DR. BASSAM AL-ASADI AND DR. EMAD AL-ZANGANA

MUSTANSIRIYAH UNIVERSITY- COLLEGE OF SCIENCE - DEPARTMENT OF MATHEMATICS

Chapter Three Relations on Sets

3.1 Cartesian Product

Definition 3.1.1. A set A is called
(i) finite set if A contains finite number of element, say n, and denote that by $|A|=n$. The symbol $|A|$ is called the cardinality of A,
(ii)infinite set if A contains infinite number of elements.

Definition 3.1.2. The Cartesian product (or cross product) of A and B, denoted by $A \times B$, is the set $A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$.
(1) The elements (a, b) of $A \times B$ are ordered pairs, a is called the first coordinate (component) of (a, b) and b is called the second coordinate (component) of (a, b).
(2)For pairs $(a, b),(c, d)$ we have $(a, b)=(c, d) \Leftrightarrow a=c$ and $b=d$.
(3) The n-fold product of sets $A_{1}, A_{2}, \ldots, A_{n}$ is the set of n-tuples

$$
A_{1} \times A_{2} \times \ldots, \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i} \text { for all } 1 \leq i \leq n\right\}
$$

Example 3.1.3. Let $A=\{1,2,3\}$ and $B=\{4,5,6\}$.
(i) $\quad A \times B=\{(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)\}$.

Foundation of Mathematics I
Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana Mustansiriyah University College of Science Dept. of math. (2018-2019)

(ii) $\quad B \times A=\{(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3)\}$.

Remark 3.1.4.

(i) For any set A, we have $A \times \varnothing=\varnothing$ (and $\emptyset \times A=\varnothing$) since, if $(a, b) \in A \times$ \emptyset, then $a \in A$ and $b \in \emptyset$, impossible.
(ii) If $|A|=n$ and $|B|=m$, then $|A \times B|=n m$.

If A or B is infinite set then cross product $A \times B$ is infinite set.
(iii) Example 3.1.3 showed that $A \times B \neq B \times A$.

Theorem 3.1.5. For any sets A, B, C, D
(i) $A \times B=B \times A \Leftrightarrow A=B$,
(ii) if $A \subseteq B$, then $A \times C \subseteq B \times C$,
(iii) $A \times(B \cap C)=(A \times B) \cap(A \times C)$,
(iv) $A \times(B \cup C)=(A \times B) \cup(A \times C)$,
(v) $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$,
(vi) $\quad A \times(B-C)=(A \times B)-(A \times C)$.

Proof.

(i) The necessary condition. Let $A \times B=B \times A$. To prove $A=B$.

Let $x \in A \Longrightarrow(x, y) \in A \times B, \forall y \in B$. Def. of \times

$$
\begin{array}{ll}
\Longrightarrow(x, y) \in B \times A & \text { By hypothesis } \\
\Leftrightarrow x \in B \wedge y \in A & \text { Def. of } \times
\end{array}
$$

3

Foundation of Mathematics I
Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana
Mustansiriyah University College of Science Dept. of math. (2018-2019)
(1) $\Rightarrow x \in B \Rightarrow A \subseteq B \quad$ Def. of \subseteq
(2) By the same way we can prove that $B \subseteq A$.

Therefore, $\quad A=B$
$\operatorname{Inf}(1),(2)$.
The sufficient condition. Let $A=B$. To prove $A \times B=B \times A$.
Since $A \times B=A \times A=B \times A \quad$ Hypothesis
(vi) $A \times(B-C)=(A \times B)-(A \times C)$.
$(x, y) \in A \times(B-C) \Leftrightarrow x \in A \wedge y \in(B-C) \quad$ Def. of \times
$\Leftrightarrow x \in A \wedge(y \in B \wedge y \notin C)$
$\Leftrightarrow(x \in A \wedge x \in A) \wedge(y \in B \wedge y \notin C)$
$\Leftrightarrow(x \in A \wedge y \in B) \wedge(x \in A \wedge y \notin C)$
$\Leftrightarrow(x, y) \in(A \times B) \wedge(x, y) \notin(A \times C)$
Def. of -
$\Leftrightarrow(x, y) \in(A \times B)-(A \times C)$

Idempotent Law of Λ
Commut. and Assoc. Laws of Λ
Def. of \times
Def. of -

