
173

Chapter 6
Programming in
MATLAB

A computer program is a sequence of computer commands. In a simple program
the commands are executed one after the other in the order they are typed. In this
book, for example, all the programs that have been presented so far in script files
are simple programs. Many situations, however, require more sophisticated pro-
grams in which commands are not necessarily executed in the order they are
typed, or different commands (or groups of commands) are executed when the
program runs with different input variables. For example, a computer program
that calculates the cost of mailing a package uses different mathematical expres-
sions to calculate the cost depending on the weight and size of the package, the
content (books are less expensive to mail), and the type of service (airmail,
ground, etc.). In other situations there might be a need to repeat a sequence of
commands several times within a program. For example, programs that solve
equations numerically repeat a sequence of calculations until the error in the
answer is smaller than some measure.

MATLAB provides several tools that can be used to control the flow of a
program. Conditional statements (Section 6.2) and the switch structure (Section
6.3) make it possible to skip commands or to execute specific groups of com-
mands in different situations. For loops and while loops (Section 6.4) make it
possible to repeat a sequence of commands several times.

It is obvious that changing the flow of a program requires some kind of
decision-making process within the program. The computer must decide whether
to execute the next command or to skip one or more commands and continue at a
different line in the program. The program makes these decisions by comparing
values of variables. This is done by using relational and logical operators, which
are explained in Section 6.1.
 It should also be noted that user-defined functions (introduced in Chapter 7)
can be used in programming. A user-defined function can be used as a subpro-
gram. When the main program reaches the command line that has the user-defined
function, it provides input to the function and “waits” for the results. The user-

174 Chapter 6: Programming in MATLAB

defined function carries out the calculations and transfers the results back to the
main program, which then continues to the next command.

6.1 RELATIONAL AND LOGICAL OPERATORS

A relational operator compares two numbers by determining whether a compari-
son statement (e.g., 5 < 8) is true or false. If the statement is true, it is assigned a
value of 1. If the statement is false, it is assigned a value of 0. A logical operator
examines true/false statements and produces a result that is true (1) or false (0)
according to the specific operator. For example, the logical AND operator gives 1
only if both statements are true. Relational and logical operators can be used in
mathematical expressions and, as will be shown in this chapter, are frequently
used in combination with other commands, to make decisions that control the
flow of a computer program.
Relational operators:
Relational operators in MATLAB are:

Note that the “equal to” relational operator consists of two = signs (with no space
between them), since one = sign is the assignment operator. In other relational
operators that consist of two characters there also is no space between the charac-
ters (<=, >=, ~=).

• Relational operators are used as arithmetic operators within a mathematical
expression. The result can be used in other mathematical operations, in
addressing arrays, and together with other MATLAB commands (e.g., if) to
control the flow of a program.

• When two numbers are compared, the result is 1 (logical true) if the compari-
son, according to the relational operator, is true, and 0 (logical false) if the
comparison is false.

• If two scalars are compared, the result is a scalar 1 or 0. If two arrays are com-
pared (only arrays of the same size can be compared), the comparison is done
element-by-element, and the result is a logical array of the same size with 1s
and 0s according to the outcome of the comparison at each address.

Relational operator Description

< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to
= = Equal to
~= Not Equal to

6.1 Relational and Logical Operators 175

• If a scalar is compared with an array, the scalar is compared with every element
of the array, and the result is a logical array with 1s and 0s according to the out-
come of the comparison of each element.

Some examples are:

>> 5>8

ans =
 0

>> a=5<10

a =
 1

>> y=(6<10)+(7>8)+(5*3= =60/4)

y =
 2

>> b=[15 6 9 4 11 7 14]; c=[8 20 9 2 19 7 10];

>> d=c>=b

d =
 0 1 1 0 1 1 0

>> b == c

ans =
 0 0 1 0 0 1 0

>> b~=c

ans =
 1 1 0 1 1 0 1

>> f=b-c>0

f =
 1 0 0 1 0 0 1

>> A=[2 9 4; -3 5 2; 6 7 -1]

A =
 2 9 4
 -3 5 2
 6 7 -1

>> B=A<=2

Checks if 5 is larger than 8.
Since the comparison is false (5 is
not larger than 8) the answer is 0.

Checks if 5 is smaller than 10, and assigns the answer to a.
Since the comparison is true (5 is smaller
than 10) the number 1 is assigned to a.

Using relational operators
in math expression.

Equal to 1 since
6 is smaller than 10.

Equal to 0 since 7 is
not larger than 8.

Equal to 1 since 5*3
is equal to 60/4.

Define vec-
tors b and c.

Checks which c elements are larger than or equal to b elements.

Assigns 1 where an element of c is larger than or equal to an element of b.

Checks which b elements are equal to c elements.

Checks which b elements are not equal to c elements.

Subtracts c from b and then checks
which elements are larger than zero.

Define a matrix A.3 3×

Checks which elements in A are smaller than
or equal to 2. Assigns the results to matrix B.

176 Chapter 6: Programming in MATLAB

• The results of a relational operation with vectors, which are vectors with 0s and
1s, are called logical vectors and can be used for addressing vectors. When a
logical vector is used for addressing another vector, it extracts from that vector
the elements in the positions where the logical vector has 1s. For example:

• Numerical vectors and arrays with the numbers 0s and 1s are not the same as
logical vectors and arrays with 0s and 1s. Numerical vectors and arrays can not
be used for addressing. Logical vectors and arrays, however, can be used in
arithmetic operations. The first time a logical vector or an array is used in arith-
metic operations it is changed to a numerical vector or array.

• Order of precedence: In a mathematical expression that includes relational and
arithmetic operations, the arithmetic operations (+, –, *, /, \) have precedence
over relational operations. The relational operators themselves have equal pre-
cedence and are evaluated from left to right. Parentheses can be used to alter
the order of precedence. Examples are:

B =
 1 0 0
 1 0 1
 0 0 1

>> r = [8 12 9 4 23 19 10]

r =
 8 12 9 4 23 19 10

>> s=r<=10

s =
 1 0 1 1 0 0 1

>> t=r(s)

t =
 8 9 4 10

>> w=r(r<=10)

w =
 8 9 4 10

>> 3+4<16/2

ans =
 1

>> 3+(4<16)/2

ans =
 3.5000

Define a vector r.

Checks which r elements are smaller than or equal to 10.

A logical vector s with 1s at positions where
elements of r are smaller than or equal to 10.

Use s for addresses in vector r to create vector t.
Vector t consists of elements of
r in positions where s has 1s.

The same procedure can be done in one step.

+ and / are executed first.
The answer is 1 since 7 < 8 is true.

4 < 16 is executed first, and is equal to 1, since it is true.
3.5 is obtained from 3 + 1/2.

6.1 Relational and Logical Operators 177

Logical operators:
Logical operators in MATLAB are:

• Logical operators have numbers as operands. A nonzero number is true, and a
zero number is false.

• Logical operators (like relational operators) are used as arithmetic operators
within a mathematical expression. The result can be used in other mathemati-
cal operations, in addressing arrays, and together with other MATLAB com-
mands (e.g., if) to control the flow of a program.

• Logical operators (like relational operators) can be used with scalars and
arrays.

• The logical operations AND and OR can have both operands as scalars, arrays,
or one array and one scalar. If both are scalars, the result is a scalar 0 or 1. If
both are arrays, they must be of the same size and the logical operation is done
element-by-element. The result is an array of the same size with 1s and 0s
according to the outcome of the operation at each position. If one operand is a
scalar and the other is an array, the logical operation is done between the scalar
and each of the elements in the array and the outcome is an array of the same
size with 1s and 0s.

• The logical operation NOT has one operand. When it is used with a scalar the
outcome is a scalar 0 or 1. When it is used with an array, the outcome is an
array of the same size with 1s in positions where the array has nonzero num-
bers and 0s in positions where the array has 0s.

Following are some examples:

Logical operator Name Description

&
Example: A&B

AND Operates on two operands (A and B). If both
are true, the result is true (1); otherwise the
result is false (0).

|

Example: A|B

OR Operates on two operands (A and B). If
either one, or both, are true, the result is true
(1); otherwise (both are false) the result is
false (0).

~

Example: ~A

NOT Operates on one operand (A). Gives the
opposite of the operand; true (1) if the oper-
and is false, and false (0) if the operand is
true.

>> 3&7 3 AND 7.

178 Chapter 6: Programming in MATLAB

Order of precedence:
Arithmetic, relational, and logical operators can be combined in mathematical
expressions. When an expression has such a combination, the result depends on
the order in which the operations are carried out. The following is the order used
by MATLAB:

ans =
 1

>> a=5|0

a =
 1

>> ~25

ans =
 0

>> t=25*((12&0)+(~0)+(0|5))

t =
 50

>> x=[9 3 0 11 0 15]; y=[2 0 13 -11 0 4];

>> x&y
ans =
 1 0 0 1 0 1

>> z=x|y
z =
 1 1 1 1 0 1

>> ~(x+y)
ans =
 0 0 0 1 1 0

Precedence Operation

1 (highest) Parentheses (if nested parentheses exist, inner ones have
precedence)

2 Exponentiation
3 Logical NOT (~)
4 Multiplication, division
5 Addition, subtraction
6 Relational operators (>, <, >=, <=, = =, ~=)
7 Logical AND (&)
8 (lowest) Logical OR (|)

3 and 7 are both true (nonzero), so the outcome is 1.

5 OR 0 (assign to variable a).
1 is assigned to a since at least one number is true (nonzero).

NOT 25.
The outcome is 0 since 25 is true
(nonzero) and the opposite is false.

Using logical operators in a math expression.

Define two vec-
tors x and y.

The outcome is a vector with 1 in every position where
both x and y are true (nonzero elements), and 0s otherwise.

The outcome is a vector with 1 in every position where either
or both x and y are true (nonzero elements), and 0s otherwise.

The outcome is a vector with 0 in every position where
the vector x + y is true (nonzero elements), and 1 in
every position where x + y is false (zero elements).

6.1 Relational and Logical Operators 179

If two or more operations have the same precedence, the expression is executed in
order from left to right.

It should be pointed out here that the order shown above is the one used
since MATLAB 6. Previous versions of MATLAB used a slightly different order
(& did not have precedence over |), so the user must be careful. Compatibility
problems between different versions of MATLAB can be avoided by using paren-
theses even when they are not required.

The following are examples of expressions that include arithmetic, rela-
tional, and logical operators:

Built-in logical functions:
MATLAB has built-in functions that are equivalent to the logical operators. These
functions are:

and(A,B) equivalent to A&B
or(A,B) equivalent to A|B
not(A) equivalent to ~A

>> x=-2; y=5;

>> -5<x<-1
ans =
 0

>> -5<x & x<-1
ans =
 1

>> ~(y<7)
ans =
 0

>> ~y<7
ans =
 1

>> ~((y>=8)|(x<-1))
ans =
 0

>> ~(y>=8)|(x<-1)
ans =
 1

Define variables x and y.
This inequality is correct mathematically. The answer,
however, is false since MATLAB executes from left to
right. –5 < x is true (=1) and then 1 < –1 is false (0).

The mathematically correct statement is obtained by
using the logical operator &. The inequalities are exe-
cuted first. Since both are true (1), the answer is 1.

y < 7 is executed first, it is true (1), and ~1 is 0.

~y is executed first. y is true (1) (since y
is nonzero), ~1 is 0, and 0 < 7 is true (1).

y >= 8 (false), and x < –1 (true) are exe-
cuted first. OR is executed next (true). ~
is executed last, and gives false (0).

y >= 8 (false), and x < –1 (true) are executed
first. NOT of (y >= 8) is executed next (true).
OR is executed last, and gives true (1).

180 Chapter 6: Programming in MATLAB

In addition, MATLAB has other logical built-in functions, some of which are
described in the following table:

Function Description Example

xor(a,b) Exclusive or. Returns true (1) if
one operand is true and the
other is false.

>> xor(7,0)

ans =

 1

>> xor(7,-5)

ans =

 0

all(A) Returns 1 (true) if all elements
in a vector A are true (nonzero).
Returns 0 (false) if one or more
elements are false (zero).
If A is a matrix, treats columns
of A as vectors, and returns a
vector with 1s and 0s.

>> A=[6 2 15 9 7 11];

>> all(A)

ans =

 1

>> B=[6 2 15 9 0 11];

>> all(B)

ans =

 0

any(A) Returns 1 (true) if any element
in a vector A is true (nonzero).
Returns 0 (false) if all elements
are false (zero).
If A is a matrix, treats columns
of A as vectors, and returns a
vector with 1s and 0s.

>> A=[6 0 15 0 0 11];

>> any(A)

ans =

 1

>> B = [0 0 0 0 0 0];

>> any(B)

ans =

 0

find(A)

find(A>d)

If A is a vector, returns the indi-
ces of the nonzero elements.
If A is a vector, returns the
address of the elements that are
larger than d (any relational
operator can be used).

>> A=[0 9 4 3 7 0 0 1
8];

>> find(A)

ans =

 2 3 4
5 8 9

>> find(A>4)

ans =

 2 5 9

6.1 Relational and Logical Operators 181

The operations of the four logical operators, and, or, xor, and not can be
summarized in a truth table:

Sample Problem 6-1: Analysis of temperature data

The following were the daily maximum temperatures (in F) in Washington, DC,
during the month of April 2002: 58 73 73 53 50 48 56 73 73 66 69 63 74 82 84 91
93 89 91 80 59 69 56 64 63 66 64 74 63 69 (data from the U.S. National Oceanic
and Atmospheric Administration). Use relational and logical operations to deter-
mine the following:
(a) The number of days the temperature was above 75 .
(b) The number of days the temperature was between 65 and 80 .
(c) The days of the month when the temperature was between 50 and 60 .
Solution
In the script file below the temperatures are entered in a vector. Relational and
logical expressions are then used to analyze the data.

INPUT OUTPUT

A B AND
A&B

OR
A|B

XOR
(A,B)

NOT
~A

NOT
~B

false false false false false true true

false true false true true true false

true false false true true false true

true true true true false false false

T=[58 73 73 53 50 48 56 73 73 66 69 63 74 82 84 ...

 91 93 89 91 80 59 69 56 64 63 66 64 74 63 69];

Tabove75=T>=75;

NdaysTabove75=sum(Tabove75)

Tbetween65and80=(T>=65)&(T<=80);

NdaysTbetween65and80=sum(Tbetween65and80)

datesTbetween50and60=find((T>=50)&(T<=60))

°

°
° °

° °

A vector with 1s at addresses where T >= 75.
Add all the 1s in the vector Tabove75.

A vector with 1s at addresses
where T >= 65 and T <= 80.

Add all the 1s in the vector Tbetween65and80.

The function find returns the address of the ele-
ments in T that have values between 50 and 60.

182 Chapter 6: Programming in MATLAB

The script file (saved as Exp6_1) is executed in the Command Window:

6.2 CONDITIONAL STATEMENTS

A conditional statement is a command that allows MATLAB to make a decision
of whether to execute a group of commands that follow the conditional statement,
or to skip these commands. In a conditional statement a conditional expression is
stated. If the expression is true, a group of commands that follow the statement are
executed. If the expression is false, the computer skips the group. The basic form
of a conditional statement is:

Examples:
if a < b
if c >= 5
if a == b
if a ~= 0
if (d<h)&(x>7)
if (x~=13)|(y<0)

• Conditional statements can be a part of a program written in a script file or a
user-defined function (Chapter 7).

• As shown below, for every if statement there is an end statement.

The if statement is commonly used in three structures, if-end,
if-else-end, and if-elseif-else-end, which are described next.

6.2.1 The if-end Structure
The if-end conditional statement is shown schematically in Figure 6-1. The fig-
ure shows how the commands are typed in the program, and a flowchart that sym-
bolically shows the flow, or the sequence, in which the commands are executed.
As the program executes, it reaches the if statement. If the conditional expres-

>> Exp6_1

NdaysTabove75 =
 7

NdaysTbetween65and80 =
 12

datesTbetween50and60 =
 1 4 5 7 21 23

For 7 days the temp was above 75.

For 12 days the temp was between 65 and 80.

Dates of the month with
temp between 50 and 60.

if conditional expression consisting of relational and/or logical operators.

All the variables must
have assigned values.

6.2 Conditional Statements 183

sion in the if statement is true (1), the program continues to execute the com-
mands that follow the if statement all the way down to the end statement. If the
conditional expression is false (0), the program skips the group of commands
between the if and the end, and continues with the commands that follow the
end.

The words if and end appear on the screen in blue, and the commands
between the if statement and the end statement are automatically indented (they
don’t have to be), which makes the program easier to read. An example where the
if-end statement is used in a script file is shown in Sample Problem 6-2.

Sample Problem 6-2: Calculating worker’s pay

A worker is paid according to his hourly wage up to 40 hours, and 50% more for
overtime. Write a program in a script file that calculates the pay to a worker. The
program asks the user to enter the number of hours and the hourly wage. The pro-
gram then displays the pay.
Solution
The program in a script file is shown below. The program first calculates the pay
by multiplying the number of hours by the hourly wage. Then an if statement
checks whether the number of hours is greater than 40. If so, the next line is exe-
cuted and the extra pay for the hours above 40 is added. If not, the program skips
to the end.

Figure 6-1: The structure of the if-end conditional statement.

t=input('Please enter the number of hours worked ');

h=input('Please enter the hourly wage in $ ');

Pay=t*h;

if t>40

......

......

......
if conditional expression

........

........

........
end
......
......
......

A group of
MATLAB commands.

MATLAB program.

MATLAB program.

Flowchart

184 Chapter 6: Programming in MATLAB

Application of the program (in the Command Window) for two cases is shown
below (the file was saved as Workerpay):

6.2.2 The if-else-end Structure

The if-else-end structure provides a means for choosing one group of com-
mands, out of a possible two groups, for execution. The if-else-end struc-
ture is shown in Figure 6-2. The figure shows how the commands are typed in the
program, and a flowchart that illustrates the flow, or the sequence, in which the

 Pay=Pay+(t-40)*0.5*h;

end

fprintf('The worker''s pay is $ %5.2f',Pay)

>> Workerpay

Please enter the number of hours worked 35

Please enter the hourly wage in $ 8

The worker’s pay is $ 280.00

>> Workerpay

Please enter the number of hours worked 50

Please enter the hourly wage in $ 10

The worker’s pay is $ 550.00

Figure 6-2: The structure of the if-else-end conditional statement.

if
statement

True

Commands
group 1

False

end

Commands
group 2

......

......

if conditional expression
........
........
........

else
........
........
........

end
......
......

Group 1 of
MATLAB commands.

MATLAB program.

MATLAB program.

Group 2 of
MATLAB commands.

Flowchart

6.2 Conditional Statements 185

commands are executed. The first line is an if statement with a conditional
expression. If the conditional expression is true, the program executes group 1 of
commands between the if and the else statements and then skips to the end. If
the conditional expression is false, the program skips to the else and then exe-
cutes group 2 of commands between the else and the end.

6.2.3 The if-elseif-else-end Structure

The if-elseif-else-end structure is shown in Figure 6-3. The figure
shows how the commands are typed in the program, and gives a flowchart that
illustrates the flow, or the sequence, in which the commands are executed. This
structure includes two conditional statements (if and elseif) that make it
possible to select one out of three groups of commands for execution. The first
line is an if statement with a conditional expression. If the conditional expression
is true, the program executes group 1 of commands between the if and the

elseif statements and then skips to the end. If the conditional expression in the
if statement is false, the program skips to the elseif statement. If the condi-
tional expression in the elseif statement is true, the program executes group 2
of commands between the elseif and the else and then skips to the end. If
the conditional expression in the elseif statement is false, the program skips to
the else and executes group 3 of commands between the else and the end.

It should be pointed out here that several elseif statements and associ-

Figure 6-3: The structure of the if-elseif-else-end conditional statement.

if
statement

True

Commands
group 1

False

end

Commands
group 2

Commands
group 3

elseif
statement

True

False

......

......

if conditional expression
........
........
........

elseif conditional expression
........
........
........

else
........
........
........

end
......
......

Group 1 of
MATLAB commands.

MATLAB program.

MATLAB program.

Group 2 of
MATLAB commands.

Flowchart

Group 3 of
MATLAB commands.

186 Chapter 6: Programming in MATLAB

ated groups of commands can be added. In this way more conditions can be
included. Also, the else statement is optional. This means that in the case of sev-
eral elseif statements and no else statement, if any of the conditional state-
ments is true the associated commands are executed; otherwise nothing is
executed.

The following example uses the if-elseif-else-end structure in a
program.

Sample Problem 6-3: Water level in water tower

The tank in a water tower has the geometry
shown in the figure (the lower part is a cylinder
and the upper part is an inverted frustum of a
cone). Inside the tank there is a float that indi-
cates the level of the water. Write a MATLAB
program that determines the volume of the
water in the tank from the position (height h) of
the float. The program asks the user to enter a
value of h in m, and as output displays the vol-
ume of the water in m3.
Solution
For m the volume of the water is given by the volume of a cylinder with
height h: .
For m the volume of the water is given by adding the volume of a cyl-
inder with m, and the volume of the water in the cone:

where .

The program is:

% The program calculates the volume of the water in the
water tower.

h=input('Please enter the height of the float in meter ');

if h > 33

 disp('ERROR. The height cannot be larger than 33 m.')

elseif h < 0
 disp('ERROR. The height cannot be a negative number.')

elseif h <= 19
 v = pi*12.5^2*h;

 fprintf('The volume of the water is %7.3f cubic meter.\n',v)

0 h 19≤ ≤
V π12.52h=

19 h 33≤<
h 19=

V π12.52 19⋅ 1
3
---π h 19–() 12.52 12.5 rh⋅ rh

2+ +()+=

rh 12.5 10.5
14

---------- h 19–()+=

6.3 The switch-case Statement 187

The following is the display in the Command Window when the program is used
with three different values of water height.

6.3 THE switch-case STATEMENT

The switch-case statement is another method that can be used to direct the
flow of a program. It provides a means for choosing one group of commands for
execution out of several possible groups. The structure of the statement is shown
in Figure 6-4.
• The first line is the switch command, which has the form:

The switch expression can be a scalar or a string. Usually it is a variable that has
an assigned scalar or a string. It can also be, however, a mathematical expression
that includes pre-assigned variables and can be evaluated.
• Following the switch command are one or several case commands. Each

has a value (can be a scalar or a string) next to it (value1, value2, etc.) and an
associated group of commands below it.

• After the last case command there is an optional otherwise command fol-
lowed by a group of commands.

• The last line must be an end statement.

How does the switch-case statement work?
The value of the switch expression in the switch command is compared with the
values that are next to each of the case statements. If a match is found, the group
of commands that follow the case statement with the match are executed. (Only
one group of commands—the one between the case that matches and either the

else

 rh=12.5+10.5*(h-19)/14;
 v=pi*12.5^2*19+pi*(h-19)*(12.5^2+12.5*rh+rh^2)/3;

 fprintf('The volume of the water is %7.3f cubic meter.\n',v)
end

Please enter the height of the float in meter 8
The volume of the water is 3926.991 cubic meter.

Please enter the height of the float in meter 25.7
The volume of the water is 14114.742 cubic meter.

Please enter the height of the float in meter 35
ERROR. The height cannot be larger than 33 m.

switch switch expression

188 Chapter 6: Programming in MATLAB

case, otherwise, or end statement that is next—is executed).
• If there is more than one match, only the first matching case is executed.

• If no match is found and the otherwise statement (which is optional) is
present, the group of commands between otherwise and end is executed.

• If no match is found and the otherwise statement is not present, none of the
command groups is executed.

• A case statement can have more than one value. This is done by typing the
values in the form: {value1, value2, value3, ...}. (This form,
which is not covered in this book, is called a cell array.) The case is executed if
at least one of the values matches the value of switch expression.

A Note: In MATLAB only the first matching case is executed. After the group of
commands associated with the first matching case are executed, the program skips
to the end statement. This is different from the C language, where break state-
ments are required.

Sample Problem 6-4: Converting units of energy

Write a program in a script file that converts a quantity of energy (work) given in
units of either joule, ft-lb, cal, or eV to the equivalent quantity in different units
specified by the user. The program asks the user to enter the quantity of energy, its

Figure 6-4: The structure of a switch-case statement.

......

......

switch switch expression
case value1
........
........
case value2
........
........
case value3
........
........
otherwise
........
........

end
......
......

Group 1 of commands.

MATLAB program.

MATLAB program.

Group 2 of commands.

Group 3 of commands.

Group 4 of commands.

6.3 The switch-case Statement 189

current units, and the desired new units. The output is the quantity of energy in the
new units.

The conversion factors are: 1 ft-lb cal eV.
Use the program to:
(a) Convert 150 J to ft-lb.
(b) Convert 2,800 cal to J.
(c) Convert 2.7 eV to cal.
Solution
The program includes two sets of switch-case statements and one if-
else-end statement. The first switch-case statement is used to convert the
input quantity from its initial units to units of joules. The second is used to
convert the quantity from joules to the specified new units. The if-else-end
statement is used to generate an error message if units are entered incorrectly.

Ein=input('Enter the value of the energy (work) to be converted: ');

EinUnits=input('Enter the current units (J, ft-lb, cal, or eV): ','s');

EoutUnits=input('Enter the new units (J, ft-lb, cal, or eV): ','s');

error=0;

switch EinUnits

case 'J'

 EJ=Ein;

case 'ft-lb'

 EJ=Ein/0.738;

case 'cal'

 EJ=Ein/0.239;

case 'eV'

 EJ=Ein/6.24e18;

otherwise

 error=1;

end

switch EoutUnits

case 'J'

 Eout=EJ;

case 'ft-lb'

 Eout=EJ*0.738;

case 'cal'

 Eout=EJ*0.239;

case 'eV'

 Eout=EJ*6.24e18;

J 0.738= 0.239= 6.24 1018×=

Assign 0 to variable error.
First switch statement. Switch expres-
sion is a string with initial units.

Each of the four case statements has
a value (string) that corresponds to
one of the initial units, and a com-
mand that converts Ein to units of J.
(Assign the value to EJ.)

Assign 1 to error if no match is found. Possi-
ble only if initial units were typed incorrectly.

Second switch statement. Switch
expression is a string with new units.

Each of the four case statements has
a value (string) that corresponds to
one of the new units, and a command
that converts EJ to the new units.
(Assign the value to Eout.)

190 Chapter 6: Programming in MATLAB

As an example, the script file (saved as EnergyConversion) is used next in the
Command Window to make the conversion in part (b) of the problem statement.

6.4 LOOPS

A loop is another method to alter the flow of a computer program. In a loop, the
execution of a command, or a group of commands, is repeated several times con-
secutively. Each round of execution is called a pass. In each pass at least one vari-
able, but usually more than one, or even all the variables that are defined within
the loop, are assigned new values. MATLAB has two kinds of loops. In for-end
loops (Section 6.4.1) the number of passes is specified when the loop starts. In
while-end loops (Section 6.4.2) the number of passes is not known ahead of
time, and the looping process continues until a specified condition is satisfied.
Both kinds of loops can be terminated at any time with the break command (see
Section 6.6).

6.4.1 for-end Loops
In for-end loops the execution of a command, or a group of commands, is
repeated a predetermined number of times. The form of a loop is shown in Figure
6-5.
• The loop index variable can have any variable name (usually i, j, k, m, and n

are used, however, i and j should not be used if MATLAB is used with com-
plex numbers).

otherwise
 error=1;

end

if error

 disp('ERROR current or new units are typed incorrectly.')

else

 fprintf('E = %g %s',Eout,EoutUnits)

end

>> EnergyConversion

Enter the value of the energy (work) to be converted: 2800

Enter the current units (J, ft-lb, cal, or eV): cal

Enter the new units (J, ft-lb, cal, or eV): J

E = 11715.5 J

Assign 1 to error if no match is found. Pos-
sible only if new units were typed incorrectly.

If-else-end statement.

If error is true (nonzero),
display an error message.

If error is false (zero), display converted energy.

6.4 Loops 191

• In the first pass k = f and the computer executes the commands between the
for and end commands. Then, the program goes back to the for command
for the second pass. k obtains a new value equal to k = f + s, and the com-
mands between the for and end commands are executed with the new value
of k. The process repeats itself until the last pass, where k = t. Then the pro-
gram does not go back to the for, but continues with the commands that fol-
low the end command. For example, if k = 1:2:9, there are five loops, and the
corresponding values of k are 1, 3, 5, 7, and 9.

• The increment s can be negative (i.e.; k = 25:–5:10 produces four passes with
k = 25, 20, 15, 10).

• If the increment value s is omitted, the value is 1 (default) (i.e.; k = 3:7 pro-
duces five passes with k = 3, 4, 5, 6, 7).

• If f = t, the loop is executed once.

• If f > t and s > 0, or if f < t and s < 0, the loop is not executed.

• If the values of k, s, and t are such that k cannot be equal to t, then if s is
positive, the last pass is the one where k has the largest value that is smaller
than t (i.e., k = 8:10:50 produces five passes with k = 8, 18, 28, 38, 48). If s is
negative, the last pass is the one where k has the smallest value that is larger
than t.

• In the for command k can also be assigned a specific value (typed as a vec-
tor). Example: for k = [7 9 –1 3 3 5].

• The value of k should not be redefined within the loop.

• Each for command in a program must have an end command.

• The value of the loop index variable (k) is not displayed automatically. It is
possible to display the value in each pass (which is sometimes useful for
debugging) by typing k as one of the commands in the loop.

Figure 6-5: The structure of a for-end loop.

for k = f:s:t

end

A group of
MATLAB commands.

Loop index
variable.

The value of k
in the first pass.

The increment in k
after each pass.

The value of k
in the last pass.

192 Chapter 6: Programming in MATLAB

• When the loop ends, the loop index variable (k) has the value that was last
assigned to it.

A simple example of a for-end loop (in a script file) is:

When this program is executed, the loop is executed four times. The value of k in
the four passes is k = 1, 4, 7, and 10, which means that the values that are assigned
to x in the passes are x = 1, 16, 49, and 100, respectively. Since a semicolon is not
typed at the end of the second line, the value of x is displayed in the Command
Window at each pass. When the script file is executed, the display in the Com-
mand Window is:

Sample Problem 6-5: Sum of a series

(a) Use a for-end loop in a script file to calculate the sum of the first n terms of

the series: . Execute the script file for n = 4 and n = 20.

(b) The function sin(x) can be written as a Taylor series by:

Write a user-defined function file that calculates sin(x) by using the Taylor series.
For the function name and arguments use y = Tsin(x,n). The input arguments
are the angle x in degrees and n the number of terms in the series. Use the func-
tion to calculate sin(150) using three and seven terms.
Solution
(a) A script file that calculates the sum of the first n terms of the series is shown
below.
The summation is done with a loop. In each pass one term of the series is calcu-

for k=1:3:10

 x = k^2

end

>> x =
 1

x =
 16

x =
 49

x =
 100

1–()kk
2k

k 1=

n

∑

xsin 1–()kx2k 1+

2k 1+()!

k 0=

∞

∑=

°

6.4 Loops 193

lated (in the first pass the first term, in the second pass the second term, and so on)
and is added to the sum of the previous elements. The file is saved as Exp6_5a and
then executed twice in the Command Window:

(b) A user-defined function file that calculates sin(x) by adding n terms of a
Taylor series is shown below.

The first element corresponds to k = 0, which means that in order to add n terms of
the series, in the last loop k = n – 1. The function is used in the Command Window
to calculate sin(150) using three and seven terms:

n=input('Enter the number of terms ');

S=0;

for k=1:n

 S=S+(-1)^k*k/2^k;

end

fprintf('The sum of the series is: %f',S)

>> Exp6_5a

Enter the number of terms 4

The sum of the series is: -0.125000

>> Exp7_5a

Enter the number of terms 20

The sum of the series is: -0.222216

function y = Tsin(x,n)

% Tsin calculates the sin using Taylor formula.

% Input arguments:

% x The angle in degrees, n number of terms.

xr=x*pi/180;

y=0;

for k=0:n-1

 y=y+(-1)^k*xr^(2*k+1)/factorial(2*k+1);

end

>> Tsin(150,3)

ans =
 0.6523

Setting the sum to zero.
In each pass one element of the
series is calculated and is added
to the sum of the elements from
the previous passes.

for-end
loop.

Converting the angle from degrees to radians.

for-end
loop.

°

Calculating sin(150o) with three terms of Taylor series.

194 Chapter 6: Programming in MATLAB

A note about for-end loops and element-by-element operations:
In some situations the same end result can be obtained by either using for-end
loops or using element-by-element operations. Sample Problem 6-5 illustrates
how the for-end loop works, but the problem can also be solved by using ele-
ment-by-element operations (see Problems 7 and 8 in Section 3.9). Element-by-
element operations with arrays are one of the superior features of MATLAB that
provide the means for computing in circumstances that otherwise require loops. In
general, element-by-element operations are faster than loops and are recom-
mended when either method can be used.

Sample Problem 6-6: Modify vector elements

A vector is given by V = [5, 17, –3, 8, 0, –7, 12, 15, 20, –6, 6, 4, –7, 16]. Write a
program as a script file that doubles the elements that are positive and are divisible
by 3 or 5, and, raises to the power of 3 the elements that are negative but greater
than –5.
Solution
The problem is solved by using a for-end loop that has an if-elseif-end
conditional statement inside. The number of passes is equal to the number of ele-
ments in the vector. In each pass one element is checked by the conditional state-
ment. The element is changed if it satisfies the conditions in the problem
statement. A program in a script file that carries out the required operations is:

>> Tsin(150,7)
ans =
 0.5000

V=[5, 17, -3, 8, 0, -7, 12, 15, 20 -6, 6, 4, -2, 16];

n=length(V);

for k=1:n

 if V(k)>0 & (rem(V(k),3) = = 0 | rem(V(k),5) = = 0)

 V(k)=2*V(k);

 elseif V(k) < 0 & V(k) > -5

 V(k)=V(k)^3;

 end

end

V

Calculating sin(150) with seven terms of Taylor series.°

The exact value is 0.5.

Setting n to be equal to the number of elements in V.

if-
elseif-
end
statement.

for-end
loop.

6.4 Loops 195

The file is saved as Exp7_6 and then executed in the Command Window:

6.4.2 while-end Loops

while-end loops are used in situations when looping is needed but the number
of passes is not known in advance. In while-end loops the number of passes is
not specified when the looping process starts. Instead, the looping process contin-
ues until a stated condition is satisfied. The structure of a while-end loop is
shown in Figure 6-6.

The first line is a while statement that includes a conditional expression.
When the program reaches this line the conditional expression is checked. If it is
false (0), MATLAB skips to the end statement and continues with the program. If
the conditional expression is true (1), MATLAB executes the group of commands
that follow between the while and end commands. Then MATLAB jumps back
to the while command and checks the conditional expression. This looping pro-
cess continues until the conditional expression is false.
For a while-end loop to execute properly:

• The conditional expression in the while command must include at least one
variable.

• The variables in the conditional expression must have assigned values when
MATLAB executes the while command for the first time.

• At least one of the variables in the conditional expression must be assigned a
new value in the commands that are between the while and the end. Other-
wise, once the looping starts it will never stop since the conditional expression
will remain true.

An example of a simple while-end loop is shown in the following program. In

>> Exp7_6

V =
 10 17 -27 8 0 -7 24 30 40 -6 12 4
-8 16

Figure 6-6: The structure of a while-end loop.

while conditional expression

end

A group of
MATLAB commands.

196 Chapter 6: Programming in MATLAB

this program a variable x with an initial value of 1 is doubled in each pass as long
as its value is equal to or smaller than 15.

When this program is executed the display in the Command Window is:

Important note:
When writing a while-end loop, the programmer has to be sure that the variable
(or variables) that are in the conditional expression and are assigned new values
during the looping process will eventually be assigned values that make the condi-
tional expression in the while command false. Otherwise the looping will con-
tinue indefinitely (indefinite loop). In the example above if the conditional
expression is changed to x >= 0.5, the looping will continue indefinitely. Such a
situation can be avoided by counting the passes and stopping the looping if the
number of passes exceeds some large value. This can be done by adding the max-
imum number of passes to the conditional expression, or by using the break
command (Section 6.6).

Since no one is free from making mistakes, a situation of indefinite looping
can occur in spite of careful programming. If this happens, the user can stop the
execution of an indefinite loop by pressing the Ctrl + C or Ctrl + Break keys.

Sample Problem 6-7: Taylor series representation of a function

The function can be represented in a Taylor series by .

Write a program in a script file that determines by using the Taylor series rep-
resentation. The program calculates by adding terms of the series and stopping

x=1

while x<=15

 x=2*x

end

x =
 1

x =
 2

x =
 4

x =
 8

x =
 16

Initial value of x is 1.
The next command is executed only if x <= 15.

In each pass x doubles.

Initial value of x.

In each pass x doubles.

When x = 16, the conditional expression in the
while command is false and the looping stops.

f x() ex= ex xn

n!

n 0=

∞

∑=

ex

ex

6.4 Loops 197

when the absolute value of the term that was added last is smaller than 0.0001.
Use a while-end loop, but limit the number of passes to 30. If in the 30th pass
the value of the term that is added is not smaller than 0.0001, the program stops
and displays a message that more than 30 terms are needed.

Use the program to calculate , , and .
Solution
The first few terms of the Taylor series are:

A program that uses the series to calculate the function is shown next. The
program asks the user to enter the value of x. Then the first term, an, is assigned
the number 1, and an is assigned to the sum S. Then, from the second term on, the
program uses a while loop to calculate the nth term of the series and add it to the
sum. The program also counts the number of terms n. The conditional expression
in the while command is true as long as the absolute value of the nth an term is
larger than 0.0001, and the number of passes n is smaller than 30. This means that
if the 30th term is not smaller than 0.0001, the looping stops.

The program uses an if-else-end statement to display the results. If the loop-
ing stopped because the 30th term is not smaller than 0.0001, it displays a mes-
sage indicating this. If the value of the function is calculated successfully, it
displays the value of the function and the number of terms used. When the pro-
gram executes, the number of passes depends on the value of x. The program
(saved as expox) is used to calculate , , and :

x=input('Enter x ');

n=1; an=1; S=an;

while abs(an) >= 0.0001 & n <= 30

 an=x^n/factorial(n);

 S=S+an;

 n=n+1;

end

if n >= 30

 disp('More than 30 terms are needed')

else

fprintf('exp(%f) = %f',x,S)

fprintf('\nThe number of terms used is: %i',n)

end

>> expox

e2 e 4– e21

ex 1 x x2

2!
----- x3

3!
----- …+ + + +=

Start of the while loop.
Calculating the nth term.

Adding the nth term to the sum.
Counting the number of passes.

End of the while loop.
if-else-end loop.

e2 e 4– e21

198 Chapter 6: Programming in MATLAB

6.5 NESTED LOOPS AND NESTED CONDITIONAL STATEMENTS

Loops and conditional statements can be nested within other loops or conditional
statements. This means that a loop and/or a conditional statement can start (and
end) within another loop or conditional statement. There is no limit to the number
of loops and conditional statements that can be nested. It must be remembered,
however, that each if, case, for, and while statement must have a corre-
sponding end statement. Figure 6-7 shows the structure of a nested for-end

loop within another for-end loop. In the loops shown in this figure, if, for
example, n = 3 and m = 4, then first k = 1 and the nested loop executes four times
with h = 1, 2, 3, 4. Next k = 2 and the nested loop executes again four times with
h = 1, 2, 3, 4. Finally k = 3 and the nested loop executes again four times. Every
time a nested loop is typed, MATLAB automatically indents the new loop relative
to the outside loop. Nested loops and conditional statements are demonstrated in
the following sample problem.

Enter x 2

exp(2.000000) = 7.389046

The number of terms used is: 12

>> expox

Enter x -4

exp(-4.000000) = 0.018307

The number of terms used is: 18

>> expox

Enter x 21

More than 30 terms are needed

Figure 6-7: Structure of nested loops.

Calculating exp(2).

12 terms used.

Calculating exp(–4).

18 terms used.

Trying to calculate exp(21).

for k = 1:n
for h = 1:m

end
end

A group of
commands.

Nested
loop

Loop

Every time k
increases by 1, the
nested loop executes
m times. Overall, the
group of commands
are executed
times.

n m×

6.5 Nested Loops and Nested Conditional Statements 199

Sample Problem 6-8: Creating a matrix with a loop

Write a program in a script file that creates an matrix with elements that
have the following values. The value of each element in the first row is the num-
ber of the column. The value of each element in the first column is the number of
the row. The rest of the elements each has a value equal to the sum of the element
above it and the element to the left. When executed, the program asks the user to
enter values for n and m.
Solution
The program, shown below, has two loops (one nested) and a nested if-
elseif-else-end structure. The elements in the matrix are assigned values
row by row. The loop index variable of the first loop, k, is the address of the row,
and the loop index variable of the second loop, h, is the address of the column.

The program is executed in the Command Window to create a matrix.

n=input('Enter the number of rows ');

m=input('Enter the number of columns ');

A=[];

for k=1:n

 for h=1:m

 if k==1

 A(k,h)=h;

 elseif h==1

 A(k,h)=k;

 else

 A(k,h)=A(k,h-1)+A(k-1,h);

 end

 end

end

A

>> Chap6_exp8

Enter the number of rows 4

Enter the number of columns 5

n m×

Define an empty matrix A
Start of the first for-end loop.

Start of the second for-end loop.
Start of the conditional statement.

Assign values to the elements of the first row.

Assign values to the elements of the first column.

Assign values to other elements.
end of the if statement.

end of the nested for-end loop.
end of the first for-end loop.

4 5×

200 Chapter 6: Programming in MATLAB

6.6 THE break AND continue COMMANDS

The break command:

• When inside a loop (for or while), the break command terminates the
execution of the loop (the whole loop, not just the last pass). When the break
command appears in a loop, MATLAB jumps to the end command of the loop
and continues with the next command (it does not go back to the for com-
mand of that loop).

• If the break command is inside a nested loop, only the nested loop is termi-
nated.

• When a break command appears outside a loop in a script or function file, it
terminates the execution of the file.

• The break command is usually used within a conditional statement. In loops
it provides a method to terminate the looping process if some condition is met
—for example, if the number of loops exceeds a predetermined value, or an
error in some numerical procedure is smaller than a predetermined value.
When typed outside a loop, the break command provides a means to termi-
nate the execution of a file, such as when data transferred into a function file is
not consistent with what is expected.

The continue command:

• The continue command can be used inside a loop (for or while) to stop
the present pass and start the next pass in the looping process.

• The continue command is usually a part of a conditional statement. When
MATLAB reaches the continue command, it does not execute the remain-
ing commands in the loop, but skips to the end command of the loop and then
starts a new pass.

A =
 1 2 3 4 5
 2 4 7 11 16
 3 7 14 25 41
 4 11 25 50 91

6.7 Examples of MATLAB Applications 201

6.7 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 6-9: Withdrawing from a retirement account.

A person in retirement is depositing $300,000 in a saving account that pays 5%
interest per year. The person plans to withdraw money from the account once a
year. He starts by withdrawing $25,000 after the first year, and in future years he
increases the amount he withdraws according to the inflation rate. For example, if
the inflation rate is 3%, he withdraws $25,750 after the second year. Calculate the
number of years the money in the account will last assuming a constant yearly
inflation rate of 2%. Make a plot that shows the yearly withdrawals and the bal-
ance of the account over the years.
Solution
The problem is solved by using a loop (a while loop since the number of passes
is not known before the loop starts). In each pass the amount to be withdrawn and
the account balance are calculated. The looping continues as long as the account
balance is larger than or equal to the amount to be withdrawn. The following is a
program in a script file that solves the problem. In the program, year is a vector
in which each element is a year number, W is a vector with the amount withdrawn
each year, and AB is a vector with the account balance each year.

rate=0.05; inf=0.02;

clear W AB year

year(1)=0;

W(1)=0;

AB(1)=300000;

Wnext=25000;

ABnext=300000*(1 + rate);

n=2;

 while ABnext >= Wnext

 year(n)=n-1;

 W(n)=Wnext;

 AB(n)=ABnext-W(n);

 ABnext=AB(n)*(1+rate);

 Wnext=W(n)*(1+inf);

 n=n+1;

 end

fprintf('The money will last for %f years',year(n-1))

bar(year,[AB' W'],2.0)

First element is year 0.
Initial withdrawal amount.

Initial account balance.
The amount to be withdrawn after a year.

The account balance after a year.

while checks if the next balance
is larger than the next withdrawal.

Amount withdrawn in year n – 1.
Account balance in year n – 1 after withdrawal.

The account balance after additional year.

The amount to be withdrawn
after an additional year.

202 Chapter 6: Programming in MATLAB

The program is executed in the following Command Window:

The program also generates the following figure (axis labels and legend were
added to the plot by using the Plot Editor).

Sample Problem 6-10: Creating a random list

Six singers—John, Mary, Tracy, Mike, Katie, and David—are performing in a
competition. Write a MATLAB program that generates a list of a random order in
which the singers will perform.
Solution
An integer (1 through 6) is assigned to each name (1 to John, 2 to Mary, 3 to
Tracy, 4 to Mike, 5 to Katie, and 6 to David). The program, shown below, first cre-
ates a list of the integers 1 through 6 in a random order. The integers are made the
elements of six-element vector. This is done by using MATLAB’s built-in func-
tion randi (see Section 3.7) for assigning integers to the elements of the vector.
To make sure that all the integers of the elements are different from each other, the
integers are assigned one by one. Each integer that is suggested by the randi
function is compared with all the integers that have been assigned to previous ele-
ments. If a match is found, the integer is not assigned, and randi is used for sug-
gesting a new integer. Since each singer name is associated with an integer, once
the integer list is complete the switch-case statement is used to create the cor-
responding name list.

>> Chap6_exp9

The money will last for 15 years.

clear, clc

n=6;

6.7 Examples of MATLAB Applications 203

The while loop checks that every new integer (element) that is to be added to the
vector L is not equal any of the integers in elements already in the vector L. If a
match is found, it keeps generating new integers until the new integer is different
from all the integers that are already in x.

When the program is executed, the following is displayed in the Command
Window. Obviously, a list in a different order will be displayed every time the pro-
gram is executed.

L(1)=randi(n);

for p=2:n

 L(p)=randi(n);

 r=0;

 while r==0

 r=1;

 for k=1:p-1

 if L(k)==L(p)

 L(p)=randi(n);

 r=0;

 break

 end

 end

 end

end

for i=1:n
 switch L(i)
 case 1
 disp('John')
 case 2
 disp('Mary')
 case 3
 disp('Tracy')
 case 4
 disp('Mike')
 case 5
 disp('Katie')
 case 6
 disp('David')
 end
end

The performing order is:

Assign the first integer to L(1).

Assign the next integer to L(p).
Set r to zero.

See explanation below.
Set r to 1.

for loop compares the integer assigned to L(p)to the
integers that have been assigned to previous elements.

If a match if found, a
new integer is
assigned to L(p) and
r is set to zero.

The nested for loop is stopped. The pro-
gram goes back to the while loop. Since
r = 0 the nested loop inside the while
loop starts again and checks if the new
integer that is assigned to L(p) is equal to
an integer that is already in the vector L.

The switch-case state-
ment lists the names
according to the values of
the integers in the elements
of L.

204 Chapter 6: Programming in MATLAB

Sample Problem 6-11: Flight of a model rocket

The flight of a model rocket can be modeled as follows.
During the first 0.15s the rocket is propelled upward by the
rocket engine with a force of 16 N. The rocket then flies up
while slowing down under the force of gravity. After it
reaches the apex, the rocket starts to fall back down. When
its downward velocity reaches 20 m/s a parachute opens
(assumed to open instantly), and the rocket continues to
drop at a constant speed of 20 m/s until it hits the ground.
Write a program that calculates and plots the speed and alti-
tude of the rocket as a function of time during the flight.
Solution
The rocket is assumed to be a particle that moves along a
straight line in the vertical plane. For motion with constant acceleration along a
straight line, the velocity and position as a function of time are given by:

 and

where and are the initial velocity and position, respectively. In the computer
program the flight of the rocket is divided into three segments. Each segment is
calculated in a while loop. In every pass the time increases by an increment.
Segment 1: The first 0.15s when the rocket engine is on.
During this period, the rocket moves up with a constant
acceleration. The acceleration is determined by drawing a
free body and a mass acceleration diagram (shown on the
right). From Newton’s second law, the sum of the forces
in the vertical direction is equal to the mass times the
acceleration (equilibrium equation):

 +
Solving the equation for the acceleration gives:

Katie

Tracy

David

Mary

John

Mike

v t() v0 at+= s t() s0 v0t 1
2
---at2+ +=

v0 s0

ΣF FE mg– ma= =

a
FE mg–

m
--------------------=

6.7 Examples of MATLAB Applications 205

The velocity and height as a function of time are:

 and
where the initial velocity and initial position are both zero. In the computer pro-
gram this segment starts at t = 0, and the looping continues as long as s.
The time, velocity, and height at the end of this segment are , , and .
Segment 2: The motion from when the engine stops until the parachute opens. In
this segment the rocket moves with a constant deceleration g. The speed and
height of the rocket as functions of time are given by:

 and

In this segment the looping continues until the velocity of the rocket is –20 m/s
(negative since the rocket moves down). The time and height at the end of this
segment are and .
Segment 3: The motion from when the parachute opens until the rocket hits the
ground. In this segment the rocket moves with constant velocity (zero accelera-
tion). The height as a function of time is given by , where

 is the constant velocity after the parachute opens. In this segment the loop-
ing continues as long as the height is greater than zero.

A program in a script file that carries out the calculations is shown below.

m=0.05; g=9.81; tEngine=0.15; Force=16; vChute=-20; Dt=0.01;

clear t v h

n=1;

t(n)=0; v(n)=0; h(n)=0;

% Segment 1

a1=(Force-m*g)/m;

while t(n) < tEngine & n < 50000

 n=n+1;

 t(n)=t(n-1)+Dt;

 v(n)=a1*t(n);

 h(n)=0.5*a1*t(n)^2;

end

v1=v(n); h1=h(n); t1=t(n);

% Segment 2

while v(n) >= vChute & n < 50000

 n=n+1;

 t(n)=t(n-1)+Dt;

 v(n)=v1-g*(t(n)-t1);

v t() 0 at+= h t() 0 0 1
2
---at2+ +=

t 0.15<
t1 v1 h1

v t() v1 g t t1–()–= h t() h1 v1 t t1–() 1
2
---g t t1–()2–+=

t2 h2

h t() h2 vchute t t2–()–=
vchute

The first while loop.

The second while loop.

206 Chapter 6: Programming in MATLAB

The accuracy of the results depends on the magnitude of the time increment
Dt. An increment of 0.01 s appears to give good results. The conditional expres-
sion in the while commands also includes a condition for n (if n is larger than
50,000 the loop stops). This is done as a precaution to avoid an infinite loop in
case there is an error in an of the statements inside the loop. The plots generated
by the program are shown below (axis labels and text were added to the plots
using the Plot Editor).

Note: The problem can be solved and programmed in different ways. The solu-
tion shown here is one option. For example, instead of using while loops, the
times when the parachute opens and when the rocket hits the ground can be calcu-
lated first, and then for-end loops can be used instead of the while loop. If the
times are determined first, it is possible also to use element-by-element calcula-
tions instead of loops.

 h(n)=h1+v1*(t(n)-t1)-0.5*g*(t(n)-t1)^2;

end

v2=v(n); h2=h(n); t2=t(n);

% Segment 3

while h(n) > 0 & n < 50000

 n=n+1;

 t(n)=t(n-1)+Dt;

 v(n)=vChute;

 h(n)=h2+vChute*(t(n)-t2);

end

subplot(1,2,1)

plot(t,h,t2,h2,'o')

subplot(1,2,2)

plot(t,v,t2,v2,'o')

The third while loop.

0 2 4 6 8 10 12
-20

0

20

40

60

80

100

120

Time (s)

H
ei

gh
t (

m
)

0 2 4 6 8 10 12
-30

-20

-10

0

10

20

30

40

50

Time (s)

V
el

oc
ity

 (m
/s

)

Parachute
opens

Parachute
opens

6.7 Examples of MATLAB Applications 207

Sample Problem 6-12: AC to DC converter

A half-wave diode rectifier is an elec-
trical circuit that converts AC voltage
to DC voltage. A rectifier circuit that
consists of an AC voltage source, a
diode, a capacitor, and a load (resis-
tor) is shown in the figure. The volt-
age of the source is ,
where , in which f is the fre-
quency. The operation of the circuit is
illustrated in the lower diagram where
the dashed line shows the source volt-
age and the solid line shows the volt-
age across the resistor. In the first
cycle, the diode is on (conducting
current) from until . At
this time the diode turns off and the
power to the resistor is supplied by the discharging capacitor. At the diode
turns on again and continues to conduct current until . The cycle continues
as long as the voltage source is on. In this simplified analysis of this circuit, the
diode is assumed to be ideal and the capacitor is assumed to have no charge ini-
tially (at). When the diode is on, the resistor’s voltage and current are given
by:

 and
The current in the capacitor is:

When the diode is off, the voltage across the resistor is given by:

The times when the diode switches off (, , and so on) are calculated from the
condition . The diode switches on again when the voltage of the source
reaches the voltage across the resistor (time in the figure).

Write a MATLAB program that plots the voltage across the resistor and
the voltage of the source as a function of time for ms. The resistance
of the load is 1,800 Ω , the voltage source V, and Hz. To examine
the effect of capacitor size on the voltage across the load, execute the program
twice, once with μF and once with μF.

vR v0 ωt()e
t tA–()–() RC()⁄

sin=
vs v0 ωt()sin=

ω 2πf=

t 0= t tA=

t tB=
t tD=

t 0=

vR v0 ωt()sin= iR v0 ωt() R⁄sin=

iC ωCv0 ωt()cos=

vR v0 ωtA()e
t tA–()–() RC()⁄

sin=

tA tD

iR iC–=

tB

vR

vs 0 t 70≤ ≤
v0 12= f 60=

C 45= C 10=

208 Chapter 6: Programming in MATLAB

Solution
A program that solves the problem is presented below. The program has two
parts—one that calculates the voltage when the diode is on, and the other when
the diode is off. The switch command is used for switching between the two
parts. The calculations start with the diode on (the variable state=‘on’), and
when the value of state is changed to ‘off’, and the program
switches to the commands that calculate for this state. These calculations con-
tinue until , when the program switches back to the equations that are valid
when the diode is on.

V0=12; C=45e-6; R=1800; f=60;

Tf=70e-3; w=2*pi*f;

clear t VR Vs

t=0:0.05e-3:Tf;

n=length(t);

state='on'

for i=1:n

 Vs(i)=V0*sin(w*t(i));

 switch state

 case 'on'

 VR(i)=Vs(i);

 iR=Vs(i)/R;

 iC=w*C*V0*cos(w*t(i));

 sumI=iR+iC;

 if sumI <= 0

 state='off ';

 tA=t(i);

 end

 case 'off '

 VR(i)=V0*sin(w*tA)*exp(-(t(i)-tA)/(R*C));

 if Vs(i) >= VR(i)

 state='on';

 end

 end

end

plot(t,Vs,':',t,VR,'k','linewidth',1)

xlabel('Time (s)'); ylabel('Voltage (V)')

vR

iR iC– 0≤
vR

vs vR≥

Assign ‘on’ to the variable state.

Calculate the voltage of the source at time t.

Diode is on.

Check if .iR iC– 0≤

If true, assign ‘off’ to state.
Assign a value to .tA

Diode is off.

Check if .vs vR≥

If true, assign
‘on’ to the
variable state.

6.8 Problems 209

The two plots generated by the program are shown below. One plot shows the
result with μF and the other with μF. It can be observed that with
a larger capacitor the DC voltage is smoother (smaller ripple in the wave).

6.8 PROBLEMS

1. Evaluate the following expressions without using MATLAB. Check the
answer with MATLAB.
(a) (b)
(c) (d) =~ ~0

2. Given: , , . Evaluate the following expressions without
using MATLAB. Check the answer with MATLAB.
(a) (b)
(c) (d) = =~(~ =)

3. Given: v = [4 –2 –1 5 0 1 –3 8 2] and w = [0 2 1 –1 0 –2 4 3 2]. Evaluate
the following expressions without using MATLAB. Check the answer with
MATLAB.
(a) ~(~v) (b) u = = v
(c) (d)

C 45= C 10=

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
-15

-10

-5

0

5

10

15

Time (s)

V
ol

ta
ge

 (
V

)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
-15

-10

-5

0

5

10

15

Time (s)

V
ol

ta
ge

 (
V

)

 μFC 45=

 μFC 10=

5 3+ 32 4⁄> y 2 3× 10 5⁄> 1 22>+=

y 2 3 10 5⁄>()× 1 2>()2+= 5 3 4 4 <×–× 2 4 2–× +

a 6= b 2= c 5–=

y a b+ a b– c<>= y 6– c 2–< <=

y b c >+= c= a b⁄> y a c+= c a+ a b⁄ b–

u v– u< u v u<()–

210 Chapter 6: Programming in MATLAB

4. Use the vectors v and w from Problem 3. Use relational operators to create a
vector y that is made up of the elements of w that are larger than or equal to the
elements of v.

5. Evaluate the following expressions without using MATLAB. Check the
answer with MATLAB.
(a) 0&21 (b) ~–2>–1&11>=~0
(c) 4–7/2&6<5|-3 (d) 3|–1&~2*–3|0

6. The maximum daily temperature (in F) for Chicago and San Francisco dur-
ing the month of August 2009 are given in the vectors below (data from the
U.S. National Oceanic and Atmospheric Administration).
TCH = [75 79 86 86 79 81 73 89 91 86 81 82 86 88 89 90 82 84 81
79 73 69 73 79 82 72 66 71 69 66 66]
TSF = [69 68 70 73 72 71 69 76 85 87 74 84 76 68 79 75 68 68 73
72 79 68 68 69 71 70 89 95 90 66 69]
Write a program in a script file to answer the following:
(a) Calculate the average temperature for the month in each city.
(b) How many days was the temperature above the average in each city?
(c) How many days, and on which dates in the month, was the temperature in

San Francisco lower than the temperature in Chicago?
(d) How many days, and on which dates in the month, was the temperature

the same in both cities?

7. Fibonacci numbers are the numbers in a sequence in which the first two ele-
ments are 0 and 1, and the value of each subsequent element is the sum of the
previous two elements:

0, 1, 1, 2, 3, 5, 8, 13, ...
Write a MATLAB program in a script file that determines and displays the
first 20 Fibonacci numbers.

8. Use loops to create a matrix in which the value of each element is the
sum of its row number and its column number divided by the square of its col-
umn number. For example, the value of element (2,3) is .

9. The elements of the symmetric Pascal matrix are obtained from:

Write a MATLAB program that creates an symmetric Pascal matrix.
Use the program to create and Pascal matrices.

°

4 3×

2 3+() 32⁄ 0.5555=

Pij
i j 2–+()!

i 1–()! j 1–()!
-----------------------------------=

n n×
4 4× 7 7×

6.8 Problems 211

10. A Fibonacci sequence is a sequence of numbers beginning with 0 and 1,
where the value of each subsequent element is the sum of the previous two
elements:

, i.e. 0, 1, 1, 2, 3, 5, 8, 13, ...
Related sequences can be constructed with other beginning numbers. Write a
MATLAB program in a script file that construct an matrix such that the
first row contains the first n elements of a sequence, the second row contains
the through th elements and so on. The first line of the script should
show the order n of the matrix followed by the values of the first two ele-
ments. These two elements can be any two integers, except they cannot both
be zero. A property of matrices thus constructed is that their determinants are
always zero. Run the program for and and for different values
of the first two elements. Verify that the determinant is zero in each case (use
MATLAB’s built-in function det).

11. Write a program in a script file that determines the real roots of a quadratic
equation . Name the file quadroots. When the file runs, it
asks the user to enter the values of the constants a, b, and c. To calculate the
roots of the equation the program calculates the discriminant D, given by:

If D > 0, the program displays message “The equation has two roots,” and the
roots are displayed in the next line.
If D = 0, the program displays message “The equation has one root,” and the
root is displayed in the next line.
If D < 0, the program displays message “The equation has no real roots.”
Run the script file in the Command Window three times to obtain solutions to
the following three equations:
(a)
(b)
(c)

12. Write a program in a script file that finds the smallest odd integer that is divis-
ible by 11 and whose square root is greater than 132. Use a loop in the pro-
gram. The loop should start from 1 and stop when the number is found. The
program prints the message “The required number is:” and then prints the
number.

13. Write a program (using a loop) that determines the expression:

Run the program with m = 5, m = 10, and m = 20. Compare the result with π.
(Use format long.)

ai 1+ ai ai 1–+=

n n×

n 1+ 2n

n 4= n 6=

ax2 bx c+ + 0=

D b2 4ac–=

2x2 8x 8+ + 0=

5x2– 3x 4–+ 0=
2x2– 7x 4+ + 0=

12 1 3⁄–()n

2n 1+

n 0=

m

∑

212 Chapter 6: Programming in MATLAB

14. Write a program (using a loop) that determines the expression:

Run the program with m = 100, m = 100,000, and m = 1,0000,000. Compare the
result with π. (Use format long.)

15. A vector is given by x = [–3.5 –5 6.2 11 0 8.1 –9 0 3 –1 3 2.5]. Using
conditional statements and loops, write a program that creates two vectors
from x—one (call it P) that contains the positive elements of x, and a second
(call it N) that contains the negative elements of x. In both P and N, the ele-
ments are in the same order as in x.

16. A vector is given by x = [–3.5 5 –6.2 11.1 0 7 –9.5 2 15 –1 3 2.5]. Using
conditional statements and loops, write a program that rearranges the ele-
ments of x in order from the smallest to the largest. Do not use MATLAB’s
built-in function sort.

17. The following is a list of 20 exam scores. Write a computer program that cal-
culates the average of the top 8 scores.
Exam scores: 73, 91, 37, 81, 63, 66, 50, 90, 75, 43, 88, 80, 79, 69, 26, 82, 89,
99, 71, 59

18. The Taylor series expansion for is

where x is in radians. Write a MATLAB program that determines using
the Taylor series expansion. The program asks the user to type a value for an
angle in degrees. Then the program uses a loop for adding the terms of the
Taylor series. If is the nth term in the series, then the sum of the n terms
is . In each pass calculate the estimated error E given by

. Stop adding terms when . The program displays

the value of . Use the program for calculating:
(a) (b) .
Compare the values with those obtained by using a calculator.

19. Write a MATLAB program in a script file that finds a positive integer n such
that the sum of all the integers is a number between 100 and
1000 whose three digits are identical. As output the program displays the inte-
ger n and the corresponding sum.

2
2n()2

2n()2 1–

n 1=

m

∏ 2 4
3
--- 16

15
------ 36

35
------ …⋅ ⋅ ⋅⎝ ⎠

⎛ ⎞=

x()sin

x()sin x x3

3!
-----– x5

5!
----- x7

7!
-----– …+ +

1–()n

2n 1+()!
----------------------x2n 1+

n 0=

∞

∑= =

x()sin

an Sn
Sn Sn 1– an+=

E Sn Sn 1––

Sn 1–

----------------------= E 0.000001≤

x()sin
45°()sin 195°()sin

1 2 3 … n+ + + +

6.8 Problems 213

20. The following are formulas for calculating the training heart rate (THR) for
men and women
For men (Karvonen formula):
For women:
where AGE is the person’s age, RHR the resting heart rate, and INTEN the fit-
ness level (0.55 for low, 0.65 for medium, and 0.8 for high fitness). Write a
program in a script file that determines the THR. The program asks users to
enter their gender (male or female), age (number), resting heart rate (number),
and fitness level (low, medium, or high). The program then displays the train-
ing heart rate. Use the program for determining the training heart rate for the
following two individuals:
(a) A 21-years-old male, resting heart rate of 62, and low fitness level.
(b) A 19-years-old female, resting heart rate of 67, and high fitness level.

21. Write a program that determines the center and the radius of a circle that
passes through three given points. The program asks the user to enter the
coordinates of the points one at a time. The program displays the coordinate
of the center and the radius, and makes a plot of the circle and the three points
displayed on the plot with asterisk markers. Execute the program to find the
circle that passes through the points (13, 15), (4, 18), and (19, 3).

22. Body Mass Index (BMI) is a measure of obesity. In standard units it is calcu-
lated by the formula

where W is weight in pounds, and H is height in inches. The obesity classifica-
tion is:

 Write a program in a script file that calculates the BMI of a person. The pro-
gram asks the person to enter his or her weight (lb) and height (in.). The pro-
gram displays the result in a sentence that reads: “Your BMI value is XXX,
which classifies you as SSSS,” where XXX is the BMI value rounded to the
nearest tenth, and SSSS is the corresponding classification. Use the program
for determining the obesity of the following two individuals:
(a) A person 6 ft 2 in. tall with a weight of 180 lb.
(b) A person 5 ft 1 in. tall with a weight of 150 lb.

BMI Classification

Below 18.5 Underweight
18.5 to 24.9 Normal
25 to 29.9 Overweight

30 and above Obese

THR 220 AGE–() RHR–[] INTEN RHR+×=

THR 206 0.88 AGE×–() RHR–[] INTEN RHR+×=

BMI 703 W
H 2
-------=

214 Chapter 6: Programming in MATLAB

23. Write a program in a script file that calculates the cost of a telephone call
according to the following price schedule:

The program asks the user to enter the time the call is made (day, evening, or
night) and the duration of the call (a number that can have one digit to the
right of the decimal point). If the duration of the call is not an integer, the pro-
gram rounds up the duration to the next integer. The program then displays the
cost of the call.

Run the program three times for the following calls:
(a) 8.3 min at 1:32 P.M. (b) 34.5 min at 8:00 P.M. (c) 29.6 min at 1:00 A.M.

24. Write a program that determines the change given back to a customer in a
self-service checkout machine of a supermarket for purchases of up to $20.
The program generates a random number between 0.01 and 20.00 and dis-
plays the number as the amount to be paid. The program then asks the user to
enter payment, which can be one $1 bill, one $5 bill, one $10 bill, or one $20
bill. If the payment is less than the amount to be paid, an error message is dis-
played. If the payment is sufficient, the program calculates the change and
lists the bills and/or the coins that make up the change, which has to be com-
posed of the least number each of bills and coins. For example, if the amount
to be paid is $2.33 and a $10 bill is entered as payment, then the change is one
$5 bill, two $1 bills, two quarters, one dime, one nickel, and two pennies.

25. The concentration of a drug in the body can be modeled by the equation

where is the dosage administered (mg), is the volume of distribution
(L), is the absorption rate constant (h–1), is the elimination rate con-
stant (h–1), and t is the time (h) since the drug was administered. For a cer-
tain drug, the following quantities are given: mg, L,

h–1, and h–1.
(a) A single dose is administered at . Calculate and plot versus t
for 10 hours.

Time the call
made

Duration of call
1–10 min 10–30 min More than 30 min

Day:
8 A.M. to 6 P.M.

$0.10/min $1.00 + $0.08/min for
additional min above 10.

$2.60 + $0.06/min for
additional min above 30.

Evening:
6 P.M. to 12 A.M.

$0.07/min $0.70 + $0.05/min for
additional min above 10.

$1.70 + $0.04/min for
additional min above 30.

Night:
12 A.M. to 8 A.M.

$0.04/min $0.40 + $0.03/min for
additional min above 10.

$1.00 + $0.02/min for
additional min above 13.

CP

Cp
DG

Vd

ka

ka ke–()
-------------------- e

ket–
e

kat–
–()=

DG Vd

ka ke

DG 150= Vd 50=

ka 1.6= ke 0.4=

t 0= CP

6.8 Problems 215

(b) A first dose is administered at , and subsequently four more doses
are administered at intervals of 4 hours (i.e., at). Calculate
and plot versus t for 24 hours.

26. One numerical method for calculating the square root of a number is the Babylo-
nian method. In this method is calculated in iterations. The solution process
starts by choosing a value as a first estimate of the solution. Using this value, a
second, more accurate solution can be calculated with ,
which is then used for calculating a third, still more accurate solution , and so
on. The general equation for calculating the value of the solution from the
solution is . Write a MATLAB program that calculates
the square root of a number. In the program use for the first estimate of the
solution. Then, by using the general equation in a loop, calculate new, more accu-
rate solutions. Stop the looping when the estimated relative error E defined by

 is smaller than 0.00001. Use the program to calculate:

(a) (b) (c)

27. A twin primes is a pair of prime numbers such that the difference between them
is 2 (for example, 17 and 19). Write a computer program that finds all the twin
primes between 10 and 500. The program displays the results in a two-column
matrix in which each row is a twin prime.

28. Write a program in a script file that converts a measure of volume given in
units of either m3, L, ft3, or gat (U.S. gallons) to the equivalent quantity in
different units specified by the user. The program asks the user to enter the
amount of volume, its current units, and the desired new units. The output is
the specification of volume in the new units. Use the program to:
(a) Convert 3.5 m3 to gal.
(b) Convert 200 L to ft3.
(c) Convert 480 ft3 to m3.

29. In a one-dimensional random walk the position x of a walker is computed
by

where s is a random number. Write a program that calculates the number of
steps required for the walker to reach a boundary . Use MATLAB’s
built-in function randn(1,1) to calculate s. Run the program 100 times
(by using a loop) and calculate the average number of steps when .

t 0=

t 4 8 12 16, , ,=

CP

P
x1

x2 x2 x1 P x1⁄+() 2⁄=
x3

xi 1+

xi xi 1+ xi P xi⁄+() 2⁄=

x P=

E xi 1+ xi–

xi
--------------------=

110 93 443, 23.25

xj xj s+=

x B±=

B 10=

216 Chapter 6: Programming in MATLAB

30. The Sierpinski triangle can be implemented in MATLAB by plotting points
iteratively according to one of the following three rules which are selected
randomly with equal probability.
Rule 1: ,

Rule 2: ,

Rule 3: ,
Write a program in a script file that calculates the x and y vectors and then
plots y versus x as individual points (use plot(x,y,‘^’)). Start with

 and . Run the program four times with 10, 100, 1,000, and
10,000 iterations.

31. There are 12 teams in a league, numbered 1 through 12. Six games are
planned for the weekend. Write a MATLAB program that randomly assign the
teams for each game. Display the results in a two-column table where each
row contains the two teams that play each other.

32. The temperature dependence of the heat capacity of many gases can be
described in terms of a cubic equation:

The following table gives the coefficients of the cubic equation for four gases.
 is in J/(g mol)(C) and T is in C.

Write a program that does the following:
• Prints the four gases on the screen and asks the user to select which gas to

find the heat capacity for.

• Asks the user for a temperature.

• Asks the user if another temperature is needed (enter yes or no). If the
answer is yes, the user is asked to enter another temperature. This process
continues until the user enters no.

• Display a table containing the temperatures entered and the corresponding
heat capacities.

Gas a b c d

SO2 38.91

SO3 48.50

O2 29.10

N2 29.00

xn 1+ 0.5xn= yn 1+ 0.5yn=

xn 1+ 0.5xn 0.25+= yn 1+ 0.5yn
3

4
-------+=

xn 1+ 0.5xn 0.5+= yn 1+ 0.5yn=

x1 0= y1 0=

Cp

Cp a bT cT 2 dT 3+ + +=

Cp ° °

3.904 10 2–× 3.105– 10 5–× 8.606 10 9–×

9.188 10 2–× 8.540– 10 5–× 32.40 10 9–×

1.158 10 2–× 0.6076– 10 5–× 1.311 10 9–×

0.2199 10 2–× 0.5723– 10 5–× 2.871– 10 9–×

6.8 Problems 217

(a) Use the program for determining the heat capacity of SO3 at 100 and
180 .
(b) Use the program for finding the heat capacity of N2 at 220 and 300 .

33. The overall grade in a course is determined from the grades of 5 quizzes, 3
midterms, and a final, using the following scheme:
Quizzes: Quizzes are graded on a scale from 0 to 10. The grade of the lowest
quiz is dropped and the average of the 4 quizzes with the higher grades consti-
tutes 25% of the course grade.
Midterms: Midterms are graded on a scale from 0 to 100. If the average of the
midterm scores is higher than the score on the final, the average of the mid-
terms is 35% of the course grade. If the final grade is higher than the average
of the midterms, then the lowest midterm is dropped and the average of the
two midterms with the higher grades is 35% of the course grade.
Final: Finals are graded on a scale from 0 to 10. The final is 40% of the course
grade.

Write a computer program in a script file that determines the course
grade for a student. The program first asks the user to enter the five quiz
grades (in a vector), the three midterm grades (in a vector), and the grade of
the final. Then the program calculates a numerical course grade (a number
between 0 and 100). Finally, the program assigns a letter grade according to
the following key: A for , B for , C for

, D for , and E for a grade lower than 60. Exe-
cute the program for the following cases:
(a) Quiz grades: 7, 9, 4, 8 , 7. Midterm grades: 93, 83, 87. Final grade: 89.
(b) Quiz grades: 8, 6, 9, 6 , 9. Midterm grades: 81, 75, 79. Final grade: 72.

34. The handicap differential (HCD) for a round of golf is calculated from the for-
mula:

The course rating and the slope are measures of how difficult a particular
course is. A golfers handicap is calculated from a certain number N of their
best (lowest) handicap scores according to the following table.

Rounds played N # Rounds played N
5-6 1 15-16 6
7-8 2 17 7

9-10 3 18 8
11-12 4 19 9
13-14 5 20 10

°

°

° °

Grade 90≥ 80 Grade 90≤ ≤
70 Grade 80≤ ≤ 60 Grade 70≤ ≤

HCD Score Course Rating–()
Course Slope

-- 113×=

218 Chapter 6: Programming in MATLAB

For example, if 13 rounds have been played, only the best five handicaps are
used. A handicap cannot be computed for fewer than five rounds. If more than
20 rounds have been played, only the 20 most recent results are used.

Once the lowest N handicap differentials have been identified, they are
averaged and then rounded down to the nearest tenth. The result is the
player’s handicap. Write a program in a script file that calculates a persons
handicap. The program asks the user to enter the golfers record in a three col-
umns matrix where the first column is the course rating, the second is the
course slope, and the third is the players score. Each row corresponds to one
round. The program displays the person’s handicap. Execute the program for
players with the following records.
(a)

 (b)

Rating Slope Score
71.6 122 85
72.8 118 87
69.7 103 83
70.3 115 81
70.9 116 79
72.3 117 91
71.6 122 89
70.3 115 83
72.8 118 92
70.9 109 80
73.1 132 94
68.2 115 78
74.2 135 103
71.9 121 84

Rating Slope Score
72.2 119 71
71.6 122 73
74.0 139 78
68.2 125 69
70.2 130 74
69.6 109 69
66.6 111 74

	Chapter 6 Programming in MATLAB
	6.1 RELATIONAL AND LOGICAL OPERATORS
	6.2 CONDITIONAL STATEMENTS
	6.2.1 The if-end Structure
	6.2.2 The if-else-end Structure
	6.2.3 The if-elseif-else-end Structure

	6.3 THE switch-case STATEMENT
	6.4 LOOPS
	6.4.1 for-end Loops
	6.4.2 while-end Loops

	6.5 NESTED LOOPS AND NESTED CONDITIONAL STATEMENTS
	6.6 THE break AND continue COMMANDS
	6.7 EXAMPLES OF MATLAB APPLICATIONS
	6.8 PROBLEMS

