

Foundation of Mathematics I Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana Mustansiriyah University College of Science Dept. of math. (2018-2019)

FOUNDATION OF MATHEMATICS I

CHAPTER TWO SETS THEORY

DR. BASSAM AL-ASADI AND DR. EMAD AL-ZANGANA

MUSTANSIRIYAH UNIVERSITY- COLLEGE OF SCIENCE – DEPARTMENT OF MATHEMATICS

Definition 2.2.12. Let *A* and *B* be subsets of a set *X*. The set B - A, called the **difference** of *B* and *A*, is the set of all elements in *B* which are not in *A*. Thus,

$$B - A = \{x \in X \mid x \in B \text{ and } x \notin A\}$$

Example 2.2.13.

(i) Let
$$B = \{2,3,6,10,13,15\}$$
 and $A = \{2,10,15,21,22\}$. Then $B - A = \{3,6,13\}$.

- (ii) $\mathbb{Z} \mathbb{Z}_o = \mathbb{Z}_e$.
- (iii) Given that the box below represents X, the shaded area represents B A.

Theorem 2.2.14. Let A and B be subsets of a set X. Then (i) $A - A = \emptyset$, $A - \emptyset = A$ and $\emptyset - A = \emptyset$

Definition 2.2.15. If $A \subseteq X$, then X - A is called the **complement** of *A* with respect to *X* and denoted that by the symbol

 $X \setminus A$ or A^c .

Thus, $A^c = \{x \in X \mid x \notin A\}.$

Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana

 $x \in A$ and $x \in B^{c}$ } Def. of complement of B^{c} Def. of complement intersection

(iii) Exercise.

Definition 2.2.18. Let *A* and *B* be subsets of a set *X*. The set $A \triangle B = (A - B) \bigcup (B - A)$

is called the **symmetric difference**.

 $= A \cap B^c$

Sometimes the symbol $A \oplus B$ is used for symmetric difference.

Example 2.2.19. Let $A = \{1,2,3,4,5,6,7,8\}$ and $B = \{1,3,5,6,7,8,9\}$ are subsets of $U = \{1,2,3,4,5,6,7,8,9,10\}$. $A - B = \{2,4\}$

Foundation of Mathematics I Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana Mustansiriyah University College of Science Dept. of math. (2018-2019)

$$B - A = \{9\}$$

 $A \bigtriangleup B = (A - B) \cup (B - A) = \{2, 4, 9\}.$

Theorem 2.2.20. Let A, B and C are subsets of X. Then

(i) $A \bigtriangleup \emptyset = A$. (ii) $A \bigtriangleup B = \emptyset \Leftrightarrow A = B$.

- (iii) $A \bigtriangleup B = B \bigtriangleup A$.
- (iv) $A \bigtriangleup A = \emptyset$.

Proof. Exercise.

Theorem 2.2.21. (Properties of \cup , \cap , -, \triangle and P(X))

(i) $A - (B \cap C) = (A - B) \cup (A - C)$ De Morgan's Low on $-A - (B \cup C) = (A - B) \cap (A - C)$. (ii) $A - (A \cap B) = (A - B) = (A \cup B) - B$ $A - (A \cup B) = \emptyset$. (iii) $(A \cap B) - C = (A - C) \cap (B - C)$ $(A \cup B) - C = (A - C) \cup (B - C)$. (iv) $(A - B) \cap (C - D) = (C - B) \cap (A - D)$. (v) If $A \subseteq B$, then $P(A) \subseteq P(B)$. (vi) $P(A \cap B) = P(A) \cap P(B)$.

(**xvi**) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$.

 $= A \cap (B^c \cup C^c)$

 $=(A \cap B^c) \cup (A \cap C^c)$

 $=(A-B) \cup (A-C).$

(i) $A - (B \cap C) = A \cap (B \cap C)^c$

 \simeq

Proof.

Theorem 2.2.17(ii) De Morgan's Law

Dist. of \cap on \triangle

Dist. Law

Theorem 2.2.17(ii)

(vii) Let
$$H \in P(A) \cap P(B)$$

 $\Rightarrow H \in P(A) \land H \in P(B)$ Def. \cap
 $\Rightarrow H \subseteq A \land H \subseteq B$ Def. of power set
 $\Rightarrow H \subseteq (A \cap B)$ Def. \cap
 $\Rightarrow H \in P(A \cap B)$ Def. of power set

$$(\mathbf{x}) \ x \in A \land B \quad \Leftrightarrow \quad x \in (A - B) \cup (B - A) \qquad \text{Def. of } \land \\ \Leftrightarrow \quad x \in (A - B) \lor (B - A) \qquad \text{Def. } \cup \\ \Leftrightarrow \quad x \in A \land x \notin B \) \lor (x \in B \land x \notin A) \qquad \text{Def. of difference} \\ \Leftrightarrow \quad (x \in A \lor x \in B) \land (x \notin B \lor x \in B) \qquad \text{Dist. Law of} \\ \land \\ (x \in A \lor \notin A) \land (x \notin B \lor x \notin A) \qquad \\ \Leftrightarrow \qquad (x \in A \lor \notin A) \land (x \notin B \lor x \notin A) \qquad \\ \Leftrightarrow \qquad (x \in A \lor x \in B) \land T \qquad \text{Tautology}$$

Identity Law of \wedge

 $x \in A \lor x \in B$ $\land x \in B^c \lor x \in A^c$

17 Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana

Foundation of Mathematics I Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana Mustansiriyah University College of Science Dept. of math. (2018-2019)

 $x \in (A \lor B)$ \Leftrightarrow $\begin{array}{c} \wedge \\ x \in (B^c \ \lor A^c) \end{array}$ $x\in (A\ \cup B)$ Def. of \cup and \Leftrightarrow De Morgan's Law $x \in (B^c \cup A^c) = (A \cap B)^c$ $x\in (A\ \cup B)\cap (A\ \cap B)^c$ \Leftrightarrow $x \in (A \cup B) - (A \cap B)$ Theorem 2.2.17(ii) \Leftrightarrow