
Abstract Class, Interface,
Array of Objects

Dr Athraa Juhi Jani

Class

Classes are the user defined data types that represent
the state and behaviour of an object.

State represents the properties of the
object

 Behaviour is the action that objects can
perform.

2

3

Abstract Class

Abstract classes are declared using the abstract
keyword.

We cannot create an object of an abstract class.

 If you want to use it then it must be inherited in a
subclass.

4

Abstract Class

An Abstract class contains both abstract and non-
abstract methods.

 The methods inside the abstract class can either
have an implementation or no implementation.

 An Abstract class has only one subclass.

5

Abstract Class

Methods inside the abstract class cannot be private.

 If there is at least one method abstract in a class
then the class must be abstract.

6

7

8

9

10

11

Abstract Method

Abstract methods, similar to methods within an interface,
are declared without any implementation.

 They are declared with the purpose of having the child
class provide implementation.

 They must be declared within an abstract class.

12

Syntax of Abstract Methods

modifier abstract class className {

//declare fields

//declare methods

abstract dataType methodName();

}

modifier class childClass : className {

dataType methodName(){}

}

13

Example

14

Interface

 Interfaces define properties, methods, which
are the members of the interface.

 Interfaces contain only the declaration of the
members.

 It is the responsibility of the deriving class to
define implementation to the members.

15

Interface

Abstract classes to some extent serve the
same purpose,

However, they are mostly used when only
few methods are to be declared by the base
class and the deriving class implements the
functionalities.

16

Declaring Interfaces

 Interfaces are declared using the interface keyword.

 It is similar to class declaration.

 Interface statements are public by default.
Following is an example of an interface declaration:

public interface ITransactions
{
// interface members
void showTransaction();
double getAmount();
}

17

Notes

Abstract classes and methods are declared with the
'abstract' keyword.

Abstract classes can only be extended, and cannot be
directly instantiated.

Abstract classes provide a little more than interfaces.

 Interfaces do not include fields and super class methods
that get inherited, whereas abstract classes do.

 This means that an abstract class is more closely related
to a class which extends it, than an interface is to a
class that implements it.

18

Array of Objects

Circle[] circleArray = new Circle[10];

An array of objects is actually an array of
reference variables.

So invoking circle [1].findArea() involves two
levels of referencing as shown in the next figure.

circleArray references to the entire array.

circle Array[1] references to a Circle object.

Array of Objects

reference

Circle object 0 circleArray[0]

…

circleArray

circleArray[1]

circleArray[9]

Circle object 9

Circle object 1

Circle[] circleArray = new Circle[10];

21Microsoft

Indexers

 Enable array-like access with method-like semantics

People p; // collection of Person objects

p = new People();

p[0] = new Person("joe hummel", 40);

.

.

.

age = p[0].Age;

Set

Get

22Microsoft

Example

 Implemented like properties, with Get and Set methods:

public class People

{

private Person[] m_people; // underlying array
.
.
.

public Person this[int i] // int indexer

{

get { return this.m_people[i]; }

set { this.m_people[i] = value; }

}

public Person this[string name] // string indexer

{

get { return ...; }

}

}

read-only

read-write

Example

23

We shall have an example about polymorphism
using array of objects

Then another example to use abstract class
with polymorphism

Thank You

24

