DR. BASSAM AL-ASADI AND DR. EMAD AL-ZANGANA

MUSTANSIRIYAH UNIVERSITY- COLLEGE OF SCIENCE - DEPARTMENT OF MATHEMATICS

Definition 3.2.9. R is a totally order on A if R is a partial order, and $x R y$ or $y R x$ for all $x, y \in A$; that is, if any two elements of A are comparable with respect to R. Then we call the pair (A, \leq) a totally order set or a chain.

Example 3.2.10.

(i) Let $A=\{2,3,4,5,6\}$, and define R by the usual \leq relation on \mathbb{N}, i.e. $a R b$ iff $a \leq b$. Then R is a totally order on A.
(ii) Let us define another relation on \mathbb{N} a / b iff a divides b.
To show that / is a partial order we have to show the three defining properties of a partial order relation:

Reflexive: Since every natural number is a divisor of itself, we have a / a for all $a \in A$.
Antisymmetric: If a divides b then we have either $a=b$ or $a<b$ in the usual ordering of \mathbb{N}; similarly, if b divides a, then $b=a$ or $b<a$. Since $a<b$ and $b<a$ is not possible, a / b and b / a implies $a=b$.
Transitive: If a divides b and b divides c then a also divides c. Thus, / is a partial order on N.
(iii) Let $A=\{x, y\}$ and define \leq on the power set $P(A)$ by

$$
s \leq t \text { iff } s \text { is a subset of } t \text {. }
$$

This gives us the following relation:
$\emptyset \leq \emptyset, \varnothing \leq\{x\}, \varnothing \leq\{y\}, \varnothing \leq\{x, y\}=A,\{x\} \leq\{x\},\{x\} \leq\{x, y\},\{y\} \leq$
$\{y\},\{y\} \leq\{x, y\},\{x, y\} \leq\{x, y\}$.

Exercise 3.2.11.

Let $A=\{1,2, \ldots, 10\}$ and define the relation R on A by $x R y$ iff x is a multiple of y.
Show that R is a partial order on A.

Definition 3.2.12. (Inverse of a Relation)

Suppose $R \subseteq A \times B$ is a relation between A and B then the inverse relation $R^{-1} \subseteq B \times A$ is defined as the relation between B and A and is given by $b R^{-1} a$ if and only if $a R b$.
That is, $R^{-1}=\{(b, a) \in B \times A:(a, b) \in R\}$.
Example 3.2.13. Let R be the relation between \mathbb{Z} and \mathbb{Z}^{+}defined by $m R n$ if and only if $m^{2}=n$.

2

Then

$$
R=\left\{(m, n) \in \mathbb{Z} \times \mathbb{Z}^{+}: m^{2}=n\right\}
$$

and

$$
R^{-1}=\left\{(n, m) \in \mathbb{Z}^{+} \times \mathbb{Z}: m^{2}=n\right\} .
$$

For example, $-3 R 9,-4 R 16,16 R^{-1} 4,9 R^{-1} 3$, etc.

Remark 3.2.14.

If R is partial order relation on $A \neq \emptyset$, then R^{-1} is also partial order relation on A.

Proof.

(i) Reflexive. Let $x \in A$.
$\Rightarrow(x, x) \in R$ (Reflexivity of $A) \Rightarrow(x, x) \in R^{-1} \quad$ Def of R^{-1}
(ii) Antisymmetric. Let $(x, y) \in R^{-1}$ and $(y, x) \in R^{-1}$. To prove $x=y$.
$\Rightarrow(y, x) \in R \wedge(x, y) \in R$
Def of R^{-1}
$\Rightarrow y=x$
Since R is antisymmetric
(iii) Transitive. Let $(x, y) \in R^{-1}$ and $(y, z) \in R^{-1}$. To prove $(x, z) \in R^{-1}$.
$\Rightarrow(y, x) \in R \wedge(z, y) \in R \quad$ Def of R^{-1}
$\Rightarrow(z, y) \in R \wedge(y, x) \in R$
Commut. Law of \wedge
$\Rightarrow(z, x) \in R$
$\Rightarrow(x, z) \in R^{-1}$

Definition 3.2.15. (Partitions)

Let A be a set and let $A_{1}, A_{2}, \ldots, A_{n}$ be subsets of A such
(i) $A_{i} \neq \emptyset$ for all i,
(ii) $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$,
(iii) $A=\cup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$. Then the sets A_{i} partition the set A and these sets are called the classes of the partition.

Remark 3.2.16. An equivalence relation on X leads to a partition of X, and vice versa for every partition of X there is a corresponding equivalence relation.

Proof:

(a) Let R be an equivalence relation on X.

1- $\forall a \in X, a \in[a] \quad$ Def. of equ. Class
2- $\exists[b] \in X / R$ such that $[b]=[a] \quad$ Since X / R contains all diff. classes
3- $X=\cup_{a \in X}\{a\} \subseteq \cup_{a \in X}[a] \subseteq \cup_{a \in[b]}[b] \subseteq X \Rightarrow X=\cup_{[b] \in X / R}[b]$.
$4-[b] \cap[a]=\emptyset$, for all $[b],[a] \in X / R$
Def. of X / R

Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana Mustansiriyah University College of Science Dept. of math. (2018-2019)

5- R is partition of X
Inf.(3),(4)
(b) Let (i) $A_{i} \neq \emptyset$ for all $i, A_{i} \subseteq X$
(ii) $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$,
(iii) $X=\cup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$.

Define R (relation) on X by $a R b$ if $\exists A_{i}, A_{j}$ such that $a \in A_{i} \wedge b \in A_{j}, i \neq j$.
This relation is an equivalence relation on X.

Definition 3.2.17. (The Composition of Two Relations)

The composition of two relations $R_{1}(A, B)$ and $R_{2}(B, C)$ is given by $R_{2} o R_{1}$ where $(a, c) \in R_{2} o R_{1}$ if and only if there exists $b \in B$ such that $(a, b) \in R_{1}$ and $(b, c) \in R_{2}$.
Remark 3.2.18. The composition of relations is associative; that is,

$$
\left(R_{3} o R_{2}\right) o R_{1}=R_{3} o\left(R_{2} o R_{1}\right)
$$

Proof. Exercise.

Example 3.2.19.

(i) Let sets $A=\{a, b, c\}, B=\{d, e, f\}, C=\{g, h, i\}$ and relations $R(A, B)=$ $\{(a, d),(a, f),(b, d),(c, e)\}$ and $S(B, C)=\{(d, g),(d, i),(e, g),(e, h)\}$. Then we graph these relations and show how to determine the composition pictorially S o R is determined by choosing $x \in A$ and $y \in C$ and checking if there is a route from x to y in the graph. If so, we join x to y in $S o R$.

$$
S \text { o } R=\{(a, g),(a, i),(b, g),(b, i),(c, g),(c, h)\} \text {. }
$$

So R

For example, if we consider a and g we see that there is a path from a to d and from d to g and therefore (a, g) is in the composition of S and R.
(ii) Let $R^{-1}=\{(b, a) \mid(a, b) \in R\}$. The composition of R and R^{-1} yields:

$$
R^{-1} \mathrm{o} R=\{(a, a) \mid a \in \operatorname{Dom}(R)\}=I_{A}
$$

and

$$
R o R^{-1}=\left\{(b, b) \mid b \in \operatorname{Dom}\left(R^{-1}\right)\right\}=I_{B} .
$$

Definition 3.2.19. Union and Intersection of Relations

(i) The union of two relations $R_{1}(A, B)$ and $R_{2}(A, B)$ is subset of $A \times B$ and defined as $(a, b) \in R_{1} \cup R_{2}$ if and only if $(a, b) \in R_{1}$ or $(a, b) \in R_{2}$.
(ii) The intersection of two relations $R_{1}(A, B)$ and $R_{2}(A, B)$ is subset of $A \times B$ and defined as

$$
(a, b) \in R_{1} \cap R_{2} \text { if and only if }(a, b) \in R_{1} \text { and }(a, b) \in R_{2} .
$$

Remark 3.2.20.

(i) The relation R_{1} is a subset of $R_{2}\left(R_{1} \subseteq R_{2}\right)$ if whenever $(a, b) \in R_{1}$ then $(a, b) \in R_{2}$.
(ii) The intersection of two equivalence relations R_{2}, R_{1} on a set X is also equivalence relation on X.
(iii) In general, the union of two equivalence relations R_{2}, R_{1} on a set X need not to be an equivalence relation on X.

Proof. Exercise.

