College of Science
Computer Department

2018-2019

Design and Analysis

Harsh Bhasin
A oiraamt I'rafecaw
Depar tmams of Coomgnaser Se sty
Jamis Hamdurd
New Deddu

OXFORD

'INTRODUCTION TO'ALGORITHMS

INTRODUCTION

Algorithms are used everywhere, from a coffee machine to a nuclear power plant. A good
algorithm should use the resources such as the CPU usage, time, and memory judiciously. It
should also be unambiguous and understandable. The output produced by an algorithm lies in
a set called range. The input is taken from a set ‘domain’ (input constraints). From the
domain only the values satisfying given constraints can be taken. These constraints are
referred to as input constraints. Input constraints determine the values of xi, i.e., input. The
inputs are related to each other as governed by relation corresponding to the task that is to be
accomplished. This is referred to as explicit constraint.

Summarizing the importance of algorithms discussed earlier, we can say the following:

* It helps in enhancing the thinking process. They are like brain stimulants that will give a
boost to our thinking process.

It helps in solving many problems in computer science, computational biology, and
economics.

 Without the knowledge of algorithms we can become a coder but not a programmer.

« A good understanding of algorithms will help us to get a job. There is an immense
demand of good programmers in the software industry who can analyze the problem
well.

e The fourth section of the book that introduces genetic algorithms and randomized
approach will help us to retain that job.

/

pr— ALGORITHM DEFINITION

An algorithm is a sequence of steps that must be carried out in order to accomplish a
particular task. Three things are to be considered while writing an algorithm: input, process, and
output. The input that we give to an algorithm is processed with the help of the procedure and
finally, the algorithm returns the output. It may be stated at this point that an algorithm may not
even have an input. An example of such an algorithm is pseudorandom number generator (PRNG).
Some random number generators generate a number without a seed. In such cases, the algorithm
does not require any input. The processing of the inputs generates an output. This processing is the
most important part of the algorithm. While writing an algorithm, the time taken to accomplish
the task and the memory usage must also be considered. The prime motto is to solve the problem
but efficiency of the process followed should not be compromised. There is a distinction between
natural language and algorithmic writing. While speaking or writing a letter, we may use
ambiguous terms unknowingly or deliberately. To summarize the main goal of discussion
» An algorithm is a sequence of steps in order to carry out a particular task.

e It can have zero or more inputs.

e It must have at least one output.

e It should be efficient both in terms of memory and time.

e It should be finite.

» Every statement should be unambiguous. The meaning of finite is that the algorithm should have
countable number of steps.

It may be stated that a program can run infinitely but an algorithm is always finite. For example,
an operating system of a server, in spite of being a program runs 24 x 7 but an algorithm cannot be
infinite.

—— WAYS OF WRITING AN ALGORITHM:

A. ENGLISH-LIKE ALGORITHM

An algorithm can be written in many ways. It can be written in simple English
but this methodology also has some demerits. Natural languages can be ambiguous and
therefore lack the characteristic of being definite. Since each step of an algorithm should be
clear and should not have more than one meaning, English language-like algorithms are not
considered good for most of the tasks. However, an example of linear search, in which an
element is searched at every position of the array and the position is printed if an element is
found, is given below. In this algorithm, ¢A’ is the array in which elements are stored and
‘item’ is the value which is to be searched. The algorithm assumes that all the elements in
‘A’ are distinct. Algorithm below depicts the above process.

Algorithm 1.1: English-like algorithm of linear search

Step 1. Compare ‘item’ with the first element of the array, A.

Step 2. If the two are same, then print the position of the element and exit.
Step 3. else repeat the above process with the rest of the elements.

Step 4. If the item is not found at any position, then print ‘not found’ and exit.

, F O e oo e AR o s
p

B. FLOWCHART

Flowcharts pictorially depict a process. They are easy to understand
and are commonly used in the case of simple problems. The process of linear
search, explained in the previous subsection, is depicted in the flowchart
illustrated in Fig. 1.1. The conventions of flowcharts are depicted in Table 1.1.

In the flowchart, shown in Fig 1.,
Al] is an array containing N elements. The
index of the first element is O which is also
the initial value of i. Such depictions,

Pr
‘Not F

Print the though easy to comprehend, are used only
location T A .

for simple straightforward problems. Hence,
‘ this lecture neither recommends nor uses

the above two types for writing algorithms,
Figure 1.1 Flowchart of linear search except for some cases

Flowchart Conventions

Table 1.1 Flowchart conventions

S.No. Name

1. Start/End
9 A Arrows

3. Connectors

4. Input/Output

Element Representation Meaning

-

— ||

An oval is used to indicate the beginning and
end of an algorithm.

An arrow indicates the direction of flow of
the algorithm.

Circles with arrows connect the disconnected
flowchart.

A parallelogram indicates the input or output.

A rectangle indicates a computation.

A diamond indicates a point where a decision
is made.

C. PSEUDOCODE

The pseudocode has an advantage of being easily converted into any
programming language. This way of writing algorithm is most acceptable
and most widely used. In order to be able to write a pseudocode, one must
be familiar with the conventions of writing it. Table 1.2 shows the

pseudocode conventions.

Table 1.2 Pseudocode conventions

S.No. Construct
l. // Comment
2. /* Comment
Comment
O
O
Comment
*/
3. {
statements
h
4. -

Line 1
Line 2

Line n

Meaning
Single line comments start with //

Multi-line comments occur between /* and */

Blocks are represented using { and }. Blocks can be
used to represent compound statements (collection
of simple statements) or the procedures.

Statements are delimited by ;

(Contd)

S s”
SRR AR AR R R R S R AR R R R R S ST R R

\,

Table 1.2 (Comd)

S. No. Construct Mezaning

S. <variable> = <Expression> Thas = an assagnencnt statcament. he statcomscnt
mdhcates thatt the resalt of cvaluatson of the cxperes-
=som will be stored mn the vanablc.

6. a > b & and D arc expwesssons, and > s 3 relatsonal opora-
or ‘groater than”. The Boolcan cxpecssscm a > D
returns troc if @ s greater than b, clse returns falsc.

i A a < b a and b arc cxperoesssons, and < 1= a relatsonal opcra-
tor “less than™. The Boolcan cxpeoessaon a < D roetuarmss
wuc if & s loss than b, clse returns falsc.

L. a <= b a and b arc cxpeoessaons, and <= 1= a rclatsonal opcr-
atow “loss than or egual 10", The Boolcan expeessason
& <= b rcturns troc if a2 = loss than or ogual 1o b,
clse rotarns (akse.

L a >= b a and b arc cxpewcssaons, and > = = a rclatsomal
opcrator ‘greater than or ogual 10" . The Boolcan
Ccxpression @ >= D roturns troc if 2 i groeasor than
or ogual 1© b, clsc returns falsc.

10. a '= b a and b arc expwessrons, and ! = ix a relatonal opors-
or ‘not ogual 107, The Boolcan exgpecssion a '= b
retarns troc if @ s ot ogual 10 B, clse retarns falsc.

11 a == b a2 and b arc cxpwessaons, and == = a rclatsonal
opoerator ‘ogual 107, The Boolcan expecssson a8 == b
rcturns troc if 8 s ogual 1© b, clsc returns falsc.

12 @ anD b 2 and D arc experossrons, and AND s 3 logscal opora-
tor. The Boolcan cxpecssaon @ AND D rocturns troc
if both the conditions arc truc, clsc it retarns falsc.

13 a OR B a and b arc cxpecssaons, and OR = a logical opcra-
wor. The Boolcan cxpwessson a2 OR b roturns troc of
any of the conditson s trec, clse t retarns false

14, NOT a 2 == an cxpression, and NOT s a logical opcratos.
The Boolcan exproessson “NOT a8° sctarns truc of the
result of 3 cvalustes to Falsc, clsc recturns Falsce

15, if<condition>then<statement> The stasconcnt snndhicates the condstsonal opcratos 37
16. if<condition>then<statementi> The statcomcnt s an cnbancecmcent of the above iF
else<statement2> statcmoent. It can also handlc the case whercmn the
conditzon 1s ot satasfhod.
17. Case The statcancont s a dopuctaon of switch case uasod i
£ Cor Cesl
t:<condition 1>: <statement 1>
o
o

t:<condition n>: <statement n>
:default: <statement n+ai>

(Contad)

Table 1.2 (Contd)

S.No. Construct
18, while<conditions>do
{
statements
}
19. repeat
statements
until<condition>
2. for variable = valuel to value2

2,

=B

{

}
Read

Print
Algorithm<name> (<parameter list>)

statements

Meaning
The statement depicts a whi le loop

The statement depicts a do-while loop

The statement depicts a for loop

Input mstruction
Output instruction

The name of the algonthm s <name> and the arge-
menis are siored in the <paraseter 1ist>

Algorithm 1.2 depicts the process of linear search. The name of the algorithm
is ‘Linear Search’. The element ‘item’ is to be searched in the array ‘A’ The
algorithm uses the conventions stated in Table 1.2.

Algorithm 1.2 linear search

Algorithm Linear_Search (A, n, item)

{

fori=1tonstepido
{ if(A[i] == item)
{ print i;
exit();
}

}

print “Not Found”

}

)/BESI/GN AND ANALYSIS VS ANALYSIS AND DESIGN

In order to accomplish a task, a solution needs to be developed. This is called
designing of an algorithm. For example, if an array ‘A’ of length n is given and our
requirement is to find out the maximum element of the array, then we can take a
variable ‘Max’ whose initial value is A[1], which is the first element of the array. Now,
start traversing the array, compare the value of Max with each element, if we are able to
find any element greater than Max, then we can set Max to the value of that element,
else continue. The process is depicted in Algorithm 1.3.

Algorithm 1.3 Finding maximum element from an array

Algorithm Max(A, n)
{ Max=A[1];
fori=2tonstepido
{
if(A[i]>Max) then
{
Max=A[i];
}
}

Print “The maximum element is A[i]”

The next step would be to analyse the time complexity of the algorithm.
Table 1.3 shows the number of times each statement is executed. The above analysis
gives an idea of maximum amount of resources (in this case time) required to run the
algorithm. This is referred to as algorithm design and analysis (ADA) (see Fig. 1.2).
However, this may not be the case most of the times. Often, we have to develop
software for the client. The client has some set-up and will not want to upgrade his
systems in order to install the software. In such cases, we must analyse the hardware
and

Table 1.3 Number of times each statement is executed in Algorithm 1.3

Max = A[1]; I

for 1 := 2 to n step 1 do{ N

if(A[i]>max) { n-1

Max=A[1i];}} less than or equal to (n—-1)

print “The maximum element is A[i]” I

Maximum: (n)

o

[Designj (Analysej [Analyse] | Design |

Figure 1.2 Design and Figure 1.3 Analysis and
analysis design

The set-up of the client and then decide on the algorithms we would be
using in order to accomplish the tasks. Here, we cannot apply techniques like
diploid genetic algorithm on a system that uses a P4, similarly there is no point in
using algorithms that are time efficient but probably use extensive resources in a
very advanced set-up. The process is referred to as analysis and design. The process
is depicted in Fig. 1.3. The general approach being used is design and analysis;
however, analysis and design is far more practical and hence implementable.

Points to Remember

+ Analgorithm s different from a program. An algorithm is finite; a program can be infinite.
+ An algorithm can be pictorially depicted by a flowchart.

+ The analysis of an algorithm is essential in order to judge whether it can be implemented
in the given conditions.

+ The analysis of an algorithm may consider time or space or both.

+ The design of an algorithm can follow the analysis of the requirements, This approach is
referred to as analysis and design.

+ The algorithm can be designed in order to accomplish a task, and then can be analysed.
This approach is referred to as design and analysis.

KEY TERMS

Algorithm It is a sequence of steps to accomplish a particular task efficiently and effectively.
Constraint The conditions that control the selection of elements in backtracking.

Explicit Constraint The conditions that determine how should various x;s are related to each
other.

Implicit Constraint An element x; can take its values only from a legal set of values called
domain.

J Homework:

1. Read the full topic related to this lecture in

chapter one from the book.
2. Write an algorithm to sort an array and submits

next week.
3. Answer the Exercises at end the chapter

