
Alpha-beta pruning 1

Alpha-beta pruning
Alpha-beta pruning is a search algorithm which seeks to reduce the number of nodes that are evaluated by the
minimax algorithm in its search tree. It is a search with adversary algorithm used commonly for machine playing of
two-player games (Tic-tac-toe, Chess, Go, etc.). It stops completely evaluating a move when at least one possibility
has been found that proves the move to be worse than a previously examined move. Such moves need not be
evaluated further. Alpha-beta pruning is a sound optimization in that it does not change the score of the result of the
algorithm it optimizes.

History
Allen Newell and Herbert Simon who used what John McCarthy calls an "approximation"[1] in 1958 wrote that
alpha-beta "appears to have been reinvented a number of times".[2] Arthur Samuel had an early version and Richards,
Hart, Levine and/or Edwards found alpha-beta independently in the United States.[3] McCarthy proposed similar
ideas during the Dartmouth Conference in 1956 and suggested it to a group of his students including Alan Kotok at
MIT in 1961.[4] Alexander Brudno independently discovered the alpha-beta algorithm, publishing his results in
1963.[5] Donald Knuth and Ronald W. Moore refined the algorithm in 1975[6] [7] and it continued to be advanced.

Improvements over native minimax

An illustration of alpha-beta pruning. The
grayed-out subtrees need not be explored (when
moves are evaluated from left to right), since we
know the group of subtrees as a whole yields the
value of an equivalent subtree or worse, and as
such cannot influence the final result. The max
and min levels represent the turn of the player

and the adversary, respectively.

The benefit of alpha-beta pruning lies in the fact that branches of the
search tree can be eliminated. The search time can in this way be
limited to the 'more promising' subtree, and a deeper search can be
performed in the same time. Like its predecessor, it belongs to the
branch and bound class of algorithms. The optimization reduces the
effective depth to slightly more than half that of simple minimax if the
nodes are evaluated in an optimal or near optimal order (best choice for
side on move ordered first at each node).

With an (average or constant) branching factor of b, and a search depth of d plies, the maximum number of leaf node
positions evaluated (when the move ordering is pessimal) is O(b*b*...*b) = O(bd) – the same as a simple minimax
search. If the move ordering for the search is optimal (meaning the best moves are always searched first), the number
of leaf node positions evaluated is about O(b*1*b*1*...*b) for odd depth and O(b*1*b*1*...*1) for even depth, or

. In the latter case, where the ply of a search is even, the effective branching factor is reduced
to its square root, or, equivalently, the search can go twice as deep with the same amount of computation.[8] The
explanation of b*1*b*1*... is that all the first player's moves must be studied to find the best one, but for each, only
the best second player's move is needed to refute all but the first (and best) first player move – alpha-beta ensures no
other second player moves need be considered. If b=40 (as in chess), and the search depth is 12 plies, the ratio
between optimal and pessimal sorting is a factor of nearly 406 or about 4 billion times.
Normally during alpha-beta, the subtrees are temporarily dominated by either a first player advantage (when many
first player moves are good, and at each search depth the first move checked by the first player is adequate, but all
second player responses are required to try and find a refutation), or vice versa. This advantage can switch sides

http://en.wikipedia.org/w/index.php?title=Search_algorithm
http://en.wikipedia.org/w/index.php?title=Minimax%23Minimax_algorithm_with_alternate_moves
http://en.wikipedia.org/w/index.php?title=Game_tree
http://en.wikipedia.org/w/index.php?title=Tic-tac-toe
http://en.wikipedia.org/w/index.php?title=Chess
http://en.wikipedia.org/w/index.php?title=Go_%28board_game%29
http://en.wikipedia.org/w/index.php?title=Allen_Newell
http://en.wikipedia.org/w/index.php?title=Herbert_Simon
http://en.wikipedia.org/w/index.php?title=John_McCarthy_%28computer_scientist%29
http://en.wikipedia.org/w/index.php?title=Arthur_Samuel
http://en.wikipedia.org/w/index.php?title=United_States
http://en.wikipedia.org/w/index.php?title=Dartmouth_Conference
http://en.wikipedia.org/w/index.php?title=Alan_Kotok
http://en.wikipedia.org/w/index.php?title=Alexander_Brudno
http://en.wikipedia.org/w/index.php?title=Donald_Knuth
http://en.wikipedia.org/w/index.php?title=File:AB_pruning.svg
http://en.wikipedia.org/w/index.php?title=Branch_and_bound
http://en.wikipedia.org/w/index.php?title=Branching_factor
http://en.wikipedia.org/w/index.php?title=Ply_%28game_theory%29
http://en.wiktionary.org/wiki/pessimal
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Square_root
http://en.wikipedia.org/w/index.php?title=1%2C000%2C000%2C000_%28number%29

Alpha-beta pruning 2

many times during the search if the move ordering is incorrect, each time leading to inefficiency. As the number of
positions searched decreases exponentially each move nearer the current position, it is worth spending considerable
effort on sorting early moves. An improved sort at any depth will exponentially reduce the total number of positions
searched, but sorting all positions at depths near the root node is relatively cheap as there are so few of them. In
practice, the move ordering is often determined by the results of earlier, smaller searches, such as through iterative
deepening.
The algorithm maintains two values, alpha and beta, which represent the minimum score that the maximizing player
is assured of and the maximum score that the minimizing player is assured of respectively. Initially alpha is negative
infinity and beta is positive infinity. As the recursion progresses the "window" becomes smaller. When beta becomes
less than alpha, it means that the current position cannot be the result of best play by both players and hence need not
be explored further.
Additionally, this algorithm can be trivially modified to return an entire principal variation in addition to the score.
Some more aggressive algorithms such as MTD(f) do not easily permit such a modification.

Pseudocode
function alphabeta(node, depth, α, β, Player)

 if depth = 0 or node is a terminal node

 return the heuristic value of node

 if Player = MaxPlayer

 for each child of node

 α := max(α, alphabeta(child, depth-1, α, β, not(Player)))

 if β≤α
 break (* Beta cut-off *)

 return α

 else

 for each child of node

 β := min(β, alphabeta(child, depth-1, α, β, not(Player)))

 if β≤α
 break (* Alpha cut-off *)

 return β

(* Initial call *)

alphabeta(origin, depth, -infinity, +infinity, MaxPlayer)

Heuristic improvements
Further improvement can be achieved without sacrificing accuracy, by using ordering heuristics to search parts of the
tree that are likely to force alpha-beta cutoffs early. For example, in chess, moves that take pieces may be examined
before moves that do not, or moves that have scored highly in earlier passes through the game-tree analysis may be
evaluated before others. Another common, and very cheap, heuristic is the killer heuristic, where the last move that
caused a beta-cutoff at the same level in the tree search is always examined first. This idea can be generalized into a
set of refutation tables.
Alpha-beta search can be made even faster by considering only a narrow search window (generally determined by
guesswork based on experience). This is known as aspiration search. In the extreme case, the search is performed
with alpha and beta equal; a technique known as zero-window search, null-window search, or scout search. This is
particularly useful for win/loss searches near the end of a game where the extra depth gained from the narrow
window and a simple win/loss evaluation function may lead to a conclusive result. If an aspiration search fails, it is
straightforward to detect whether it failed high (high edge of window was too low) or low (lower edge of window

http://en.wikipedia.org/w/index.php?title=Iterative_deepening_depth-first_search
http://en.wikipedia.org/w/index.php?title=Iterative_deepening_depth-first_search
http://en.wikipedia.org/w/index.php?title=Variation_%28game_tree%29%23Principal_variation
http://en.wikipedia.org/w/index.php?title=MTD%28f%29
http://en.wikipedia.org/w/index.php?title=Heuristic
http://en.wikipedia.org/w/index.php?title=Iterative_deepening_depth-first_search
http://en.wikipedia.org/w/index.php?title=Killer_heuristic
http://en.wikipedia.org/w/index.php?title=Refutation_table

Alpha-beta pruning 3

was too high). This gives information about what window values might be useful in a re-search of the position.

Other algorithms
More advanced algorithms that are even faster while still being able to compute the exact minimax value are known,
such as Negascout and MTD-f.
Since the minimax algorithm and its variants are inherently depth-first, a strategy such as iterative deepening is
usually used in conjunction with alpha-beta so that a reasonably good move can be returned even if the algorithm is
interrupted before it has finished execution. Another advantage of using iterative deepening is that searches at
shallower depths give move-ordering hints that can help produce cutoffs for higher depth searches much earlier than
would otherwise be possible.
Algorithms like SSS*, on the other hand, use the best-first strategy. This can potentially make them more
time-efficient, but typically at a heavy cost in space-efficiency.

References
• George T. Heineman, Gary Pollice, and Stanley Selkow (2008). "Chapter 7:Path Finding in AI". Algorithms in a

Nutshell. Oreilly Media. pp. 217–223. ISBN 978-0-596-51624-6.
[1] McCarthy, John (LaTeX2HTML 27 November 2006). "Human Level AI Is Harder Than It Seemed in 1955" (http:/ / www-formal. stanford.

edu/ jmc/ slides/ wrong/ wrong-sli/ wrong-sli. html). . Retrieved 2006-12-20.
[2] Newell, Allen and Herbert A. Simon (March 1976). "Computer Science as Empirical Inquiry: Symbols and Search" (http:/ / archive.

computerhistory. org/ projects/ chess/ related_materials/ text/ 2-3. Computer_science_as_empirical_inquiry/ 2-3.
Computer_science_as_empirical_inquiry. newell_simon. 1975. ACM. 062303007. pdf) (PDF). Communications of the ACM, Vol. 19, No. 3. .
Retrieved 2006-12-21.

[3] Edwards, D.J. and Hart, T.P. (4 December 1961 to 28 October 1963). "The Alpha-Beta Heuristic (AIM-030)" (http:/ / hdl. handle. net/ 1721.
1/ 6098). Massachusetts Institute of Technology. . Retrieved 2006-12-21.

[4] Kotok, Alan (XHTML 3 December 2004). "MIT Artificial Intelligence Memo 41" (http:/ / www. kotok. org/ AI_Memo_41. html). . Retrieved
2006-07-01.

[5] Marsland, T.A. (http:/ / www. cs. ualberta. ca/ ~tony/) (May 1987). "Computer Chess Methods (PDF) from Encyclopedia of Artificial
Intelligence. S. Shapiro (editor)" (http:/ / www. cs. ualberta. ca/ ~tony/ OldPapers/ encyc. mac. pdf) (PDF). J. Wiley & Sons. pp. 159–171. .
Retrieved 2006-12-21.

[6] * Knuth, D. E., and Moore, R. W. (1975). "An Analysis of Alpha-Beta Pruning" (http:/ / www. eecis. udel. edu/ ~ypeng/ articles/ An Analysis
of Alpha-Beta Pruning. pdf). Artificial Intelligence Vol. 6, No. 4: 293–326. .

• Reprinted as Chapter 9 in Knuth, Donald E. (2000). Selected Papers on Analysis of Algorithms (http:/ / www-cs-faculty. stanford. edu/
~knuth/ aa. html). Stanford, California: Center for the Study of Language and Information - CSLI Lecture Notes, no. 102.
ISBN 1-57586-212-3. OCLC 222512366. .

[7] Abramson, Bruce (June 1989). "Control Strategies for Two-Player Games" (http:/ / www. theinformationist. com/ pdf/ constrat. pdf/). ACM
Computing Surveys, Vol. 21, No. 2 21: 137. doi:10.1145/66443.66444. . Retrieved 2008-08-20.

[8] Russell, Stuart J.; Norvig, Peter (2003), Artificial Intelligence: A Modern Approach (http:/ / aima. cs. berkeley. edu/) (2nd ed.), Upper Saddle
River, New Jersey: Prentice Hall, ISBN 0-13-790395-2,

External links
• http:/ / www. emunix. emich. edu/ ~evett/ AI/ AlphaBeta_movie/ sld001. htm
• http:/ / sern. ucalgary. ca/ courses/ CPSC/ 533/ W99/ presentations/ L1_5B_McCullough_Melnyk/
• http:/ / sern. ucalgary. ca/ courses/ CPSC/ 533/ W99/ presentations/ L2_5B_Lima_Neitz/ search. html
• http:/ / www. maths. nott. ac. uk/ personal/ anw/ G13GAM/ alphabet. html
• http:/ / chess. verhelst. org/ search. html
• http:/ / www. frayn. net/ beowulf/ index. html
• http:/ / hal. inria. fr/ docs/ 00/ 12/ 15/ 16/ PDF/ RR-6062. pdf
• Minimax (with or without alpha-beta pruning) algorithm visualization - game tree solving (Java Applet) (http:/ /

wolfey. 110mb. com/ GameVisual/ launch. php?agent=2)

http://en.wikipedia.org/w/index.php?title=Negascout
http://en.wikipedia.org/w/index.php?title=MTD-f
http://en.wikipedia.org/w/index.php?title=Depth-first_search
http://en.wikipedia.org/w/index.php?title=Iterative_deepening_depth-first_search
http://en.wikipedia.org/w/index.php?title=SSS%2A
http://en.wikipedia.org/w/index.php?title=Best_first_search
http://en.wikipedia.org/w/index.php?title=Oreilly_Media
http://www-formal.stanford.edu/jmc/slides/wrong/wrong-sli/wrong-sli.html
http://www-formal.stanford.edu/jmc/slides/wrong/wrong-sli/wrong-sli.html
http://archive.computerhistory.org/projects/chess/related_materials/text/2-3.Computer_science_as_empirical_inquiry/2-3.Computer_science_as_empirical_inquiry.newell_simon.1975.ACM.062303007.pdf
http://archive.computerhistory.org/projects/chess/related_materials/text/2-3.Computer_science_as_empirical_inquiry/2-3.Computer_science_as_empirical_inquiry.newell_simon.1975.ACM.062303007.pdf
http://archive.computerhistory.org/projects/chess/related_materials/text/2-3.Computer_science_as_empirical_inquiry/2-3.Computer_science_as_empirical_inquiry.newell_simon.1975.ACM.062303007.pdf
http://hdl.handle.net/1721.1/6098
http://hdl.handle.net/1721.1/6098
http://www.kotok.org/AI_Memo_41.html
http://www.cs.ualberta.ca/~tony/
http://www.cs.ualberta.ca/~tony/OldPapers/encyc.mac.pdf
http://www.eecis.udel.edu/~ypeng/articles/An%20Analysis%20of%20Alpha-Beta%20Pruning.pdf
http://www.eecis.udel.edu/~ypeng/articles/An%20Analysis%20of%20Alpha-Beta%20Pruning.pdf
http://www-cs-faculty.stanford.edu/~knuth/aa.html
http://www-cs-faculty.stanford.edu/~knuth/aa.html
http://www.theinformationist.com/pdf/constrat.pdf/
http://en.wikipedia.org/w/index.php?title=Stuart_J._Russell
http://en.wikipedia.org/w/index.php?title=Peter_Norvig
http://aima.cs.berkeley.edu/
http://www.emunix.emich.edu/~evett/AI/AlphaBeta_movie/sld001.htm
http://sern.ucalgary.ca/courses/CPSC/533/W99/presentations/L1_5B_McCullough_Melnyk/
http://sern.ucalgary.ca/courses/CPSC/533/W99/presentations/L2_5B_Lima_Neitz/search.html
http://www.maths.nott.ac.uk/personal/anw/G13GAM/alphabet.html
http://chess.verhelst.org/search.html
http://www.frayn.net/beowulf/index.html
http://hal.inria.fr/docs/00/12/15/16/PDF/RR-6062.pdf
http://wolfey.110mb.com/GameVisual/launch.php?agent=2
http://wolfey.110mb.com/GameVisual/launch.php?agent=2

Article Sources and Contributors 4

Article Sources and Contributors
Alpha-beta pruning Source: http://en.wikipedia.org/w/index.php?oldid=417219192 Contributors: Albmont, Alexrakia, AllUltima, AndrewHowse, Arvindn, Asqueella, Avatar, Bad Romance,
Bart Massey, Beland, Betacommand, Bfinn, Blahedo, BlueNovember, Bumbulski, CharlesGillingham, Circular17, Cobi, Dav!dB, David Haslam, Delirium, Doradus, Dsnpost, Eptalon, Eric Le
Bigot, Euryalus, Evand, Fresheneesz, Giftlite, GregorB, Hadal, Heineman, Hirak 99, IanOsgood, Intgr, Janzert, Jecraig@yahoo.com, Jez9999, KJS77, Libor Vilímek, Lightmouse, Luke
Gustafson, Makaimc, Maschelos, MathsIsFun, Mav, Melcombe, Michael Hardy, Michael Slone, Msikma, Nelhage, Newfraferz87, Nomis80, Onorem, Pete.Hurd, Pitel, Plattler01, Qwertyus,
Rasmus Faber, Rjwilmsi, ScudLee, Sophus Bie, Stephen B Streater, Stephen Morley, Steven jones, The Anome, Thesilverbail, Thijswijs, Truehalley, Veganfanatic, Willtron, Wolfkeeper,
Zophar1, 135 anonymous edits

Image Sources, Licenses and Contributors
Image:AB pruning.svg Source: http://en.wikipedia.org/w/index.php?title=File:AB_pruning.svg License: GNU Free Documentation License Contributors: Original uploader was Jez9999 at
en.wikipedia

License
Creative Commons Attribution-Share Alike 3.0 Unported
http:/ / creativecommons. org/ licenses/ by-sa/ 3. 0/

http://creativecommons.org/licenses/by-sa/3.0/

	Alpha-beta pruning
	History
	Improvements over native minimax
	Pseudocode
	Heuristic improvements
	Other algorithms
	References
	External links

	License

