

FOUNDATION OF MATHEMATICS I

CHAPTER THREE (CROSS PRODUCT AND RELATIONS)

DR. BASSAM AL-ASADI AND DR. EMAD AL-ZANGANA

MUSTANSIRIYAH UNIVERSITY- COLLEGE OF SCIENCE – DEPARTMENT OF MATHEMATICS

> 1 Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana

Definition 3.2.9. *R* is a totally order on *A* if *R* is a partial order, and *xRy* or *yRx* for all $x, y \in A$; that is, if any two elements of *A* are comparable with respect to *R*. Then we call the pair (A, \leq) a totally order set or a chain.

Example 3.2.10.

(i) Let $A = \{2, 3, 4, 5, 6\}$, and define R by the usual \leq relation on N, i.e. *aRb* iff $a \leq b$. Then R is a **totally order** on A.

(ii) Let us define another relation on \mathbb{N}

a/b iff a divides b.

To show that / is a partial order we have to show the three defining properties of a partial order relation: **Reflexive:** Since

every natural number is a divisor of itself, we have a/a for all $a \in A$.

Antisymmetric: If *a* divides *b* then we have either a = b or a < b in the usual ordering of N; similarly, if *b* divides *a*, then b = a or b < a. Since a < b and b < a is not possible, a/b and b/a implies a = b.

Transitive: If a divides b and b divides c then a also divides c. Thus, / is a partial order on N.

(iii) Let $A = \{x, y\}$ and define \leq on the power set P(A) by

 $s \leq t$ iff s is a subset of t.

This gives us the following relation:

 $\emptyset \leq \emptyset, \emptyset \leq \{x\}, \emptyset \leq \{y\}, \emptyset \leq \{x, y\} = A, \{x\} \leq \{x\}, \{x\} \leq \{x, y\}, \{y\} \leq \{y\}, \{y\} \leq \{x, y\}, \{x, y\} \leq \{x, y\}.$

Exercise 3.2.11.

Let $A = \{1, 2, ..., 10\}$ and define the relation R on A by xRy iff x is a multiple of y. Show that R is a partial order on A.

Definition 3.2.12. (Inverse of a Relation)

Suppose $R \subseteq A \times B$ is a relation between *A* and *B* then the inverse relation $R^{-1} \subseteq B \times A$ is defined as the relation between *B* and *A* and is given by

 $bR^{-1}a$ if and only if aRb. That is, $R^{-1} = \{(b, a) \in B \times A : (a, b) \in R\}.$

Example 3.2.13. Let *R* be the relation between \mathbb{Z} and \mathbb{Z}^+ defined by mRn if and only if $m^2 = n$.

2 Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana

Then

$$R = \{ (m, n) \in \mathbb{Z} \times \mathbb{Z}^+ : m^2 = n \},\$$

and

 $R^{-1} = \{(n,m) \in \mathbb{Z}^+ \times \mathbb{Z} : m^2 = n\}.$

For example, -3 R 9, -4 R 16, $16 R^{-1} 4$, $9 R^{-1} 3$, etc.

Remark 3.2.14.

If R is partial order relation on $A \neq \emptyset$, then R^{-1} is also partial order relation on A **Proof.**

(i) **Reflexive.** Let $x \in A$.

 \Rightarrow (x, x) $\in R$ (Reflexivity of A) \Rightarrow (x, x) $\in R^{-1}$ Def of R

(ii) Antisymmetric. Let $(x, y) \in R^{-1}$ and $(y, x) \in R^{-1}$. To prove x = y.

Def of R^{-1} \Rightarrow (y, x) $\in R \land (x, y) \in R$

Since *R* is antisymmetric $\Rightarrow y = x$

(iii) Transitive. Let $(x, y) \in R^{-1}$ and $(y, z) \in R^{-1}$. To prove $(x, z) \in R^{-1}$.

Def of R^{-1} \Rightarrow (y, x) $\in R \land (z, y) \in R$ \Rightarrow $(z, y) \in R \land (y, x) \in R$ \Rightarrow $(z, x) \in R$ \Rightarrow (x, z) $\in R^{-1}$

Commut. Law of Λ Since *R* is transitive Def of R^{-1}

Definition 3.2.15. (Partitions)

Let A be a set and let $A_1, A_2, ..., A_n$ be subsets of A such (i) $A_i \neq \emptyset$ for all *i*, (ii) $A_i \cap A_i = \emptyset$ if $i \neq j$, (iii) $A = \bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \dots \cup A_n$. Then the sets A_i partition the set A and these sets are called the classes of the partition.

Remark 3.2.16. An equivalence relation on X leads to a partition of X, and vice versa for every partition of X there is a corresponding equivalence relation. **Proof:**

(a) Let *R* be an equivalence relation on *X*. $1 - \forall a \in X, a \in [a]$ Def. of equ. Class 2- $\exists [b] \in X/R$ such that [b] = [a]Since X/R contains all diff. classes $3-X = \bigcup_{a \in X} \{a\} \subseteq \bigcup_{a \in X} [a] \subseteq \bigcup_{a \in [b]} [b] \subseteq X \Longrightarrow X = \bigcup_{[b] \in X/R} [b].$ 4- $[b] \cap [a] = \emptyset$, for all $[b], [a] \in X/R$ Def. of X/R

Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana

5- *R* is partition of *X*

Inf.(3),(4)

(**b**) Let (i) $A_i \neq \emptyset$ for all $i, A_i \subseteq X$ (ii) $A_i \cap A_j = \emptyset$ if $i \neq j$,

(iii) $X = \bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup ... \cup A_n$.

Define R(relation) on X by aRb if $\exists A_i, A_j$ such that $a \in A_i \land b \in A_j, i \neq j$. This relation is an equivalence relation on X.

Definition 3.2.17. (The Composition of Two Relations)

The composition of two relations $R_1(A, B)$ and $R_2(B, C)$ is given by $R_2 \circ R_1$ where $(a, c) \in R_2 \circ R_1$ if and only if there exists $b \in B$ such that $(a, b) \in R_1$ and $(b, c) \in R_2$. **Remark 3.2.18.** The composition of relations is associative; that is,

 $(R_3 \ o \ R_2) \ o \ R_1 = R_3 \ o \ (R_2 \ o \ R_1)$

Proof. Exercise.

Example 3.2.19.

(i) Let sets $A = \{a, b, c\}, B = \{d, e, f\}, C = \{g, h, i\}$ and relations $R(A, B) = \{(a, d), (a, f), (b, d), (c, e)\}$ and $S(B, C) = \{(d, g), (d, i), (e, g), (e, h)\}$. Then we graph these relations and show how to determine the composition pictorially $S \circ R$ is determined by choosing $x \in A$ and $y \in C$ and checking if there is a route from x to y in the graph. If so, we join x to y in $S \circ R$.

 $S \circ R = \{(a,g), (a,i), (b,g), (b,i), (c,g), (c,h)\}.$

For example, if we consider a and g we see that there is a path from a to d and from d to *g* and therefore (a, g) is in the composition of *S* and *R*. (ii) Let $R^{-1} = \{(b, a) | (a, b) \in R\}$. The composition of *R* and R^{-1} yields:

 $R^{-1} \circ R = \{(a, a) | a \in \text{Dom}(R)\} = I_A$

and

$$R \circ R^{-1} = \{(b, b) | b \in \text{Dom}(R^{-1})\} = I_B.$$

Definition 3.2.19. Union and Intersection of Relations

(i) The union of two relations $R_1(A, B)$ and $R_2(A, B)$ is subset of $A \times B$ and defined as $(a, b) \in R_1 \cup R_2$ if and only if $(a, b) \in R_1$ or $(a, b) \in R_2$.

(ii) The intersection of two relations $R_1(A, B)$ and $R_2(A, B)$ is subset of $A \times B$ and defined as

 $(a, b) \in R_1 \cap R_2$ if and only if $(a, b) \in R_1$ and $(a, b) \in R_2$.

Remark 3.2.20.

(i) The relation R_1 is a subset of R_2 ($R_1 \subseteq R_2$) if whenever $(a, b) \in R_1$ then $(a, b) \in R_2$. (ii) The intersection of two equivalence relations R_2 , R_1 on a set X is also equivalence relation on X.

(iii) In general, the union of two equivalence relations R_2 , R_1 on a set X need not to be an equivalence relation on X.

Proof. Exercise.