-
Programming in C#

Inheritance and Polymorphism

C# Classes

e Classes are used to accomplish:
e Modularity: Scope for global (static) methods
e Blueprints for generating objects or instances:

e Per instance data and method signatures
e Classes support

e Data encapsulation - private data and
Implementation.

e Inheritance - code reuse

Inheritance

e Inheritance allows a software developer to derive a
new class from an existing one.

e The existing class is called the parent, super, or base
class.

e The derived class is called a child or subclass.

e The child inherits characteristics of the parent.
e Methods and data defined for the parent class.

e The child has special rights to the parents methods
and data.
e Public access like any one else

e Profected access available only to child classes (and their
descendants).

e The child has its own unique behaviors and data.

Inheritance

e |nheritance
relationships are often

shown graphically in a [}
Animal

class diagram, with
the arrow pointing to
the parent class.

e |nheritance should
create an /s-a

relationship, meaning
Bird

the child /s a more
specific version of the
parent.

Examples: Base Classes and Derived CGlasses

Base class Derived classes
Student GraduateStudent
UndergraduateStudent
Shape Circle
Triangle
Rectangle
Loan CarLoan
HomeImprovementLoan
MortgageLoan
Employee Facul tyMember
StaffMember
Account CheckingAccount
SavingsAccount

Declaring a Derived Class

e Define a new class DerivedClass which
extends BaseClass

class BaseClass

{

// class contents

J

class DerivedClass : BaseClass

{

// class contents

J

Controlling Inheritance

e A child class inherits the methods and data defined for
the parent class; however, whether a data or method
member of a parent class is accessible in the child
class depends on the visibility modifier of a member.

e Variables and methods declared with private visibility
are not accessible in the child class

e However, a private data member defined in the parent class is
still part of the state of a derived class.
e Variables and methods declared with public visibility
are accessible; but public variables violate our goal of
encapsulation

e There is a third visibility modifier that helps Iin
Inheritance situations: protected.

The protected Modifier

e Variables and methods

Book
declared with protected # pages : int
visibility in a parent class + GetNumberOfPages() : void
are only accessible by a JAN
child class or any class ____ Dictionary
derived from that class - el o 5 1)
+ PrintDefinitionMessage() : void

+ public
- private
protected

Single Inheritance

e Some languages, e.g., C++, allow
Multiple inheritance, which allows a class
to be derived from two or more classes,
Inheriting the members of all parents.

e C# and Java support s/ingle inheritance,
meaning that a derived class can have
only one parent class.

Overriding Methods

e A child class can override the definition of
an inherited method in favor of its own

e Thatis, a child can redefine a method that it
Inherits from its parent

e The new method must have the same
signature as the parent's method, but can
have a different implementation.

e The type of the object executing the
method determines which version of the
method iIs invoked.

Class Hierarchies

e A child class of one parent can be the
parent of another child, forming a c/ass

hierarchy Animal
/\
Reptile Bird Mammal
/\ /\ /\

Snake Lizard Parrot Horse Bat

Class Hierarchies

Employee

N

Faculty

AN

Professor

CommunityMember

e

Student

AN

Alumnus

Staff

Under

Graduate

Instructor

Class Hierarchies

Shape

T

TwoDimensionalShape ThreeDimensionalShape

Circle Square Triangle Sphere Cube Cylinder

Class Hierarchies

e An inherited member is continually
passed down the line

e Inheritance is transitive.
e Good class design puts all common

features as high in the hierarchy as is
reasonable. Avoids redundant code.

References and Inheritance

e An object reference can refer to an object of its
class, or to an object of any class derived from
it by inheritance.

e For example, if the Holiday class is used to
derive a child class called Christmas, then a
Holiday reference can be used to point to a

Christmas ObJeCt' Holiday day;

day = new Holiday() ;

day = new Christmas() ;

Dynamic Binding

e A polymorphic reference is one which
can refer to different types of objects at
different times. It morphs!

e The type of the actual instance, not the
declared type, determines which method
IS Invoked.

e Polymorphic references are therefore
resolved at run-time, not during
compilation.

e This is called dynamic binding.

Dynamic Binding

® Suppose the Holiday class has a method
called Celebrate, and the Christmas

class redefines it (overrides it).
e Now consider the following invocation:
day.Celebrate () ;
e |If day refers to a Holiday object, it
Invokes the Holiday version of

Celebrate: Ifitrefersto a Christmas
object, it Invokes the Christmas version

Overriding Methods

e C# requires that all class definitions
communicate clearly their intentions.

e The keywords virtual, override and new
provide this communication.

e If a base class method is going to be
overridden it should be declared virtual.

e A derived class would then indicate that it
Indeed does override the method with the
override keyword.

Overriding Methods

e |f a derived class wishes to hide a
method In the parent class, it will use the
new keyword.

e This should be avoided.

Overloading vs. Overriding

e Overloading deals with
multiple methods in
the same class with
the same name but
different signatures

e Overloading lets you
define a similar
operation in different
ways for different data

e Example:
/nt foo(stringf] bar);
/ntfoo(/ntbarl, floata);

e Overriding deals with
two methods, one in a
parent class and one in
a child class, that have
the same signature

e Overriding lets you
define a similar
operation in different
ways for different object
types

e Example:

class Base {

public virtual intfoo() {} }
class Derived {

public override intfoo() {}}

Polymorphism via Inheritance

StaffMember

name : string
address : string
phone : string

+ ToString() : string
+ Pay() . double

\Volunteer

+ Pay() . double

Employee

socialSecurityNumber : String
payRate : double

+ ToString() : string
+ Pay() . double

Executive

Hourly

- bonus : double

- hoursWorked : int

+ AddHours(moreHours : int) : void

+ AwardBonus(execBonus : double) : void + ToString() : string

+ Pay() . double

+ Pay() : double

Widening and Narrowing

e Assigning an object to an ancestor reference
IS considered to be a widening conversion,

and can be performed by simple assignment
Holiday day = new Christmas() ;

e Assigning an ancestor object to a reference
can also be done, but it is considered to be a
narrowing conversion and must be done with
a cast:

Christmas christ = new Christmas|() ;
Holiday day = christ;
Christmas christ2 = (Christmas)day;

Widening and Narrowing

e \Widening conversions are most common.
e Used in polymorphism.

e Note: Do not be confused with the term
widening or narrowing and memory. Many
books use shortto /ong as a widening
conversion. A /ong just happens to take-up
more memory in this case.

e More accurately, think in terms of sets:
e The set of animals is greater than the set of parrots.

e The set of whole numbers between 0-65535
(ushort) is greater (wider) than those from 0-255

(byte).

Type Unification

e Everything in C# inherits from object

e Similar to Java except includes value types.

e Value types are still light-weight and
handled specially by the CLI/CLR.

e This provides a single base type for all
Instances of all types.

e Called Type Unification

The System.Object Class

e All classes in C# are derived from the Object class

e Iif a class is not explicitly defined to be the child of an existing
class, it is a direct descendant of the Object class

e The Object class is therefore the ultimate root of all class
hierarchies.

e The Object class defines methods that will be shared by
all objects in C#, e.qg.,
e ToString: converts an object to a string representation
e Equals: checks if two objects are the same
e GetType: returns the type of a type of object
e A class can override a method defined in Object to have a
different behavior, e.g.,

e String class overrides the Equals method to compare the
content of two strings

