FOUNDATION OF MATHEMATICS I

CHAPTER TWO SETS THEORY

DR. BASSAM AL-ASADI AND DR. EMAD AL-ZANGANA MUSTANSIRIYAH UNIVERSITY- COLLEGE OF SCIENCE - DEPARTMENT OF MATHEMATICS

Chapter Two Sets

2.1. Definitions

Definition 2.1.1. A set is a collection of (objects) things. The things in the collection are called elements (member) of the set.

A set with no elements is called empty set and denoted by \emptyset; that is, $\varnothing=\{ \}$. A set that has only one element, such as $\{x\}$, is sometimes called a singleton set.

List of the symbols we will be using to define other terminologies:
| or: : such that
$\in \quad:$ an element of (belong to)
$\notin \quad:$ not an element of (not belong to)
\subset or $\subsetneq:$: a proper subset of
$\subseteq \quad:$ a subset of
$\nsubseteq \quad: \quad$ not a subset of
$\mathbb{N} \quad$: Set of all natural numbers
$\mathbb{Z} \quad$: Set of all integer numbers
$\mathbb{Z}^{+} \quad$: Set of all positive integer numbers
$\mathbb{Z}^{-} \quad$: Set of all negative integer numbers
$\mathbb{Z}_{o} \quad$: Set of all odd numbers
$\mathbb{Z}_{e} \quad:$ Set of all even numbers
$\mathbb{Q} \quad:$ Set of all rational numbers
$\mathbb{R} \quad$: Set of all real numbers

Set Descriptions 2.1.2.

(i) Tabulation Method

The elements of the set listed between commas, enclosed by braces.
(1) $\{1,2,37,88,0\}$
(2) $\{a, e, i, o, u\}$ Consists of the lowercase vowels in the English alphabet.

(3) $\{\ldots,-4,-2,0,2,4,6\}$ Continue from left side
$\{-4,-2,0,2,4,6, \ldots\}$ Continue from right side
$\{\ldots,-4,-2,0,2,4,6, \ldots\}$ Continue from left and right sides.
(4) $B=\{\{2,4,6\},\{1,3,7\}\}$.
(ii) Rule Method

Describe the elements of the set by listing their properties writing as

$$
S=\{x \mid A(x)\},
$$

where $A(x)$ is a statement related to the elements x. Therefore,

$$
\mathrm{x} \in S \Leftrightarrow A(x) \text { is hold }
$$

(1) $A=\{x \mid x$ is a positive integers and $x>10\}$
$A=\left\{x \mid x \in \mathbb{Z}^{+}\right.$and $\left.x>10\right\}$.
(2) $\mathbb{Z}_{o}=\{x \mid x=2 n-1$ and $n \in \mathbb{Z}\}$
$=\{2 n-1 \mid n \in \mathbb{Z}\}$.
(3) $\{x \in \mathbb{Z}||x|<4\}=\{-3,-2,-1,0,1,2,3\}$.
(4) $\left\{x \in \mathbb{Z} \mid x^{2}-2=0\right\}=\emptyset$.

Examples 2.1.3.

(i) $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$ Integer numbers.
(ii) $\mathbb{Z}_{e}=\{x \mid x=2 n$ and $n \in \mathbb{Z}\}$
$=\{2 n \mid n \in \mathbb{Z}\}$. Even numbers
Note that 2 is an element of \mathbb{Z}_{e} so, we write $2 \in \mathbb{Z}$. But, $5 \notin \mathbb{Z}_{e}$.
(iii) Let C be the set of all natural numbers which are less than 0 .

In this set, we observe that there are no elements. Hence, C is an empty set; that is,

$$
C=\emptyset .
$$

Definition 2.1.4.

(i) A set A is said to be a subset of a set B if every element of A is an element of B and denote that by $A \subseteq B$. Therefore,

$$
A \subseteq B \Leftrightarrow \forall x(x \in A \Rightarrow x \in B) .
$$

(ii) If A is a nonempty subset of set B and B contains an element which is not a member of A, then A is said to be proper subset of B and denoted this by $A \subset B$ or $A \subsetneq B$; that is, A is said to be a proper subset of B if and only if
(1) $A \neq \emptyset$,
(2) $A \subset B$ and
(2) $A \neq B$.

Foundation of Mathematics I
Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana
Mustansiriyah University College of Science Dept. of math. (2018-2019)

We use the expression $A \nsubseteq B$ means that A is not a subset of B.

Examples 2.1.5.

(i) An empty set \emptyset is a subset of any set B; that is, for every set $B, \phi \subseteq B$.

If this were not so, there would be some element $x \in \emptyset$ such that $x \notin B$. However, this would contradict with the definition of an empty set as a set with no elements.
(ii) Let B be the set of natural numbers. Let A be the set of even natural numbers. Clearly, A is a subset of B. However, B is not a subset of A, for $3 \in B$, but $3 \notin A$.

Theorem 2.1.6. (Properties of Sets)

Let A, B, and C be sets.
(i) For any set $A, A \subseteq A$.
(ii) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$. (Transitive Property)

Proof.

(ii)
$1 \quad(A \subseteq B) \Leftrightarrow \forall x(x \in A \Longrightarrow x \in B)$
Hypothesis and Def. \subseteq
$2(B \subseteq C) \Leftrightarrow \forall x(x \in B \Longrightarrow x \in C)$
$\Rightarrow \forall x(x \in A \Rightarrow x \in C)$
$\Leftrightarrow A \subseteq C$

Hypothesis and Def. \subseteq
Inf. (1),(2) Syllogism Law
Def. of \subseteq

Definition 2.1.7 If X is a set, the power set of X is another set, denoted as $P(X)$ and defined to be the set of all subsets of X. In symbols,

$$
P(X)=\{A \mid A \subseteq X\}
$$

That is, $A \subseteq X$ if and only if $A \in P(X)$.

Example 2.1.8.

(i) \varnothing and a set X are always members of $P(X)$.
(ii) suppose $X=\{a, b, c\}$. Then

$$
P(X)=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}, X\}
$$

The way to finding all subsets of X is illustrated in the following figure.

From the above example, if a finite set X has n elements, then it has $\mathbf{2}^{\boldsymbol{n}}$ subsets, and thus its power set has $2^{\boldsymbol{n}}$ elements.
(iii) $P(\{1,2,4\})=\{\varnothing,\{0\},\{1\},\{4\},\{0,1\},\{0,4\},\{1,4\},\{1,2,4\}\}$.
(iv) $P(\varnothing)=\{\varnothing\}$.
(v) $P(\{\varnothing\})=\{\varnothing,\{\varnothing\}\}$.
(vi) $\quad P(\{\mathbb{Z}, \mathbb{R}\})=\{\varnothing,\{\mathbb{Z}\},\{\mathbb{R}\},\{\mathbb{Z}, \mathbb{R}\}\}$.

The following are wrong statements.

(v) $P(1)=\{\varnothing,\{1\}\}$.
(vi) $P(\{1,\{1,2\}\})=\{\emptyset,\{1\},\{1,2\},\{1,\{1,2\}\}\}$.
(vii) $P(\{1,\{1,2\}\})=\{\emptyset,\{\{1\}\},\{\{1,2\}\},\{1,\{1,2\}\}\}$.

2.2. Equality of Sets

Definition 2.2.1. Two sets, A and B, are said to be equal if and only if A and B contain exactly the same elements and denote that by $A=B$. That is, $A=B$ if and only if $A \subseteq B$ and $B \subseteq A$.
The description $A \neq B$ means that A and B are not equal sets.

Example 2.2.2.

Let \mathbb{Z}_{e} be the set of even integer numbers and $B=\{x \mid x \in \mathbb{Z}$ and divisible by 2$\}$.
Then $\mathbb{Z}_{e}=B$.
Proof.
To prove $\mathbb{Z}_{e} \subseteq B$.
$\mathbb{Z}_{e}=\{2 n \mid n \in \mathbb{Z}\}$.
$x \in \mathbb{Z}_{e} \Leftrightarrow \exists n \in \mathbb{Z}: x=2 n$
Def. of \mathbb{Z}_{e}.
$\Rightarrow \frac{x}{2}=n$
Divide both side of $x=2 n$ by 2 .
$\Rightarrow x \in B$
$\Rightarrow \mathbb{Z}_{e} \subseteq B$
Def. of B.
(1)

$$
-e=-
$$

To prove $B \subseteq \mathbb{Z}_{e}$.
$x \in B \Leftrightarrow \exists n \in \mathbb{Z}: \frac{x}{2}=n$
Def. of \mathbb{Z}_{e}.

$$
\Rightarrow x=2 n
$$

(2) $\quad \Rightarrow B \subseteq \mathbb{Z}_{e}$

Def. of subset.

Multiply $\frac{x}{2}=n$ by 2 .

$$
\Rightarrow x \in \mathbb{Z}_{e}
$$

Def. of \mathbb{Z}_{e}.
Def. of subset.

$$
\mathbb{Z}_{e}=B
$$

$\inf (1),(2)$ and def. of equality.

Remark 2.2.3.

(i) Two equal sets always contain the same elements. However, the rules for the sets may be written differently, as in Example 2.2.2.
(ii) Since any two empty sets are equal, therefore, there is a unique empty set.

Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana Mustansiriyah University College of Science Dept. of math. (2018-2019)
(iii) the symbols $\subseteq, \subset, \subsetneq, \nsubseteq$ are used to show a relation between two sets and not between an element and a set. With one exception, if x is a member of a set A, we may write $x \in A$ or $\{x\} \subseteq A$, but not $x \subseteq A$.
(iv) $\phi \neq\{\phi\}$.

Theorem 2.2.4. (Properties of Set Equality)
(i) For any set $A, A=A$. (Reflexive Property)
(ii) If $A=B$, then $B=A$.
(Symmetric Property)
(iii) If $A=B$ and $B=C$, then $A=C$. (Transitive Property)

Definition 2.2.5. Let A and B be subsets of a set X. The intersection of A and B is the set

$$
A \cap B=\{x \in X \mid x \in A \text { and } x \in B\}
$$

or

$$
A \cap B=\{x \in X \mid x \in A \wedge x \in B\}
$$

Therefore, $A \cap B$ is the set of all elements in common to both A and B.

Example 2.2.6.

(i) Given that the box below represents X, the shaded area represents $A \cap B$:

(ii) Let $A=\{2,4,5\}$ and $B=\{1,4,6,8\}$. Then, $A \cap B=\{4\}$.
(iii) Let $A=\{2,4,5\}$ and $B=\{1,3\}$. Then $A \cap B=\emptyset$.

Foundation of Mathematics I
Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana Mustansiriyah University College of Science Dept. of math. (2018-2019)

Definition 2.2.7. If two sets, A and B are two sets such that $A \cap B=\emptyset$ we say that A and B are disjoint.

Definition 2.2.8. Let A and B be two subsets of a set X. The union of A and B is the set $A \cup B=\{x \in X \mid x \in A$ or $x \in B\}$,
or

$$
A \cup B=\{x \in X \mid x \in A \vee x \in B\}
$$

Therefore, $A \cup B=$ the set of all elements belonging to A or B.

Example 2.2.9.

(i) Given that the box below represents X, the shaded area represents $A \cup B$:

(ii) Let $A=\{2,4,5\}$ and $B=\{1,4,6,8\}$. Then, $A \cup B=\{1,2,4,5,6,8\}$.
(iii) $\mathbb{Z}_{e} \cup \mathbb{Z}_{o}=\mathbb{Z}$.

Remark 2.2.10.

It is easy to extend the concepts of intersection and union of two sets to the intersection and union of a finite number of sets. For instance, if $X_{1}, X_{2}, \ldots, X_{n}$ are sets, then

$$
X_{1} \cap X_{2} \cap \ldots \cap X_{n}=\left\{x \mid x \in X_{i} \text { for all } i=1, \ldots, n\right\}
$$

and

$$
X_{1} \cup X_{2} \cup \ldots \cup X_{n}=\left\{x \mid x \in X_{i} \text { for some } i=1,2, \ldots, n\right\}
$$

Similarly, if we have a collection of sets $\left\{X_{i}: i=1,2, \ldots\right\}$ indexed by the set of positive integers, we can form their intersection and union. In this case, the intersection of the X_{i} is

$$
\bigcap_{i=1}^{\infty} X_{i}=\left\{x \in X_{i} \text { for all } i=1,2, \ldots\right\}
$$

and the union of the X_{i} is

$$
\bigcup_{i=1}^{\infty} X_{i}=\left\{x \in X_{i} \text { for some } i=1,2, \ldots\right\} .
$$

Theorem 2.2.11. Let A, B, and C be arbitrary subsets of a set X. Then
(i) $A \cap B=B \cap A$

$$
A \cup B=B \cup A \quad \text { (Commutative Law for Union) }
$$

(ii) $\quad A \cap(B \cap C)=(A \cap B) \cap C$ (Associative Law for Intersection) $A \cup(B \cup C)=(A \cup B) \cup C$ (Associative Law for Union)
(iii) $A \cap B \subseteq A$
(iv) $A \cap X=A ; A \cup \varnothing=A$
(v) $A \subseteq A \cup B$
(vi) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ (Distributive Law of Union with respect to Intersection).
(vii) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ (Distributive Law of Intersection with respect to Union),
(viii) $A \cup A=A, A \cap A=A$
(ix) $A \cup \emptyset=A, A \cap X=A$
(x) $A \cup X=X, A \cap \varnothing=\varnothing$
(Idempotent Laws)
(xi) $A \cup(A \cap B)=A$
(Identity Laws)
(Domination Laws)
Proof.
(i) $A \cap B=B \cap A$. This proof can be done in two ways.

The first proof

Uses the fact that the two sets will be equal only if
$(A \cap B) \subseteq(B \cap A)$ and $(B \cap A) \subseteq(A \cap B)$.
(1) Let x be an element of $A \cap B$

Therefore, $x \in A \wedge x \in B$
Thus, $x \in B \wedge x \in A$
Hence, $x \in B \cap A$
Therefore, $A \cap B \subseteq B \cap A$
(2) Let x be an element of $B \cap A$

Therefore, $x \in B \wedge x \in A$
Thus, $x \in A \wedge x \in B$
Hence, $x \in A \cap B$
Thus, $B \cap A \subseteq A \cap B$
Therefore, $A \cap B=B \cap A$

Def. of \bigcap
Commutative Property of Λ
Def. of $B \cap A$
Def. of \subseteq

Def. of \cap
Commutative property of Λ
Def. of \cap
Def. of \subseteq

Inf. (1),(2)

The second proof

$$
\begin{aligned}
A \cap B & =\{x \mid x \in A \cap B\} \\
& =\{x \mid x \in A \wedge x \in B\} \\
& =\{x \mid x \in B \wedge x \in A\} \\
& =\{x \mid x \in B \cap A\} \\
& =B \cap A
\end{aligned}
$$

Def. of \cap
Commutative property of \wedge
Def, of \cap
(iii) $(A \cap B) \subseteq A$

It must be shown that each element of $A \cap B$ is an element of A.
Let $x \in A \cap B$
Thus, $x \in A \wedge x \in B \quad$ Def. of \cap
Hence, $x \in A$
Therefore, $(A \cap B) \subseteq A$
(iv) $A \cap X=A$
(1) $A \cap X \subset A$
(2) Let $x \in A$

Thus, $x \in X$
Hence, $x \in A \wedge x \in X$ Therefore, $x \in A \cap X$ Thus, $A \subseteq A \cap X$

Thus, $A \cap X=A$

Inf. (iii) above
$A \subseteq X$ is given
Def. of \wedge
Def. of \cap
Def. of \subseteq

Inf. (1),(2)

