Abstract Class, Interface,
Array of Objects

Dr Athraa Juhi Jani



Class

= Classes are the user defined data types that represent
the state and behaviour of an object.

» State represents the properties of the
object

» Behaviour is the action that objects can
perform.



The following are types of classes in C#:

Classes in C#

o



Abstract Class

= Abstract classes are declared using the abstract
keyword.

= \We cannot create an object of an abstract class.

= |f you want to use it then it must be inherited in a
subclass.




Abstract Class

= An Abstract class contains both abstract and non-
abstract methods.

= The methods inside the abstract class can either
have an implementation or no implementation.

= An Abstract class has only one subclass.



Abstract Class

= Methods inside the abstract class cannot be private.

= |f there Is at least one method abstract in a class
then the class must be abstract.



How to make a class to be abstract?

Here is an example:

public abstract class Shape {
private String color;

public Shape () {}

public String getColor () ({
return color;

}

public void setColor (String color) {
this.color = color;

}

public abstract double getArea();

public abstract double getPerimeter()




How to make a class to be abstract?

e And then in subclass, the method that mark with abstract
keyword, it will automatically request to be override

without any excuse.
public class Circle extends Shape({
private double radius
public Circle () {}
public Circle (double radius) {
this.radius = radius;
}
@Override

public double getArea () {
return radius*radius*Math.PI;

}

@Override

public double getPerimeter() {
return 2*radius*Math.PI;




How to use abstract class?

e YOU can use an abstract class by inheriting it using
extends keyword.

public class Circle extends Shape {
}
e Abstract class can also be a type.
Shape sh;//Shape is a type of sh variable

e Because abstract class can also be a type, we can
use polymorphism as well.

Shape sh = new Circle();

sh.getArea() ;




How to use abstract class?

e You CANNOT create instances of abstract classes
using the new operator.

Shape shape = new Shape () ;// Compile Error

e We can make an abstract class by not making
any method abstract also. There is no any error.

public abstract class Shape {
public String getColor () {

return “7;




Importance of abstract class

Abstract class is always a superclass. It means
when you make an abstract class, you have to
think that the class must be a superclass later.

Abstract class is the way to guarantee that its
closed subclasses MUST override abstract
methods.

The only reason that we have to make abstract
class is because of polymorphism.

It makes no sense if we make abstract class, but
we don’'t use any polymorphism.




Abstract Method

= Abstract methods, similar to methods within an interface,
are declared without any implementation.

= They are declared with the purpose of having the child
class provide implementation.

= They must be declared within an abstract class.

12



Syntax of Abstract Methods

modifier abstract class className ({
//declare fields
//declare methods
abstract dataType methodName () ;

modifier class childClass : className {

dataType methodName () {}

13



Example

public abstract class Animal {
string name;
abstract string sound(); //all classes that implement Animal must
//have a sound method

}

public class Cat : Animal {
public Cat() {
this.name = "Garfield";
}
public string sound(){ //implemented sound method from the

//abstract class & method
return "Meow!";

14



Interface

= |Interfaces define properties, methods, which
are the members of the interface.

= |Interfaces contain only the declaration of the
members.

= |t Is the responsibility of the deriving class to
define implementation to the members.




Interface

= Abstract classes to some extent serve the
same purpose,

" However, they are mostly used when only
few methods are to be declared by the base
class and the deriving class implements the
functionalities.



Declaring Interfaces

= |Interfaces are declared using the interface keyword.

= |t 1s similar to class declaration.
= |[nterface statements are public by default.

Following iIs an example of an interface declaration:

public interface ITransactions
{
// interface members
void showTransaction();
double getAmount();

}

17



Notes

= Abstract classes and methods are declared with the
‘abstract' keyword.

= Abstract classes can only be extended, and cannot be
directly instantiated.

= Abstract classes provide a little more than interfaces.

= |nterfaces do not include fields and super class methods
that get inherited, whereas abstract classes do.

= This means that an abstract class Is more closely related
to a class which extends it, than an interface is to a
class that implements it.

18



Array of Objects

Circle[] circleArray = new Circle[10];

= An array of objects is actually an array of
reference variables.

= So Invoking circle [1].findArea() involves two
levels of referencing as shown in the next figure.

=circleArray references to the entire array.
=circle Array[1] references to a Circle object.



Array of Objects

Circle[] circleArray = new Circle[10];

circleArray

reference

>| circleArray[0]

~{ Circle object 0

circleArray[1]

%I Circle object 1

circleArray[9]

=>{ Circle object 9




Indexers

= Enable array-like access with method-like semantics

People p; // collection of Person objects

p = new People() ;
Sete—-» p[0] = new Person("joe hummel", 40);

age = p[0] .Age;
A

|

Get



Example

= |Implemented like properties, with Get and Set methods:

public class People

{

private Person[] m people; // underlying array

public Person this[int i] // int indexer

{
get { return this.m people[i]; }

read-write —— set { this.m people[i] = value; }
}

public Person this[string name] // string indexer

{
read-only —— get { return ...; }

}
}




Example

DrawingObject[] dObj = new DrawingObject[4];

dObj[@] = new Line();

dObj[1] = new Circle();
dObj[2]1 = new Square();
dObj[3]1 = new DrawingObject();

foreach (DrawingObject drawObj

{
drawObj.Draw();

in dObj)

23



= We shall have an example about polymorphism
using array of objects

= Then another example to use abstract class
with polymorphism

Thank You

24



