
By: Dr. Boshra F. Zopon AL_Bayaty

2018-2019

College of Science
Computer Department

First Lecture

INTRODUCTION TO ALGORITHMS

INTRODUCTION TO ALGORITHMS
INTRODUCTION

Algorithms are used everywhere, from a coffee machine to a nuclear power plant. A good

algorithm should use the resources such as the CPU usage, time, and memory judiciously. It

should also be unambiguous and understandable. The output produced by an algorithm lies in

a set called range. The input is taken from a set ‘domain’ (input constraints). From the

domain only the values satisfying given constraints can be taken. These constraints are

referred to as input constraints. Input constraints determine the values of xi, i.e., input. The

inputs are related to each other as governed by relation corresponding to the task that is to be

accomplished. This is referred to as explicit constraint.

Summarizing the importance of algorithms discussed earlier, we can say the following:

• It helps in enhancing the thinking process. They are like brain stimulants that will give a

boost to our thinking process.

• It helps in solving many problems in computer science, computational biology, and

economics.

• Without the knowledge of algorithms we can become a coder but not a programmer.

• A good understanding of algorithms will help us to get a job. There is an immense

demand of good programmers in the software industry who can analyze the problem

well.

• The fourth section of the book that introduces genetic algorithms and randomized

approach will help us to retain that job.

ALGORITHM DEFINITION

 An algorithm is a sequence of steps that must be carried out in order to accomplish a

particular task. Three things are to be considered while writing an algorithm: input, process, and

output. The input that we give to an algorithm is processed with the help of the procedure and

finally, the algorithm returns the output. It may be stated at this point that an algorithm may not

even have an input. An example of such an algorithm is pseudorandom number generator (PRNG).

Some random number generators generate a number without a seed. In such cases, the algorithm

does not require any input. The processing of the inputs generates an output. This processing is the

most important part of the algorithm. While writing an algorithm, the time taken to accomplish

the task and the memory usage must also be considered. The prime motto is to solve the problem

but efficiency of the process followed should not be compromised. There is a distinction between

natural language and algorithmic writing. While speaking or writing a letter, we may use

ambiguous terms unknowingly or deliberately. To summarize the main goal of discussion

• An algorithm is a sequence of steps in order to carry out a particular task.

• It can have zero or more inputs.

• It must have at least one output.

• It should be efficient both in terms of memory and time.

• It should be finite.

• Every statement should be unambiguous. The meaning of finite is that the algorithm should have

countable number of steps.

It may be stated that a program can run infinitely but an algorithm is always finite. For example,

an operating system of a server, in spite of being a program runs 24 × 7 but an algorithm cannot be

infinite.

 WAYS OF WRITING AN ALGORITHM:

 An algorithm can be written in many ways. It can be written in simple English

but this methodology also has some demerits. Natural languages can be ambiguous and

therefore lack the characteristic of being definite. Since each step of an algorithm should be

clear and should not have more than one meaning, English language-like algorithms are not

considered good for most of the tasks. However, an example of linear search, in which an

element is searched at every position of the array and the position is printed if an element is

found, is given below. In this algorithm, ‘A’ is the array in which elements are stored and

‘item’ is the value which is to be searched. The algorithm assumes that all the elements in

‘A’ are distinct. Algorithm below depicts the above process.

Algorithm 1.1: English-like algorithm of linear search

Step 1. Compare ‘item’ with the first element of the array, A.

Step 2. If the two are same, then print the position of the element and exit.

Step 3. else repeat the above process with the rest of the elements.

Step 4. If the item is not found at any position, then print ‘not found’ and exit.

A. ENGLISH-LIKE ALGORITHM

B. FLOWCHART
 Flowcharts pictorially depict a process. They are easy to understand
and are commonly used in the case of simple problems. The process of linear
search, explained in the previous subsection, is depicted in the flowchart
illustrated in Fig. 1.1. The conventions of flowcharts are depicted in Table 1.1.

 In the flowchart, shown in Fig 1.1,
A[] is an array containing N elements. The
index of the first element is O which is also
the initial value of i. Such depictions,
though easy to comprehend, are used only
for simple straightforward problems. Hence,
this lecture neither recommends nor uses
the above two types for writing algorithms,
except for some cases.

Flowchart Conventions

C. PSEUDOCODE

The pseudocode has an advantage of being easily converted into any
programming language. This way of writing algorithm is most acceptable
and most widely used. In order to be able to write a pseudocode, one must
be familiar with the conventions of writing it. Table 1.2 shows the
pseudocode conventions.

Algorithm 1.2 depicts the process of linear search. The name of the algorithm
is ‘Linear Search’. The element ‘item’ is to be searched in the array ‘A’. The
algorithm uses the conventions stated in Table 1.2.
Algorithm 1.2 linear search

Algorithm Linear_Search (A, n, item)
{
 for i = 1 to n step 1 do
 { if(A[i] == item)
 { print i;
 exit();
 }
 }
 print “Not Found”
}

2. DESIGN AND ANALYSIS VS ANALYSIS AND DESIGN
 In order to accomplish a task, a solution needs to be developed. This is called
designing of an algorithm. For example, if an array ‘A’ of length n is given and our
requirement is to find out the maximum element of the array, then we can take a
variable ‘Max’ whose initial value is A[1], which is the first element of the array. Now,
start traversing the array, compare the value of Max with each element, if we are able to
find any element greater than Max, then we can set Max to the value of that element,
else continue. The process is depicted in Algorithm 1.3.

Algorithm 1.3 Finding maximum element from an array

Algorithm Max(A, n)
{ Max = A[1];
 for i = 2 to n step 1 do
 {
 if(A[i]>Max) then
 {
 Max=A[i];
 }
 }
 Print “The maximum element is A[i]”
}

 The next step would be to analyse the time complexity of the algorithm.
Table 1.3 shows the number of times each statement is executed. The above analysis
gives an idea of maximum amount of resources (in this case time) required to run the
algorithm. This is referred to as algorithm design and analysis (ADA) (see Fig. 1.2).
However, this may not be the case most of the times. Often, we have to develop
software for the client. The client has some set-up and will not want to upgrade his
systems in order to install the software. In such cases, we must analyse the hardware
and

 The set-up of the client and then decide on the algorithms we would be
using in order to accomplish the tasks. Here, we cannot apply techniques like
diploid genetic algorithm on a system that uses a P4, similarly there is no point in
using algorithms that are time efficient but probably use extensive resources in a
very advanced set-up. The process is referred to as analysis and design. The process
is depicted in Fig. 1.3. The general approach being used is design and analysis;
however, analysis and design is far more practical and hence implementable.

 Homework:
 1. Read the full topic related to this lecture in
chapter one from the book.

2. Write an algorithm to sort an array and submits
next week.

3. Answer the Exercises at end the chapter

 ؟

