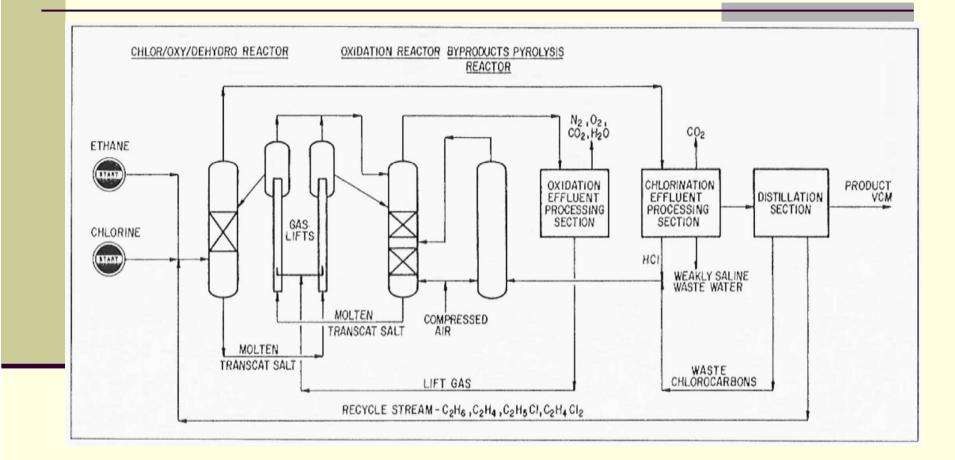
CHAPTER 6

ETHANE AND HIGHER PARAFFINS – BASED CHEMICALS


INTRODUCTION

- Paraffinic hydrocarbons are less reactive than olefins.
- Paraffinic hydrocarbons are the starting materials for the production of olefins.
- Methane's relation with petrochemicals is primarily through synthesis gas.
- Ethane, on the other hand, is a major feedstock for steam crackers for the production of ethylene.
- The higher paraffins-propane, butanes, pentanes, and heavier-also have limited direct use in the chemical industry except for the production of light olefins through steam cracking.

- The main source for ethane is natural gas liquids. Approximately 40% of the available ethane is recovered for chemical use.
 - The only large consumer of ethane is the steam cracking process for ethylene production.
- A minor use of ethane is its chlorination to ethyl chloride:

 $CH_3CH_3 + CI_2 \rightarrow CH_3CH_2CI + HCI$

By-product HCI may be used for the hydrochlorination of ethylene to produce more ethyl chloride.

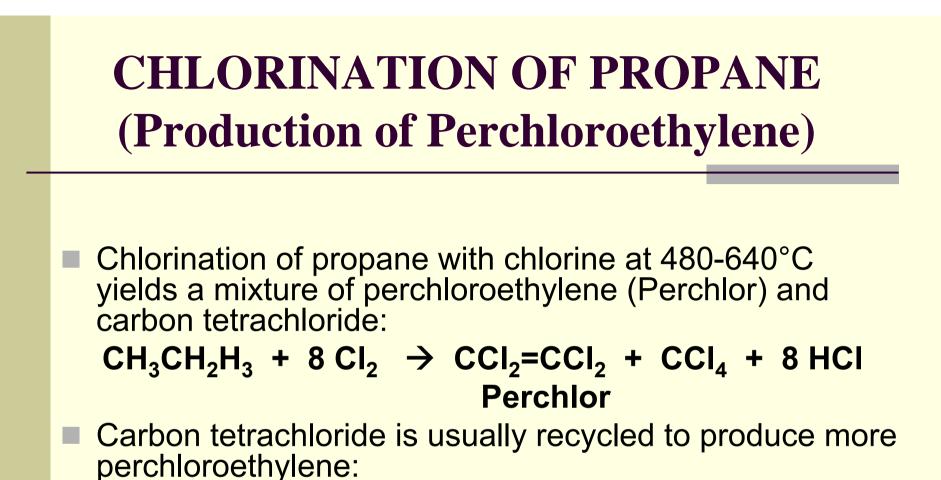
The Transcat process for producing vinyl chloride from ethane

Hydrochlorination of ethylene is the main route for the production of ethyl chloride:

$CH_2=CH_2 + HCI \rightarrow CH_3CH_2CI$

Major uses of ethyl chloride are:

- the manufacture of tetraethyl lead and the synthesis of insecticides, and
- as an alkylating agent and as a solvent for fats and wax.
- A small portion of vinyl chloride is produced from ethane via the Transcat process.
- In this process a combination of chlorination, oxychlorination, and dehydrochlorination reactions occur in a molten salt reactor.


- The reaction occurs over a copper oxychloride catalyst at a wide temperature range of 310-640°C.
- During the reaction, the copper oxychloride is converted to copper (I) and copper (II) chlorides, which are air oxidized to regenerate the catalyst.
- Vinyl chloride is an important monomer for polyvinyl chloride (PVC).
 - The main route for obtaining this monomer, however, is via ethylene.

- A new approach to utilize ethane as an inexpensive chemical intermediate is to ammoxidize it to acetonitrile.
- The reaction takes place in presence of a cobalt Beta-Zeolite.

 $CH_3-CH_3 + NH_3 + 3/2 O_2 \rightarrow CH_3CN + 3 H_2O$

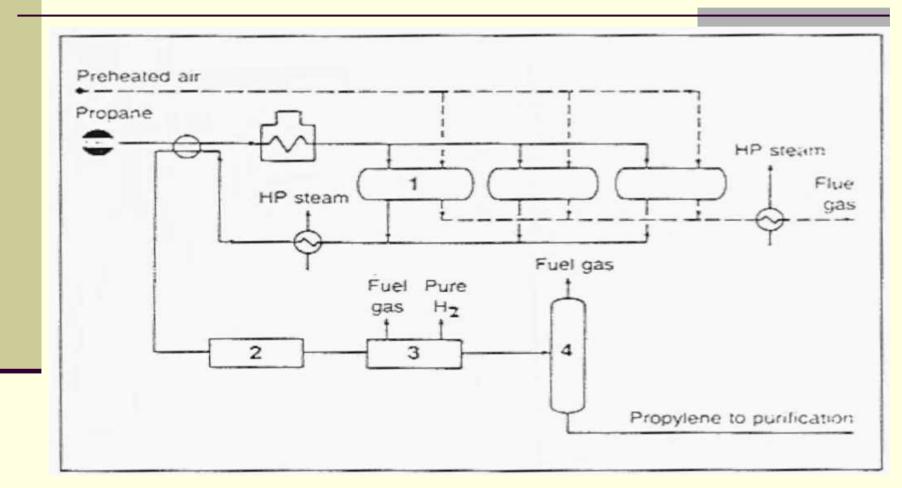
PROPANE CHEMICALS OXIDATION OF PROPANE

- The non-catalytic oxidation of propane in the vapor phase is nonselective and produces a mixture of oxygenated products.
- Oxidation at temperatures below 400°C produces a mixture of aldehydes (acetaldehyde and formaldehyde) and alcohols (methyl and ethyl alcohols).
- At higher temperatures, propylene and ethylene are obtained in addition to hydrogen peroxide.
- Due to the non-selectivity of this reaction, separation of the products is complex, and the process is not industrially attractive.

 $2 \text{ CCl}_4 \rightarrow \text{ CCl}_2 = \text{CCl}_2 + 2 \text{ Cl}_2$

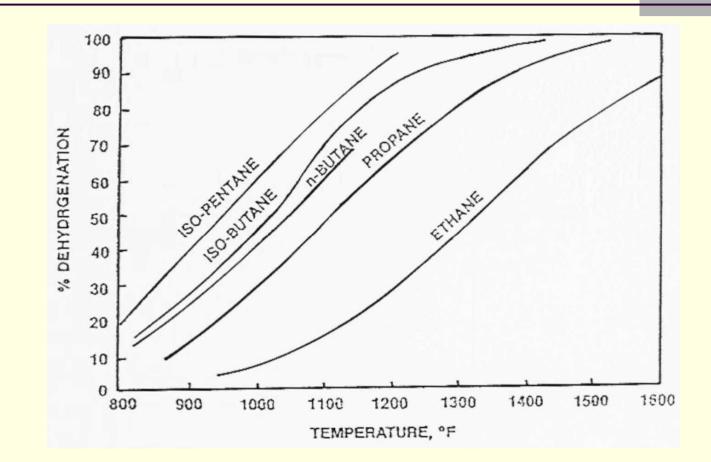
CHLORINATION OF PROPANE (Production of Perchloroethylene)

- Perchlor may also be produced from ethylene dichloride (1,2-dichloroethane) through an oxychlorinationoxyhydrochlorination process. Trichloroethylene (trichlor) is co-produced.
- Perchlor and trichlor are used as metal degreasing agents and as solvents in dry cleaning.
- Perchlor is also used as a cleaning and drying agent for electronic equipment and as a fumigant.


DEHYDROGENATION OF PROPANE (Propene Production)

The catalytic dehydrogenation of propane is a selective reaction that produces mainly propene:

$CH_3CH_2CH_3 \rightarrow CH_2=CH-CH_3 + H_2$


- The process could also be used to dehydrogenate butane, isobutane, or mixed LPG feeds.
- It is a single-stage system operating at a temperature range of 540-680°C and 5-20 absolute pressures.
 - Conversions in the range of 55-65% are attainable, and selectivities may reach up to 95%.
- Lummus-Crest Catofin dehydrogenation process

DEHYDROGENATION OF PROPANE (Propene Production)

The Lummus Crest Catofin dehydrogenation process: (1) reactor, (2) compressor, (3) liquid prodect recovers; (4) product purification.

DEHYDROGENATION OF PROPANE (Propene Production)

Effect of temperature on the dehydrogenation of light paraffins at one atmosphere. Dr. Bassam El Ali_CHEM 453

NITRATION OF PROPANE (**Production of Nitroparaffins**)

- Nitrating propane produces a complex mixture of nitro compounds ranging from nitromethane to nitropropanes.
- The presence of lower nitroparaffins is attributed to carbon-carbon bond fission occurring at the temperature used.
- Temperatures and pressures are in the range of 390°-440°C and 100-125 psig.
- Increasing the mole ratio of propane to nitric acid increases the yield of nitropropanes.

NITRATION OF PROPANE (**Production of Nitroparaffins**)

Typical product composition for 25:1 propane/acid ratio is:

- Nitropropanes are good solvents for vinyl and epoxy resins. They are also used to manufacture rocket propellants.
- Nitromethane is a fuel additive for racing cars.

n-BUTANE CHEMICALS

- Like propane, n-butane is mainly obtained from natural gas liquids. It is also a by-product from different refinery operations.
- The major use of n-butane is to control the vapor pressure of product gasoline.
- Surplus n-butane could be isomerized to isobutane, which is currently in high demand for producing isobutene.

n-BUTANE CHEMICALS

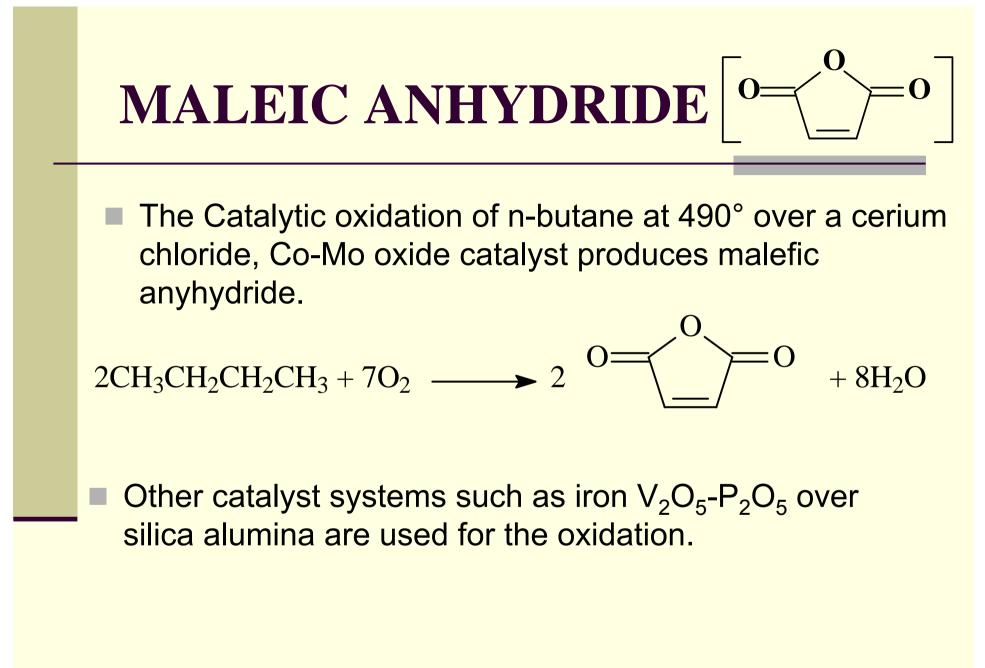
- Isobutene is a precursor for methyl and ethyl tertiary butyl ethers, which are important octane number boosters.
- Another alternative outlet for surplus n-butane is its oxidation to maleic anhydride. Almost all new maleic anhydride processes are based on butane oxidation.
- n-Butane has been the main feedstock for the production of butadiene.
 - This process has been replaced by steam cracking hydrocarbons, which produce considerable amounts of by-product butadiene.

n-BUTANE CHEMICALS

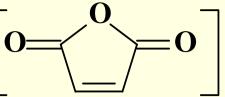
- The chemistry of n-butane is more varied than that of propane.
- The noncatalytic oxidation of butane yields a variety of products including organic acids, alcohols, aldehydes, ketones, and olefins.
- Although the noncatalytic oxidation of butane produces mainly aldehydes and alcohols, the catalyzed oxidation yields predominantly acids.

OXIDATION OF n-BUTANE (Acetic Acid and Acetaldehyde)

- The oxidation of n-butane represents a good example illustrating the effect of a catalyst on the selectivity for a certain product.
- The noncatalytic oxidation of n-butane is nonselective and produces a mixture of oxygenated compounds including formaldehyde, acetic acid, acetone, and alcohols.
 - Typical weight % yields when n-butane is oxidized in the vapor phase at a temperature range of 360-450°C and approximately 7 atm are: formaldehyde 33%, acetaldehyde 31%, methanol 20%. acetone 4%, and mixed solvents 12%.

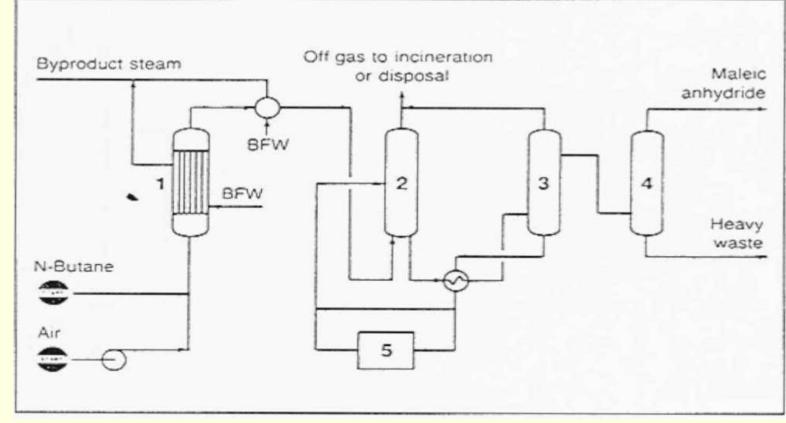

OXIDATION OF n-BUTANE (Acetic Acid and Acetaldehyde)

- The catalytic oxidation of a n-butane, using ether cobalt or manganese acetate, produces acetic acid at 75-80% yield.
- Byproducts of commercial value are obtained in variable amounts.
- In the Celanese process, the oxidation reaction is performed at a temperature range of 150-225°C and a pressure of approximately 55 atmospheres.


OXIDATION OF n-BUTANE (Acetic Acid and Acetaldehyde)

 $CH_3CH_2CH_2CH_3 + O_2 \rightarrow CH_3COOH + by-products + H_2O$

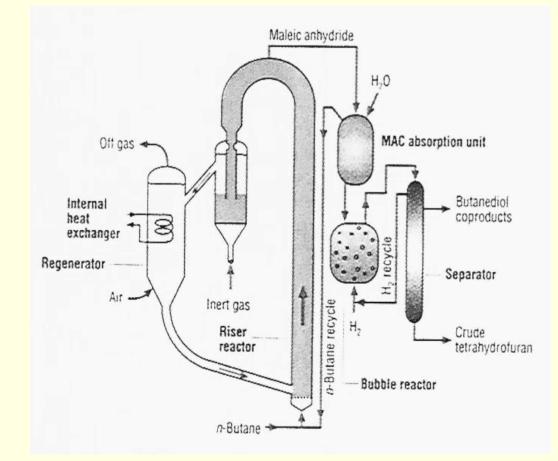
- The main by-products are formic acid, ethanol, methanol, acetaldehyde, acetone, and methylethyl ketone (MEK).
- When manganese acetate is used as a catalyst, more formic acid (≈25%) is obtained at the expense of acetic acid.



MALEIC ANHYDRIDE

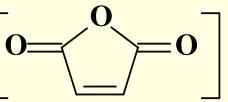
- In the Monsanto process, n-butane and air are fed to a multitube fixed-bed reactor, which is cooled with molten salt.
- The catalyst used is a proprietary modified vanadium oxide.
- The exit gas stream is cooled, and crude malefic anhydride is absorbed then recovered from the solvent in the stripper.
- Malefic anhydride is further purified using a proprietary solvent purification systems.

$\mathbf{MALEIC} \ \mathbf{ANHYDRIDE} \begin{bmatrix} \mathbf{0} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \end{bmatrix}$

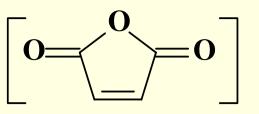


The Monsanto process for producing maleic anhydride form butane:
 (1) reactor, (2) absorber, (3) stripper, (4) fractionator, (5) solvent purification.

$\mathbf{MALEIC \ ANHYDRIDE} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$

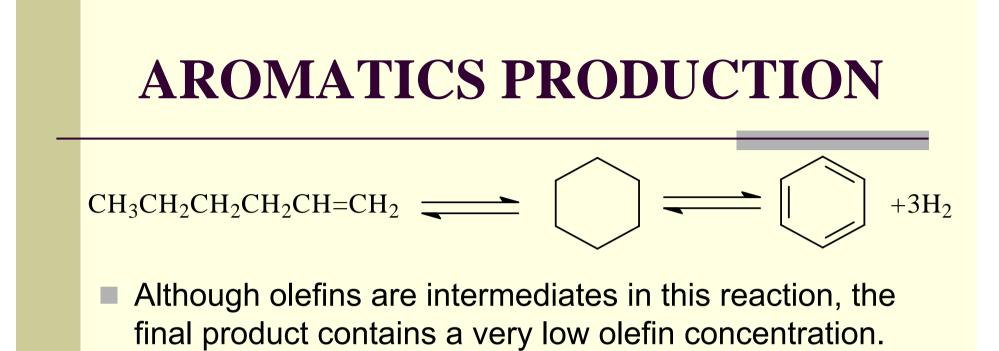

- A new process for the partial oxidation of n-butane to maleic anhydride was developed by *DuPont*.
- The important feature of this process is the use of a circulating fluidized bed-reactor.
- Solids flux in the rizer-reactor is high and the superficial gas velocities are also high, which encounters short residence times usually in seconds.
 - The developed catalyst for this process is based on vanadium phosphorous oxides (VO)₂P₂O₇ type, which provides the oxygen needed for oxidation.

MALEIC ANHYDRIDE $\begin{bmatrix} 0 = (0 = 0) \\ 0 = 0 \end{bmatrix}$

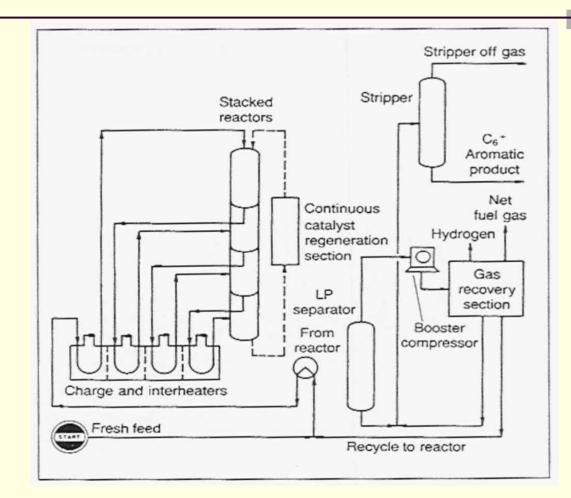

The DuPont butanente Maleic Anhydride process

MALEIC ANHYDRIDE

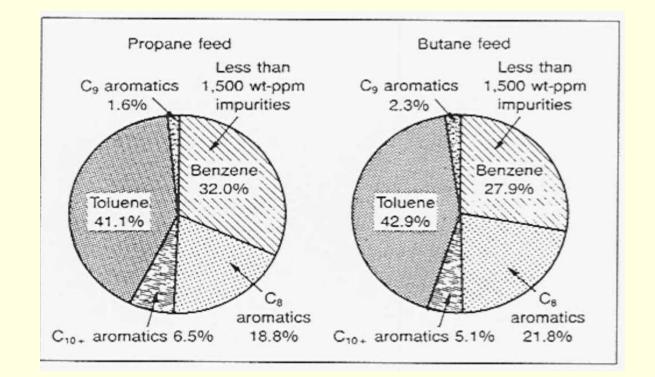
- The selective oxidation of n-butane to maleic anhydride involves a redox mechanism where the removal of eight hydrogen atoms as water and the insertion of three oxygen atoms into the butane molecule occurs.
- The reaction temperature is approximately 500°C. Subsequent hydrogenation of malefic anhydride produces tetrahydrofuran.
 - Oxidation of n-butane to maleic anhydride is becoming a major source for this important chemical. Maleic anhydride could also be produced by the catalytic oxidation of n-butenes and benzene.


USES OF MALEIC ANHYDRIDE

- The principal use of maleic anhydride is in the synthesis of unsaturated polyester resins.
- These resins are used to fabricate glass-fiber reinforced materials.
- Other uses include fumaric acid, alkyd resins, and pesticides.
- Maleic acid esters are important plasticizers and lubricants. Maleic anhydride could also be a precursor for 1,4-butanediol.


- Liquefied petroleum gas (LPG), a mixture of propane and butanes, is catalytically reacted to produce an aromatic-rich product.
- The first step is the dehydrogenation of propane and butane to the corresponding olefins followed by oligomerization to C6, C7, and C8 olefins.
- These compounds then dehydrocyclize to BTX aromatics.

 $2 \text{ CH}_{3}\text{CH}_{2}\text{CH}_{3} \rightarrow \text{CH}_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}=\text{CH}_{2} + 2 \text{ H}_{2}$ 1-Hexene



- The overall reaction is endothermic due to the predominance of dehydrogenation and cracking.
- Methane and ethane are by-products from the cracking reaction.
- Example, the Cyclar process developed jointly by British Petroleum and UOP.

- The process consists of a reactor section, continuous catalyst regeneration unit (CCR), and product recovery section.
- The reactor feed consists solely of LPG plus the recycle of unconverted feed components; no hydrogen is recycled.
- The liquid product contains about 92 wt% benzene, toluene, and xylenes (BTX), with a balance of C9+ aromatics and a low nonaromatic content.
- Therefore, the product could be used directly for the recovery of benzene by fractional distillation (without the extraction step needed in catalytic reforming).

A flow diagram showing the Cyclar process for aromatization of LPG.

The liquid (C_6^+) product breakdown in weight units obtained from the Cyclar process.

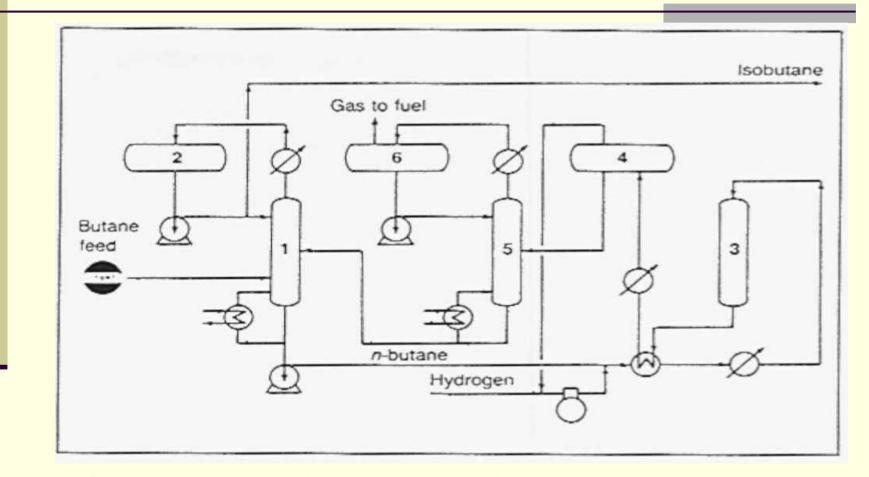
AROMATICS PRODUCTION			
Product yield fro	om saturated LPC	G feed to the c	yclar process
	Yields, wt% of f	fresh feed	
Feedstock	Aromatics	Hydrogen	Fuel gas
Propane (100%)	63.1	5.9	31.0
Butanes (100%)	65.9	5.2	28.9

- Interest in the use of lower-value light paraffins for the production of aromatics led to the introduction of two new processes similar to the Cyclar process: the Z-forming and the Aroformer processes, which were developed in Japan and Australia, respectively.
 - Research is also being conducted in Japan to aromatize propane in presence of carbon dioxide using a Zn-loaded HZSM-5 catalyst.

The effect of CO_2 is thought to improve the equilibrium formation of aromatics by the consumption of product hydrogen (from dehydrogenation of propane) through the reverse water gas shift reaction.

 $CO_2 + H_2 \rightleftharpoons CO + H_2O$

- A more favorable effect was found for the reaction between ethylene and hydrogen.
- The reverse shift reaction consumes hydrogen and decreases the chance for the reduction of ethylene to ethane byproduct.


 $CH_2 = CH_2 + H_2^{\text{I. Bassal}} CH_3 = CH_3$

ISOMERIZATION OF n-BUTANE (Isobutane Production)

- n-Butane is isomerized to isobutane, which is further dehydrogenated to isobutene.
- The Butamer process has a fixed-bed reactor containing highly selective catalyst that promotes the conversion of n-butane to isobutane equilibrium mixture.
- Isobutane is then separated in deisobutanizer tower. The n-butane is recycled with make-up hydrogen.
- The isomerization reaction occurs at a relatively low temperature:

$CH_3CH_2CH_2CH_3 \rightarrow CH_3CH(CH_3)_2$

ISOMERIZATION OF n-BUTANE (Isobutane Production)

The UOP Butamer process for isomerization of n-butane to isobutene: (1,2) delsobutanizer, (3) reactor, (<u>4) separator (for</u> separation and recycling H₂), (5,6) stabllizer.

NAPHTHA-BASED CHEMICALS

- Light naphtha containing hydrocarbons in the C5-C7 range is the preferred feedstock in Europe for producing acetic acid by oxidation.
- The oxidation of light naphtha is performed at approximately the temperature and pressure ranges (170-200°C and ≈ 50 atmospheres) in the presence of manganese acetate catalyst. The yield of acetic acid is approximately 40 wt%.

Light Naphtha + $O_2 \rightarrow CH_3COOH + by-products + H_2O$

NAPHTHA-BASED CHEMICALS

- The product mixture contains essentially oxygenated compounds (acids, alcohols, esters, aldehydes, ketones, etc.).
- As many as 13 distillation columns are used to separate the complex mixture. The number of products could be reduced by recycling most of them to extinction.
- Manganese naphthenate may be used as an oxidation catalyst.
- A yield of 83% of C1-C5 acids relative to n-hexane was reported.
- The highest yield of these acids was for acetic acid followed by formic acid. The lowest yield was observed for pentanoic acid.

CHEMICALS FROM HIGH MOLECULAR WEIGHT n-PARAFFINS

- High molecular weight n-paraffins are obtained from different petroleum fractions through physical separation processes.
- Those in the range of C8-C14 are usually recovered from kerosenes having a high ratio of these compounds.
- Vapor phase adsorption using molecular sieve 5A is used to achieve the separation. The n-paraffins are then desorbed by the action of ammonia.
- Continuous operation is possible by using two adsorption sieve columns, one bed on stream while the other bed is being desorbed. n-Paraffins could also be separated by forming an adduct with use Ai_CHEM 453

CHEMICALS FROM HIGH MOLECULAR WEIGHT n-PARAFFINS

- For a paraffinic hydrocarbon to form an adduct under ambient temperature and atmospheric pressure, the compound must contain a long unbranched chain of at least six carbon atoms.
- Ease of adduct formation and adduct stability increases with increase of chain length.
- As with shorter-chain n-paraffins, the longer chain compounds are not highly reactive. However, they may be oxidized, chlorinated, dehydrogenated, sulfonated, and fermented under special conditions.
- The C9-C17 paraffins are used to produce olefins or monochlorinated paraffins for the production of detergents.

CHEMICALS FROM HIGH MOLECULAR WEIGHT n-PARAFFINS

Name	Formula	Density	B.P.°C	M.P.°C
Pentane	CH ₃ (CH ₂) ₃ CH ₃	0.626	36.0	-130.0
Hexane	$CH_3(CH_2)_4CH_3$	0.695	69.0	-95.0
Heptane	$CH_3(CH_2)_5CH_3$	0.684	98.0	-90.5
Octane	$CH_3(CH_2)_6CH_3$	0.703	126.0	-57.0
Nonane	$CH_3(CH_2)_7CH_3$	0.718	151.0	-54.0
Decane	$CH_3(CH_2)_8CH_3$	0.730	174.0	-30.0
Undecane	$CH_3(CH_2)_9CH_3$	0.740	196.0	-26.0
Dodecane	$CH_{3}(CH_{2})_{10}CH_{3}$	0.749	216.0	-10.0
Tridecane	$CH_3(CH_2)_{11}CH_3$	0.757	234.0	-6.0
Tetradecane	$CH_3(CH_2)_{12}CH_3$	0.764	252.0	5.5
Pentadecane	$CH_3(CH_2)_{13}CH_3$	0.769	266.0	10.0
Hexadecane	$CH_{3}(CH_{2})_{14}CH_{3}$	0.775	280.0	18.0

Selected properties of paraffins from C5-C16

- The catalytic oxidation of long-chain paraffins (C₁₈-C₃₀) over manganese salts produces a mixture of fatty acids with different chain lengths.
- Temperature and pressure ranges of 105-120°C and 15-60 atmospheres are used.
- About 60 wt% yield of fatty acids in the range of C₁₂-C₁₄ is obtained. These acids are used for making soaps.
 - The main source for fatty acids for soap manufacture, however, is the hydrolysis of fats and oils (a nonpetroleum source).

Oxidation of paraffins to fatty acids:

 $RCH_2(CH_2)_nCH_2CH_2R + 5/2O_2 \rightarrow R(CH_2)_nCOOH + RCH_2COOH + H_2O$

- Oxidation of C12-C14 n-paraffins using boron trioxide catalysts was extensively studied for the production of fatty alcohols.
- Typical reaction conditions are 120-130°C at atmospheric pressure.
- ter-Butyl hydroperoxide (0.5%) was used to initiate the reaction. The yield of the alcohols was 76.2 wt% at 30.5% conversion. Fatty acids (8.9 wt%) were also obtained.
 Dr. Bassam El Ali_CHEM 453

- Product alcohols were essentially secondary with the same number of carbons and the same structure per molecule as the parent paraffin hydrocarbon.
- This shows that no cracking has occurred under the conditions used.
- The oxidation reaction could be represented as:

 $RCH_2CH_2 R' + \frac{1}{2}O_2 \rightarrow R-CH_2CHOHR'$

- n-Paraffins can also be oxidized to alcohols by a dilute oxygen stream (3-4%) in the presence of a mineral acid.
- The acid converts the alcohol to esters, which prohibit further oxidation of the alcohols to fatty acid. The obtained alcohols are also secondary.
 - These alcohols are of commercial importance for the production of nonionic detergents (ethyoxylates):

$$\operatorname{RCH}_{2}\operatorname{CHOHR}' + \operatorname{nCH}_{2} \xrightarrow{O} \operatorname{CH}_{2} \longrightarrow \operatorname{RCH}_{2}\operatorname{CHO}(\operatorname{CH}_{2}\operatorname{CH}_{2}\operatorname{O})_{n} \xrightarrow{I}_{R'}$$

CHLORINATION OF n-PARAFFINS (Chloroparaffins)