Introduction to Microbiology

The Microbial World and You

Microorganisms / Microbes:

-typically unicellular

-too small to see with unaided eye

-include:

bacteria & archaea fungi

protozoa algae viruses

-located almost everywhere

-only a small % are pathogens

-most involved in environmental /

ecosystem balance:

*breakdown waste

*fix nitrogen

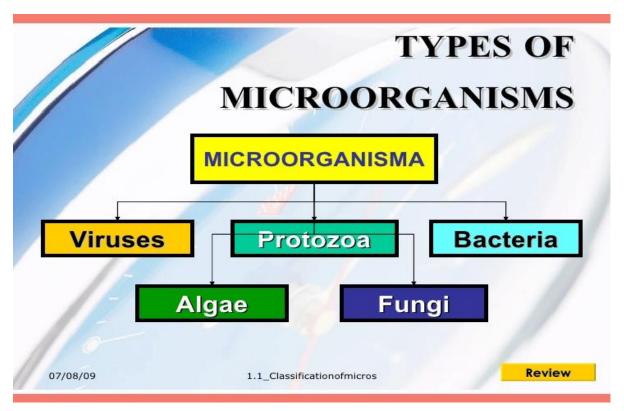
*photosynthesis –foundation of food chain

*digestion in animals

*vitamin production

Organism Nomenclature

-Established by Carolus Linnaeus (1735)


-latinized

-each organism has unique two part genus

& species name:

e.g. *Escherichia coli*-written in italics or underlined
-genus with capital first letter
-species/specific epithet all lowercase
-after first use in documents can
abbreviate genus: *E. coli*-name often describes organism: shape,
habitat, name of discoverer, etc.

Microbial Groups

Brief History of Microbiology

1665 Robert Hooke

-Developed first microscope

-Observed smallest units of life, calls

them cells

-Proposed cell theory:

All living things are composed of cells

Prevailing thoughts:

Spontaneous Generation Theory: some forms of life could arise spontaneously from nonliving matter

1673-1723 van Leeuwenhoek

-Enhanced microscope magnification
-Published observations of tiny live moving objects: called them "animalcules"
Scientists now interested in microbes:
Where do they come from?

1858 Virchow

-Theory of **Biogenesis**: living cells can only arise from living cells

Great debates & Experiments to prove both sides continue

1861 Louis Pasteur

-Demonstrates microbes in air can contaminate sterile solutions but air cannot give rise to microbes: no spontaneous generation

-Microbes present on all non-living matter

- -Microbes can be killed by heat
- -Methods can block access of microbes to sterilized medium:

aseptic technique

- -Establishes link between activity of a microbe and specific change in organic material.
- -Invented Pasteurization: kill contamination
- -Applied 'microbes cause change in organics' logic to disease

<u>Germ Theory of Disease: microbes cause disease</u> (prevailing thought: disease = punishment for misdeeds

1860s Joseph Lister

-Knew physicians transmitted infections
-Knew phenol (carbonic acid) killed bacteria
-Treated surgical wounds and implements, reduced incidence of infection

1876 Robert Koch

-Proves Germ Theory of Disease:

*Anthrax-kills livestock

*isolated Bacillus anthracis from sick animals

*grows *B. anthracis* in culture

*injects culture into healthy animal

*animal sick with Anthrax, dies, same *B*.

anthracis in blood

-Koch's Postulates: experimental steps to prove a particular bacteria causes a particular disease.

1857-1914 Golden Age of Microbiology

-Establishment of Microbiology as a science

-Discovery of disease agents

-Discovery of role of immunity

-Development of vaccines

-Development of Chemotherapy

- Vaccination:

1796 Jenner lister

-Observed milkmaids who got cowpox never got smallpox

-Injected cowpox into child, child mildly ill

-Child never contracted cowpox or smallpox

1880 Pasteur

-Observed bacteria grown in lab became avirulent but could produce immunity

-Coined the term vaccine (vacca is Latin

for cow)

<u>**Chemotherapy**</u> = treatment of disease using

chemicals

<u>Antibiotics</u> = chemicals produced by one microbe to kill another

<u>Synthetic drug</u> = chemicals synthesized in lab to

treat infections and disease

1910 Ehrlich

-First chemotherapy for infection

-Salvarsan (arsenic) for syphilis 1928

Flemming

-First antibiotic

-Penicillin for Staphylococcus infections

Early microbiology topics now divided into specific fields: Bacteriology : study of bacteria Mycology : study of fungi Phycology: study of algae Parasitology: study of protozoa and parasitic worms Virology: study of viruses Immunology: host immunity & vaccines Recombinant DNA Technology: insertion of genes into microbes to produce therapeutics

Microbes and Human Welfare (Good)

-Recycling vital elements (decomposition, photosynthesis, & nitrogen fixation return C, N, O, S, and P back to food chain)
-Sewage treatment
-Bioremediation
-Insect pest control
-Food production -Commercial applications
-Biotechnology & Genetic Engineering:
*vaccines, *therapeutics, *gene therapy and
*agriculture

Microbes and Human Disease

-Normal Microbiota = microbes that live in or on you always

sometimes good, sometimes bad *prevent pathogen colonization *produce vitamins in gut *can cause disease in new location or immuno-compromised host -Resistance = ability to ward off disease -Infectious Disease Pathogens = microbes that have part of life cycle in human host causing illness *reemerging and increasing *increasing drug resistance Emerging Infectious Diseases (EIDs) = diseases that are new or changing and increasing

*genetic changes in organisms

*spread to new regions

Of all known bacteria, less than 10% cause any illness in humans