
Programming in C#

 Inheritance and Polymorphism

C# Classes

 Classes are used to accomplish:

 Modularity: Scope for global (static) methods

 Blueprints for generating objects or instances:
 Per instance data and method signatures

 Classes support

 Data encapsulation - private data and

implementation.

 Inheritance - code reuse

Inheritance

 Inheritance allows a software developer to derive a
new class from an existing one.

 The existing class is called the parent, super, or base
class.

 The derived class is called a child or subclass.

 The child inherits characteristics of the parent.
 Methods and data defined for the parent class.

 The child has special rights to the parents methods
and data.
 Public access like any one else

 Protected access available only to child classes (and their
descendants).

 The child has its own unique behaviors and data.

Inheritance

 Inheritance
relationships are often
shown graphically in a
class diagram, with
the arrow pointing to
the parent class.

 Inheritance should
create an is-a
relationship, meaning
the child is a more
specific version of the
parent.

Animal

Bird

Examples: Base Classes and Derived Classes

Base c lass Derived c lasses

Student GraduateStudent

UndergraduateStudent

Shape Circle

Triangle

Rectangle

Loan CarLoan

HomeImprovementLoan
MortgageLoan

Employee FacultyMember
StaffMember

Account CheckingAccount

SavingsAccount

Declaring a Derived Class

 Define a new class DerivedClass which
extends BaseClass

 class BaseClass

 {

 // class contents

 }

 class DerivedClass : BaseClass

 {

 // class contents

 }

Controlling Inheritance

 A child class inherits the methods and data defined for
the parent class; however, whether a data or method
member of a parent class is accessible in the child
class depends on the visibility modifier of a member.

 Variables and methods declared with private visibility
are not accessible in the child class
 However, a private data member defined in the parent class is

still part of the state of a derived class.

 Variables and methods declared with public visibility
are accessible; but public variables violate our goal of
encapsulation

 There is a third visibility modifier that helps in
inheritance situations: protected.

+ public

- private

protected

The protected Modifier

 Variables and methods

declared with protected

visibility in a parent class

are only accessible by a

child class or any class

derived from that class

Book
pages : int

+ GetNumberOfPages() : void

Dictionary
- definition : int

+ PrintDefinitionMessage() : void

Single Inheritance

 Some languages, e.g., C++, allow
Multiple inheritance, which allows a class

to be derived from two or more classes,

inheriting the members of all parents.

 C# and Java support single inheritance,

meaning that a derived class can have

only one parent class.

Overriding Methods

 A child class can override the definition of
an inherited method in favor of its own

 That is, a child can redefine a method that it
inherits from its parent

 The new method must have the same
signature as the parent's method, but can
have a different implementation.

 The type of the object executing the
method determines which version of the
method is invoked.

Class Hierarchies

 A child class of one parent can be the

parent of another child, forming a class
hierarchy Animal

Reptile Bird Mammal

Snake Lizard Bat Horse Parrot

Class Hierarchies

CommunityMember

Employee Student Alumnus

Faculty Staff

Professor Instructor

Graduate Under

Class Hierarchies

Shape

TwoDimensionalShape ThreeDimensionalShape

Sphere Cube Cylinder Triangle Square Circle

Class Hierarchies

 An inherited member is continually

passed down the line

 Inheritance is transitive.

 Good class design puts all common

features as high in the hierarchy as is

reasonable. Avoids redundant code.

References and Inheritance

 An object reference can refer to an object of its

class, or to an object of any class derived from

it by inheritance.

 For example, if the Holiday class is used to

derive a child class called Christmas, then a

Holiday reference can be used to point to a

Christmas object.
Holiday day;

day = new Holiday();

…

day = new Christmas();

Dynamic Binding

 A polymorphic reference is one which
can refer to different types of objects at
different times. It morphs!

 The type of the actual instance, not the
declared type, determines which method
is invoked.

 Polymorphic references are therefore
resolved at run-time, not during
compilation.
 This is called dynamic binding.

Dynamic Binding

 Suppose the Holiday class has a method

called Celebrate, and the Christmas

class redefines it (overrides it).

 Now consider the following invocation:

day.Celebrate();

 If day refers to a Holiday object, it

invokes the Holiday version of

Celebrate; if it refers to a Christmas

object, it invokes the Christmas version

Overriding Methods

 C# requires that all class definitions
communicate clearly their intentions.

 The keywords virtual, override and new
provide this communication.

 If a base class method is going to be
overridden it should be declared virtual.

 A derived class would then indicate that it
indeed does override the method with the
override keyword.

Overriding Methods

 If a derived class wishes to hide a

method in the parent class, it will use the

new keyword.

 This should be avoided.

Overloading vs. Overriding

 Overloading deals with
multiple methods in
the same class with
the same name but
different signatures

 Overloading lets you
define a similar
operation in different
ways for different data

 Example:
int foo(string[] bar);

int foo(int bar1, float a);

 Overriding deals with
two methods, one in a
parent class and one in
a child class, that have
the same signature

 Overriding lets you
define a similar
operation in different
ways for different object
types

 Example:
class Base {
 public virtual int foo() {} }
class Derived {
 public override int foo() {}}

Polymorphism via Inheritance

StaffMember

name : string

address : string

phone : string

+ ToString() : string

+ Pay() : double

Volunteer

+ Pay() : double

Employee

socialSecurityNumber : String

payRate : double

+ ToString() : string

+ Pay() : double

Executive

- bonus : double

+ AwardBonus(execBonus : double) : void

+ Pay() : double

Hourly

- hoursWorked : int

+ AddHours(moreHours : int) : void

+ ToString() : string

+ Pay() : double

Widening and Narrowing

 Assigning an object to an ancestor reference
is considered to be a widening conversion,
and can be performed by simple assignment

Holiday day = new Christmas();

 Assigning an ancestor object to a reference
can also be done, but it is considered to be a
narrowing conversion and must be done with
a cast:

Christmas christ = new Christmas();

Holiday day = christ;

Christmas christ2 = (Christmas)day;

Widening and Narrowing

 Widening conversions are most common.
 Used in polymorphism.

 Note: Do not be confused with the term
widening or narrowing and memory. Many
books use short to long as a widening
conversion. A long just happens to take-up
more memory in this case.

 More accurately, think in terms of sets:
 The set of animals is greater than the set of parrots.

 The set of whole numbers between 0-65535
(ushort) is greater (wider) than those from 0-255
(byte).

Type Unification

 Everything in C# inherits from object

 Similar to Java except includes value types.

 Value types are still light-weight and

handled specially by the CLI/CLR.

 This provides a single base type for all

instances of all types.

 Called Type Unification

The System.Object Class

 All classes in C# are derived from the Object class
 if a class is not explicitly defined to be the child of an existing

class, it is a direct descendant of the Object class

 The Object class is therefore the ultimate root of all class
hierarchies.

 The Object class defines methods that will be shared by
all objects in C#, e.g.,
 ToString: converts an object to a string representation

 Equals: checks if two objects are the same

 GetType: returns the type of a type of object

 A class can override a method defined in Object to have a
different behavior, e.g.,
 String class overrides the Equals method to compare the

content of two strings

