

Foundation of Mathematics I Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana Mustansiriyah University College of Science Dept. of math. (2018-2019)

FOUNDATION OF MATHEMATICS I

CHAPTER THREE (CROSS PRODUCT AND RELATIONS)

DR. BASSAM AL-ASADI AND DR. EMAD AL-ZANGANA

MUSTANSIRIYAH UNIVERSITY- COLLEGE OF SCIENCE – DEPARTMENT OF MATHEMATICS

> 1 Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana

Foundation of Mathematics I Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana Mustansiriyah University College of Science Dept. of math. (2018-2019)

Chapter Three Relations on Sets

3.1 Cartesian Product

Definition 3.1.1. A set *A* is called

(i) finite set if A contains finite number of element, say n, and denote that by |A| = n. The symbol |A| is called the **cardinality** of A,

(ii) infinite set if A contains infinite number of elements.

Definition 3.1.2. The **Cartesian product** (or cross product) of *A* and *B*, denoted by $A \times B$, is the set $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$.

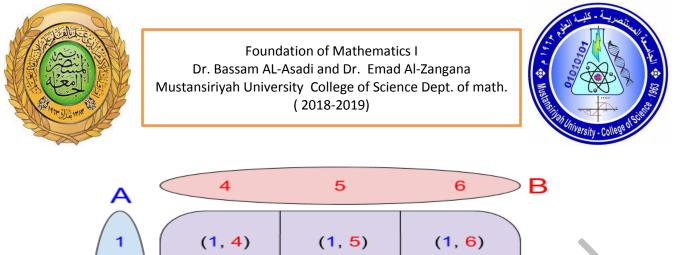
(1) The elements (a, b) of $A \times B$ are ordered pairs, a is called the **first coordinate** (component) of (a, b) and b is called the second coordinate (component) of (a, b).

(2) For pairs
$$(a, b), (c, d)$$
 we have $(a, b) = (c, d) \Leftrightarrow a = c$ and $b = d$.

(3) The *n*-fold product of sets A_1 , A_2 , ..., A_n is the set of *n*-tuples

 $A_1 \times A_2 \times \dots$, $X \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for all } 1 \le i \le n\}$. **Example 3.1.3.** Let $A = \{1, 2, 3\}$ and $B = \{4, 5, 6\}$.

(i) $A \times B = \{(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\}.$



A				
1	(1, 4)	(1, <u>5</u>)	(1, 6)	
2	(2, 4)	(2, <mark>5</mark>)	(2, <mark>6</mark>)	3
3	(3, 4)	(<mark>3, 5</mark>)	(3, 6)	

$A \times B$

(ii) $B \times A = \{(4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (6, 1), (6, 2), (6, 3)\}.$

Remark 3.1.4.

- (i) For any set A, we have A × Ø = Ø (and Ø × A = Ø) since, if (a, b) ∈ A × Ø, then a ∈ A and b ∈ Ø, impossible.
- (ii) If |A| = n and |B| = m, then $|A \times B| = nm$. If A or B is infinite set then cross product $A \times B$ is infinite set.
- (iii) Example 3.1.3 showed that $A \times B \neq B \times A$.

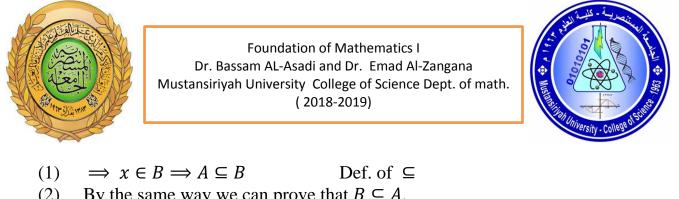
Theorem 3.1.5. For any sets *A*, *B*, *C*, *D*

- (i) $A \times B = B \times A \Leftrightarrow A = B$,
- (ii) if $A \subseteq B$, then $A \times C \subseteq B \times C$,
- (iii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$,
- (iv) $A \times (B \cup C) = (A \times B) \cup (A \times C),$
- (v) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D),$
- (vi) $A \times (B C) = (A \times B) (A \times C).$

Proof.

(i) The necessary condition. Let $A \times B = B \times A$. To prove A = B. Let $x \in A \implies (x, y) \in A \times B, \forall y \in B$. Def. of \times $\implies (x, y) \in B \times A$ By hypothesis $\iff x \in B \land y \in A$ Def. of \times

> 3 Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana



By the same way we can prove that $B \subseteq A$. (2)Therefore, A = BInf(1),(2).The sufficient condition. Let A = B. To prove $A \times B = B \times A$. Since $A \times B = A \times A = B \times A$ Hypothesis (vi) $A \times (B - C) = (A \times B) - (A \times C)$. $(x, y) \in A \times (B - C) \Leftrightarrow x \in A \land y \in (B - C)$ Def. of \times $\Leftrightarrow x \in A \land (y \in B \land y \notin C)$ Def. of – $\Leftrightarrow (x \in A \land x \in A) \land (y \in B \land y \notin C)$ Idempotent Law of / $\Leftrightarrow (x \in A \land y \in B) \land (x \in A \land y \notin C)$ Commut. and Assoc. Laws of Λ $\Leftrightarrow (x, y) \in (A \times B) \land (x, y) \notin (A \times C)$ Def. of \times $\Leftrightarrow (x, y) \in (A \times B) - (A \times C)$ Def. of -