Air Pollution Meteorology

The solution to pollution is dilution

1

2

3

Air Pollution Meteorology

- Weather
 - \rightarrow Winds and Breezes
- Dispersion Processes
- Convective Dispersion
 - \rightarrow Air Parcel Dynamics
 - → Adiabatic Process
 - → Lapse Rate
 - → Atmospheric Stability
 - \rightarrow Stability and Dispersion

• Temperature Inversions

- \rightarrow Stability
- \rightarrow Formation/Types
- → Mixing Height
- Daily and Seasonal Smog Variation
- Application: Chimney Plumes
 - \rightarrow Plume Type vs. Stability
 - → Enhancing Plume Dispersion

Dispersion Processes

Defn.: A substance mixes in and becomes diluted within a larger volume of another substance.

Lapse Rate

Defn.: Rate at which temperature decreases as altitude increases

Making Parcels Buoyant

- Need: parcel temp. > envir. temp.
 - \rightarrow Heat up air parcel at the ground
 - \rightarrow Then, positively buoyant parcel rises
 - → But, rising parcel loses temperature through adiabatic expansion...

Atmospheric Stability

- Related to behavior of an air parcel after it has been disturbed
- Indicates atmosphere's ability to mix vertically
- Related to air parcel buoyancy after parcel is disturbed

22

24

Stability Behavior Behavior after disturbance of equilibrium characterizes stability Stable Stable

Stability Behavior Behavior after disturbance of equilibrium Characterizes stability Unstable Unstable

Stability Criteria	
Stable:	γ < Γ
Unstable:	γ > Γ
Neutral:	$\gamma = \Gamma$

Stability vs. Dispersion

- Turbulence gives parcel an initial push
- Stability vs. vertical mixing:
 - → Stable—vertical motion suppressed—vertical dispersion discouraged
 - → Unstable—vertical motion encouraged—vertical dispersion enhanced

Inversion Types

- Radiation Inversion
- Advection Inversion
- Regional Subsidence Inversion
- Large-scale Subsidence Inversion
 34

Seasonal Meteorology

• Winter

- → Low morning mixing height \rightarrow high [CO] early in morning
- \rightarrow Occasional storm helps clear the air
- Summer
 - → Inversions very strong (LSSI + MI)
 - \rightarrow Warm, sunny afternoons \rightarrow high [O₃]

