نفذ البرنامج مع ادخال عناصر المصفوفتين بالقيم التالية :-
```

>>file_name

ļ

Enter first matrix : 2 * ones (2, 4) Enter second matrix : magic (3) wrong dimentions for matrices multiply c = NaN

لاحظ ان البرنامج نفذ الاوامر التي تتضمنها جملة catch مما يدل على حدوث خطأ في الاوامر التي تتضمنها جملة try .

دوال ملفات M

M – File Function

الدوال function :- الدوال هي مجموعة من الاوامر او الجمل البرمجية المكتوبة في ملفات M – File والتي تستخدم لتؤدي وظيفة معينة ولها اسم مميز يعبر عن وظيفتها لتؤدي امر او مجموعة من الاوامر الجاهزة .

انواع الدوال : function types

- يحتوي برنامج MATLAB على مئات من الدوال الداخلية الجاهزة مبنية في بنية البرنامج MATLAB Built in Function بدلا من كتابة او برمجة هذه الدوال في كل مرة مثل sum, prod, mean, inv, det, size, length, round, fix, rem, angle, abs وغيرها من الدوال التي تم برمجتها مسبقا في برنامج MATLAB.
- 2. دوال يتم انشاءها من قبل المستخدم User Defined Function تكتب بصيغة برنامج ويسمى هذا النوع من البرمجة بدوال ملفات MATLAB ويسمى هذا النوع من البرمجة بدوال ملفات MATLAB .
 ٥ تضاف هذه الدوال بعد انشاءها الى مكتبة الدوال الداخلية الجاهزة

(MATLAB Built in Function) ، ويتم تسميتها من قبل المستخدم بتصميمه لها حسب وظيفتها ، ويتم كتابة البر امج بصيغة function بالشكل التالي :-

function [list of output variables] = function_name (list of input variables)
function (o/p) = function_name(i/p)

OR

function function_name (list of input variables)
function function_name(i/p)

شروط تسمية وانشاء دوال ملفات M – File Function) M :-: (

- 1- يسمى اسم الملف بنفس اسم الدالة التي تم كتابتها في البرنامج.
 - 2- السطر الاول من البرنامج يجب ان يبدأ بالامر function .
- 3- يتبع اسم الدالة شروط تسمية المتغيرات في برنامج MATLAB .
- 4- لايجوز استخدام اسم الدالة من اسماء مشابهة لاسماء المتغيرات المستخدمة في البرنامج.

الفرق بين برمجة الدوال (function) والبرمجة النصية (script) :-

1- برنامج الدوال يبدأ بالامر function بينما برنامج الـ script يبدأ بالبرنامج مباشرة .

- 2- يتطلب كتابة برنامج الدوال function تعريف المخرجات والمدخلات مع اسم الدالة بينما في البرمجة النصية الـ script لايحتاج الى ذلك .
- 3- تستطيع في برنامج الدوال function عند تنفيذه تغيير قيم المدخلات بينما في البرمجة النصية الـ script لإيمكن ذلك .

العددى	لتحليل	ه ه ا	ىدة	ال د	مختبر
	_	<u> </u>	-		

4- المتغيرات التي تحسب داخل الـ function لا تحفظ في الـ workspace بينما في الـ function تحفظ في الـ local variable) . تحفظ في الـ workspace ، وتسمى متغيرات محلية (local variable) . معرفة عدد المدخلات والمخرجات للدوال(nargout ,nargin) :-

يستخدم الامر nargin لمعرفة عدد المعاملات (المتغيرات) المستخدمة داخل الدالة بالشكل التالي

```
a = nargin ( ' function_name ')
```

ex :-

```
a = nargin ('sum')
```

a =

3

```
ويستخدم الامر nargout لمعرفة عدد المعاملات ( المتغيرات ) المستخدمة كمخرجات لهذه الدالة وبالشكل التالي :-
```

```
a = nargout ( ' function_name ')
```

ex :-

```
a = nargout ( ' sum ')
```

a =

1

الثانية	حلة	المر

بعض الامثلة :-

مثال 1: - اكتب برنامج يحل معادلة من الدرجة الثانية بطريقة الدستور (Quadratic equation) باستخدام Function M-file

$$x = \begin{cases} \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} & b^2 - 4ac > 0\\ \frac{-b}{2a} & b^2 - 4ac = 0 \end{cases}$$

واذا كان قيمة تحت الجذر اقل من صفر اطبع العبارة (the root is complex)

Sol.

function quadratic_equation (a,b,c)

delta = $b^2 - 4 * a * c$

if delta > 0

x1 = (-b + sqrt (delta)) / (2 * a)

x2 = (-b - sqrt (delta)) / (2 * a)

elseif delta < 0

disp (' the root is complex ')

else

```
x1_2 = (-b/(2*a))
```

end

نتائج تنفيذ البرنامج

>> quadratic_equation (4,6,2)

delta =

4

x1 =

-0.5000

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
x2 =		
-1		
	کل من c , b , a کل من	تمرين للطالب ، نفذ البرنامج لقيم اخرى ل
ث قيم ندخلها للبر نامج	M لايجاد القيمة العظمي من بين ثلاد M	مثال 2 :- اكتب برنامج بلغة ATLAB باستخدام Function M-file .
<u>Sol.</u>		
function max1(a	u, b, c)	
if $a > b$		
max = a;		
if $c > max$	K	
$\max = c$;		
end		
else		
max = b;		
if $c > ma$	ax	
max = c	;	
end		
end		
max		
	ج مع ادخال القيم مع اسم البر نامج	لتنفيذ البرنامج اكتب اسم البرنام
>> max1 (10,2,	18)	
max =		
18		

تمرين للطالب ، ادخل قيم اخرى مع هذه الدالة .

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
ي ام فردي .	M لادخال رقم واختبار هل هو زوج	مثال 3 :- اكتب برنامج بلغة ATLAB
<u>Sol .</u>		
function $n = test$	_number(a)	
if mod (a,2)	== 0	
n = ' even no.';		
else		
n = ' odd no.';		
end		
	عطاء قيمة بين القوسين :-	لتنفيذ البرنامج ، اكتب اسم البرنامج مع ا
>> test_number (4)	
even no.		
		تمرين للطالب ، ادخل قيم اخرى .
	M لايجاد مضروب العدد .	مثال 4 :- اكتب برنامج بلغة IATLAB
<u>Sol.</u>		
function $c = fact$	(n)	
v = 1;		
for $i = 1 : n$		
v = v * i;		
end		
V		
المضروب له :-	عطاء قيمة للعدد المطلوب ايجاد قيمة	لتنفيذ البرنامج ، اكتب اسم البرنامج مع ا
>> fact (10)		
v =		
3628800		

مختبر البرمجة والتحليل العددي

تمرين للطالب ، ادخل قيم اخرى .

مثال 5 :- اكتب برنامج بلغة MATLAB لاظهار جدول الضرب لاي رقم .

Sol.

function production (num)

if length (num) $\sim = 1 \mid \sim$ isnumeric (num)

disp (' error : please enter one number ')

else

for i = 1 : 10

disp ([num2str (num) , 'x ', num2str (i) , '= ', num2str (num * i)])

end

end

ملاحظة :- 1- يفحص البرنامج اذا كان الرقم المدخل هو ليس عنصر واحد او قيم ليست عددية ، فيطبع العبارة التصحيحية لتبين عدم ادخال صحيح

[num2str(num), 'x', num2str(i), '= ', num2str(num*i)]ex :-1 1 X لتنفيذ البرنامج اكتب اسم الدالة في الـ command window وادخل الرقم بين قوسين صغيرين >> production([12 5])

error : please enter one number

>>production('g')

error : please enter one number

يجب ادخال رقم و احد و ليس مصفو فة او سلسلة حر فية

>> production(12)

 $12 \ge 12 = 12$

Ţ.	44	.	.	$\neg \uparrow$
	المرحلة الثانية	فسم علوم الجو	مختبر البرمجه والتحليل العددي	<u> </u>
	$12 \ge 24$			
	12 x 3 = 36			
	12 x 4 = 48			
	$12 \ge 5 = 60$			
	12 x 6 = 72			
	12 x 7 = 84			
	12 x 8 = 96			
	12 x 9 = 108			
	$12 \ge 10 = 120$			
			تمرين للطالب ، ادخل عدة قيم اخرى .	

المرحلة الثانية

5

2

3 4 5

	المصفوفات والمتجهات	
MAT	RICES AND VECT	ORS
	: MATLAB a	طرق ادخال المتجهات في برنامج
		1. الادخال المباشر للبيانات:
	لصفية row vector كالتالي :-	بتم ادخال البيانات في المتجهات اا
>> a=[1 2 3 4 5]		
a =		
1 2 3 4 5		
Or		
>> a=[1,2,3,4,5]		
a =		
1 2 3 4 5		
كالنالي :-	columi ، يكون ادخال البيانات	اما للمتجهات العمودية n vector
>> b=[1:2:3:4:5]		>> b=[14
h –	OR	24
0 -		3₄
1		4₄
2		5]
3		b =
Д		1

قسم علوم الجو

2. الادخال غير المباشر للبيانات تستخدم النقطتين المتعامدتين colon notation (:) في المتجهات الصفية row vector لادخال عناصر المتجه حسب الصيغة التالية :-

Name of array=first value:increment:last value اي نبدأ بكتابة القيمة الاولية ثم مقدار الزيادة ثم القيمة النهائية . لاحظ الامثلة التالية : لانشاء متجه صفى يبدأ ب 1 وينتهى ب 100 ومقدار الزيادة 1 or >> a=(1:100)>> a=1:100 or >> a=1:1:100لانشاء متجه صفي يبدأ ب 1 وينتهي ب 100 ومقدار الزيادة 2 >> a=1:2:100 لانشاء متجه يبدا ب 100 وينتهى ب1 وبمقدار التناقص 1->> a=100:-1:1 اما بالنسبة للمتجهات العمودية column vector فانه يمكن استخدام نفس الطريقة السابقة لانشاء المتجهات الصفية ولكن يجب ايجاد مبدل المتجه الصفي row vector transpose باستخدام علامة الفاصلة العليا apostrophe (') بعد اسم المتجه المراد الحصول على مبدله . لاحظ المثال التالي : >> x=1:5 $\mathbf{x} =$

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
1 2 3 4	5	
>>x'		
ans =		
1		
2		
3		
4		
5		
	: دلوجنه	العمليات التي يمكن اجراقها على ا
1 XX1 1	T (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
ا بيم استحدام الأقو اس المتعاددتين (1)	صفي / العمودي في لعه latiab/ في خطو تبا ورتز نست فدر النقواتين	الحديد عنصر واحد من عناصر المنجه ال
) المتعامدتين (٠) مغدر بثم تساسل الحدد	ي في خطوة واحدة لتسحدم التقطير بحدث ذكترب إسم المتحه ثم قم سي	الصغيرة ، ولتحديد مجموعة من العاصر مدلام بدفة (V(first:incromont:last
معير لم تششل العدد	، حيب تحيب اسم المعجب تم توس 2 اخير ، كما في الامثلة التالية ·-	وبسطيف (۲۰۰۱ مراجع معداد) الذيادة ، وتسلسل العدد الا
>>x=[1:2:3:4:4]	· <u></u> · <u></u> · <u></u> · · 5 : 6 : 6 : 7 : 8 : 9 : 10] :	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , ,	1- استدعاء العنصر الاول من المتجه x
>>x(1)		
ans=		
1		
	Х	2- استدعاء العنصر الخامس من المتجه
>>x(5)		
ans=		
5		
>>v(1·5)	ون الى العلمار المحاملان	و-المتدعاع المحاصل الجداع من المتصل
$2 > \lambda(1.3)$		
1		
2		
3		
4		
5		
		4- استدعاء العنصر الاخير في المتجه x
>>x(end)		
ans=		
10	/ _ *	
NV(and 1)	ىبچە x	5- المندعاع العنصن ما قبل الاخير في اله
>>~(Cliu-1)		
9		
	سادس ونهاية بالعنصر العاشر	6- استدعاء العناصر بداية من العنصر ال
>>x(6:10)		
ans=		

Ş

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي	
6			
7			
8			
9			
10			
	س بزیادة 2	7- استدعاء العنصر الاول الى العنصر السا	
>>x(1:2:6)			
ans =			
1			
3			
5			
	ول بمعدار _2	8- استدعاء العنصر السادس الي العنصر الأ	
>>x(6:-2:1)			
ans =			
6			
4			
	x 4	9_استدعاء العناصر من 7 الي نهاية المتح	
>>x(7:end)	Α		
ans =			
7			
8			
9			
10			
	ملها بخطوة واحدة	10- استدعاء عناصر معينة لا يشترط تسل	
>>x([8 2 9 1])			
ans =			
8			
2			
9			
1			
	••••••••••••••••••••••••••••••••••••••	تانيا :- اضافه عنصر جديد آلي المتجا	
خلال كتابة أسم المتجه ونحدد	اوالعمودي فيمكن ذلك من	لأضافة عنصر جديد للمتجه الصفي	
لمساواة وقيمه العنصر كما في	وسين صغيرين تم علامه ال	تسلسل العنصر المراد اضافته بين ف	
F1 0 0 4		المنال النالي :	
$>> x = [1 \ 2 \ 3 \ 4]$	56/8910]		
X = 1 2 2	15670	0 10	
1 2 3 4	4 3 0 / 8	9 10	
>>X(11)=11			
$\begin{array}{c} \mathbf{x} - \\ 1 2 2 \end{array}$	4 5 6 7 8	9 10 11	
	т Ј U / О	/ 10 11	

المرحلة الثانية		م علوم الجو	قىب			لعددي	تحليل ا	برمجة وال	مختبر ال
سوف يعتبر القيم غير لمثال التالي : 8=(13)x<<	x(1) فانه نفر لاحظ ا	لعنصر (3 ية الى الص	ف عاشر (ا x(13 مساو	ل الثالث)x و(3	التسلسل ن (11	ختيار تقع بير	حالة ا. والتي	لاحظ في لموجودة	7
x = 12 >>x(4)=8	3 4	5 6	7 8	9	10	11	0	8	
1 2	3 8	5 6	7 8	9 احد :	10 جە وا	11 في م ڌ	0 <u>مین</u> ا	8 مج متج	ثالثا :- <u>د</u>
- صيغة التالية : Name of new vector >>a=[1 3 5 7 a = 1 3 5 >>b=[9 10] b = 9 10 >>c=[a b]	استخدام ال pr=[nam 7] 5 7	احد فیمکن ne of firs	في متجه و t vector	ي معا nan	ِ عمود ne of	ىفي او the s	ھین ص econ	دمج متج d vecto	<u>]</u> pr]
ل العاشر من العاشر من	5 7 ، لحذف ال	10 9 هات : شكل التالي	في المتج لحذف وبال	اصر ا عملية ا	دة عن]] في ر	سر/ع ربعة [ـ عنم س المر :-	ا :_حذف دم الاقوا: فوفة a	رابع تستخ المص
>> a=[1 2 3 a = 1 2 3 >>a(10)=[]	45678 4	3910] 56′	78	91	0				
a = 1 2 3 س الى العاشر) >> a= a =	3 4 نصر الساد [1 2 3]	5 6 مثلا من الع 4 5 6 7	7 8 العناصر (8 9 1	9 لية من [0	عة متتال	جموع	حذف ہ	• L	
1 >> a(6) a = 1	2 3 :10)=[]	4 5	67	8	9	10			
-	د 2 <u>د sum</u>	د 4 تخدام الام	ىتجە باس	س اله	ع عناه	مع ر	حاصر	:_ايجاد	خامسا
>> v=[4 5 3 v = 4 5 3 >> v1=sum(v1 = 14	2] 32 v)								

P

ţ

سادسا :-ايجاد حاصل ضرب عناصر المتجه باستخدام الامر prod :->> v2=prod(v)v2 = 120 سابعا :-ايجاد العنصر الاكبر في المتجه باستخدام الدالةmax :->> a=[1 2 5 8 11] a = 1 2 5 8 11 >> a1=max(a)a1 = 11 ثامنا :-ايجاد العنصر الإصغر في المتجه باستخدام الدالةmin:->> a2=min(a)a2 = 1

طرق ادخال المصفوفات MATRIX في برنامج MATLAB

المصفوفة هي مجموعة من الارقام (القيم العددية)تكتب على شكل صفوف rows واعمدة columns

$$\begin{bmatrix} a_{11} & a_{12} \dots & a_{1n} \\ a_{21} & a_{22} \dots & a_{2n} \\ a_{m1} & a_{m2} \dots & a_{mn} \end{bmatrix}_{m \ge n}$$

حيث m يمثل عدد الصفوف ، n عدد الاعمدة . لادخال مصفوفة نستخدم الطريقة المباشرة لادخال المتجهات الصفية او العمودية ،وبالشكل التالى:->>a=[1 2 3;4 5 6;7 8 9] Or >>a=[1,2,3;4,5,6;7,8,9] Or >>a=[1 2 34 4564 789] a = 1 2 3 5 4 6 8 7 9

المرحلة الثانية قسم علوم الجو مختبر البرمجة والتحليل العددي العمليات التي يمكن اجراؤها على المصفوفات: اولا:- استدعاء عنصر معين من عناصر المصفوفة : لاستدعاء عنصر معين من عناصر المصفوفة نكتب اسم المصفوفة وقوس صغير ثم تسلسل الصف وتسلسل العمود ثم نغلق القوس الصغير . لاحظ المثال التالي : >> a=[1 2 3;4 5 6;7 8 9] a = 1 2 3 4 5 6 7 8 9 • لاستدعاء العنصر في الصف الثاني من العمود الثالث: >>a(2,3) ans =6 • لتحديد مجموعة معينة من قيم عناصر المصفوفة (انشاء مصفوفة جزئية من المصفوفة الاصلية) تستخدم الصيغة التالية : (start row: step : end row ,start column : step : end column) → اختبار الصفوف اختبار الأعمدة 🔶 مثال : لانشاء مصفوفة جديدة b من المصفوفة a بحيث يتم تحديد الصف الاول و الثالث و العمود الثاني و الثالث >> b=a(1:2:3,2:3)b = 2 3 8 9 لاستدعاء الصف الثانى والثالث وجميع الاعمدة ابتداء من العمود الثالث وحتى العمود الاول >> c=a(2:3,3:-1:1)c = 5 4 6 8 9 7 اختيار جميع الاعمدة : لتحديد الصف الثاني وجميع الاعمدة >> d=a(2,:)d = 4 5 6 اختيار جميع الصفوف: لتحديد جميع الصفوف اما الاعمدة فتبدأ من العمود الأول وحتى الثاني. >> e=a(:,1:2) e = 1 2 4 5 7 8 اختيار جميع الصفوف والاعمدة >> f=a(:,:)

المرحلة الثانية قسم علوم الجو مختبر البرمجة والتحليل العددي f =1 2 3 5 6 4 7 8 9 اختيار جميع الصفوف من العمود الاخير. >> g=a(:,end) g = 3 6 9 اختيار الصف الاخير وجميع الاعمدة >> h=a(end,:) h =8 9 7 ثانيا : - اضافة عنصر الى عناصر المصفوفة : لإضافة عنصر الى عناصر المصفوفة التالبة >> a = [1 23]256 789] a = 3 2 1 4 5 6 7 8 9 لاضافة الرقم 20 في الصف الثالث والعمود الخامس حدد اسم المصفوفة ثم تسلسل العدد المراد. اضافته يوضع بين قوسين صغيرين وعلامة المساواة ثم قيمة العدد . لاحظ تضاف الاصفار في اماكن الاعداد التى ليست لها قيمة محددة >>a(3,5)=20 a = 3 0 1 2 0 4 5 6 0 0 7 8 9 0 20 اضافة عدة عناصر الى المصفوفة مثلا اضافة الارقام 15, 13 الى عناصر العمود الرابع >>a=[12 3;4 5 6;7 8 9] a = 1 2 3 5 4 6 7 8 9 >>a(:,4)=[11 13 15] a = 1 2 3 11

ÿ

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
4 5 6 13 7 9 8 15 5 للمصفوفة a التالية :- >> a=[1 5 3;2 9 7]	فوف ، لاضافة عمود قيم عناصره	 اضافة عمود ولكل الصفر
a = 1 5 3		
2'' 9'' / 2 > a(:.end+1)=5		
Or		
>>a(:,4)=5		
a = 1 5 3 5		
$1 \ 3 \ 3 \ 5 \ 2 \ 9 \ 7 \ 5$		
	, , , , , , , , , , , , , , , , , , ,	
<u>: د</u> المريف الثلاث مالحمد (ر من عناصر المصفوفة بقيم اخرع فيفة : استندال العنو المه حد ف	تالتا: - استبدال فيم عنصر أو عدة عناص
ب الصلف الثالث والعمود	فوقه ، السبدان العنصين الموجود في	 الاول بالقيمة عنصر في المصر
>> b=[1 3 7 2;3 4 6	1;7 9 8 4]	
b =		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
3 4 0 1 7 9 8 4		
>>b(3,1)=0		
b =		
1 3 7 2		
3 4 6 1		
0 9 8 4	5 . Lässlandensen (*11)	فتغبير قبره فريكاراه بالمطريقير المرف
$>>h(3 \cdot)-5$		
h –		
1 3 7 2		
3 4 6 1		
5 5 5 5		
	. الثاني جميعها مساوية لـ 11	 تغبير قيم عمود بكامله : لجعل قيم العمود
>> b=[1 3 7 2;3 4 6	1;7 9 8 4]	
b =		
1 3 7 2		
3 4 6 1		
$h = \frac{1}{2} + $		
~~ 0(., 2) - 1 1		

P

المرحلة الثانية	فسنم علوم الجو	مختبر البرمجة والتحليل العددي
b =		
1 11 7 2		
3 11 6 1		
7 11 8 4		
:(*	(يجب وضع الفارزة المنقوطة	ولتغيير قيم عمود بكامله بقيم ادخال جديدة
b =		
1 11 7 2		
3 11 6 1		
7 11 8 4		
>>b(:, 3) = [4; 5; 77]	7]	
b =		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
11 / 4		استدال المددين في المعمدين الأمار مراثقات
وں باعدد 10 . c=[1 3 7·2 / 6·7 8	۵ (دون الثاني) في الصف الإ 01	اسبدان العددين في العمودين الأون والتالك
c = 0.000)]	
1 3 7		
$ \frac{1}{2} 4 6 $		
7 8 9		
>>c(1,[1 3])=10		
c =		
10 3 10		
2 4 6		
7 8 9		a Matha I and the and a state to a st
ت بالعدد 10 : م م م م م م م م ا	، (دون الثاني) لجميع الصفوة	استبدال الأعداد في العمودين الأول والتالت
>> c=[1 3 /;2 4 6; / 8]	9]	
C = 1 - 3 - 7		
2 4 6		
7 8 9		
>>c(:.[1 3])=10		
c =		
10 3 10		
10 4 10		
10 8 10		
ةًا من الأول الى الثاني بالقيمة	ول الى الثالث و العمودين ابتداءً	استبدال العناصر في الصفين ابتداءًا من الاو
		صفر
>>b(1:3,1:2)=0		
$\mathbf{D} = 0 0 0 1 2$		

المرحلة الثانية مختبر البرمجة والتحليل العددي قسم علوم الجو 0 0 77 4 رابعا :- حذف عنصر او عدة عناصر من المصفوفات باستخدام الاقواس المربعة []: لايمكن حذف عنصر واحد فقط >> b=[1372;3461;7984] b = 1 3 7 2 4 6 1 3 8 4 7 9 >>b(1,1)=[]??? Indexed empty matrix assignment is not allowed. يمكن حذف صف كامل او عمود كامل (مثلا حذف العمود الثالث) >>b(:,3)=[] b = 1 3 2 3 4 1 9 4 7 او حذف الصف الثالث (لحذف صف معين حدد رقم السطر او الصف وضع (:) للاعمدة) >>b(3,:)=[] b = 1 3 2 7 3 4 1 6 خامسا : - معرفة ابعاد المصفوفة (حجم المصفوفة) (size) : >> a=[1 2 3 4; 5 6 7 8] a = 1 2 3 4 7 6 8 5 >>size(a) ans =2 4 عدد الصفوف عدد الأعمدة لمعرفة عدد الصفوف فقط >>size(a,1) ans =2 لمعرفة عدد الاعمدة فقط >>size(a,2) ans =4 سادسا :- لمعرفة طول المتجه الاكبر في المصفوفة ، باستخدام الامر length: >> q = [1 2 ; 3 4; 5 6]q =1 2 3 4

ţ

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
5 6		
>>size(q)		
ans =		
3 2		
>>length(q)		
ans =		
3		
ين المتعامدتين (:)	شكل عمود واحد، نستخدم النقطة	سابعا :- لاظهار كل عناصر المصفوفة ب
>>q(:)		
ans =		
1		
3		
5		
2		
4		
6		
: <u>nu</u>	، ويكون ذلك باستخدام الامرmel	نامنا :- <u>لمعرفة عدد عناصر المصفوفة</u>
>>numel(q)		
ans =		
б		
Or		
>>length(q(:))		
ans =		
6	فبالمعالم والمعالم	
ي ألى صفى أو العكس ،	الأعمدة أو لتحويل المتجه العمود	ناسعا :- <u>لاستبدال عناصر الصفوف بدل</u>
	بعد اسم المصفوفة :	وذلك بوضع علامه اقتباس مفردة (*)
>> a=[1 2 3;4 5 6;7	89]	
a = 1 - 2 - 2		
$1 \qquad 2 \qquad 3$		
4 J 0 7 9 0		
/ 0 9		
~/a ans —		
ans - 1 1 7		
1 + / 3 5 &		
269		
2 0)	<u>ه</u> فه .	10-ايحاد عناصر القط الرئيسي للمص
• 11-	<u>عرب .</u> الرئيس المصفوفة على النحو ال	ستخدم الدللة diag لايجاد عناصد القطر
ي . A=[1 2 3 · 1] = <>	ر «لريسي سيسو – على المرار - 1 6 • 7 8 9 1 5 6 • 7 8	
2 2 0 - 1 2 2 3 - 4		
a =		
a =		
a = 1 2 3		
$a = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$		

المرحلة الثانية	قسم علوم الجو
789 >> b-diag(a)	
>> 0-ulag(a)	

ÿ

b = 1 5 9 11. جمع عناصر المصفوفة ،يستخدم الامر sum لجمع عناصر المصفوفة الواحدة بالشكل <u>التالى:</u>->> a=[1 2 3 4;4 5 6 7;7 8 9 10] a = 2 3 4 1 5 6 7 4 7 8 9 10 ايجاد حاصل جمع قيم عناصر اعمدة المصفوفة كل على (s1=sum(a) >> حدة s1 = 15 18 21 12 or طريقة ثانية للحصول على نفس (s1=sum(a,1) >> s1=sum النتبجة s1 = 12 15 18 21 ايجاد حاصل جمع قيم عناصر صفوف المصفوفة كل على حدة (a,2) >> s2=sum s2 =10 22 34 ايجاد حاصل جمع جميع عناصر قيم ((sum(a)) >> s3=sum(sum(a)) >> s3=sum المصفو فة s3 = 66 or >> s3=sum(a(:)) s3 =66 لايجاد حاصل جمع عناصر القطر الرئيسي للمصفوفة >> b1=sum(diag(a))b1 = 15

```
المرحلة الثانية
                                  قسم علوم الجو
                                                                مختبر البرمجة والتحليل العددي
                                               12- ايجاد حاصل ضرب قيم عناصر المصفوفة :-
      تستخدم الدالة prod وهي اختصار لكلمة product لضرب قيم عناصر المصفوفة بحيث يتم ضرب
      عناصر كل عمود من اعمدة المصفوفة كل على حدة ويكون الناتج على شكل متجه صفي . لاحظ
                                                                             الامثلة التالية:
      >> a=[1 2 3;4 5 6;7 8 9]
       a =
          1
              2
                   3
             5
          4
                   6
              8
                   9
          7
                                       ايجاد حاصل ضرب عناصر اعمدة المصفوفة كل على حدة
      >> p1=prod(a)
      p1 =
              80 162
         28
       or
                                                طريقة ثانية للحصول على نفس النتيجة السابقة
      >> p1=prod(a,1)
      p1 =
         28 80 162
      ايجاد حاصل ضرب عناصر صفوف المصفوفة كل على p2=prod(a,2) >>> p2=prod
                    حدة
      p2 =
          6
        120
        504
                                                ايجاد حاصل ضرب جميع عناصر المصفوفة
      >> p3=prod(prod(a))
      p3 =
          362880
       or
                                              طريقة ثانية للحصول على نفس النتيجة السابقة
      >> p3=prod(a(:))
      p3 =
           362880

    لايجاد حاصل ضرب عناصر القطر الرئيسي للمصفوفة

>> b2=prod(diag(a))
b2 =
  45
                                                      13- ايجاد العنصر الاكبر في المصفوفة :-
      تستخدم الدالة max لإيجاد العنصر الأكبر لعناصر كل عمود من اعمدة المصفوفة كل على حدة بحيث
                         يكون الناتج متجه صفي (فيه الرقم الاكبر من كل عمود) لاحظ الامثلة التالية :
```

>> a=[1 2 3;4 5 6;7 8 9]
a = 2 3 1 5 6 4 7 8 9 لايجاد قيمة العنصر الاكبرلكل عمود كل على حدة في المصفوفة (m1=max(a) >> m1 m1 = 7 8 9 or طريقة ثانية للحصول على نفس النتيجة السابقة >> m1 = max(a, [], 1)m1 = 7 8 9 لايجاد قيمة العنصر الاكبر لكل صف كل على حدة في المصفوفة (a,[],2) >> m2=max(a,[],2) $m^2 =$ 3 6 9 لايجاد قيمة العنصر الاكبر لجميع عناصر المصفوفة >> m3=max(max(a))m3 =9 or طريقة ثانية للحصول على نفس النتيجة السابقة >> m3=max(a(:))m3 =9 14- ايجاد العنصر الاصغر في المصفوفة :-تستخدم الدالة min (وهي اختصار لكلمة minimum) في ايجاد العنصر الاصغر لكل عمود من اعمدة المصفوفة كل على حدة بحيث يكون الناتج متجه صفي (فيه الرقم الاصغر من كل عمود) لاحظ الامثلة التالبة: >> a=[1 2 3;4 5 6;7 8 9] a = 2 1 3 4 5 6 7 8 9 لإبجاد قيمة العنصر الاصغر لكل عمود كل على حدة في >> n1=min(a)

المصفوفة n1 = 1 1

2 3

or

الثانية	المرحلة			قسم علوم الجو		مختبر البرمجة والتحليل العددي	
>> n1 = السابقة	=min	(a,[],	,1)		، نفس النتيجة	طريقة ثانية للحصول على	
n1 =							
1	2	3					
>> n2=	=min	(a,[],	,2)	على حدة في	مىغر لكل صف كل ـ	لايجاد قيمة العنصر الام	
مصفوفة	الہ						
n2 =							
1							
4							
1	•	<i>.</i> .	$\langle \cdot, \rangle \rangle$	7: :	ti 1:- t	· N11 · 11 · · · 1 N1	
>> n3:	=min	(min	(a))	ليقوفه	لجميع عناصر المط	لأيجاد فيمه العنصن الأصنعر	
$n_3 = 1$							
1 or							
$\sim n/1$	-min	$(a(\cdot))$)		فس الزرجة السارقة	طريقة ثانية الحصول علين	
n4 =	-111111	(a(.))			ـرپ ـپ ـپ	
1							
-						المصفوفات الخاصة :	
اوي	ف مسا	لصفوه	کون فیہا عدد ا	مصفوفة التي يذ	Square:- وهى ال	1. المصفوفة المربعة Matrix	1
•				-		لعدد الاعمدة .	
>> a=	[1 2 3	3;4 5	6;7 8 9]				
a =							
1	2	3					
4	5	6					
7	8	9					
، اصفار	ہا علی	ناصر	ي جميع قيم عا	فوفة التي تحتو	<u>Zero</u> :- و هي المص	أ. المصفوفة الصفريةMatrix	2
				تالية :	zeros 2 بالصيغة ال	ويمكن انشاؤها باستخدام الدالة	
z=zero	os(m,	n) (or z=zeros([m n])			
. n	1	1.0	• (الأعمدة .	د الصفوف ، n عدد \cdot	حيت z اسم المصفوفه ،m عد	
الصيغه	بخدام	حن اس	د الأعمدة) فيم	وف يساوي عد ر :	به مربعه (عدد الصفو	للحصول على مصفوفة صفري	
	$\sim (2)$	4)		لبه :-	ضحه في الامتلة التا	الدالية (z=zeros(n ، والمو	
>>zero	US(3,4	+)					
ans = 0	0	0	0				
0	0	0	0				
0	0	0	0				
U	U	0	0				

Ş

المرحلة الثانية قسم علوم الجو مختبر البرمجة والتحليل العددي >>zeros(3) ans =0 0 0 0 0 0 0 0 0 3. المصفوفة الاحادية Ones Matrix: وهي المصفوفة التي تحتوي جميع قيم عناصر ها على الواحد الصحيح ، ويمكن انشاؤها باستخدام الدالة ones كما مبين ادناه : O=ones(m,n) or O=ones([m n])حيث O اسم المصفوفة ، m عدد الصفوف ، n عدد الاعمدة . اذا اردنا الحصول على مصفوفة احادية مربعة (عدد الصفوف يساوى عدد الاعمدة) فيمكن استخدام الصيغة التالية (O=ones(n) ، والموضحة في الامثلة التالية :->>ones(3,4) ans =1 1 1 1 1 1 1 1 1 1 1 1 >>ones(2)ans =1 1 1 1 4. المصفوفة المحايدة Identity Matrix :- وهي مصفوفة تتكون من القيم 0 , 1 والرقم واحد يمثل جميع عناصر القطر الرئيسي لها ، اما باقي عناصرها الاخرى اصفار ، ولانشاء هذا النوع من المصفوفات نستخدم الدالة eve e=eye(m,n) or e=eye([m n]) حيث e اسم المصفوفة ،m عدد الصفوف ، n عدد الاعمدة . اذا اردنا الحصول على مصفوفة محايدة مربعة (عدد الصفوف يساوي عدد الاعمدة) فيمكن استخدام الصيغة التالية (e=eye(n) ، والموضحة في الامثلة التالية :->>eye(2,3) ans =1 0 0 1 0 0 >>eye(2) ans =0 1

0 1

Ţ

5. مصفوفة القيم العشوائية Random Matrix: وهي مصفوفة قيم عناصرها عشوائية ويمكن انشاؤها باستخدام الدالة rand وتكون قيم عناصر ها محصورة بين 1,0من القيم العشرية كما في المثال التالي : r=rand(m,n) or r=rand([m n]) حيث r اسم المصفوفة ، m عدد الصفوف ، n عدد الاعمدة . اذا اردنا الحصول على مصفوفة عشوائية مربعة (عدد الصفوف يساوى عدد الاعمدة) فيمكن استخدام الصيغة التالية (r=rand(n ، والموضحة في الامثلة التالية :->>rand(2,3) ans =0.8913 0.4565 0.8214 0.7621 0.0185 0.4447 >>rand(2) ans =0.6154 0.9218 0.7919 0.7382 6. المصفوفة السحرية Magic Matrix: وتستخدم لانتاج مصفوفة مربعة بشكل عشوائي ، ومن ميز اتها ان مجموع قيم عناصر كل صف يساوى مجمو عقيم عناصر كل عمود ويساوى مجموع عناصر القطر الرئيسي وتكون قيمها محصورة بين الواحد الصحيح وبين مربع طول المصفوفة كما في الصيغة التالية:

M=magic(n)

حيث M اسم المصفوفة ، m عدد الصفوف ، n عدد الاعمدة .

>> M=magic(3) M = 8 1 6 3 5 7

4 9 2

العمليات الرياضية الإساسية على المصفوفات

قبل البدء في اجراء عمليات (جمع ،ضرب،طرح،قسمة) وبعض العمليات الاخرى بين مصفوفتين عدديتين يشترط برنامج MATLAB ان يكون للمصفوفتين نفس عدد الصفوف m ونفس عدد الاعمدة n او ان يكون احدهما قيمة عددية مفردة scalar علما ان ناتج العملية بين المصفوفتين سيكون عبارة عن مصفوفة لها نفس الابعاد (m*n) . لاحظ العمليات التي ستجرى على المصفوفتان A,B

>> A=[2 4;6 8;10 12] >> B=[1 3;5 7;9 11]

A =		B =	
2	4	1	3
6	8	5	7
10	12	9	11

>> D=
$$[2 4 6 8 10]$$

D =
 $2 4 6 8 10$
>> E= $[1 3 5 7 9]$
E =

1 3 5 7 9

عملية الجمع والطرح للمصفوفات والمتجهات: -

نتم عملية الجمع بجمع العنصر في الصف الاول من العمود الاول للمصفوفة A مع ما يناظره في المصفوفة B ثم العنصر في الصف الاول من العمود الثاني للمصفوفة A مع مع ما يناظره للمصفوفة B و هكذا لبقية الصفوف . اما جمع المتجهات فانها تتم بجمع العنصر الاول للمصفوفة D مع ما يناظره في المصفوفة E و هكذا بقية الصفوفة . وكذلك لعملية الطرح .

>> C=A+B	>> C=A-B
C =	C =
3 7	1 1
11 15	
19 23	
>> F=D+E	>> F=D-E
F =	F =
3 7 11 15 19	1 1 1 1 1

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
، عنصر من عناصر	عدد ومصفوفة فستكون بين ذلك العدد وكل	اما اذا كانت عملية الجمع او الطرح بين . المصفوفة ، لاحظ الامثلة التالية :
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6;3 5 7;4 9 2]	
>>p = 9 * b + 3 $P=$ $75 12 30 48 39 84 c = b - 3 , >> b = [8 1 6 3 5 7 4 9 2 >> c = b - 3 c = 5 -2 3 0 2 4 1 6 -1 >> a = b + c a = 13 -1 9$	P = 9 * b + 3 57 66 21 b = $\begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix}$ 5 ; 3 5 7 ; 4 9 2] 5 ; 3 5 7 ; 4 9 2]	مثال/ جد ناتج المعادلة التالية : *(يجب مراعاة اسبقية العمليات) مثال/ جد ناتج جمع المصفوفتين d و c

Ş

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	b * 8 اذا کان	$\mathbf{a}=2*\mathbf{c}$ مثال/ جد ناتج المعادلة التالية $2*\mathbf{c}=2$
$b = \begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix}$	$\begin{bmatrix} 5 \\ 7 \\ 2 \end{bmatrix}$, c = b - 3	
>>b =[816;35	57;492]	
b =		
8 1 6		
3 5 7		
4 9 2		
>> c = b - 3		
c =		
5 -2 3		
0 2 4		
1 6 -1		
>> 3 * b - 2 * c		
ans =		
14 7 12		
9 11 13		
10 15 8		

2. ضرب المصفوفات والمتجهات

 $leV: \frac{dv(p)}{dv(p)} lb = \frac{1}{2}$. Tra and the function of the functing the functing the function of the function of the fun

Ŷ	المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي	
	8 1 6			
	3 5 7			
	4 9 2			
	>> c.*b			
	ans =			
	40 -2 18			
	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$			
	4 54 -2			
W /	>> w=2.*C			
vv	- 10 -4 6			
	0 4 8			
	2 12 -2			
	هو ان بکون عدد اعمدة	سرب مصفوفتين ،فشرط ضربهما	B) الطريقة الثانية :-عند اجراء عملية ض	
	ب بضرب عناصر السطر	صفوفة الثانية ، وتتم عملية الضرير	المصفوفة الاولى مساوي لعدد صفوف الم	
	مع الجمع لينتج العنصر	العمود الأول من المصفوفة الثانية	الأول من المصفوفة الأولى مع عناصر	
	بال بالنسبة لبقيه العناصر) من المصفوفة الجديدة وكذلك الح	الأول (في الصف الأول والعمود الأول	
			الاحرى لاحط السحل التالي : لنفر جنب ان م م م مم فدفتان	
	Г <i>a</i> 11 <i>a</i> 12 <i>a</i> 1	-	يتعرض <i>ان ۾</i> ون مصعوفان . h ₁₂ 1	
	$a = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$	$\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$	$\begin{bmatrix} b_{13} \\ b_{23} \end{bmatrix}$	
	$\begin{bmatrix} a_{31} & a_{32} & a_{33} \end{bmatrix}$	$\begin{bmatrix} b_{31} & b_{32} \end{bmatrix}$	b_{33}	
		. 7	فان مام أرمن من من النت المم ف فة التلا	
		~	فال كاصل صربهما يتلج المصفوفة التالي	
	a * b =	la tha the	the set of the set	h la sh
	$a_{11} * b_{11} + a_{12} * b_{21} + a_{21} * b_{21} + a_{22} + a$	$+ a_{13} * b_{31} + a_{11} * b_{12} + a_{12} +$		$b_{23} + a_{13} * b_{33}$ $b_{23} + a_{23} * b_{33}$
	$a_{31} * b_{11} + a_{32} * b_{21}$	$+ a_{33} * b_{31} a_{31} * b_{12} + a_{32}$	$* b_{22} + a_{33} * b_{32} a_{31} * b_{13} + a_{32} * $	$b_{23}^2 + a_{33}^2 * b_{33}^3$
			a an ti ti shika	
		a*	متال / جد حاصل ضرب المصفوفتين b	
	<i>a</i> =	$\begin{bmatrix} 5 & -2 & 3 \\ 0 & 2 & 4 \end{bmatrix}$ b	$= \begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \end{bmatrix}$	
	ű	$\begin{bmatrix} 0 & 2 & 1 \\ 1 & 6 & -1 \end{bmatrix}$		
	>> a=[5 -2 3;0]	2 4;1 6 -1]		
	a =			
	5 -2 3			
		80		

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
0 2 4		
1 6 -1		
>> b=[8 1 6;3	5 7; 4 9 2]	
b =		
8 1 6		
3 5 7		
4 9 2		
>>a * b		
ans =		
46 22 22		
22 46 22		
22 22 46		
. ان يكون لهما نفس عدد	تحه صفي باخر عمودي بشتر ط	R) الطريقة الثانية :- في حالة ضرب م
، ان يكون لهما نفس عدد ثاني و هكذا لبقية العناصر x=[1 3 5 7 9] <<	تجه صفي باخر عمودي يشترط جه الاول بالعنصر الاول للمتجه ال الامثلة التالية :-	B) الطريقة الثانية :- في حالة ضرب م العناصر ، ويتم ضرب العنصر الاول للمت ثم ايجاد مجموع حاصل الضرب ،كما في
ان يكون لهما نفس عدد ثاني و هكذا لبقية العناصر x = [1 3 5 7 9] x =	تجه صفي باخر عمودي يشترط جه الاول بالعنصر الاول للمتجه ال الامثلة التالية :-	(B) <u>الطريقة الثانية</u> :- في حالة ضرب م العناصر ، ويتم ضرب العنصر الاول للمت ثم ايجاد مجموع حاصل الضرب ،كما في
ان يكون لهما نفس عدد ثاني و هكذا لبقية العناصر x = 1 3 5 7 1 3 5 7	تجه صفي باخر عمودي يشترط جه الاول بالعنصر الاول للمتجه ال الامثلة التالية :- 9	B) الطريقة الثانية :- في حالة ضرب م العناصر ، ويتم ضرب العنصر الاول للمد ثم ايجاد مجموع حاصل الضرب ،كما في
ان يكون لهما نفس عدد ثاني و هكذا لبقية العناصر x = 1 3 5 7 y=[2 4 6 8 10]	تجه صفي باخر عمودي يشترط جه الاول بالعنصر الاول للمتجه ال الامثلة التالية :- 9	B) <u>الطريقة الثانية</u> :- في حالة ضرب م العناصر ، ويتم ضرب العنصر الاول للمد ثم ايجاد مجموع حاصل الضرب ،كما في
ان يكون لهما نفس عدد ثاني و هكذا لبقية العناصر x = 1 3 5 7 >> y=[2 4 6 8 10] y =	تجه صفي باخر عمودي يشترط جه الاول بالعنصر الاول للمتجه ال الامثلة التالية :-	B) <u>الطريقة الثانية</u> :- في حالة ضرب م العناصر ، ويتم ضرب العنصر الاول للمت ثم ايجاد مجموع حاصل الضرب ،كما في
ان يكون لهما نفس عدد ثاني و هكذا لبقية العناصر x = 1 3 5 7 >> y=[2 4 6 8 10] y = 2 4 6 8	تجه صفي باخر عمودي يشترط جه الاول بالعنصر الاول للمتجه ال الامثلة التالية :- 9	B) <u>الطريقة الثانية</u> :- في حالة ضرب م العناصر ، ويتم ضرب العنصر الاول للمت ثم ايجاد مجموع حاصل الضرب ،كما في
ان يكون لهما نفس عدد ثاني و هكذا لبقية العناصر x = 1 3 5 7 >> y=[2 4 6 8 10] y = 2 4 6 8 >> z=x.*y	تجه صفي باخر عمودي يشترط جه الاول بالعنصر الاول للمتجه ال الامثلة التالية :- 9	(B) <u>الطريقة الثانية</u> :- في حالة ضرب م العناصر ، ويتم ضرب العنصر الاول للمت ثم ايجاد مجموع حاصل الضرب ،كما في
ان يكون لهما نفس عدد ثاني و هكذا لبقية العناصر x = 1 3 5 7 >> y=[2 4 6 8 10] y = 2 4 6 8 >> z=x.*y z =	تجه صفي باخر عمودي يشترط جه الاول بالعنصر الاول للمتجه ال الامثلة التالية :- 9	(B) <u>الطريقة الثانية</u> :- في حالة ضرب م العناصر ، ويتم ضرب العنصر الاول للمت ثم ايجاد مجموع حاصل الضرب ،كما في
ان يكون لهما نفس عدد ثاني و هكذا لبقية العناصر >> x=[1 3 5 7 9] x = 1 3 5 7 >> y=[2 4 6 8 10] y = 2 4 6 8 >> z=x.*y z = 2 12 30 56	تجه صفي باخر عمودي يشترط جه الاول بالعنصر الاول للمتجه ال الامثلة التالية :- 10	(B) <u>الطريقة الثانية</u> :- في حالة ضرب م العناصر ، ويتم ضرب العنصر الاول للمت ثم ايجاد مجموع حاصل الضرب ،كما في
ان يكون لهما نفس عدد ثاني و هكذا لبقية العناصر >> x=[1 3 5 7 9] x = 1 3 5 7 >> y=[2 4 6 8 10] y = 2 4 6 8 >> z=x.*y z = 2 12 30 56 >> x=[1 3 5 7 9]	تجه صفي باخر عمودي يشترط جه الاول بالعنصر الاول للمتجه ال الامثلة التالية :- 10	(B) <u>الطريقة الثانية</u> :- في حالة ضرب م العناصر ، ويتم ضرب العنصر الاول للمت ثم ايجاد مجموع حاصل الضرب ،كما في
ان يكون لهما نفس عدد ثاني و هكذا لبقية العناصر x = 1 3 5 7 >> y=[2 4 6 8 10] y = 2 4 6 8 >> z=x.*y z = 2 12 30 56 >> x=[1 3 5 7 9] x =	تجه صفي باخر عمودي يشترط جه الاول بالعنصر الاول للمتجه ال الامثلة التالية :- 10	(B) <u>الطريقة الثانية</u> :- في حالة ضرب م العناصر ، ويتم ضرب العنصر الاول للمت ثم ايجاد مجموع حاصل الضرب ،كما في
 ان يكون لهما نفس عدد ثاني و هكذا لبقية العناصر x = [1 3 5 7 9] x = [1 3 5 7 x = [2 4 6 8 10] y = [2 4 6 8 y = [2 4 6 8 x = [1 3 5 7 9] x = [1 3 5 7 	تجه صفي باخر عمودي يشترط جه الاول بالعنصر الاول للمتجه ال الامثلة التالية :- 10 90	(B) <u>الطريقة الثانية</u> :- في حالة ضرب م العناصر ، ويتم ضرب العنصر الاول للمت ثم ايجاد مجموع حاصل الضرب ،كما في
 ان يكون لهما نفس عدد ثاني و هكذا لبقية العناصر x = [1 3 5 7 9] x = 1 3 5 7 y = [2 4 6 8 10] y = 2 4 6 8 > z = x.*y z = 12 30 56 > x = [1 3 5 7 9] x = 1 3 5 7 > y = [2 ; 4; 6; 8; 10] 	تجه صفي باخر عمودي يشترط جه الاول بالعنصر الاول للمتجه ال الامثلة التالية :- 90 90	(B) <u>الطريقة الثانية</u> :- في حالة ضرب م العناصر ، ويتم ضرب العنصر الاول للمت ثم ايجاد مجموع حاصل الضرب ،كما في
ان يكون لهما نفس عدد ثاني و هكذا لبقية العناصر x = 1 3 5 7 9] x = 2 4 6 8 10] y = 2 4 6 8 >> z=x.*y z = 2 12 30 56 >> x=[1 3 5 7 9] x = 1 3 5 7 >> y=[2 ; 4; 6; 8; 10] y =	تجه صفي باخر عمودي يشترط جه الاول بالعنصر الاول للمتجه ال الامثلة التالية :- 90 90 0	(B) <u>الطريقة الثانية</u> :- في حالة ضرب م العناصر ، ويتم ضرب العنصر الاول للمت ثم ايجاد مجموع حاصل الضرب ،كما في
ان يكون لهما نفس عدد ثاني و هكذا لبقية العناصر $x = [1 \ 3 \ 5 \ 7 \ 9]$ $x = [1 \ 3 \ 5 \ 7 \ 9]$ $y = [2 \ 4 \ 6 \ 8 \ 10]$ $y = [2 \ 4 \ 6 \ 8]$ > z = x.*y $z = [1 \ 3 \ 5 \ 7 \ 9]$ $x = [1 \ 3 \ 5 \ 7 \ 9]$ $x = [1 \ 3 \ 5 \ 7 \ 9]$ $x = [1 \ 3 \ 5 \ 7 \ 9]$ $x = [2 \ 4 \ 6 \ 8]$ $> x = [1 \ 3 \ 5 \ 7 \ 9]$ $x = [2 \ 12 \ 30 \ 56]$ $> y = [2 \ 3 \ 5 \ 7 \ 9]$ $x = [2 \ 12 \ 3 \ 5 \ 7 \ 9]$ $x = [2 \ 12 \ 3 \ 5 \ 7 \ 9]$ $x = [2 \ 12 \ 3 \ 5 \ 7 \ 9]$ $x = [2 \ 12 \ 3 \ 5 \ 7 \ 9]$ $y = [2 \ 7 \ 4 \ 6 \ 8 \ 7 \ 9]$	تجه صفي باخر عمودي يشترط جه الاول بالعنصر الاول للمتجه ال الامثلة التالية :- 90 90 [0	(B) <u>الطريقة الثانية</u> :- في حالة ضرب م العناصر ، ويتم ضرب العنصر الاول للمت ثم ايجاد مجموع حاصل الضرب ،كما في

Ş

1	44	2
٩		Ľ,

Ţ

6 8 10 >> z = x * yz = 190 ثالثا: ضرب كل عنصر من عناصر المصفوفة في نفسه :-اذا كانت x تمثل مصفوفة ابعادها 3x4 ، لايجاد حاصل ضرب كل عنصر في نفسه يكون بالشكل التالي :- $>>x=[8 \ 1 \ 6 \ 1;3 \ 5 \ 7 \ 5;4 \ 9 \ 2 \ 6]$ $\mathbf{x} =$ 1 6 1 8 3 5 7 5 4 9 2 6 >> x.^2 ans =1 36 1 64 9 25 49 25 16 81 4 36 ملاحظة:-لا يمكن استخدام x^2 اي رفع المصفوفة في المثال اعلاه لان عدد عناصر الصفوف لا يساوي عدد عناصر الاعمدة ، وتستخدم x. بدلا من x، اما اذا كانت المصفوفة متساوية في عدد الصفوف والاعمدة فيمكن استخدام x^2 من دون اضافة النقطة مع ملاحظة طريقة الضرب بدون استخدام اله (.) Dot لاحظ المثال التالى : >> x=[8 1 6;3 5 7;4 9 2] $\mathbf{x} =$ 8 1 6 3 5 7 4 9 2 >>x^2 ans =91 67 67

67 91 67 67 67 91

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
	قسمة المصفوفات والمتجهات	-3
ا قيمة عددية مفردة scalar	کانتا مربعیتن او ان تکون احداهم	يمكن اجراء القسمة بين مصفوفتين اذا
، اليمين ،كما يمكن استخدام	لاجراء عملية القسمة من اليسار ال	، ويكون ذلك باستخدام (" \ ") slash
قام على البسط) .	مة من اليمين الى اليسار (قسمة المف	backslash ("/") لاجراء عملية القس
ذلك باستخدام النقطة (.) Dot	، کل عنصر مع ما یقابله : ویکون ه	<u>A</u>) قسمة عناصر مصفوفتين مباشرة
>> a=[4 6 ;8 10]		
a =		
4 6		
8 10		
>> b=[2 3;4 5]		
D = 2 - 3		
2 5 4 5		
>> c = a. / b		
c =		
2 2		
2 2		
رب المصفوفة c في مقلوب	قسمة المصفوفة c على b تمثل ضر	<u>B) قسمة مصفوفة على اخرى</u> : مثلا
واحدة . (لاحظ عدم استخدام	ة واحدة على المصفوفة b كوحدة و	b وتتم عملية قسمة المصفوفة a كوحد
		النقطة (.)
>> $c = a / b$		
c =		
2 0		
0 2		
	قسمة المتجهات	
د العناصر او تکون احداهما	ن يكون المتجهين متساويين في عد	لاجراء عملية قسمة المتجهات ، يجب ا
		ذات قيمة عددية مفردة .
مثال التالي :-	ستخدام النقطة (.) dot، لاحظ ال	A)قسمة عنصر على عنصر : وتتم بال
>> a=[1 2 3 4]		
a =		
$1 \ 2 \ 3 \ 4$		
>> 0=[2 4 0 8]		

Ş

المرحلة الثانية	قسم علوم الجو	مختبر البرمجة والتحليل العددي
b =		
2 4 6	5 8	
ب المتجه c في مقلوب b	اخر كوحدة واحدة :- تمثل ضر	B) قسمة متجه كوحدة واحدة على متجه
-:	م النقطة dot ، لاحظ المثال التالي	وجمع كل قيمة الضرب وتتم بدون استخداه
>> c=b/a		
c =		
2.0000		

P

Exercise (A)

Q1) Use MATLAB code to evaluate the following functions for x from 1 to 2 in steps of 0.1

1. $y = x^{3}+3x^{2}+1$ 2. $y = \sin x^{2}$ 3. $y = (\sin x)^{2}$ 4. $y = \sin 2x + x \cos 4x$ sol. x = 1 : 0.1 : 2% part 1 $y = x.^{3} + 3*x.^{2} + 1;$ % part 2 $y = \sin (x.^{2});$ % part 3 $y = (\sin (x)).^{2};$ % part 4 $y = \sin (2*x) + x. * \cos (4 * x);$

Q2) The following code is supposed to evaluate the function :

$$f(x) = \frac{x^2 \cos \pi x}{(x^2+1)(x+2)}$$

for x \in [0, 1] (using 200 steps). Correct the code :-
x = linspace (0,1);
clear all
g = x^3+1;
H = x + 2;
z = x.^2;
y = cos xpi;
f = y*z/g*h
clear all
x = linspace (0,1,200);
g = x.^3+1;

h = x+2; z = x. ^2; y = cos (x*pi); f = y.*z./(g.*h);

Q3) Write MATLAB program to find the minimum element in matrix a(4,2). <u>Solution</u> clc ; clear; close all;

a = input ('the matrix'); min=a(1,1);for i = 1:4for j = 1:2if $a(i, j) \le \min$ min=a(i, j);end end end disp(min); Q4) Suppose a and b are defined as follows : a = [2 -1 5 0]; $b = [3 \ 2 \ -1 \ 4];$ Evaluate by hand the vector c in the following statements : a. c = a - b; b. c = b + a - 3; c. $c = 2 * a + a ^{b};$ d. c = b . / a; e. $c = b \cdot a;$ solution c = a - bc = -1 -3 6 -4 c = b + a - 3c = 2 -2 1 1 $c = 2 * a + a. ^ b$ c = 12.0000 - 1.000010.2000 0 $c = b \cdot / a$ c = 1.5000 - 2.0000 - 0.2000inf $c = b \cdot a$ c = 0.6667 - 0.5000 - 5.00000

Q5) Write MATLAB program to calculate the following sum

$$\sum_{i=1}^{N} \frac{1}{i} + \frac{1}{(i+2)(i+3)}$$

Solution

$$\begin{split} N &= input (`Enter N `); \\ sum &= 0; \\ for I &= 1 : N \\ sum &= sum + 1/j + 1/((j+2)*(j+3)); \\ end \end{split}$$

a | b

ans =

1

1 1

87

Exercise (B)

Q1) Set up a vector n with elements 1, 2, 3, 4, 5. Use MATLAB array operations on the vector n to set up the following four vectors, each with five elements :

a. 2, 4, 6, 8, 10 b. 1/2, 1, 3/2, 2, 5/2 c. 1, 1/2, 1/3, 1/4, 1/5 d. $1, 1/2^2, 1/3^2, 1/4^2, 1/5^2$ Solution $n = [1 \ 2 \ 3 \ 4 \ 5]$ m = n . * 2m = 24 6 8 10 m = n. / 2m = 0.50001.0000 1.5000 2.0000 2.5000 m = 1. / nm = 1.00000.5000 0.3333 0.2500 0.2000 $m = 1. / n.^{2}$ 0.2500 0.1111 m = 1.00000.0625 0.0400 Q2) Determined the output of the following program : Clear all a = input (' please enter a '); b = input (' please enter b '); c = input (' please enter c '); v1 = a + b + c; v2 = a / ((b + c) * (c + a));v3 = a / (b * c);disp ([' a + b + c = ' num2str (v1)]) disp (['v2 = 'num2str(v2)]) disp (['v3 = 'num2str(v3)]) solution please enter a 2 please enter b 1 please enter c 3 a + b + c = 6v2 = 0.1v3 = 0.66667Q3) Given that $a = \begin{bmatrix} 1 & 0 & 2 \end{bmatrix}$ and $b = \begin{bmatrix} 0 & 2 & 2 \end{bmatrix}$ determine the values of the following expressions . Check your answers with MATLAB . $(a) a \sim = b$ (b) a < b(c) a < b < a(d) a < b < bSolution

 $a = \begin{bmatrix} 1 & 0 & 2 \end{bmatrix};$ $b = \begin{bmatrix} 0 & 2 & 2 \end{bmatrix};$ $a \sim = b$ $ans = 1 \quad 1 \quad 0$ a < b $ans = 0 \quad 1 \quad 0$ a < b < a $ans = 1 \quad 0 \quad 1$ a < b < b $ans = 0 \quad 1 \quad 1$

Q4) Write some MATLAB statements on the command line which use logical vectors to count how many elements of a vector x are negative (-ve), zero or positive (+ve) . check that they work , e.g. with the vector :

Solution $a = [-4 \ 0 \ 5 \ -3 \ 0 \ 3 \ 7 \ -1 \ 6];$ $[i \ j] = find (a < 0)$ i = رقم السطر 1 1 1 رقم العمود 🔶 j = 1 4 8 $[i \ j] = find (a = = 0)$ i = 1 1 j = 2 5 $[i \ j] = find(a > 0)$ i = 1 1 1 1 j = 3 6 7 9

ملاحظة :- يستخدم الامر find لايجاد موقع (index) من عناصر المصفوفة . Q5) Write MATLAB program to calculate the following sum :

$$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \cdots$$

Solution

clc ; clear ; close all; x = input (' enter the value of x :'); n = input (' enter end of series n = '); sign = -1 ; ÿ

sum = 0; for i = 1 : 2 : n sign = - sign; % sign = sign * -1 sum = sum + sign * x ^ n / n; end disp (sum);

Q6) Translate the following expressions into MATLAB : $P + \frac{w}{u}$ $P + \frac{w}{u+v}$

 $P + \frac{\overline{u+v}}{\frac{w}{u-v}}$ <u>Solution</u>

$$(a) p + w / u (b) p + w / (u + v) (c) (p + w / (u + v)) / (p + w / (u - v))$$

Exercise (C) Q1) Work out the result of the following expressions :-T1 = [1 1; 0 1]; T2 = [1 0; 0 0];T = T1 & T2T = T1 | T2 $T = \sim T1$ Solution $T1 = [1 \ 1 \ ; 0 \ 1];$ $T2 = [1 \ 0 ; 0 \ 0];$ T = T1 & T2 gives the matrix $T1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ T = T1 | T2gives the matrix $T = [1 \ 1; 0]$ 1] $T = \sim T1$ gives the matrix $T = [0 \ 0; 1]$ 01

Q2) Write a short MATLAB program to input an integer n and build a n by n matrix with the numbers 1, 2,.... N on the main diagonal and zeros everywhere else .

Solution

```
clc; clear; close all;
      n = input ( ' integer number :' );
      A = zeroe(n, n);
for i = 1:n
      for j = 1 : n
             if i = = j
                    A(i, j) = n;
             end
      end
end
disp(A);
Q3) The following code is supposed to evaluate the values :-
                а
a+b+c, \frac{a}{(b+c)(c+a)}, \frac{a}{bc}
                                  corrected the cod.
a = input ( please enter a );
b = input ( please enter b );
```

```
c = input ( please enter c );

v1 = a b c;

v2 = a / (b + c) (c + a);

v3 = a / b c;

clear all

disp (['a + b + c = 'num2str(v3)])

disp (['v2 = 'num2str(v1)])

disp (['v3 = 'num2str(v2)])
```

clear all a = input (`please enter a'); b = input (`please enter b'); c = input (`please enter c'); v1 = a + b + c; v2 = a / ((b + c) * (c + a)); v3 = a / (b * c); disp ([`a + b + c = `num2str(v1)]) disp ([`v2 = `num2str(v2)])disp ([`v3 = `num2str(v3)])

Q4) Explore the use of the function round, ceil, floor and fix for the values x = 0.3, x = 0.5, x = 1.65 and x = -1.34 Solution x = [0.3, 0.5, 1.65, -1.34];y = round(x) $\mathbf{y} = \mathbf{0}$ -1 1 2 y = ceil(x)-1 $\mathbf{y} = 1$ 1 2 y = floor(x)-2 $\mathbf{y} = \mathbf{0}$ 0 1 y = fix(x) $\mathbf{y} = \mathbf{0}$ 0 1 -1 Q5) Work out by hand the output of the following script :s = 1 : 6;t = 6 : -1 : 1;solution $s = [1 \ 2 \ 3 \ 4 \ 5 \ 6];$ t = [6 5 4 3 2 1];7 7 7 7 s + t = 77 3 5 s - t = -5-3 -1 1 s. * t = 610 12 12 10 6 0.4000 6.000 s. / t = 0.16670.7500 1.3333 2.5000 s.^ t = 1 32 81 64 25 6 1./s = 1.00000.5000 0.3333 0.2500 0.2000 0.1667 2.0000 2.5000 3.0000 s/2 = 0.50001.0000 1.5000 s + 2 = 34 5 6 7 8

Q6) Determine all integer n between 1 and 50 for which $n^3 - n^2 + 40$ is greater than 1000 and n is not divided by 3. Solution

Clear all;

المرحلة الثانية	جو	قسم علوم ال	ة والتحليل العددي	مختبر البرمج
n = 1 : 50 ; x = find (((n x =	$.^{3} - n.^{2} + 4$	0) > 100) & (m	nod (n ,3) ~ = 0))	
Colum	ns 1 through 1.	3		
5	7 8 10 11	13 14 16	17 19 20 22	23
Colum	ns 14 through 2	26		
25	26 28 29 3	31 32 34 35	5 37 38 40 41	43
Colum	ns 27 through (31		
44 46 4´	7 49 50			

Q7) Write a script, which inputs any two numbers (which may be equal), and displays the larger one with a suitable message, or if they are equal, displays a message to that effect.

Solution