
Flow Charts, Algorithm,
Pseudo Code

Algorithm

• A set of step-by-step instructions to
accomplish a task.
– An algorithm must have start instruction
– Each instruction must be precise.
– Each instruction must be unambiguous.
– Each instruction must be executed in finite time.
– An algorithm must have stop instruction.

Algorithm Example 1

• Suppose you are given a
set of mark sheets
where each mark sheet
bears A, B, C or F letter
grades.

• Write an algorithm to
read mark sheet and
print the grade that it
contains.

1. Start

2. Take a mark sheet and
read the grade.

3. Print the grade

4. Stop

Algorithm Example 2

• Suppose you are given a
set of mark sheets
where each mark sheet
bears A, B, C or F
grades.

Write an algorithm to
read a mark sheet and
print the grade if the
grade is A only.

1. Start

2. Take a mark sheet and
read the grade.

3. If grade is A then Print
the grade

4. Stop

Algorithm Example 3

• Suppose you are given a
set of mark sheets
where each mark sheet
bears A, B, C or F
grades.

Write an algorithm to
read a mark sheet and
print the grade if it is A
or B only.

1. Start

2. Take a mark sheet and
read the grade.

3. If grade is A or B then
Print the grade

4. Stop

Algorithm representation

• A pseudo code
• A flowchart
• Programs statements in

a programming
language.

Pseudocode Example 1
Start

Take a mark sheet and read the grade.

Print the grade

Stop

Pseudocode Example 2
Start

Take a mark sheet and read the
grade.

If grade is A then Print the grade

Stop

Pseudo Code

• Pseudo code is another
program analysis tool
that is used for planning
program logic.

• "Pseudo" means
imitation or false

• "Code" refers to the
instructions written in a
programming language.

• Pseudo code, therefore,
is an imitation of actual
computer instructions.

• These pseudo
instructions are phrases
written in ordinary
natural language (e.g.,
English).

• Pseudo code is made up
of the following basic
logic structures that
have been proved to be
sufficient for writing
any computer program.

• Sequence
• Selection

(IF...THEN...ELSE or
IF....THEN)

• Iteration (DO...WHILE or
REPEAT...UNTIL)

Pseudo code Structure

Advantages of pseudo code

• Writing of pseudocode
involves much less time
and effort than drawing
an equivalent flowchart.

• Converting a pseudo
code to a programming
language is much more
easier as compared to
converting a flowchart.

• It is easier to modify the
pseudocode of a
program logic when
program modifications
are necessary.

Limitations of Pseudocode

• In case of pseudo code,
a graphic representa-
tion of program logic is
not available.

• There are no standard
rules to follow in using
pseudocode.

• Different programmers
use their own style of
writing pseudocode

• communication
problems occur due to
lack of standardization.

• For a beginner, it is
more difficult to follow
the logic or write the
pseudo code, as
compared to
flowcharting.

Flowchart
 Example 1

STAR
T

Grade

Grade

Example 2STAR
T

Grade

Grade = A

Grade

NoYes

STOP

STOP

What is a Flowchart?

• A flowchart is a
diagram that depicts
the “flow” of a
program.

• The figure shown here
is a flowchart for the
pay-calculating
program.

START

Display
message “How
many hours did

you work?”

Read Hours

Display
message “How

much do you get
paid per hour?”

Read Pay Rate

Multiply Hours
by Pay Rate.
Store result in

Gross Pay.

Display Gross
Pay

END

Basic Flowchart
Symbols

• Notice there are three
types of symbols in this
flowchart:
– rounded rectangles
– parallelograms
– a rectangle

• Each symbol represents
a different type of
operation.

START

Display
message “How
many hours did

you work?”

Read Hours

Display
message “How
much do you
get paid per

hour?”

Read Pay Rate

Multiply Hours
by Pay Rate.
Store result in

Gross Pay.

Display Gross
Pay

END

Rounded
Rectangle

Parallelogra
m

Rectangle

Rounded
Rectangle

Basic Flowchart
Symbols

• Terminals
– represented by rounded

rectangles
– indicate a starting or

ending point

START

Display
message “How
many hours did

you work?”

Read Hours

Display message
“How much do

you get paid per
hour?”

Read Pay Rate

Multiply Hours
by Pay Rate.
Store result in

Gross Pay.

Display Gross
Pay

END

Terminal

START

END Terminal

Basic Flowchart
Symbols

• Input/Output Operations
– represented by

parallelograms
– indicate an input or

output operation

START

Display
message “How
many hours did

you work?”

Read Hours

Display
message “How
much do you
get paid per

hour?”

Read Pay Rate

Multiply Hours
by Pay Rate.
Store result in

Gross Pay.

Display Gross
Pay

END

Display
message “How

many hours
did you work?”

Read Hours

Input/Output
Operation

Basic Flowchart
Symbols

• Processes
– represented by rectangles
– indicates a process such as

a mathematical
computation or variable
assignment

START

Display
message “How
many hours did

you work?”

Read Hours

Display
message “How
much do you
get paid per

hour?”

Read Pay Rate

Multiply
Hours by Pay
Rate. Store

result in
Gross Pay.

Display Gross
Pay

END

Multiply Hours
by Pay Rate.
Store result in

Gross Pay.

Process

Basic Flowchart Symbols

INPUT DECISION

TERMINAL

Flow line

PROCESS

Output (PRINT)

DIRECT
ACCESS

STORAGE
Sequential

Access MAGNETIC
DISK

Flowchart/Pseudocode examples

Start

A:B

A,B

BIG ABIG B A=B

Stop

A<B A>B

A=B

if A < B then
 Print “BIG B”
else
 If A>B then
 Print “BIG A”
 else
 Print “A=B”
 endif
endif

if A < B then
 Print “BIG B”
else
 If A>B then
 Print “BIG A”
 else
 Print “A=B”
 endif
endif

if A < B then

else

endif

If A>B then

else

endif

If block

else block

Print “ Big B”

Print “BIG A”

Print “A=B”

Find the biggest of the
two numbers A and B

Flowchart/Pseudocode examples

A:B

Start

B:C A:C

BIG C

A,B,C

A>BA<B

A=B

B<C

BIG A

A>C

BIG B

B>C

BIG C

A<C

A=B

 A=C B=C

Stop

Find the largest of
three numbers A, B
and C. A B C

50 30 40

Flowchart/Pseudocode Selection

If A < B then

else

end if

A:B

Start

B:C A:C

BIG C

A,B,C

A>BA<B

A=B

B<C

BIG A

A>C

BIG B

B>=C

BIG C

A<=C

A=B

 A=C
 B=C

Stop

Start
Input A,B,C

B:C
B=C B>C

 A< B

A:C

A>B

A=CA<=C

Print “Big C”

Print “A<B”
If B < C then

else

end if

if B = C then

else

end if

Print “ B=C”

Print “Big B”

Flowcharts

• Given the input data:
– Student Roll number, student

name, the marks obtained in
5 subjects, each subject
having maximum marks 100.

• Draw a flowchart for
the algorithm to:
– Calculate the percentage

marks obtained , and
– Print student’s roll number

and percentage of marks.

Start

Roll, name,
m1,m2,m3,m4,m5

Total =
m1+m2+m3+m4+m5

Percentage =
Total/5*100

Roll, name, percentage

Stop

Start

Roll, name, m1,m2,m3,m4,m5

Total = m1+m2+m3+m4+m5

Percentage = Total/5

Roll, name, percentage

Stop

Student no=1

Student
no=Student+1

Is
student
no <= 3Yes

No

Compute percentages for three students and print
their roll numbers, names, and percentage of marks.

Student no

Roll

name

m1

m2

m3

m4

m5

Total

Percentag
e

Variables or
Memory
address

1

25

A

70

80

80

90

40

360

72

First
iteration

2

35

B

 80

70

70

70

50

340

68

Second
iteration

Third
iteration

3

27

C

 60

45

90

60

30

285

57

Start

Roll, name, m1,m2,m3,m4,m5

Total = m1+m2+m3+m4+m5

Percentage = Total/5

Roll, name, percentage

Stop

Roll =0
Yes

Compute percentages for many students and print
their roll numbers, names, and percentage of marks.

Roll

name

m1

m2

m3

m4

m5

Total

Percentag
e

Variables or
Memory
address

First
iteration

25

 A

 70

80

80

90

40

360

72

35

B

 80

70

70

70

50

340

68

Second
iteration

Third
iteration

No

27

C

60

45

90

60

30

285

57

Flowchart Selection

A,B

Is A>B?

Stop

“ A is bigger ”

Start

Start
Input A, B
if A > B then
 Print “ A is bigger”
end if
end

Then block

Yes

No

Flowchart Selection

A,B

Is A>B?

Stop

“ I am watching”

Start
Start
Input A, B
if A > B then

else
 Print “ I am watching”
end if
end

then block

No

Yes

else block

Flowchart Selection

A,B

Is
A>B?

Stop

Start
Start
Input A, B
if A > B then
 X=A*B
 Print X
else
 if B=0 then
 Print “ B is zero”
 else
 X=A/B
 Print X
 end if
end if
end

then block

Yes No

else block

X

X=A*B

X=A/B

Is
B=0?

No

B is zero

Yes

Flowchart Selection

A,B

Is
A>B?

Stop

Start
Start
Input A, B
if A > B then
 X=A*B
 Print X
else if B=0 then
 Print “ B is zero”
 else
 X=A/B
 Print X
end if
end

then block

No Yes

else if block

X

X=A*B

X=A/B

Is
B=0?

No

B is zero

Yes

Flowchart Selection (Case)

A

Is A
= 1

Stop

Start

X

Is A
= 2

Is A
= 3

Y

Z

W

start
Input A
case A of

1: Print “X”
2: Print “Y”
3: Print “Z”

otherwise: Print “W”
endcase
end

start
Input A
If A =1 then
 Print “X”
 elseif A =2 then
 Print “Y”
 elseif A=3 then
 Print “Z”
 else
 Print “W”
endif
end

Flowchart Iteration

Is
count=5?

Stop

Start Start
for Count = 1 to 5 by 1 do
 Print Count
end for
end

No

CountCount=+1

Count=1

Start
Count = 1
while Count <= 5 do
 Print Count
 Count=Count+1
end while
end

FOR LOOP

WHILE LOOP

Yes
Start
Count = 1
repeat
 Print Count
 Count=Count+1
until count > 5
end

REPEAT LOOP

Range

Range

Range

Flowchart Iteration

Is I < N ?

Stop

Start

No

i=+1

i=1

Start
Input N
for I = 1 to N by 1 do
 Input Roll, Name, m1, m2, m3, m4, m5
 Print Roll, Name, m1, m2, m3, m4, m5
end for
end

Ye
s

Roll, Name,
m1,m2,m3,m4,m5

Roll, Name,
m1,m2,m3,m4,m5

N

Start
Input N
i = 1
repeat
 Input Roll, Name, m1, m2, m3, m4, m5
 Print Roll, Name, m1, m2, m3, m4, m5
i++
until i > N
end

Advantages of Flowchart
1) Conveys Better Meaning

2) Analyses the Problem Effectively

3) Effective Joining of a Part of a System

4) Efficient Coding

A group of programmers are normally associated with the design
of large software systems. Each programmer is responsible for
designing only a part of the entire system. So initially, if each
programmer draws a flowchart for his part of design, the
flowcharts of all the programmers can be placed together to
visualize the overall system design. Any problem in linking the
various parts of the system can be easily detected at this stage
and the design can be accordingly modified. Flowcharts can thus
be used.

5) Systematic Testing

Limitations of Flowcharts

1) Takes More Time to Draw

3) Non-standardization :- There are no standards determining the
amount of detail that should be included in a flowchart.

2) Difficult to Make Changes:- Owing to the symbol-string nature
of flowcharting, any changes or modifications in the program logic
will usually require a completely new flowchart. Redrawing a
flowchart is tedious.

Informal definition of an algorithm
used in a computer

Finding the largest integer
among five integers

Defining actions in FindLargest algorithm

FindLargest refined

Generalization of FindLargest

Example 1Example 1

Write an algorithm in pseudocode that finds
the average of two numbers

SolutionSolution

See Algorithm 8.1 on the next slide.

AverageOfTwo
Input: Two numbers

1. Add the two numbers
2. Divide the result by 2
3. Return the result by step 2

End

Algorithm 8.1:Algorithm 8.1:Average of twoAverage of two

Example 2Example 2

Write an algorithm to change a numeric
grade to a pass/no pass grade.

SolutionSolution

See Algorithm 8.2 on the next slide.

Pass/NoPassGrade
Input: One number

1. if (the number is greater than or equal to
33)
then
 1.1 Set the grade to “pass”
else
 1.2 Set the grade to “nopass”
End if

2. Return the grade
End

Algorithm 8.2:Algorithm 8.2:Pass/no pass GradePass/no pass Grade

Example 3Example 3

Write an algorithm to change a numeric
grade to a letter grade.

SolutionSolution

See Algorithm 8.3 on the next slide.

Letter Grade
Input: One number

1. if (the number is between 90 and 100,
inclusive)
then
 1.1 Set the grade to “A”
End if

2. if (the number is between 80 and 89,
inclusive)
then
 2.1 Set the grade to “B”
End if

Algorithm 8.3:Algorithm 8.3: Letter gradeLetter grade

3. if (the number is between 70 and 79,
inclusive)
then
 3.1 Set the grade to “C”
End if

4. if (the number is between 60 and 69,
inclusive)
then
 4.1 Set the grade to “D”
End if

Algorithm 8.3:Algorithm 8.3: Letter grade Letter grade

5. If (the number is less than 60)
then
 5.1 Set the grade to “F”
End if

6. Return the grade
End

Algorithm 8.3:Algorithm 8.3: Letter gradeLetter grade

Example 4Example 4

Write an algorithm to find the largest of a set
of numbers. You do not know the number of
numbers.

SolutionSolution

See Algorithm 8.4 on the next slide.

Find Largest
Input: A list of positive integers

1. Set Largest to 0
2. while (more integers)

 2.1 if (the integer is greater than Largest)
 then
 2.1.1 Set largest to the value of the

integer
 End if
End while

3. Return Largest
End

Algorithm 8.4:Algorithm 8.4: Find largestFind largest

Example 5Example 5

Write an algorithm to find the largest of
1000 numbers.

SolutionSolution

See Algorithm 8.5 on the next slide.

FindLargest
Input: 1000 positive integers

1. Set Largest to 0
2. Set Counter to 0
3. while (Counter less than 1000)

 3.1 if (the integer is greater than Largest)
 then
 3.1.1 Set Largest to the value of the integer

 End if
 3.2 Increment Counter
End while

4. Return Largest
End

Algorithm 8.5:Algorithm 8.5:Find largest of 1000 numbersFind largest of 1000 numbers

MORE FORMA DEFINITIONMORE FORMA DEFINITION
•Ordered setOrdered set
•Unambiguous stepsUnambiguous steps
•EffectivenessEffectiveness
•TerminationTermination

8.48.4

SUBALGORITHMSSUBALGORITHMS

8.58.5

Concept of a subalgorithm

FindLargest
Input: A list of positive integers

1. Set Largest to 0
2. while (more integers)

 2.1 FindLarger
End while

3. Return Largest
End

Algorithm 8.6:Algorithm 8.6: Find largestFind largest

FindLarger
Input: Largest and current integer

1. if (the integer is greater than Largest)
then
 1.1 Set Largest to the value of the integer
End if
End

Subalgorithm:Subalgorithm: Find largerFind larger

