
ARTIFICIAL INTELLIGENCE

SOLVING PROBLEMS BY

SEARCHING
Chapter 3

1

PROBLEM SOLVING

We want:

 To automatically solve a problem

We need:

 A representation of the problem

 Algorithms that use some strategy to solve the problem defined in that

representation

2

PROBLEM REPRESENTATION

General:

– State space: a problem is divided into a set of resolution steps from the

initial state to the goal state

– Reduction to sub-problems: a problem is arranged into a hierarchy of sub-

problems

Specific:

 Game resolution

 Constraints satisfaction

3

STATE SPACE SEARCH

4

• Many problems in AI take the form of state-space search.

• The states might be legal board configurations in a game, towns and

cities in some sort of route map, collections of mathematical

propositions, etc.

• The state-space is the configuration of the possible states and how

they connect to each other e.g. the legal moves between states.

• When we don't have an algorithm which tells us definitively how to

negotiate the state-space we need to search the state-space to find

an optimal path from a start state to a goal state.

• We can only decide what to do (or where to go), by considering the

possible moves from the current state, and trying to look ahead as far

as possible. Chess, for example, is a very difficult state-space search

problem.

STATES

• A problem is defined by its elements and their relations.

• In each instant of the resolution of a problem, those elements
have specific descriptors (How to select them?) and relations.

• A state is a representation of those elements in a given
moment.

• Two special states are defined:

– Initial state (starting point)

–Final state (goal state)

5

STATE SPACE

• The state space is the set of all states reachable

from the initial state.

• It forms a graph (or map) in which the nodes are

states and the arcs between nodes are actions.

• A path in the state space is a sequence of states

connected by a sequence of actions.

• The solution of the problem is part of the map

formed by the state space.

6

PROBLEM SOLUTION

• A solution in the state space is a path from the initial state to a
goal state or, sometimes, just a goal state.

• Path/solution cost: function that assigns a numeric cost to
each path, the cost of applying the operators to the states

• Solution quality is measured by the path cost function, and an
optimal solution has the lowest path cost among all solutions.

• Solutions: any, an optimal one, all. Cost is important
depending on the problem and the type of solution sought.

7

PROBLEM DESCRIPTION

Components:
State space (explicitly or implicitly defined)
 Initial state
Goal state (or the conditions it has to fulfill)
Available actions (operators to change state)
Restrictions (e.g., cost)
Elements of the domain which are relevant to the

problem (e.g., incomplete knowledge of the
starting point)
Type of solution:

 Sequence of operators or goal state
 Any, an optimal one (cost definition needed), all

8

EXAMPLE: 8-PUZZLE

8

2 3

4

1

6

7

5

9

EXAMPLE: 8-PUZZLE

State space: configuration of the eight tiles on the board

Initial state: any configuration

Goal state: tiles in a specific order

Operators or actions: “blank moves”

 Condition: the move is within the board

 Transformation: blank moves Left, Right, Up, or Down

Solution: optimal sequence of operators

10

11

STRUCTURE OF THE STATE SPACE

Data structures:

 Trees: only one path to a given node

 Graphs: several paths to a given node

Operators: directed arcs between nodes

The search process explores the state space.

In the worst case all possible paths between the initial state and the goal state are
explored.

12

13

DIRECTED/UNDIRECTED GRAPH

14

TREE

• Trees are always rooted

• Loops can be found among states

15

SEARCH AS GOAL SATISFACTION

Satisfying a goal

 Agent knows what the goal is

 Agent cannot evaluate intermediate solutions (uninformed)

 The environment is:

 Static

 Discrete

 Observable

 Deterministic

16

EXAMPLE: HOLIDAY IN ROMANIA

• On holiday in Romania; currently in Arad

• Flight leaves tomorrow from Bucharest at

13:00

• Let’s configure this to be an AI problem

17

ROMANIA

What’s the problem?

Accomplish a goal

• Reach Bucharest by 13:00

• So this is a goal-based problem

18

ROMANIA

What qualifies as a solution?

You can/cannot reach Bucharest by 13:00

The actions one takes to travel from Arad to

Bucharest along the shortest (in time) path

19

ROMANIA

What additional information does one need?

 A map

20

A state space Which cities could you be in?

An initial state Which city do you start from?

A goal state
Which city do you aim to
reach?

A function defining state

transitions

When in city foo, the following
cities can be reached

A function defining the “cost”

of a state sequence

How long does it take to travel
through a city sequence?

MORE CONCRETE PROBLEM DEFINITION

21

MORE CONCRETE PROBLEM DEFINITION

A state space Choose a representation

An initial state
Choose an element from the
representation

A goal state
Create goal_function(state) such

that TRUE is returned upon reaching
goal

A function defining state

transitions

successor_function(statei) =

{<actiona, statea>, <actionb, stateb>,
…}

A function defining the “cost” of a

state sequence
cost (sequence) = number

22

IMPORTANT NOTES ABOUT THIS EXAMPLE

 Static environment (available states, successor function, and

cost functions don’t change)

 Observable (the agent knows where it is)

 Discrete (the actions are discrete)

 Deterministic (successor function is always the same)

23

TREE SEARCH ALGORITHMS

Basic idea:
Simulated exploration of

state space by

generating successors

of already explored

states (AKA expanding

states)

Sweep out from start (breadth)

24

TREE SEARCH ALGORITHMS

Basic idea:
Simulated
exploration of
state space by
generating
successors of
already explored
states (AKA
expanding states)

Go East, young man! (depth)

25

IMPLEMENTATION: GENERAL SEARCH

ALGORITHM

Algorithm General Search

 Open_states.insert (Initial_state)

 Current= Open_states.first()

 while not is_final?(Current) and not Open_states.empty?() do

 Open_states.delete_first()

 Closed_states.insert(Current)

 Successors= generate_successors(Current)

 Successors= process_repeated(Successors, Closed_states, Open_states)

 Open_states.insert(Successors)

 Current= Open_states.first()

 eWhile

eAlgorithm

26

EXAMPLE: ARAD  BUCHAREST

Algorithm General Search

 Open_states.insert (Initial_state)

Arad

27

Arad

EXAMPLE: ARAD  BUCHAREST

Current= Open_states.first()

28

Arad

Zerind (75) Timisoara (118) Sibiu (140)

EXAMPLE: ARAD  BUCHAREST

while not is_final?(Current) and not Open_states.empty?() do

 Open_states.delete_first()

 Closed_states.insert(Current)

 Successors= generate_successors(Current)

 Successors= process_repeated(Successors, Closed_states,

 Open_states)

 Open_states.insert(Successors)

29

Arad

Zerind (75) Timisoara (118) Sibiu (140)

EXAMPLE: ARAD  BUCHAREST

Current= Open_states.first()

30

Arad

Zerind (75) Timisoara (118) Sibiu (140)

Dradea (151) Faragas (99) Rimnicu Vilcea (80)

EXAMPLE: ARAD  BUCHAREST

while not is_final?(Current) and not Open_states.empty?() do

 Open_states.delete_first()

 Closed_states.insert(Current)

 Successors= generate_successors(Current)

 Successors= process_repeated(Successors, Closed_states,

 Open_states)

 Open_states.insert(Successors)

31

IMPLEMENTATION: STATES VS. NODES

State

 (Representation of) a physical configuration

Node

 Data structure constituting part of a search tree

 Includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!

32

SEARCH STRATEGIES

A strategy is defined by picking the order of node
expansion

Strategies are evaluated along the following dimensions:

Completeness – does it always find a solution if one
exists?

 Time complexity – number of nodes
generated/expanded

Space complexity – maximum nodes in memory

Optimality – does it always find a least-cost solution?

33

SEARCH STRATEGIES

Time and space complexity are measured in terms of:

b – maximum branching factor of the search tree
(may be infinite)

d – depth of the least-cost solution

m – maximum depth of the state space (may be
infinite)

Searching Algorithm
Uninformed search strategies (blind search)

Formed search strategies (Heuristic search)

34

UNINFORMED SEARCH STRATEGIES

Uninformed strategies use only the information available in the

problem definition

 Breadth-first search

 Depth-first search

 Backtracking search

 Iterative deepening search

35

NODES

Open nodes:

 Generated, but not yet explored

 Explored, but not yet expanded

Closed nodes:

 Explored and expanded

36 36

BREADTH-FIRST SEARCH

37

BREADTH-FIRST SEARCH

Expand shallowest unexpanded node

Implementation:

– A FIFO queue, i.e., new successors go at end

38

SPACE COST OF BFS

Because you must be able to generate the path upon finding the

goal state, all visited nodes must be stored O (bd+1)

39

PROPERTIES OF BREADTH-FIRST SEARCH

Complete?
 Yes (if b(max branch factor) is finite)

Time?

 1 + b + b2 + … + bd + b(bd-1) = O(bd+1), i.e., exponential in d

Space?

 O(bd+1) (keeps every node in memory)

Optimal?

 Only if cost = 1 per step, otherwise not optimal in general

Space is the big problem; it can easily generate nodes at 10

MB/s, so 24 hrs = 860GB!

40

DEPTH-FIRST SEARCH

41

DEPTH-FIRST SEARCH

Expand deepest unexpanded node

Implementation:

– A LIFO queue, i.e., a stack

42

DEPTH-FIRST SEARCH

• Complete?
– No: fails in infinite-depth spaces, spaces with loops.

– Can be modified to avoid repeated states along path 
complete in finite spaces

• Time?
– O(bm): terrible if m is much larger than d, but if solutions are

dense, may be much faster than breadth-first

• Space?
– O(bm), i.e., linear space!

• Optimal?
– No

43

BACKTRACK ALGORITHM

44

BACKTRACK ALGORITHM

• CS: current state

• SL: states list

• NSL: New states list (store children with old state)

• DE: dead end list

45

TREATMENT OF REPEATED STATES

Breadth-first:

 If the repeated state is in the structure of closed or open

nodes, the actual path has equal or greater depth than

the repeated state and can be forgotten.

46 46

TREATMENT OF REPEATED STATES

Depth-first:

 If the repeated state is in the structure of closed nodes, the

actual path is kept if its depth is less than the repeated

state.

 If the repeated state is in the structure of open nodes, the

actual path has always greater depth than the repeated

state and can be forgotten.

47 47

ITERATIVE DEEPENING SEARCH

48

ITERATIVE DEEPENING SEARCH

• The algorithm consists of iterative, depth-first searches, with a

maximum depth that increases at each iteration. Maximum

depth at the beginning is 1.

• Behavior similar to BFS, but without the spatial complexity.

• Only the actual path is kept in memory; nodes are

regenerated at each iteration.

• DFS problems related to infinite branches are avoided.

• To guarantee that the algorithm ends if there is no solution, a

general maximum depth of exploration can be defined.

49 49

ITERATIVE DEEPENING SEARCH

50

SUMMARY

All uninformed searching techniques are more alike

than different.

Breadth-first has space issues, and possibly

optimality issues.

Depth-first has time and optimality issues, and

possibly completeness issues.

Depth-limited search has optimality and

completeness issues.

 Iterative deepening is the best uninformed search

we have explored.

51

UNINFORMED VS. INFORMED

Blind (or uninformed) search algorithms:

 Solution cost is not taken into account.

Heuristic (or informed) search algorithms:

 A solution cost estimation is used to guide the search.

 The optimal solution, or even a solution, are not guaranteed.

52 52

END OF LECTURE 3

NEXT LECTURE: FORMAL SEARCHES (HEURISTIC SEARCH)

53

