Aerosol Concentrations and Atmospheric Residence Times

Aerosol concentrations are reported as a number density (# particles/m³) or a mass density ($\mu g/m^3$).

Typical values range from $10 - 500 \,\mu\text{g/m}^3$, ranging from rural temperate climates to coastal areas or arid interior climates.

Urban areas $\rightarrow 200 \,\mu\text{g/m}^3$

Rural forested areas \rightarrow 10- 50 µg/m³

Open ocean $\rightarrow 10-150 \,\mu\text{g/m}^3$

Settling velocity (due to gravity) is governed by;

$$v_t = \frac{(\rho_P - \rho_{air})C g d_P^2}{18 \eta}$$

where;

 ρ_P is density of the aerosol particle (in g/m³)

 ρ_{air} is density of the surrounding air $(1.2 \times 10^3 \text{ g/m}^3)$; at P=1.0 atm & T = 298K)

C is a correction term which depends on the particle diameter (from Table 6.4) g is 9.81 m/s^2

d_P is the particle diameter (in m)

 η is the viscosity of surrounding air (1.9 x 10⁻² g/m s; at P=1.0 atm & T = 298K)

Co-agulation rate is governed by;

rate of change in the number of aerosol particles(N) = $\frac{-dN}{dt}$ = $4 \pi D C d_P N^2$

where;

N is number density of the aerosol particles (in particles/m³)

D is the diffusion co-efficent of the aerosol particle

C is a correction term which depends on the particle diameter (from Table 6.4) d_P is the particle diameter (in m)

Since D, C and d_P are constants, this can be re-written as $\frac{-dN}{dt} = k_2 N^2$ where; k_2 is analogous to a second order rate constant given by $k_2 = 4\pi$ D C d_P

Table 6.4 Aerosol transport properties assuming spherical particles, density $2.0 \, \mathrm{g} \, \mathrm{cm}^{-3}$, in air at P° and $25 \, ^{\circ}\mathrm{C}$

$d_{ m p}/\mu{ m m}$	C	$v_{\rm t}/{\rm cm~s^{-1}}$	$D/m^2 s^{-1}$	t _{1/2}
0.001	216		5.14 × 10 ⁻⁶	1 min
0.005	43.6	e e e e e e e e e e e e e e e e e e e	2.07×10^{-7}	0.5 h
0.01	22.2		5.24×10^{-8}	2 h
0.05	4.95		2.35×10^{-9}	38 h
0.1	2.85	1.7×10^{-4}	6.75×10^{-10}	110 h
0.5	1.326	2.0×10^{-3}	6.32×10^{-11}	520 h
1.0	1.164	6.8×10^{-3}	2.77×10^{-11}	690 h
5.0	1.032	1.5×10^{-1}		
10.0	1.016	6.0×10^{-1}		
50.0	1.003	15		
100.0	1.0016	58		

Van Loon Pg 143

For half-life calculations, particle number density in the atmosphere is taken as $10^9 \, \text{m}^{-3}$.

Solved problems for Atmospheric Aerosols

Q1. Compare the settling velocity of 10 μ m diameter water droplets to that of carbon soot particles (density = 2.5 x 10³ kg/m³). The correction term for a droplet of 10 μ m diameter is 1.016, the viscosity of surrounding air is 1.9 x 10⁻⁵ kg/m s, the acceleration due to gravity is 9.8 m/s², and air density is 1.2 kg/m³.

Solution

$$v_{t} = \frac{(\rho_{d} - \rho_{air})Cgd_{d}^{2}}{2\eta}$$

$$\rho_{air} = 1.2 \text{ kg/m}^{3}, C = 1.016, g = 9.8 \text{ m/s}^{2}, \eta = 1.9 \times 10^{-5} \text{ kg/m}$$

$$\rho_{d} = 2.5 \times 10^{3} \text{ for soot, and } \rho_{d} = 1000 \text{ kg/m}^{3} \text{ for water}$$

$$d_{P} = 10 \text{ } \mu\text{m} = 10 \times 10^{-6} \text{ m}$$

For soot

$$v_t = \frac{(2.5 \times 10^3 - 1.2) \times 1.06 \times 9.8 \times (10 \times 10^{-6})^2}{18 \times 1.9 \times 10^{-5}}$$
$$v_t = \frac{2.60 \times 10^{-6}}{3.42 \times 10^{-4}} = 0.760 \times 10^{-2} \text{ m/s}$$

For water

$$v_{t} = \frac{(1000 - 1.2) \times 1.06 \times 9.8 \times (10 \times 10^{-6})^{2}}{18 \times 1.9 \times 10^{-5}}$$

$$v_{t} = \frac{1.04 \times 10^{-6}}{3.42 \times 10^{-4}} = 0.304 \times 10^{-2} \text{ m/s}$$

$$\frac{v_{t}(\text{soot})}{v_{t}(\text{water})} = \frac{0.760 \times 10^{-2}}{0.304 \times 10^{-2}} = 2.5$$

the soot particles will settle 2.5 times faster than water droplets of equal size

Q2, How long will it take for a collection of fine aerosol particles ($N = 10^9 \text{ m}^{-3}$; $d_P = 0.01 \mu\text{m}$) to drop to 5 x 10^8 m^{-3} through co-agulation processes.

$$-\frac{dN}{dt} = k_2 N^2$$

$$k_2 = 4\pi DC d_p$$

$$\int_{N_o}^{N_f} \frac{dN}{N^2} = k_2 \int_0^t dt$$

$$\left(-N^{-1}\Big|_{N_o}^{N^f}\right) = k_2 t$$

$$-\frac{1}{N^f - N_o} = k_2 t$$

$$t = -\frac{1}{k_2 (N^f - N_o)} = -\frac{1}{4\pi DC d_p \times (N^f - N_o)}$$

$$t = -\frac{1}{(4\pi \times 5.24 \times 10^{-8} \times 22.2 \times 0.01 \times 10^{-6})(5 \times 10^8 - 10^9)}$$

$$t = -\frac{1}{14.61 \times 10^{-14} \times (-5 \times 10^8)} = \frac{1}{7.3 \times 10^{-5}} = 13698 \text{ s}$$

$$t_{1/2} = \frac{13698}{2} = 6849 \text{ s} = 6849 \text{ s} \times \frac{1 \text{ hr}}{3600 \text{ s}} \approx 2 \text{ hr}$$