Chemistry of the Global Climate

- 1. Composition of Earth's Atmosphere
- 2. Radiative Energy Balance
- Greenhouse Gases and Aerosols
- 4. Radiative forcing and global warming potentials (GWP)
- 5. Energy Resources Fossil and Renewable

1. Atmospheric composition

Mixing ratios of present day dry Earth atmosphere

Nitrogen	78.08 %	
Oxygen	20.95 %	
Argon	0.934 %	
Carbon	~400 ppm _v (increasing)	
dioxide		
Neon	18.2 ppm _v	
Helium	5.24 ppm _v	
Methane	~1.8 ppm _v (increasing)	
Krypton	1.14 ppm _v	
Hydrogen	0.5 ppm _v	
Nitrous oxide	~0.3 ppm _v (increasing)	
Xenon	0.09 ppm _v	

Major 'Greenhouse' Gases

Changes in Atmospheric Composition

Adapted from IPCC third assessment report, 2007

How Much CO₂ in ppm Does a Barrel of Oil Produce?

1 barrel releases 425 kg of CO₂, in moles this is

 $\frac{425 \, kg}{0.044 \, kg \, / \, mol} = 10^4 \, mol$

Since the atmosphere contains 1.7 X 10²⁰ mol of air, one barrel will release

```
\frac{10^4}{1.7 \times 10^{20}} = 6 \times 10^{-17}
```

- •Carbon-based fuel releases 3.15 times its mass in CO₂
- •Mass of a barrel of oil is about 135 kg
- •1 barrel releases 425 kg CO₂

•CO₂ has a molar mass of 44g/mol

```
•IVIass of a barrel of oil is about
135 kg
•1 barrel releases 425 kg CO<sub>2</sub>
•CO<sub>2</sub> has a molar mass of 44g/mol
```

This is the fraction of CO_2 relative to the entire atmosphere – multiply by 1 million to get the parts-per-million or ppm. So, 1 barrel releases an additional

 $6 \times 10^{-11} ppm$

Is the observed increase in CO₂ "natural" or ...

2. Radiative Energy Balance

Observational Evidence for an Enhanced Greenhouse effect

Tropospheric warming and stratospheric cooling

3. Greenhouse Gases and Aerosols

CO₂ –Temperature Feedback Loops

Decreasing solubility in water

Increasing biomass production

H₂O – Temperature Feedback Loops

Increased evaporation of water

Increasing Albedo

Aerosol Models

4. Radiative Forcing and GWP

Three factors to rank immediate relative importance of GHGs

- 1) Current atmospheric concentrations
- 2) Wavelength of IR absorption bands
- 3) Strength of IR absorption per molecule

Long term impact also requires atmospheric residence time (τ)

Definitions

Radiative forcing

(W m⁻²)

Radiative forcing or climate forcing is the difference between insolation (sunlight) absorbed by the Earth and energy radiated back to space.

The influences that cause changes to the Earth's

climate system altering Earth's radiative equilibrium, forcing temperatures to rise or fall, are called climate forcings.

Relative instantaneous radiative forcing

(relative to equivalent mass of CO₂)

Global warming potential

(relative to equivalent mass of CO₂ over specified time)

Radiative Forcings and GWPs

	RF (W/m²)	RRIF	τ (yr)	GWP - 100 yr
CO ₂	1.7	1	50-100	1
CH ₄	0.48	25	12	28-36*
N ₂ O	0.16	220	114	265-298
O ₃	0.30			
CFC-12		23,000	100	10,900
HCFC-22		14,000	12	1,810
CCl ₄		9,300	26	1,400
aerosols	-1.2 +/- ?			

* Shine, K.P. et al., Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing, *Geophysical Res. Lett.*, 43(24), 12,614-12,623 (**2016**).

Anthropogenic GHG

emissions and relative instantaneous forcing

World Energy Consumption

Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN), IPCC, May, 2011.

Renewable Energy Sources

Wind Power

Photo Voltaics

Solar Thermal

Tidal Power

TIDE GOING OUT

Global Energy Demands

Current use ~ 14 TW Future use (2050) ~ 30 TW

Global Resource Estimates (best case scenarios)

Tidal/Oceans	~ 2 TW	
Hydro	~ 2 TW	
Wind (10 m)	~ 4 TW	
Biomass (all crops)	~ 7 TW	
Nuclear (Fission)	~ 8 TW (200/yr forever)	
Geothermal	~ 12 TW	
Solar 120 000 TW/ (incident) - 200 TW/(practice		

Solar 120,000 TW (incident) ~ 800 TW(practical)

Lewis, N.S. & Nocera, D., PNAS, 2006, 103:15729