Crystal Field Splitting in an Octahedral Field

e_g - The higher energy set of orbitals $(d_{z^2} \text{ and } d_{x^2-y^2})$ t_{2g} - The lower energy set of orbitals $(d_{xy}, d_{yz} \text{ and } d_{xz})$

 Δ_{o} or 10 Dq - The energy separation between the two levels

The e_g orbitals are repelled by an amount of 0.6 Δ_o The t_{2g} orbitals to be stabilized to the extent of 0.4 Δ_o .

The higher energy set of orbitals (d_{xz}, d_{yz}, d_{xy}) is labeled as t₂ and the lower energy set $(d_{z^2} \text{ and } d_{x^2-y^2})$ is labeled as e.

The crystal field splitting in the tetrahedral field is intrinsically smaller than in the octahedral field. For most purposes the relationship may be represented as $\Delta_t = 4/9 \Delta_o$

Octahedral Vs Tetrahedral

The single electron in the t_{2g} orbitals absorb energy in the form of light and gets excited to the e_g orbitals. In case of $[Ti(H_2O)_6]^{3+}$, this corresponds to 520 nm (20,300 cm⁻¹).

Factors Affecting the Magnitude of Δ

1. Higher oxidation states of the metal atom correspond to larger Δ .

 $\Delta = 10,200 \text{ cm}^{-1} \text{ for } [\text{Co}^{\text{II}}(\text{NH}_3)_6]^{2+} \text{ and } 22,870 \text{ cm}^{-1} \text{ for } [\text{Co}^{\text{III}}(\text{NH}_3)_6]^{3+} \Delta = 32,200 \text{ cm}^{-1} \text{ for } [\text{Fe}^{\text{III}}(\text{CN})_6]^{4-} \text{ and } 35,000 \text{ cm}^{-1} \text{ for } [\text{Fe}^{\text{III}}(\text{CN})_6]^{3-}$

2. In groups, heavier analogues have larger Δ .

For hexaammine complexes $[M^{III}(NH_3)_6]^{3+}$:

 $\Delta = 22,870 \text{ cm}^{-1} \text{ (Co)}$ $34,100 \text{ cm}^{-1} \text{ (Rh)}$ $41,200 \text{ cm}^{-1} \text{ (Ir)}$

3. Geometry of the metal coordination unit affects Δ greatly.

Tetrahedral complexes ML_4 have smaller Δ than octahedral ones ML_6 : $\Delta = 10,200 \text{ cm}^{-1} \text{ for } [Co^{II}(NH_3)_6]^{2+}$ 5,900 cm⁻¹ for $[Co^{II}(NH_3)_4]^{2+}$

4. Nature of the ligands.

For $[Co^{III}L_6]$, Δ in cm⁻¹: 13,100 (F⁻); 20,760 (H₂O); 22,870 (NH₃) For $[Cr^{III}L_6]$, Δ in cm⁻¹: 15,060 (F⁻); 17,400 (H₂O); 26,600 (CN⁻)

Spectrochemical Series

An arrangement of ligands according to their ability to increase Δ for a given metal center

Weak – I⁻, Br, SCN⁻, Cl⁻, N₃⁻, F⁻, H₂NC(O)NH₂, OH⁻, ox²⁻, O²⁻, H₂O, NCS⁻, py, NH₃, en , bpy, phen, NO₂⁻, CH₃⁻, C₆H₅⁻, CN⁻, CO – Strong

Net energy decrease is called crystal field stabilization energy (CFSE)

For d^{1} , CFSE = 1 × 0.4 = **0.4** Δ_{0} For d^{2} , CFSE = 2 × 0.4 = **0.8** Δ_{0} For d^{3} , CFSE = 3 × 0.4 = **1.2** Δ_{0}

There are two possibilities for metal ions having d^4 - d^7 electronic configuration. Depending on the nature of the ligands and the metal they could be **high-spin** or **low-spin** complexes.

For the d^4 system, CFSE = For high-spin, $(3 \times 0.4) - (1 \times 0.6) = 0.6 \Delta_0$ and for low-spin, $4 \times 0.4 = 1.6 \Delta_0$

For d^8 , CFSE = $(6 \times 0.4) - (2 \times 0.6) = 1.2 \Delta_0$

For d^9 , CFSE = $(6 \times 0.4) - (3 \times 0.6) = 0.6 \Delta_0$

For d^{10} , CFSE = $(6 \times 0.4) - (4 \times 0.6) = 0.0 \Delta_0$

In all electronic configurations involving two electrons in the same orbital, the actual CFSE is reduced by the energy spent on pairing the electrons.

Metal ions with 4 - 7 electrons in the *d* orbital can exist as high-spin or low-spin complexes. Weaker ligands tend to give high-spin complexes, whereas stronger ligands tend to give low-spin complexes.

Low-spin

TT' 1	•
	hanin
11161	II Spill
	<u>+</u>

d^{l}	$t_{2g}^{1}e_{g}^{0}$	$0.4 \Delta_{ m o}$	$t_{2g}^{1}e_{g}^{0}$	$0.4 \Delta_{o}$
d^2	$t_{2g}^{2}e_{g}^{0}$	$0.8 \Delta_{ m o}$	$t_{2g}^{2}e_{g}^{0}$	$0.8 \Delta_{o}$
d^3	$t_{2g}^{3}e_{g}^{0}$	$1.2 \Delta_{o}$	$t_{2g}^{3}e_{g}^{0}$	$1.2 \Delta_{\rm o}$
d^4	$t_{2g}^{3}e_{g}^{1}$	$0.6 \Delta_{o}$	$t_{2g}^{4}e_{g}^{0}$	$1.6 \Delta_{o}$
d^5	$t_{2g}^{3}e_{g}^{2}$	$0.0 \Delta_{ m o}$	$t_{2g}^{5}e_{g}^{0}$	$2.0 \Delta_{\rm o}$
d^6	$t_{2g}^{4}e_{g}^{2}$	$0.4 \Delta_{ m o}$	$t_{2g}^{6}e_{g}^{0}$	$2.4 \Delta_{o}$
d^7	$t_{2g}^{5}e_{g}^{2}$	$0.8 \Delta_{ m o}$	$t_{2g}^{6}e_{g}^{1}$	$1.8 \Delta_{o}$
d^8	$t_{2g}^{6}e_{g}^{2}$	$1.2 \Delta_{o}$	$t_{2g}^{6}e_{g}^{2}$	$1.2 \Delta_{o}$
d^9	$t_{2g}^{6}e_{g}^{3}$	$0.6 \Delta_{o}$	$t_{2g}^{6}e_{g}^{3}$	$0.6 \Delta_{o}$
d^{10}	$t_{2g}^{6}e_{g}^{4}$	$0.0 \Delta_{o}$	$t_{2g}^{6}e_{g}^{4}$	$0.0\Delta_{ m o}$

Tetrahedral splitting is seldom large enough to result in pairing of the electrons. As a result, low-spin tetrahedral complexes are not common. A rare example is $Cr[N(SiMe_3)_2]_3[NO]$

d^l	$e^1 t_2^0$	$0.6 \Delta_t$
d^2	$e^2 t_2^{0}$	$1.2 \Delta_t$
d^3	$e^2 t_2^{1}$	$0.8 \Delta_t$
d^4	$e^2 t_2^2$	$0.4 \Delta_t$
d^5	$e^2 t_2^3$	$0.0\Delta_{\rm t}$
d^6	$e^{3} t_{2}^{3}$	$0.6 \Delta_t$
d^7	$e^4 t_2^3$	$1.2 \Delta_t$
d^8	$e^{4} t_{2}^{4}$	$0.8 \Delta_t$
d^9	$e^4 t_2^5$	$0.4 \Delta_t$
d^{10}	$e^4 t_2^{6}$	$0.0\Delta_{ m t}$

When to Expect Tetrahedral Geometry

If ligands are large; so as to avoid ligand-ligand repulsion

In case of metal ions with zero CFSE $(d^0, d^5 \text{ and } d^{10})$ or $MnO_4^-(d^0)$, $FeCl_4^-(d^5, h.s.)$, $ZnCl_4^{2-}(d^{10})$

In case of metal ions with small CFSE (d^2 and d^7) CoCl₄²⁻ (d^7 , h.s.) – 0.8 Δ_0 vs 1.2 Δ_t

When to Expect Square Planar Geometry

In the case of d^8 metals and strong ligands:

Ni²⁺, in the presence of strong field ligands such as CN⁻ forms a square planar complex.

 2^{nd} and 3^{rd} row d^8 metals form square planar geometry irrespective of the nature of the ligand:

With Pd^{2+} (which already generates a strong field) even a weak field ligand such as Clleads to the formation of a square planar complex, for example, $[PdCl_4]^{2-}$.