
http://www.cambridge.org/9780521817332

P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB752-FM CB752-B’Far-v3 May 4, 2005 21:14

ii

This page intentionally left blank

P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB752-FM CB752-B’Far-v3 May 4, 2005 21:14

MOBILE COMPUTING PRINCIPLES

Written to address technical concerns that mobile developers face regardless of
the platform (J2ME, WAP, Windows CE, etc.), this book explores the differences
between mobile and stationary applications and the architectural and software
development concepts needed to build a mobile application. Using UML as a tool,
Reza B’Far guides the developer through the development process, showing how
to document the design and implementation of the application. He focuses on
general concepts while using platforms as examples or as possible tools.

After introducing UML, XML, and the derivative tools necessary for developing
mobile software applications, B’Far shows how to build user interfaces for mobile
applications. He covers location sensitivity, wireless connectivity, mobile agents,
data synchronization, security, and push-based technologies and finally discusses
the practical issues of mobile application development including the development
cycle for mobile applications, testing mobile applications, and architectural con-
cerns. These are illustrated with a case study.

Reza B’Far (Behravanfar) is an executive consultant currently serving as the CTO of
Voice Genesis and Acting CTO of Semantic Messaging Systems Inc. His company,
Cienecs Inc., has had a variety of engagements in the mobile arena with startups as
well as Fortune 500 companies. Early in his career, he worked for Weyerhaueser
Company, Parr & Associates Inc., and the National Oceanic Research Department
of NASA. He has spent the past ten years working for Noor Electrical Engineering,
Virtual Mortgage Network, AdForce Inc., eBuilt Inc., and Data Trace Corporation.
He is currently an independent contractor working with a variety of companies as
an architect and/or CTO, including some in the mobile arena.

i

P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB752-FM CB752-B’Far-v3 May 4, 2005 21:14

ii

P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB752-FM CB752-B’Far-v3 May 4, 2005 21:14

MOBILE COMPUTING

PRINCIPLES

DESIGNING AND DEVELOPING
MOBILE APPLICATIONS WITH

UML AND XML

REZA B’FAR
Cienecs Inc.

Foreword by ROY T. FIELDING

iii

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

First published in print format

ISBN-13 978-0-521-81733-2

ISBN-13 978-0-511-26576-1

© Reza B’Far 2005

2004

Information on this title: www.cambridge.org/9780521817332

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

ISBN-10 0-511-26576-X

ISBN-10 0-521-81733-1

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (NetLibrary)

eBook (NetLibrary)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521817332

P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB752-FM CB752-B’Far-v3 May 4, 2005 21:14

Contents

Foreword by Roy T. Fielding page xi

Acknowledgments xv

SECTION 1
INTRODUCTIONS TO THE MAIN TOPICS

Chapter 1
Introduction to Mobile Computing 3

1.1 Introduction 3
1.2 Added Dimensions of Mobile Computing 8
1.3 Condition of the Mobile User 22
1.4 Architecture of Mobile Software Applications 25
1.5 Our Road Map 26

Chapter 2
Introduction to Mobile Development Frameworks and Tools 29

2.1 Introduction 29
2.2 Fully Centralized Frameworks and Tools 31
2.3 N-Tier Client–Server Frameworks and Tools 32
2.4 Java 37
2.5 BREW 55
2.6 Windows CE 64
2.7 WAP 72
2.8 Symbian EPOC 80
2.9 Publishing Frameworks 81

2.10 Other Tools 99
2.11 So What Now?: What Do We Do with These Tools? 102

v

P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB752-FM CB752-B’Far-v3 May 4, 2005 21:14

vi Contents

Chapter 3
XML: The Document and Metadata Format for Mobile Computing 104

3.1 Introduction 104
3.2 XML Web Services 111
3.3 Key XML Technologies for Mobile Computing 118
3.4 XML and UML 144
3.5 Putting XML to Work 153

Chapter 4
Introduction to UML 155

by David Brady

4.1 Introduction 155
4.2 The User View 163
4.3 The Structural View 171
4.4 The Behavioral View 184
4.5 Implementation View: Component Diagrams 222
4.6 Summary 228

SECTION 2
DEVICE-INDEPENDENT AND MULTICHANNEL USER
INTERFACE DEVELOPMENT USING UML

Chapter 5
Generic User Interface Development 231

5.1 Introduction 231
5.2 User Interface Development 232
5.3 Building Generic User Interfaces 241
5.4 Using UML for Modeling Generic User Interface

Components 283
5.5 XForms 286
5.6 Putting It All to Work 314

Chapter 6
Developing Mobile GUIs 316

6.1 Introduction 316
6.2 A Deeper Look at WAP, J2ME, BREW, and Microsoft

Platforms for Mobile GUIs 340
6.3 Summary 397

P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB752-FM CB752-B’Far-v3 May 4, 2005 21:14

Contents vii

Chapter 7
VUIs and Mobile Applications 399

7.1 Introduction 399
7.2 Qualities of Speech 401
7.3 Voice Transcription 405
7.4 Voice Recognition 407
7.5 Text-to-Speech Technologies: Converting Written Language

to Spoken Language 484
7.6 Summary 496

Chapter 8
Multichannel and Multimodal User Interfaces 497

8.1 Introduction 497
8.2 Modeling Multichannel and Multimodal Applications

with UML 506
8.3 Multimodal Content 513
8.4 Software and System Architectures for Delivering

Multimodality 544
8.5 Internationalization and Localization 552
8.6 The Evolving Definition of Multimodality 553

SECTION 3
ADDITIONAL DIMENSIONS OF MOBILE APPLICATION
DEVELOPMENT

Chapter 9
Mobile Agents and Peer-to-Peer Architectures for Mobile
Applications 557

9.1 Introduction 557
9.2 Mobile Agents for Mobile Computing 564
9.3 UML Extensions for Mobile Agents 574
9.4 Applications of Mobile Agents to Mobile Applications and

Implementation Tools 587
9.5 Solving Mobile Application Development Problems with

Mobile Agents 603
9.6 Techniques for Agent-Based Software 609
9.7 Peer-to-Peer Applications for Mobile Computing 611
9.8 What Lies Ahead 614

P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB752-FM CB752-B’Far-v3 May 4, 2005 21:14

viii Contents

Chapter 10
Wireless Connectivity and Mobile Applications 615

10.1 Introduction 615
10.2 Quality of Service 620
10.3 Survey of Wireless Networking Technologies 624
10.4 Mobile IP 646
10.5 SMS 649
10.6 What Now? 651

Chapter 11
Synchronization and Replication of Mobile Data 652

11.1 Introduction 652
11.2 Taxonomy of Replication and Synchronization 654
11.3 Data Replication and Synchronization for

Mobile Applications 657
11.4 SyncML 662
11.5 WebDAV 672
11.6 Mobile Agents, Replication, and Synchronization 673
11.7 Using UML to Represent Data Replication and

Synchronization Schemes 674

Chapter 12
Mobility and Location-Based Services 676

12.1 Introduction 676
12.2 Data Acquisition of Location Information 677
12.3 GIS 684
12.4 Location Information Modeling 687
12.5 Location-Based Services Applied 698
12.6 Utilizing Location-Based Services with

Mobile Applications 702
12.7 Representing Location with UML 711
12.8 Security and Privacy of Location Information 719
12.9 Localization and Internationalization 720
12.10 Latest Developments in Location-Based Efforts 721

Chapter 13
Active Transactions 723

13.1 Introduction 723
13.2 Active Computing and Wireless Infrastructure 725
13.3 Practical Considerations of Building Active Systems 733

P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB752-FM CB752-B’Far-v3 May 4, 2005 21:14

Contents ix

Chapter 14
Mobile Security 735

14.1 Introduction 735
14.2 Security in Wireless Networks 742
14.3 Security and Ad Hoc Networking Technologies 747
14.4 Location Information, Security, and Privacy 748
14.5 Security: The Unsolved Problem for Mobile Agents 748
14.6 Distinguishing Privacy and Security 749
14.7 Modeling Security with UML 751

SECTION 4
PUTTING THE PROJECT TOGETHER

Chapter 15
The Mobile Development Process 755

15.1 Introduction 755
15.2 Back to the Dimensions of Mobility 755
15.3 Applying the Wisdom Methodology to Mobile

Development 756
15.4 UML-Based Development Cycle for Mobile

Applications 757
15.5 Summary 772

Chapter 16
Architecture, Design, and Technology Selection for Mobile
Applications 773

16.1 Introduction 773
16.2 Practical Concerns with Architectures 785
16.3 Architectural Patterns for Mobile Applications 786
16.4 Summary 787

Chapter 17
Mobile Application Development Hurdles 788

17.1 Introduction 788
17.2 Voice User Interface Hurdles 788
17.3 Hurdles with Multimodal Applications 789
17.4 Problems with Building Location-Based Applications 790
17.5 Power Use 790
17.6 Summary 790

P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB752-FM CB752-B’Far-v3 May 4, 2005 21:14

x Contents

Chapter 18
Testing Mobile Applications 792

18.1 Introduction 792
18.2 Validating the Mobile Use Cases before Development 801
18.3 The Effect of the Dimensions of Mobility on Software Testing 801
18.4 Stress Testing and Scalability Issues 804
18.5 Testing Location-Based Functionality 805

Chapter 19
A Case Study 806

19.1 Introduction 806
19.2 Requirements Driving the Architecture 806
19.3 The Detailed Design 812
19.4 The Implementation 815
19.5 Summary 818

References 819

Index 835

P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB752-FM CB752-B’Far-v3 May 4, 2005 21:14

Foreword

Back and forth, back and forth . . .

Four years ago, Reza and I were working together at eBuilt when he first stopped
by my office to talk about frameworks for wireless application development. We
were in the final months of the so-called “dot-com era,” when dreams of a new
economy allowed just about anyone to get funding for a network-based applica-
tion, particularly when it also involved some form of mobile computing device.
Those people with ideas (and sometimes funding) would come to our company
and ask us to implement their vision. Of course, they would also ask for a few
miracles, such as a working prototype within a month and deployment across all
devices in six months. Oddly enough, we could actually accomplish implementa-
tions like that, if it were not for one problem out of our control: mobile devices
had a market lifetime of only about four months.

It was the year 2000, just a couple months after Y2K became a non-issue, and
there was so much variance in the types of mobile devices, both in terms of their
feature sets and in their application development environments, that an application
developed for one device environment would be obsolete by the time it was ready
to market. Reza had a solution in mind, which is why he was busy pacing in my
office. Back and forth, back and forth, all the while explaining to me why eBuilt
needed a device-independent application development environment and how we
might sell such an environment to other software organizations.

This was prior to the eventual unification of platforms around base operating
systems, such as PalmOS, Symbian, and J2ME, and about the same time that device
manufacturers realized the impact of design turnover on device sales: innovation
had become so frenzied that most of the application developers simply could not
keep up. Unfortunately, eBuilt did not have the resources and necessary alliances
with device manufacturers to pursue Reza’s vision, aside from one project at a time,
but he never gave up on the general idea. That is demonstrated by the enormous
amount of information and effort he has put into this book.

xi

P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB752-FM CB752-B’Far-v3 May 4, 2005 21:14

xii Foreword

The funny thing about “mobile computing” is that mobility is the easy part.
What is actually of interest to the consumer, and hence to those who need to sell
to the consumer, is computing despite mobility. There is a small segment of the
population who will buy a new device purely for the sake of its coolness, but
mass appeal does not come until there exists an application that is sufficiently
compelling to justify purchasing (and carrying around) a new device.

Like most people whose work involves a lot of travel, I think most about mobile
computing when I suffer from the lack of it. While I am writing this, my wife
and I are on our first real vacation together: a late honeymoon trip to Italy. Our
first day of travel involved 27 hours of planes, trains, and automobiles, in which
the limitations of current mobile computing have been readily apparent. We are
so close to a world in which all of the information needed is available, when
and where we need it, and yet I knowingly embarked on this trip without my
cellphone (CDMA doesn’t work in Europe), laptop (too heavy, expensive, and
tempting of work), or even a PDA. In fact, the only technology we have with us
are two wristwatches and a new digital camera.

I used the Web to purchase all of our tickets and accommodations in advance,
something that was unthinkable just ten years ago. However, even a well-planned
trip is susceptible to change. What is traffic like to the airport? Should we go up
the coast or take the freeway? Is our flight on time? What terminal? Do we have
time to park in the remote lot? Those are just the basic questions that fill my mind
while readying the car. The more complex question is this: can we get better seats
on the flight? I wouldn’t even have considered such a question a few years ago, but
today it is possible to store my itinerary on the airline’s Web site, access it from
any Web browser, and make use of a visual diagram for discovering what seats are
available on each leg of the flight. That is great design, even though it assumes a
broadband connection to the Internet and a full-color 1024 × 768 display.

I know there are mobile devices on the market that can answer my questions
(i.e., perform my application), if only they had the software to do so. I can buy
a five-ounce PDA with built-in 802.11b and bluetooth wireless connectivity, a
bluetooth GPS device to provide geographical positioning, card-slot memory for
gigabytes of data, and a color TFT display that is just as clear as a laptop LCD
screen (if not more so). In addition to the airline’s Web site, there are real-time
traffic maps available on the Internet for the freeways in Southern California.

All I really need is an application that monitors my itinerary, collects data from
the appropriate sources whenever it can do so, and notifies me when conditions
change (or at least makes the information continuously available so that I can read
it at the push of a button).

Unfortunately, the mobility of software is considerably behind that of hard-
ware devices. An 802.11b interface can automatically detect and switch from one
hotspot to another, but the device software will invariably ask the user if they
wish to do so each time—it seems that folks haven’t considered the option of
pre-approving a set of wireless carriers for automatic switch-over. Likewise, ap-
plications that expect a network interface to exist tend to drop like flies in the
presence of intermittent connectivity, and geographic applications don’t under-
stand the concept of a device that is only occasionally within range of a GPS. I

P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB752-FM CB752-B’Far-v3 May 4, 2005 21:14

Foreword xiii

can’t really blame this state of affairs on the device manufacturers—after all, they
are building devices that are intended to be generic and thus usable for many
different applications.

My travel assistant application isn’t a particularly novel vision of mobile com-
puting. Whether it be called ubiquitous computing or mobility-aware applications,
the desire for continuous information support has been imagined, if not expressed,
by countless technologists as they rush to meet their next travel connection for
some far-away conference at which techno-visionaries are sure to speak about
their latest advances in shrinking hardware into lighter but less useful forms. The
hardware, networking, and network-accessible information is already available to
support a mobile travel assistant, and yet I felt no compelling need to buy a new
device this past year. That is, other than our new digital camera.

DIGITAL CAMERA?

I already had one digital camera, but my wife wanted something a little smaller.
Something inconspicuous, fitting within her purse. In other words, something a
little more mobile. What we bought has a four-megapixel CCD, internal clock,
high-density TFT display, AV-output port (supporting both NTSC and PAL for-
mats), USB interface, and a CPU with sufficient computing power to obtain, com-
press, and store a four-MB image in less than a second (or a small-format movie
at 24 frames per second). It weighs five ounces, uses a standard flash card for
storage (a 256-MB card at the moment), and costs roughly the same as the PDA
described above. Sales of digital cameras are pretty hot right now, judging from the
digital print services that have cropped up all over the place. Why? Because they
are selling an application (personal photography) on a device that provides all of
the traditional affordances (user interface controls) of a film-based camera. It just
happens to also be a device capable of mobile computing. In fact, the only reason
I do not classify our camera as a mobile computing device is that its firmware has
no built-in support for communicating directly on a network, even though its USB
interface is more than capable of doing so.

Would it make sense to add networking capabilities to the camera? It would be
nice to upload pictures directly to our personal Web site. There are, after all, many
other noncamera features within the firmware, such as running a slideshow via
the AV interface and the ability to postprocess images for special effects. Camera
firmware, though, is just as proprietary as the mobile devices of 2000. Eventually,
to keep up with requests for new functionality, camera manufacturers will have
to move to more modular designs based on common platforms. I can only hope
that, in doing so, they do not succumb to the same mistakes as the cellphone and
PDA manufacturers: adding low-tech camera lenses as a feature suitable only for
toy use.

A truly modular device would consist of a self-contained camera with almost all
of the features of our new camera, a self-contained PDA with almost all the features
one would expect to find in a PDA, a self-contained GPS unit that tells everything
in range where they are, and a self-contained wireless communication device that

P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB752-FM CB752-B’Far-v3 May 4, 2005 21:14

xiv Foreword

services the other devices in much the same way that consumer firewall/gateway
devices service computers on a home network. That is, essentially, the way that
bluetooth is intended to work. Communication alone, however, is not sufficient:
we need platforms that are capable of recognizing such interfaces (even when
they are inactive) and flexible enough to select the one that is best used for image
capture, the one that is best used for display, the one that can be used for Web-based
retrieval, and the several that are available for “storage.” A common platform allows
application development to mature despite the rapid pace of device evolution,
which allows software developers to build interesting applications before their
platforms become obsolete, which in turn gives consumers a reason to buy devices
that do something useful for them (computing despite their mobility), driving
further demand for that platform of devices.

Therefore, while reading this book, I hope that you keep in mind that the above
describes not a single technology development, but rather the development of a
system that is intended, if successful, to become a self-sustaining feedback loop.
Just as the Web has become the preferred platform for successful Internet services,
one of the platforms that Reza describes herein will become the basis for future
mobile applications. It will be up to you to determine which one, because it is the
application developers that drive consumer demand.

Roy T. Fielding
Somewhere between Laguna Beach,

California, and Venice, Italy
January 2004

P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB752-FM CB752-B’Far-v3 May 4, 2005 21:14

Acknowledgments

There are so many people who I need to thank. And since this may be my one
and only opportunity to thank them in a semipublic forum, then I must take the
opportunity to do so. I thank Robert Gottesman for his support throughout my
professional endeavors and David Armstrong, Dr. Roy Fielding, and Phillip Lindsay
for their mentorship. Many thanks are owed to my loyal clients (Charity Funding
Services and Barney Mckinley, Voice Genesis, eBuilt Inc., and a few others) that
helped me put food on the table while I was authoring this text. Also, thanks are
owed to Dr. Dennis H. Parr for having given me an opportunity when few would
and to Abe and Najmeh Khadem who helped me with a monumental problem and
showed me the road to Southern California, the best place on earth. Many thanks
go to Brenda and Roger Eeds, who have become my lifelong friends with their
advice and support, and to Nima Oreizy, Jos Bergmans, Mark Scheele, and Mark
Mariott, who have become closer friends during the time of authoring this text.

I thank Susan Boettger, who has recently become my wife, for her encourage-
ment in life and her family, Laura, Jane, and John Boettger, for their friendship. I
am certain that her achievements musically as a classical composer and a pianist
will dwarf mine as an engineer.

I dedicate this book to my wife; to my mother Shahrnaz Karimzadeh, who
fostered a notion of excellence and sent me to the greatest country—the United
States of America—that I call home; to my uncle and aunt Amir and Shauna
Karimzadeh, who stuck with me all the way; to Bill, Deena, Scott, and Cindy
Bernhardt, who made their home my home as I grew from a teenager to an adult;
to Durrelle Singleton, who I know always has my back covered; to my brothers
Abdollah and Atta, whom I miss; and to my little cousins Nikoo and Natasha, who
embody innocence and purity to me.

Finally, I want to thank Jim Turner of SIGS, Lothlorien Homet, formerly of
Cambridge University Press, and Lauren Cowles and Katherine Hew, currently of
Cambridge University Press, who all had something to do with my deciding to
write this book and helping me to carry it out. And I thank Albrecht Muller whose
input has been invaluable during the reviews.

xv

P1: JPJ/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

CB752-FM CB752-B’Far-v3 May 4, 2005 21:14

xvi Acknowledgments

To no-look passes by Magic, hook shots by Kareem, dunks by Dr. J, and finger-
roles by the Ice Man. To Steve Urkel’s laugh, Getting’ Jiggy with It, Revenge of the
Nerds, Trekkers, and comebacks by number 7 in Mile High, which inspire me
never to give up. To Terri Tower and Elizabeth Elam: Whoop, there it is, I did it my
way! To Beethoven, Gorecki, Arvo Part, Lauridson, Red Hot Chili Peppers, Sting,
Durufle, Delerium, and Dire Straits for keeping me company late at nights and to
the following: It’s all about old school, it’ll never be as good as it was, and the older
I get the better I was. I only wish I could invent phrases like Dicky V., to whom I
say “here is a diaper dandy writer for you baby” and John Madden, to whom I say
“I stuck to it for two and a half years!” I wish anyways. To slow-mo, Flo-Jo, go Bo,
go. To Andre, who looks a ton better bald than with hair, and to Freddy Mercury,
who used to be Farookh Mohammad and taught me all about name changes.

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331pt1 CB752-B’Far-v3 April 29, 2005 12:24

SECTION 1

Introductions to the
Main Topics

1

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331pt1 CB752-B’Far-v3 April 29, 2005 12:24

2

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

CHAPTER 1

Introduction to Mobile
Computing

Where is the life we have lost in living? Where is the knowledge we have lost in
information? Where is the wisdom we have lost in knowledge?

T. S. Elliot

1.1 INTRODUCTION

Mobile computing systems are computing systems that may be easily moved physi-
cally and whose computing capabilities may be used while they are being moved.
Examples are laptops, personal digital assistants (PDAs), and mobile phones. By
distinguishing mobile computing systems from other computing systems we can
identify the distinctions in the tasks that they are designed to perform, the way
that they are designed, and the way in which they are operated. There are many
things that a mobile computing system can do that a stationary computing system
cannot do; these added functionalities are the reason for separately characterizing
mobile computing systems.

Among the distinguishing aspects of mobile computing systems are their preva-
lent wireless network connectivity, their small size, the mobile nature of their use,
their power sources, and their functionalities that are particularly suited to the mo-
bile user. Because of these features, mobile computing applications are inherently
different than applications written for use on stationary computing systems. And,
this brings me to the central motivation behind authoring this book.

The application development and software engineering disciplines are very
young engineering disciplines compared to those such as structural, mechanical,
and electrical engineering. Software design and implementation, for the most part,

3

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

4 INTRODUCTION TO MOBILE COMPUTING

Abacus Ele
ct

ric
ity

Fi
rs

t C
om

pu
te

rs
Net

wor
kin

g
Sat

el
lite

s
Cel

lu
la

r T
ec

hn
ol

og
ie

s

500 B.C. 1800's Mid
1900's

1960–
1970

1970–
1980

1980–
2000

FIGURE 1.1. A Timeline of Mobile Computing.

remain part art and part science. However, there are definite signs of maturation
with the development of architectures, metrics, proven tools, and other method-
ologies that give an engineering discipline its structure. Whereas there are a variety
of methodologies, techniques, frameworks, and tools that are used in developing
software for stationary systems, there are very few for mobile systems. Although
mobile computing systems have existed as long as their stationary counterparts,
most of the mature tools, methodologies, and architectures in software engineering
today address the needs of stationary systems. One of our goals in this book will
be to reflect on the research being done today to help evolve mobile application
development and to outline some of the early proven techniques and technologies
being tried in the commercial and academic environments.

In this text, we will look at those things that make the functional nature of
mobile applications different than their stationary counterparts, take a survey of
various development techniques that can be used to address these differences, and
look at various basic technologies that allow us, as software developers, to create
meaningful mobile applications in an extensible, flexible, and scalable manner.

1.1.1 A Brief History of Mobile Computing
Figure 1.1 shows a timeline of mobile computing development. One of the very
first computing machines, the abacus, which was used as far back as 500 B.C.,
was, in effect, a mobile computing system because of its small size and portability.
As technology progressed, the abacus evolved into the modern calculator. Most
calculators today are made with an entire slew of mathematical functions while
retaining their small size and portability. The abacus and calculators became im-
portant parts of technology not only because of their ability to compute but also
because of their ease of use and portability. You can calculate the proceeds of a
financial transaction anywhere as long as you had an abacus in 500 B.C. or have a
calculator today. But, calculating numbers is only one part of computing.

Other aspects of computing, namely storage and interchange of information, do
not date as far back as the abacus. Though writing has always been a way of storing
information, we can hardly call a notebook a computing storage mechanism. The
first mobile storage systems can be traced back only as far as the advent of the age
of electronics.

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.1 Introduction 5

FIGURE 1.2. Wireless Communication Systems.

A mobile computing system, as with any other type of computing system, can be
connected to a network. Connectivity to the network, however, is not a prerequisite
for being a mobile computing system. Dating from the late 1960s, networking
allowed computers to talk to each other. Networking two or more computers
together requires some medium that allows the signals to be exchanged among
them. This was typically achieved through wired networks. Although wired net-
works remain the predominant method of connecting computers together, they
are somewhat cumbersome for connecting mobile computing devices. Not only
would network ports with always-available network connectivity have to be per-
vasive in a variety of physical locations, it would also not be possible to be con-
nected to the network in real time if the device were moving. Therefore, providing
connectivity through a wired system is virtually cost prohibitive. This is where
wireless communication systems come to the rescue (Figure 1.2).

By the 1960s, the military had been using various forms of wireless communi-
cations for years. Not only were wireless technologies used in a variety of voice
communication systems, but the aviation and the space program had created great
advances in wireless communication as well. First, the military developed wire-
less communication through line of sight: If there were no obstacles between
point A and point B, you could send and receive electromagnetic waves. Then

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

6 INTRODUCTION TO MOBILE COMPUTING

came techniques that allowed for wireless communication to encompass larger
areas, such as using the atmosphere as a reflective mechanism. But, there were
limitations on how far a signal could reach and there were many problems with
reliability and quality of transmission and reception.

By the 1970s, communication satellites began to be commercialized. With the
new communication satellites, the quality of service and reliability improved enor-
mously. Still, satellites are expensive to build, launch, and maintain. So the avail-
able bandwidth provided by a series of satellites was limited. In the 1980s cellular
telephony technologies became commercially viable and the 1990s were witness
to advances in cellular technologies that made wireless data communication fi-
nancially feasible in a pervasive way.

Today, there are a plethora of wireless technologies that allow reliable communi-
cation at relatively high bandwidths. Of course, bandwidth, reliability, and all other
qualitative and quantitative aspects of measuring wireless technologies are relative
to time and people’s expectations (as seems to be with everything else in life!).
Though most wireless networks today can transmit data at orders of magnitude
faster speeds than just ten years ago, they are sure to seem archaically slow soon. It
should, however, be noted that wired communication systems will almost certainly
always offer us better reliability and higher data transmission bandwidths as long
as electromagnetic communications is the primary means of data communica-
tions. The higher frequency sections of the electromagnetic spectrum are difficult
to use for wireless communications because of natural noise, difficulty of direct-
ing the signal (and therefore high losses), and many other physical limitations.
Since, by Nyquist’s principle [Lathi 1989], the bandwidth made available by any
communication system is bound by the frequencies used in carrying the signal,
we can see that lack of availability of higher frequency ranges places a limitation
on wireless communication systems that wired communication systems (such as
fiber optic–based systems) do not have to contend with.

Because the greatest advances in mobile communications originated in the mil-
itary, it is no surprise that one of the first applications of wireless communication
for mobile computing systems was in displaying terrain maps of the battlefield.
From this, the global positioning system (GPS) evolved so that soldiers could
know their locations at any given time. Portable military computers were provided
to provide calculations, graphics, and other data in the field of battle. In recent
years, wireless telephony has become the major provider of a revenue stream that
is being invested into improving the infrastructure to support higher bandwidth
data communications.

1.1.2 Is Wireless Mobile or Is Mobile Wireless?
In wireless connectivity, mobile computing devices found a great way to connect
with other devices on the network. In fact, this has been a great source of confusion
between wireless communications and mobile computing. Mobile computing devices
need not be wireless. Laptop computers, calculators, electronic watches, and many
other devices are all mobile computing devices. None of them use any sort of
wireless communication means to connect to a network. Even some hand-held
personal assistants can only be synchronized with personal computers through

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.1 Introduction 7

a docking port and do not have any means of wireless connectivity. So, before
we embark on our journey in learning about mobile computing, it should be
clear that wireless communication systems are a type of communication system. What
distinguishes a wireless communication system from others is that the communication
channel is space itself. There are a variety of physical waveguide channels such as
fiber optics or metallic wires. Wireless communication systems do not use a wave-
guide to guide along the electromagnetic signal from the sender to the receiver.
They rely on the mere fact that electromagnetic waves can travel through space if
there are no obstacles that block them. Wireless communication systems are often
used in mobile computing systems to facilitate network connectivity, but they are
not mobile computing systems.

Recently, computer networks have evolved by leaps and bounds. These net-
works have begun to fundamentally change the way we live. Today, it is difficult
to imagine computing without network connectivity. Networking and distributed
computing are two of the largest segments that are the focus of current efforts in
computing. Networks and computing devices are becoming increasingly blended
together. Most mobile computing systems today, through wired or wireless con-
nections, can connect to the network. Because of the nature of mobile computing
systems, network connectivity of mobile systems is increasingly through wire-
less communication systems rather than wired ones. And this is quickly becoming
somewhat of a nonmandatory distinguishing element between mobile and station-
ary systems. Though it is not a requirement for a mobile system to be wireless, most
mobile systems are wireless. Nevertheless, let us emphasize that wireless connec-
tivity and mobility are orthogonal in nature though they may be complementary.
For example, we can have a PDA that has no wireless network connectivity; how-
ever, most PDAs are evolving into having some sort of wireless connectivity to the
network.

Also, though it is important to understand that stationary and mobile computing
systems are inherently different, this does not mean that they do not have any
commonalities. We will build on existing software technologies and techniques
used for stationary systems where these commonalities exist or where there is a
logical extension of a stationary technique or technology that will mobilize it.

Because of the constant comparison between mobile systems and other types
of systems, we will have to have a way to refer to the “other” types of systems. We
will use the terms nonmobile and stationary interchangeably. Although mobile is
an industry-wide accepted terminology to distinguish a group of systems with the
characteristics that we have just mentioned, there is no consensus on a system that
is not a mobile system. For this reason, we will simply use the terms stationary or
nonmobile when speaking of such systems. It is also important to note the there is
probably no system that is truly not mobile because just about any system may be
moved. We will assume that cranes, trucks, or other large vehicles are not required
for moving our mobile systems! A mobile system should be movable very easily
by just one person.

There are four pieces to the mobile problem: the mobile user, the mobile de-
vice, the mobile application, and the mobile network. We will distinguish the
mobile user from the stationary user by what we will call the mobile condition:

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

8 INTRODUCTION TO MOBILE COMPUTING

the set of properties that distinguishes the mobile user from the user of a typical, sta-
tionary computing system. We will wrap the differences between typical devices,
applications, and networks with mobile devices, applications, and networks
into a set of properties that we will call the dimensions of mobility: the set of prop-
erties that distinguishes the mobile computing system from the stationary computing
system. Once we have some understanding of the mobile problem, we will look
at some established nonproprietary methodologies and tools of the software in-
dustry trade such as Unified Modeling Language (UML) as well as some commer-
cial proprietary tools such as Sun Microsystem’s Java, Microsoft’s Windows CE,
Symbian, and Qualcomm’s BREW. Once we have looked at these tools, we will set
out to solve the problem of architecting, designing, and implementing solutions
for mobile computing problems.

Let us start by looking at some of those variables that create a distinction between
mobile and stationary computing systems.

1.2 ADDED DIMENSIONS OF MOBILE COMPUTING

It should be obvious that any mobile computing system can also be stationary! If
we stop moving it, it is stationary. So, we can say that mobile computing systems
are a superset of stationary computing systems. Therefore, we need to look at those
elements that are outside of the stationary computing subset. These added dimen-
sions will help us pick out variables that in turn allow us to divide and conquer
the problems of mobile computing. The dimensions of mobility, as we will refer to
them in this text, will be the tools that allow us to qualify our problem of build-
ing mobile software applications and mobile computing systems. Although these
dimensions of mobility are not completely orthogonal with respect to each other,
they are separate enough in nature that we can distinguish them and approximate
them as orthogonal variables. Also, keep in mind that some of these dimensions
are limitations; nevertheless, they are still added dimensions that need not be con-
sidered when dealing with the typical stationary application. These dimensions of
mobility (Figure 1.3) are as follows:

1. location awareness,
2. network connectivity quality of service (QOS),
3. limited device capabilities (particularly storage and CPU),
4. limited power supply,
5. support for a wide variety of user interfaces,
6. platform proliferation, and
7. active transactions.

It is absolutely crucial that the reader understands these dimensions of mobility
and keeps them in mind throughout the process of design and implementation of
the mobile application. Too often, engineers begin with attention to design and get
bogged down in details of the tools that they use and small focused problems within
the bigger picture of the system, its design, and its architecture. The definition of
the word “mobile” reveals the first dimension we will consider: location.

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.2 Added Dimensions of Mobile Computing 9

Multimodal and
Variant Uls

Large Variety of
Platforms

Active
Behavior

Limited
Device

Capabilities

Wireless
Connectivity

Location
Awareness

Limited
Power Supply

FIGURE 1.3. Dimensions of Mobility.

1.2.1 Location
A mobile device is not always at the same place: Its location is constantly changing.
The changing location of the mobile device and the mobile application presents the
designers of the device and software applications with great difficulties. However,
it also presents us with an opportunity of using the location and the change in
location to enhance the application. These challenges and opportunities can be
divided into two general categories: localization and location sensitivity.

Localization is the mere ability of the architecture of the mobile application to
accommodate logic that allows the selection of different business logic, level of
work flow, and interfaces based on a given set of location information commonly
referred to as locales. Localization is not exclusive to mobile applications but
takes a much more prominent role in mobile applications. Localization is often
required in stationary applications where users at different geographical locations
access a centralized system. For example, some point-of-sale (POS) systems and
e-commerce Web sites are able to take into account the different taxation rules
depending on the locale of the sale and the location of the purchase. Whereas
localization is something that stationary applications can have, location sensitivity
is something fairly exclusive to mobile applications.

Location sensitivity is the ability of the device and the software application to
first obtain location information while being used and then to take advantage of
this location information in offering features and functionality. Location sensitivity
may include more than just the absolute location of the device (if there is such
a thing as absolute location—Einstein must be rolling in his grave now!). It may
also include the location of the device relative to some starting point or a fixed
point, some history of past locations, and a variety of calculated values that may
be found from the location and the time such as speed and acceleration.

There are a variety of methods for collecting and using the location of the user
and the device. The user may simply be prompted for his or her location, but this
wouldn’t make a very user-friendly application. Imagine a system that can only
give you directions to where you want to go if you know where you are: It will be
useful often, but occasionally, you won’t know where you are or it would be too
difficult to figure out your location. The device may be reset for a relative location
if it has the ability to sense motion and can keep track of the change of location

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

10 INTRODUCTION TO MOBILE COMPUTING

Satellite 1

Satellite 3

Satellite 2

Q1

Q3

Q2

B

a1
b1

a3
b3

a2
b2

FIGURE 1.4. Determining Position Based on Triangulation.

for some period of time after this reset. Most location-sensing technologies (the
particulars of which will be discussed in Chapter 12) use one or more of three
categories of techniques: triangulation, proximity, and scene analysis [Hightower
and Borriello 2001].

Triangulation (Figure 1.4) relies on age-old geometric methods that allow cal-
culation of the location of a point that lies in the middle of three other points
whose exact locations are known. If the distance to each one of the three points
is known, we can use geometric techniques to calculate the exact location of the
unknown point. Proximity-based methods measure the relative position of the un-
known point to some known point. Scene analysis relies on image processing and
topographical techniques to calculate the location of the unknown point based on
a view of the unknown point from a known point.

The most well known location sensing system today is GPS. GPS-enabled de-
vices can obtain latitude and longitude with accuracy of about 1–5 m. GPS has its
roots in the military; until recently, the military placed restrictions on the accuracy
of GPS available for public use. Most of these restrictions have now been lifted.
GPS devices use triangulation techniques by triangulating data points from the
satellite constellation that covers the entire surface of the earth. If a device does
not have GPS capabilities but uses a cellular network for wireless connectivity,

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.2 Added Dimensions of Mobile Computing 11

signal strength and triangulation or other methods can be used to come up with
some approximate location information, depending on the cellular network.

Regardless of how location information is obtained, it is one of the major dif-
ferences between mobile and stationary systems. Location information can be to
mobile applications what depth can be to two-dimensional pictures; it can give us
an entirely new tool to automate tasks. An example of a stand-alone mobile soft-
ware application that uses location information could be one that keeps track of
the route that a user drives from home to work every day without the user entering
the route manually; this could then be used to tell the user which route is the fastest
way to get to work on a particular day or which route may result in the least amount
of gas consumed. An example of a wirelessly networked mobile application taking
advantage of location could be one that shows a field service worker where to go
next, once he or she is finished with a task at one site, based on the requests for
work in the queue and the location of the field service worker. It should be noted
that acquiring position information requires connectivity to some network-based
infrastructure. This infrastructure is typically isolated from the other network-
based application infrastructures. Therefore, when we say stand-alone, we mean
an application that may use some specific network-based infrastructure, such as
GPS, for obtaining location information but is not connected to any other networks
as a part of a distributed or network-based application.

Location information promises to be one of the biggest drivers of mobile appli-
cations as it allows for the introduction of new business models and fundamentally
new methods of adding productivity to business systems.

1.2.2 Quality of Service
Whether wired or wireless connectivity is used, mobility means loss of network
connectivity reliability. Moving from one physical location to another creates phys-
ical barriers that nearly guarantee some disconnected time from the network. If a
mobile application is used on a wired mobile system, the mobile system must be
disconnected between the times when it is connected to the wired docking ports
to be moved. Of course, it is always a question whether a docking port is available
when required let alone the quality and type of the available network connec-
tivity at that docking port. In the case of wireless network connectivity, physical
conditions can significantly affect the quality of service (QOS). For example, bad
weather, solar flares, and a variety of other climate-related conditions can nega-
tively affect the (QOS). This unreliability in network connectivity has given rise to
the QOS field and has led to a slew of accompanying products. QOS tools and
products are typically used to quantify and qualify the reliability, or unreliability,
of the connectivity to the network and are mostly used by network operators. Net-
work operators control the physical layer of the network and provide the facilities,
such as Internet Protocol (IP), for software application connectivity.

Usually, the QOS tools, run by the network operators, provide information such
as available bandwidth, risk of connectivity loss, and statistical measurements that
allow software applications to make smart computing decisions. The key to de-
signing and implementing mobile applications is that network connectivity and
QOS need to be taken into account with an expanded scope. Most software

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

12 INTRODUCTION TO MOBILE COMPUTING

applications, mobile or not, take advantage of networking in some way and, there-
fore, do have network connectivity features. Stationary applications typically need
not worry about the quality of network connectivity as this is handled by lower
level layers than the application: the operating system, the hardware (such as the
network card in a personal computer), the network itself, and all of the other com-
ponents that make network computing possible. Stationary software applications
typically assume some discrete modes of connectivity mostly limited to connected
or disconnected. This works for most applications because most wired network
connectivity is fairly reliable.

However, the effect of QOS in designing mobile applications is much more
profound. Whereas typical nonmobile applications need to know how to stop
operating “gracefully” when suddenly disconnected from the network, mobile
applications have to know how to continue to operate even after they are discon-
nected from the network or while they connect and disconnect from the network
intermittently and frequently. For example, let us take the case of a user who is
traveling on a train, is using an application on his PDA connected wirelessly to
some network, and is downloading a work-related report to look over when the
train passes through a tunnel and he loses network connectivity. If the application
does not have the ability to stop partway through the download process and restart
when connectivity is restored, the user may never be able to retrieve the desired
file as he passes through one tunnel after the other and the download process starts
over and over again. The application, therefore, must know how to deal with lack
of reliable connectivity.

When it comes to taking into account the QOS in most applications, certain
functionality is expected of most mobile applications. For example, almost all mo-
bile applications should know how to stop working when the application suddenly
disconnects from the network and then resume working when it connects again.
Other functionality may be desired but not required. For example, often QOS data
are measured and provided by the network operator. For example, the real-time
bandwidth available may be part of the data provided and refreshed on some time
interval. Such data can be utilized to design applications that dynamically adapt
their features and functionality to the available bandwidth.

1.2.3 Limited Device Storage and CPU
No one wants to carry around a large device, so most useful mobile devices are
small. This physical size limitation imposes boundaries on volatile storage, non-
volatile storage, and CPU on mobile devices. Though solid-state engineers are
working on putting more and more processing power and storage into smaller
and smaller physical volumes, nevertheless, as most mobile applications today are
very rudimentary, there will be more and more that we will want to do with them.
Today’s mobile applications are resource-starved. So, although the designers of
modern applications designed to run on personal computers (PCs) and servers
continue to care less and less about system resources such as memory and pro-
cessing power, it is a sure bet that memory limitations will be around for a long

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.2 Added Dimensions of Mobile Computing 13

time for mobile applications because when it comes to mobile systems and devices,
smaller is nearly always better.

Smaller devices are easier to carry and, consequently, may become more perva-
sive. This pervasiveness also largely depends on the price of the devices. Making
electronic devices very small normally increases the cost, as the research and
development that go into making devices smaller are very expensive. But, once
a technology matures and the manufacturing processes for making it becomes
mostly automated, prices begin to decline. At the point when the device is more
and more of a commodity, smaller also means less expensive. This is why a PDA is
much less expensive than a PC and yet it is much smaller. So, there is not a simple
proportional relationship between size of device and cost of device. Our general
rule stands that when it comes to mobile systems and devices, smaller is nearly always
better. The small size serves the mobile purpose of the device the best. And, we
all know that there are physical boundaries on the size of transistors on modern
microchips. This means that there is some ceiling for storage and processing power
of a device with a limited size bound by the heat produced by the transistors, the
number of transistors that can possibly fit into each component, and the many
other factors that the microprocessor industry has been studying since the birth
of microchips.

Limitations of storage and CPU of mobile devices put yet another constraint
on how we develop mobile applications. For example, a mobile calendaring appli-
cation may store some of its data on another node on the network (a PC, server,
etc.). The contacts stored on the device may be available at any time. However,
the contact information that exists only on the network is not available while the
device is disconnected from the network. But, because the amount of data that
can be stored on each type of device varies depending on the device type, it is not
possible to allocate this storage space statically. Also, some information may be
used more frequently than others; for example, the two weeks surrounding the
current time may be accessed more frequently in the calendar application or there
may be some contacts that are used more frequently. Mobile applications must be
designed to optimize the use of data storage and processing power of the device
in terms of the application use by the user.

In this example, the calendaring application may or may not be the only appli-
cation that uses the storage capacity of the device. So, the first step in designing
the application would be designing the appropriate functionality for discovery of
other applications on the device, the storage space that they use, and the total
storage space available, and then computing the amount of storage available to
the calendaring application. The operating system of some devices may offer the
available storage space, but this is not guaranteed. So, we need to design with the
least amount of assumptions about the hardware capabilities of the device or with
all those assumptions valid for all of the devices to be supported by the mobile
application.

Storage and processing issues are largely addressed by the various operating
systems and platforms on the mobile devices. Therefore, a large part of engineer-
ing mobile applications requires first a theoretical understanding of the various

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

14 INTRODUCTION TO MOBILE COMPUTING

types of platforms and operating systems available on mobile devices, then an
understanding of the available commercial implementations of the varieties of
types of operating systems and platforms and the type of applications best suited
for each platform–device combination. We will look at these issues closer in
Chapter 2.

This dimension of mobile application design, namely the effect of device limi-
tations, is perhaps the most well known of all dimensions in today’s mobile appli-
cation design. This was the first problem that software developers approached as
they tried to port frameworks, platforms, and methodologies of application devel-
opment of the 1980s and 1990s to mobile applications. It soon became obvious to
researchers and developers that existing paradigms and platforms did not suffice.
For now, many have simply adopted older methodologies and are building mobile
applications as pure embedded applications using assembly language native to the
device on which they want the application to run. However, we have already seen,
in the evolution of application development for PCs and servers, that develop-
ing native applications is cost prohibitive. This is the reason that most of today’s
complex applications are not written in assembly; rather, they are written in C,
C++, or a similar language and then compiled for the platform of need. Virtual
machines have given us yet another level of indirection to avoid authoring device-
and platform-specific code in languages such as Java, thereby, decreasing the cost
of application development even more.

The point is that there is typically some cost involved with layers of indirection
in software. Though these layers of abstraction and indirection can have many
benefits, we need to balance their use with the single fact that mobile devices are
limited in their CPU, memory, and other computing capabilities. And, this muddies
solutions to some design and implementation problems that would otherwise be
very clear.

1.2.4 Limited Power Supply
We have already seen that the size constraints of the devices limit their storage
capabilities and that their physical mobility affects network connectivity. For the
same set of reasons that wireless is the predominant method of network con-
nectivity for mobile devices, batteries are the primary power source for mobile
devices. Batteries are improving every day and it is tough to find environments
where suitable AC power is not available. Yet, often the user is constantly moving
and devices are consuming more and more power with processors that have more
and more transistors packed into them. For example, a user who walks in New
York City and lives in the suburbs may leave work, begin using his or her PDA,
get on the subway, and continue using it until returning home. When traveling in
Asia, Africa, and South America, users are certain to rely on their batteries more
frequently as reliable wired power sources are less pervasive than they are in North
America and Europe.

The desirability of using batteries instead of an AC power source combined with
the size constraints creates yet another constraint, namely a limited power supply.
This constraint must be balanced with the processing power, storage, and size
constraints; the battery is typically the largest single source of weight in the mobile

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.2 Added Dimensions of Mobile Computing 15

Buy
Airplane
Ticket

Home Airport

Check
Arrival
Time

FIGURE 1.5. An Application That Uses Both Voice and Text User Interfaces.

device [Welch 2000]. The power supply has a direct or an indirect effect on every-
thing in a mobile device. For example, the brighter the display, the more battery
power is used, so the user interface is indirectly coupled to the power supply.

Most power management functionality is built into the operating system of
the mobile device. Therefore, when it comes to device power management, the
design focus is more on making the right choice in selecting the proper platform
(device, operating system, etc.) and configuring the platform properly. In a typical
stationary application, this would suffice. But, in mobile applications, we need to
look everywhere we can to save power. Because the operating systems of mobile
devices are typically very lean and have as few functionalities as possible, many
times the application must carry some burden of awareness of the power supply.

Some platforms allow monitoring of the remaining power and other related
power information. Some platforms allow multiprocessing and multithreading,
which have an effect on the control over the variation of the CPU activity, which
in turn has an effect on the control over the power consumed by the device.
Overall, the design and implementation of the application itself is affected less
by this dimension of mobility than by any of the others mentioned in this book.
This is merely because operating systems and platforms are largely responsible
for handling the power consumption issues. However, we will discuss the effects
on choice of platform and other architectural and implementation effects that the
power supply has on mobile computing systems in a bit more detail in Chapters 15
and 16.

1.2.5 Varying User Interfaces
Stationary users use nonmobile applications while working on a PC or a similar
device. The keyboard, mouse, and monitor have proved to be fairly efficient user
interfaces for such applications. This is not at all true for mobile applications.
Examples of some alternative interfaces are voice user interfaces, smaller displays,
stylus and other pointing devices, touch-screen displays, and miniature keyboards.
Using a combination of interface types is not uncommon (see Figure 1.5).

For example, drivers who want to get some directions to their destination
may use a data-enabled cellular phone, navigate through a simple graphical user

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

16 INTRODUCTION TO MOBILE COMPUTING

interface (GUI) menu to a driving directions application, and then retrieve the de-
sired directions through a voice user interface by saying the address of the source
and destination and listening to the directions. Note that navigating to the applica-
tion may be done much more efficiently on a GUI: It may be as simple as pushing
two or three numbers that activate some choices on the screen. However, entering
text on the small display of a cellular phone and through the numeric keys of a
phone is very cumbersome. It is much easier to say the source and destination and,
subsequently, have a voice recognition system translate them, find the directions,
and read them to the user by using a text-to-speech system.

A mobile application, based on its device support, the type of users using it,
the conditions under which it is used, and many other factors discussed later in
this book offers a variety of user interfaces. Perhaps the biggest paradigm shift that
designers and implementers of mobile applications must undergo is to understand
the necessity of finding the best user interface(s) for the application, architecting
the system to accommodate the suitable user interface(s), implementing them, and
keeping in mind that a new user interface may be required at any time. Although
these user interface advances promise to be one of the main aspects of the next
computing revolution, they add much complexity and confusion to the application
design as the current application design and implementation methodologies only
take into account keyboards, monitors, pointing devices, and sometimes touch-
screens. The developer can no longer make any assumptions about the input and
output mechanisms to the system; therefore, the development process becomes
altogether different, complicating an already complex design process.

User interfaces are difficult to design and implement for the following reasons
[Meyers 1993]:

1. Designers have difficulties learning the user’s tasks.
2. The tasks and domains are complex.
3. A balance must be achieved among the many different design aspects, such as

standards, graphic design, technical writing, internationalization, performance,
multiple levels of detail, social factors, and implementation time.

4. The existing theories and guidelines are not sufficient.
5. Iterative design is difficult.
6. There are real-time requirements for handling input events.
7. It is difficult to test user interface software.
8. Today’s languages do not provide support for user interfaces.
9. Programmers report an added difficulty of modularization of user interface

software.

Meyers recognizes the problems associated with user interfaces of stationary com-
puting systems. These problems are compounded by the multichannel requirement
of mobile systems. Multichannel systems are systems that use multiple types of
user interfaces for input and output such as text, voice, and video (see Chapter 8).

Since the recognition of the complexity of designing user interfaces by Meyers
and others, some headway has been made in providing us some tools to reduce
this complexity. First, because many GUI-based applications have been developed

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.2 Added Dimensions of Mobile Computing 17

for stationary systems, the iterative process of design and implementation and
feedback from the users have taught us much about what works and what does
not. So, we now know more about how to design user interfaces (item 4 in the
preceding list).

But, methodologies, tools, and patterns used in the development of stationary
applications do very little to separate concerns of user interface from the rest of
the application. Sure, there are several design patterns such as the (often misused,
abused, and overused) model-view-controller (MVC), but the use of these patterns
alone does not take into account the special concerns of various types of user
interfaces. They merely make some attempt at separating some of the concerns
of the user interface from the rest of the system. They serve us well when we
are dealing with a single set of textual inputs and outputs, but today’s popular
architectural techniques and design patterns are insufficient for a large variety
of user interfaces. And this is why much of the research in the area of mobile
computing focuses precisely on this problem: How does one separate the concerns
of the user interface from the application regardless of the type of user interface?

Today, we also have proven software design and development methodologies,
such as that of object oriented programming (OOP) and use of unified modeling
language (UML), and the supporting languages and tools, that allow us to gather
the requirements of the system more clearly (item 1 in the list of difficulties), to
modularize software design (item 9), and to design software without dependence
on the language of choice (item 8). But, we have no such methodologies and tools
to take into account the multichannel requirements of mobile systems or any of
the other added dimensions of mobile application design. Though there is no con-
sensus today how to use these tools to ease the development of multichannel user
interfaces, the reader will be presented with what we see as emerging methodolo-
gies and tools that leverage existing proven methodologies and tools such as OOP
and UML.

Not only do most software applications designed today have large coupling
between the user interface and the application, but also very few are designed
to render to any desired user interface with few modifications. Most of today’s
applications need to be massively retrofitted or rewritten altogether every time a
new set of user interfaces must be supported. Of course, there is also the special
concerns of each type of user interface, such as voice user interfaces, that must be
taken into account.

We dedicate several chapters in this book to discussing various issues sur-
rounding software architecture for rendering to any type of user interface, voice
user interfaces, and the ways that users communicate with systems. For now, the
important factor is to recognize that the user interface design and implementation
process has a much bigger effect on an average mobile application than its coun-
terpart nonmobile application.

1.2.6 Platform Proliferation
Because mobile devices are small and there is much less hardware in them than in
a PC, they are typically less costly to assemble for a manufacturer. This means that
more manufacturers can compete in producing these devices. These cheaper, and

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

18 INTRODUCTION TO MOBILE COMPUTING

typically smaller, devices are often used for special purposes. The sum of these
and other similar reasons gives rise to proliferation of the types of devices in the
marketplace that an application must support.

Platform proliferation has very significant implications on the architecture, de-
sign, and development of mobile applications. Platform proliferation heightens
the importance of designing and developing devices independent of the platform.
Writing native code specific to the mobile device, unless absolutely necessary be-
cause of performance requirements, is not a recommended practice because of the
proliferation of devices. For example, it is not wise to write a voice-driven phone
book application that runs only on one type of platform. Of course, the platform
makers and manufacturers of devices and operating systems of those devices will
always try to create restrictions on the developer to prohibit writing platform-
independent applications. They may conversely give the developer features that
may only be implemented on their platform to tie the developer to that platform.
Regardless of the efforts of commercial platform builders, the software architects
and developers should be focused on their primary task of meeting the user’s
requirements. And if these requirements include support of multiple platforms,
which happens more frequently than not for mobile computing systems, platform
independence should be on the top of the architects’ and developers’ list when
choosing the tools to build an application.

We will try to address the problem of platform proliferation by using nonpro-
prietary methodologies and tools, such as UML, when possible. Throughout the
book, we will show our sample code for multiple platforms, alternating from one
to the other, so that the reader is exposed to particulars of implementation on
several of the most prevalent commercial platforms.

1.2.7 Active Transactions
Most of today’s stationary applications have a restriction that can reduce the ben-
efits of a mobile application system enormously: The user of the system must
initiate all interactions with the system. We call such systems passive systems be-
cause they are in a passive state, waiting for some external signal from the user to
tell them to start doing some particular thing. With stationary applications, this
typically works well. Most people sit down to use a computer because they intend
to perform some task. Whatever actions they may perform could signal one or
more other passive systems to perform some computing task such as retrieving
information or calculating some numbers.

At the same time, during the past two decades, messaging-based systems have
been born and have evolved. With messaging systems, any one participant of the
system can send a message to the other participant(s), and, if desired, under a
specific topic in an asynchronous manner. We will discuss both asynchronous and
messaging systems later in this chapter and other sections of this book. But, the key
idea to take away is that any one participant in the system could send a message to
another participant in the system. Later came the idea of push. In the push model
of communication, an information producer announces the availability of certain
types of information, an interested consumer subscribes to this information, and

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.2 Added Dimensions of Mobile Computing 19

the producer periodically publishes the information (pushes it to the consumer)
[Hauswirth and Jazayeri 1999]. There is much in common between the concepts
of messaging systems and push systems. The principle difference is that messaging
systems are asynchronous by definition. This requirement does not exist for push-
based systems.

Push systems, by definition, are active systems. For example, a particular user
could be browsing the Web and, while purchasing some goods online, be noti-
fied of the change in the price of a particular stock. In this example, the system
has taken an active role in starting communication with the user on a particular
topic.

Push–pull systems (a more complete name for push systems as the receiver of
the “pushing” is said to be “pulling” on a particular topic) can be implemented in
a number of ways, including using event-driven systems, messaging middleware,
and poll-based systems. Implementation aside, unfortunately, push systems have
mostly been a disappointing failure. One of the reasons for this failure has been
that most push pull systems have targeted users who are largely focused on the
task at hand.

If a user sits at his or her desk and begins using a PC, the user is constantly re-
minded, in an indirect manner, that he or she can access some piece of information.
Even if the user is not performing some exact task, the simple condition of sitting
down and using a keyboard and a mouse puts the user in a state where he or she
is more likely to remember information processing related tasks. Educators often
call this principle being on-task: As long as students are sitting at their desks, with
their books open, there is a much higher chance of accomplishing tasks related to
studying. Based on the same principle, the user who is sitting behind his or her
desk working on a PC is on-task and focused. For example, if the user sits down
and begins to type a memo to a coworker, the chances of the user remembering to
check, say, his or her stock portfolio has increased by the mere fact that there are
visual reminders, such as the browser icon on the desk top, that will remind the
user to perform the task. Even if the user forgets (which is unlikely, particularly
if you are sitting on thousands of shares of stock that are worth a tenth of what
they used to be after a market crash), if he or she is merely reminded by an e-mail,
the user can very easily begin the transaction that performs whatever tasks are
needed to retrieve the necessary information and perform the necessary tasks. A
reminder system certainly helps mainly because the user is focused on the task of
computing and is available to receive the reminder. (We will talk about the lack
of focus of the mobile user more in the next section.)

In this book, we will define active transactions as those transactions initiated
by the system. Active transactions may be synchronous or asynchronous. All ac-
tive transactions are initiated by the system. Synchronous transactions are time-
dependent transactions. Note that the term transaction is used in data storage
and other systems to indicate boundaries for roll-back and committing of a series
of actions that must be successfully executed, in some predetermined manner,
for the completion of the transaction. We use the term in a slightly different
manner. We use it to refer to a sequence of interactions between the user and the

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

20 INTRODUCTION TO MOBILE COMPUTING

computing system. Synchronous active transactions can be summarized by a set of
properties:

1. The transaction is initiated by the system, and during the same transaction, the
user is given an opportunity, for a finite period of time, to respond to the action
initiated by the system.

2. Synchronous active transactions require a timely response from the user.
3. The interactions between the system and the user work in a sequential and

serial manner during a synchronous transaction.
4. Synchronous active transactions are established between the system and a single

user. This may be replicated for many users, but at the most elemental level,
there is only one user in each active transaction.

Let us look at an example of a synchronous active transaction. One of the tasks
often forgotten by the field work force is logging time for tasks. For example, a
cable company repair person who forgets to log his or her hours by noon may
be called by the system at noon and asked to log these hours, through a voice
user interface. The system asks the employee to start telling it, using the key
pad or the voice, the time intervals worked and the tasks accomplished during
those hours. If the employee does not answer the call, the system logs him or
her as unavailable and may try again at a later time. If the employee does answer
the call, but does not respond to any one of the questions within some allotted
time, the system may record that the transaction has failed because of user ir-
responsiveness. If the employee answers all of the questions so that the system
can successfully log the accomplished tasks, the transaction completes success-
fully and is logged accordingly by the central system. Of course, there are many
reasons for the transaction to fail, including dropped connections, inaccurate in-
terpretation of voice commands, and others. Regardless, the idea is that the user
is called by the system and, if the user answers the phone, he or she is asked
some questions and expected to respond within some given time frame. Also, the
questions are asked in a sequential and serial manner. The system does not ask all
of the questions at once and then wait for the user to respond to them one by one.
Neither does the system ask questions while the user is answering any one of the
questions.

Most of today’s active systems are asynchronous. Asynchronous transactions
are not time-dependent. Asynchronous active transactions, like their synchronous
counterparts, can be described by a set of properties:

1. Asynchronous active transactions work just like messaging systems. They can
be established with either 1–n receivers or 1–n topics to which 1–m receivers
are subscribed.

2. Asynchronous active transactions may be a composition of 1–n messages sent
by the system and may require 1–m messages back from the users. If 1–m
messages required as responses from the users are not received within some
time frame specified by the system, the transactions may be deemed as failed.
Note that we are not defining the semantics of messaging systems (for if that

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.2 Added Dimensions of Mobile Computing 21

is what we were referring to, we would be wrong). Rather, we are defining the
semantics of asynchronous active transactions to be such that they encapsulate
a number of messages being sent from the system to the user and from the user
to the system and that some messages from the user, marked as responses to
the messages from the system, can be required for the successful completion of
the transaction.

Now, let us look at the asynchronous version of the same time-logging application
that we observed for synchronous active transactions. The system could call the
user and wait for the user to answer the phone. Once again, if the user does not
answer the phone, it logs the transaction as failed and the user’s absence as the
cause of the failure. If the user answers the phone, the system reminds the user
that he or she has not logged his or her time for the day and needs to do so. At this
point, the system asks the user to do this as soon as possible. The user can then
call the system back at some later time and log his or her hours, upon which the
transaction is considered successful. If the user never calls back to complete the
transaction, the system may continue to call the user back with periodic reminders
1–n times. Once the n limit of times is surpassed, the transaction may be considered
as failed. Once again, there are a variety of reasons for the failure of the transaction
that can be recorded by the system. However, the main thrust of the example is
that the system does not require a timely response. The system may have even
asked the user to perform several tasks at a later time and the user may have
done each one of those tasks out of order. In this example, the time dependence,
sequential order, and serial manner of the tasks of the transactions are irrelevant.
This gives the system more flexibility but we lose certainty in when and how a
response from the user is going to be received. Also, the serial order of the tasks
during the transaction may be desired or undesired.

Choosing whether the active behavior of a system is implemented using an
asynchronous active transactional model or a synchronous active transactional
model is completely dependent on the user requirements and the available tools
(which translates to the available budget).

So, we have now defined the basics of what we will need to treat active trans-
actions. Active transactions are an absolute essential part of mobile application
development mainly because of the lack of focus on the part of the user while the
user is mobile. The semantics of active transactions are defined only for the pur-
pose of this book. One may argue against these transactions in different contexts.
But, for the context of mobile application development, they will serve us well
in communicating requirements, architecture, design, and implementation. And
why are they less important to stationary applications? Because the stationary user
is typically focused on the task of computing while the mobile user is not. We will
consider the condition of the mobile user more in the next section.

Finally, it is important to note that active transactions differ from push–pull
systems and messaging systems not only because they can be both synchronous
and asynchronous but also because they can contain 1–n interactions between the
system and the user. We will discuss active transactions in much greater detail in
Chapter 13.

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

22 INTRODUCTION TO MOBILE COMPUTING

We have now looked at the added dimensions that we need in our thinking
paradigm to understand mobile application development. Let us quickly look
at the root cause of the existence of these dimensions of mobility, namely the
environmental effects on the mobile user’s requirements.

1.3 CONDITION OF THE MOBILE USER

Any computing system with end users has at least two participants, the computer
and the user. We have looked at the computing system in analyzing the dimensions
of mobility, those things that make mobile applications different from stationary
applications. Now let us look at how the mobile user differs from the stationary
user. We will call this difference between the mobile user and the stationary user
the mobile condition. The elements of mobile condition distinguished here are not
necessarily comprehensive as the user studies done and the industry experience
with mobile applications are in an infancy stage. However, together, they contain
all of the major differences between mobile and stationary users.

The mobile user is fundamentally different from the stationary user in the
following ways:

1. The mobile user is moving, at least occasionally, between known or unknown
locations.

2. The mobile user is typically not focused on the computing task.
3. The mobile user frequently requires high degrees of immediacy and responsive-

ness from the system.
4. The mobile user is changing tasks frequently and/or abruptly.
5. The mobile user may require access to the system anywhere and at any time.

Note that the mobile condition is not just about the physical condition of the
mobile user but also about the mental state of the user: his or her expectations
and state of mind. Note, also, that the differentiating elements between the mobile
user and the stationary user are the root causes of the dimensions of mobility. So
the relationship between the mobile condition and the dimensions of mobility is
one of cause and effect.

Now, recall that we recognized the dimensions of mobility as the difference
between mobile and stationary applications. We have now come full circle; we
can see that the dimensions of mobility are a byproduct of the requirements of a
mobile user to use a mobile application. To complete the chain of logic for our
dimensions of mobility, let us look at the differences between the mobile user and
the stationary user that comprise the mobile condition.

1.3.1 Changing Location
It may seem trivial to state that a mobile user is always, or at least frequently, mov-
ing. But, this motion has a significant implication in that the location information
can be used to draw conclusions about the context in which the user is using
the application. This is the reason location sensitivity and QOS are dimensions of

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.3 Condition of the Mobile User 23

mobility. The location of the user at a given time is a variable. Other variables may
be the speed at which the mobile user may be traveling, what network connectivity
modes are available to the user, what the quality of that connectivity may be at any
given place and time, or how long he or she may stay connected or disconnected.
The mobile user also expects the system to have good connectivity coverage. The
mobile users will come to also expect the system to know the device’s location
with fair accuracy as location services become more commonplace. This aspect of
mobile computing presents the developers with the opportunity of giving the users
functionality not possible with stationary applications. It is a clear differentiator
that presents the mobile user with great value that cannot be obtained through
a stationary application. Therefore, building applications that take advantage of
the location information and that are localized is often a must with commercial
mobile applications.

The changing location of the mobile user also forces restrictions on power, size
of device, wireless connectivity of the device, and just about every other aspect of
the state of the mobile user. In those respects, it creates restrictions that we have
already looked at. In using the location information of the application, we have an
opportunity to provide functionality beyond that of stationary applications. The
moving nature of the mobile user is a physical aspect that gives way to a mental
state of lack of focus.

1.3.2 Lack of Focus
The primary focus of the mobile user is seldom on the computing task (although,
obviously, there are exceptions to this, but we are talking about the majority of
time when the user has a device and is mobile). This is the primary reason for
the necessity of active transactions. While a user is driving from work to home,
the task of driving takes the primary focus. During this time, if the stock price
of one of the user’s holdings begins to plummet, he or she cannot sell it before it
falls too far. The user either does not know of the plummeting price at all or is
not focused on checking on the stock price at regular intervals. Mobile users are
typically mobile because they are moving between two points with the primary
task of reaching the destination.

Another reason for lack of focus is multitasking. Mobile users often multitask.
For example, a user may be driving and talking on the phone. Another example
could be a user who is entering some data into a PDA out in the field (collecting
information on power lines as a field electrician, measuring environmental effects
as an environmental engineer, etc.) while doing the primary field work task at
the site (such as climbing a pole and paying attention to power lines, finding the
right place to measure, and keeping the environmental conditions stable while
measuring, etc.). Because of this multitasking nature of the mobile user, a variety
of user interface input types such as voice may be needed to take advantage of
the senses that are not preoccupied by another task. Also, the user interface to the
system must be very user friendly and require as few of the user’s senses focused on
communicating with the machine as efficiently as possible. For example, voice user
interfaces allow users to focus on driving while still getting whatever information
they need from the system.

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

24 INTRODUCTION TO MOBILE COMPUTING

1.3.3 Immediacy
Mobile users are often in a situation where they need to quickly perform one or
more computing tasks, such as retrieving contact information, sending a voice or
e-mail message, or triggering some remote process. They don’t have the time to
go through a long boot sequence or long application setup times. Mobile users
normally have higher expectations of performance from their devices than sta-
tionary users do. Performance of mobile applications is not an afterthought as it
often is in the development of stationary applications. A short delay in application
responsiveness can decrease its usefulness enormously. For example, a user who
cannot get the necessary contact information from a mobile contact application
will eventually become frustrated and use a directory service to find the necessary
contact information in urgent situations. It is also important to note that there are
different types of immediacy. For example, the user’s tolerance, depending on the
application, will vary in first connecting to the network compared to the system
response time. The types of immediacy depend on the application.

1.3.4 Abrupt Changes in Tasks
As we mentioned before, the mobile user is typically mobile because he or she
is focused on something else other than computing. For example, many mobile
users will try to use commute time: Whether in a train, in a plane, or in an
automobile the user will be distracted by different environmental factors.† These
factors must be kept in mind in designing and implementing the flow and, once
again, the interface of the application. The mobile user needs to be able to stop
performing some computing task abruptly, do something that may be completely
unrelated, then return to the application after some unknown period of time, and,
without much effort to remember what he or she had been doing, continue the
computing task. Mobile users expect applications that flow smoothly and do not
require complex navigation despite the abrupt nature of their actions.

1.3.5 Anywhere, Anytime
The cliché of “Anywhere, Anytime,” along with all of its synonyms or similar
clichés (“Everywhere,” “Everyplace,” or “Anyplace”) and other words that refer
to this phenomenon such as “Pervasive” and “Ubiquitous” are perhaps the most
overused set of words in mobile computing. Nevertheless, this is still one of the
most important aspects of mobile computing. The mobile user expects to be able
to retrieve data and do computing at any given moment and any given time.
And this is precisely why the support for a variety of platforms with a variety of
user interfaces is critical for a mobile application: To use an application anywhere
and anytime, one may have to use it through whatever device (any device) is
available and convenient for that given place and time. Mobile users expect to
start a transaction and leave it unfinished on one device at a given place and time

† Note that not all of the mobile conditions of the user may coexist at the same time—sometimes users are
focused on the task of computing (for example, when they are in a train or a plane); other times, they are not
(for example, when a real estate sales person is selling a house and, unbeknownst to that person, another
listing comes open that may be a better fit for his or her buyer).

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.4 Architecture of Mobile Software Applications 25

and finish the same transaction later on a different device and at a different place
and time.

The mobile condition of the mobile user should be the primary guiding tool
in architecting, designing, and implementing the mobile application. The various
problems presented to us by the mobile condition may require solutions that
have inherent conflicts. For example, to increase the number of devices and user
interfaces supported, we may want to centralize the business logic and use the
devices only as thin clients. (Thin clients are discussed in detail in Chapter 16.)
However, to make the user interface as friendly as possible and to make the use
of application possible even when the device is not connected to the network, we
would want to push a significant portion of the application to the client. Obviously,
these two aspects are in direct conflict. In another example, we may see that a
particular mobile application requires increased CPU to perform a particular task
faster. But the increased CPU may mean a considerably larger device, making it
more difficult to carry. As with any other engineering problem, while designing
mobile applications, we will find that we often need to balance the solutions to
problems presented by each mobility dimension. There is no better balancing guide
than the mobile condition of the mobile user. Of course, cost in itself can offset
the benefits of any solution. Once again, as with any other engineering problem,
the solution needs to fit the problem of the customer, in our case the mobile user,
within a given budget. With an unlimited budget, nearly anything can be done.
But, of course, we all know that there is not such a thing as an unlimited budget.

Therefore the cost and the mobile condition comprise the variables that describe
our customer. Every mobile user will have a specific set of needs, but those two
are constants. In added dimensions of mobility, we have the major effects of the
mobile condition on the requirements for building mobile applications. Once we
have gathered the requirements from the user, the first step in building the mobile
application is to decide on the architecture. And this is what we will discuss next.

1.4 ARCHITECTURE OF MOBILE SOFTWARE APPLICATIONS

The first step in building a software application, after the process of gathering
requirements, is to lay down a high-level plan of what the application will be like
when it is finished. Mobile applications, like any other software application, re-
quire such a high-level plan. We call this high-level plan of the mobile application
a “mobile software architecture.” Our approach to architecture in this text will
be bottom up: we will introduce a variety of design patterns, application archi-
tectures, and processes with each addressing some specific problem with mobile
applications (Figure 1.6).

If you are not familiar with the basic prevalent application architectures in to-
day’s distributed Web applications, we recommend that you read Sections 16.1.1
and 16.1.2 of Chapter 16. You will see the terms N-Tier, client–server, mobile
agent, and peer-to-peer quite frequently throughout this text and you should
have at least a passing familiarity with them. In Chapter 16, we will define

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

26 INTRODUCTION TO MOBILE COMPUTING

Architectual Style

Dimensions of Mobility

Design
Patterns

FIGURE 1.6. Mobile Application Development Design Consideration Space.

software architecture to be a particular high-level abstraction of the system and how its
components collaborate. Then, we will summarize what we will learn in Chapters 1
through 15 to get a feeling for various architectural designs and techniques for
mobile applications. For now, let us look at what software architectures will mean
to us within the confines of mobile application development.

There are also architectural patterns; these are patterns that are recognizable
once they are used prevalently in some architectures. Although there are no fully
established design patterns, architectural patterns, or even architectures in the field
of mobile computing because of its infancy, one of our goals in this text is to outline
some techniques that show evidence of such techniques beginning to mature.
These patterns exhibit themselves in a variety of families of problems. For example,
we will introduce several different architectures for design and implementation of
multimodal user interfaces. We will also introduce some lower level design patterns
for separating the concerns of building user interfaces from our core application.

Note that the architectural decisions made in a software system are typically the
most important during the lifetime of that software system. Architecture is also as
much of an art as a skill gained through experience. It is at least partially a stylistic
aspect of software. With this said, we will try to lay out the various alternatives
made available by commercial vendors and academics. You will need to make the
appropriate decisions based on the requirements of the individual project.

1.5 OUR ROAD MAP

In this first chapter, we looked at the dimensions of mobility and the mobile
condition. These two helped us understand the fundamental differences between
designing a mobile application and a stationary application. Next, we surveyed
some high level architectures. As we mentioned, much of what architectures do for
us is to lay out a high-level plan of how the components of the system interact with

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.5 Our Road Map 27

each other and what the general properties of the system are. We will spend the
rest of this text discussing the components: the nitty-gritty of how to make things
work; but, we will come back to architectural issues periodically and examine how
the components fit within the architecture.

To create mobile applications, we will need some tools. Section 1 of this text will
give an introduction to those tools. In Chapter 2, we will look at some commercial
and open-source frameworks and tools that ease the development process and
show some different approaches to creating mobile applications. We will use these
frameworks and tools to show examples in the later chapters. In Chapter 3, we
will look at Extensible Markup Language (XML) and the nature of XML content.
XML is an important piece of the puzzle in distribution of content to any device.
In Chapter 4, we will look at UML, the tool we will use in modeling the design
of our applications. Though not all mobile platforms use OOP technologies, most
do. UML gives us an industry-accepted way of documenting requirements, design,
and implementation of the system.

In the second section of this text, we will look at the problems of the user
interface. Chapter 5 will show the reader how to separate concerns of particular
user interfaces, such as graphical user interfaces, from the concerns shared by
all types of user interfaces. In Chapter 6, we will see how to complement the
generic user interfaces and render graphical user interfaces for a variety of visual
text-driven devices such as PDAs and data-enabled cell phones. In Chapter 7, we
will look at VUI (voice user interface) technologies such as voice recognition,
text-to-speech technologies, voice transcription, and VoiceXML. At the end of
Section 2, we will combine what we have learned in Chapters 5–7 and, in Chapter 8,
we will see how to design user interfaces that interface with the user through
multiple media types and multiple channels. This section will show us how to
design the user interface components to fit the needs of the mobile user. It will
also show us how to fit them within the mobile architecture of the system.

In the third section, we will look at a disparate set of topics, each relating
to a dimension of mobility or an aspect of the mobile condition. We will start
with examining mobile agent and mobile code architectures more closely. These
architectures are often neglected in other texts. Because of their importance to
mobile computing, we will pay special attention to them. We will then look at
various wireless technologies as they are the prevalent means of connectivity for
mobile applications; we will also look at the effect of wireless connectivity on
architecture, protocols, and other aspects of design and implementation of a mobile
system. The disconnected user needs data at the device even when disconnected;
for this, we will need a discussion of data replication and synchronization design
and implementation issues. We will move on to two key dimensions of mobility,
location sensitivity and active transactions, how to incorporate such functionality
into the design of the system, and how to implement functionality for some of
the frameworks and tools talked about in Section 1. We will finish Section 3 by
discussing mobile security issues.

In Section 4, we will see how to put all these aspects together to make a successful
system. This section should be a great read for those project managers who want
to know what to do differently for a mobile application. And there are plenty

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

28 INTRODUCTION TO MOBILE COMPUTING

of differences, from the requirements-gathering process to testing. In this last
section, we will also look at some typical “dos and don’ts” and a case study of
implementation of some of the concepts introduced in this text.

It is important to keep in mind that this text is not a text on “how to imple-
ment the technology de jour.” We are focused on issues of design and engineer-
ing that apply across tools. Specific implementations come and go. They evolve
based on the demands of the market, economic situation, and many other factors.
Though we will use examples from a variety of commercial and open-source spe-
cific implementations, we are focused on issues that apply to any and all specific
implementations of mobile application platforms; we are concerned with design.

Let us now get started by looking at the tools and frameworks that are available
today to create a mobile application.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

CHAPTER 2

Introduction to Mobile
Development Frameworks

and Tools

The truth of the fact is easier to bear than the truth of the fantasy.
James Hillman

2.1 INTRODUCTION

At its most primitive level, software is a set of instructions for hardware writ-
ten in machine language. At a higher level, there are assemblers and higher level
programming languages. There are frameworks, tools, and other methods of ab-
stracting various aspects of software design that help us achieve one central goal:
to handle complexity of software more reliability and faster. The biggest problem
with software design and implementation is complexity and it is this complexity
that leads into buggy systems, high cost of development, and long development
cycles, and the existence of programming languages, frameworks, and other de-
velopment tools is primarily to solve this very problem of software complexity. In
other words, as one of the most fundamental software design concepts, abstraction
reduces complexity (at least theoretically).

Today, there are many programming languages, frameworks, and tools designed
to develop server-based and desktop applications. These languages, frameworks,
and tools have matured through the years, becoming more efficient and more
reliable as they get tested in real environments by real users. Along with the
maturation of these tools has come the maturation of the process of software
design and implementation. Ideas such as OOP, design patterns, and de facto

29

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

30 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

standard software development processes have been developed and have matured
with the tools and frameworks in a symbiotic manner. So the question is whether
we can take the same methodologies, frameworks, and tools and use them to
develop mobile applications. And the answer, just as the answer to all of the other
great questions in life, is “Yes and No!”

These notions of abstraction of various concerns in designing and implementing
software have been mostly based on reducing the complexity of those systems with
the most financial benefits: business systems being used by users of PCs, main
frame systems, and other computing systems that require the user to sit in front
of a monitor and type. For example, frameworks such as class libraries to write
user interface code for Java (AWT, JFC, etc.) or C++ (MFC, Borland, etc.) are all
designed around a user interface that allows for data entry through keyboard and
mouse and displays information to the user through a monitor. Even at a more
rudimentary level, most software is written for PCs and servers without regard
to the power consumed by the system, the amount of storage available, and the
variety of user interfaces. So, it is fair to say that most of the development tools
and frameworks today are designed to facilitate writing software for stationary and
non mobile systems.

With that said, though there are many aspects of mobile software design and
implementation that are not addressed in today’s frameworks and tools, there is
much that mobile and stationary software applications share. For starters, most
commercial software, whether it is mobile or not, is intended to be run on mi-
croprocessors. Developing for mobile or nonmobile applications includes similar
processes of requirements gathering, design, implementation, and testing. But, we
repeat the question, “Can we or can we not use the same methodologies, frame-
works, and tools for mobile application development?”

The answer is more of a “Yes” as the software gets closer to the hardware and
more of a “No” as it gets farther from the hardware. The frameworks that help
us when writing software that is “closer” to the hardware such as compilers and
assemblers focus on easing the process of programming granular tasks such as
moving bits and bytes between memory locations and performing additions, sub-
tractions, and multiplications; these are all very basic operations when looking
at software applications from the bird’s-eye view. However, high-level frameworks
and tools such as user interface development tools (HTML, JFC, Visual Basic, etc.)
and other component development tools (COM/DCOM, EJB, etc.) that try to solve
high-level business logic problems do not lend themselves well to mobile appli-
cation development. The layers of abstraction in most of today’s frameworks and
tools have been done with a strong bias toward developing software for stationary
applications.

These tools do not take into account the concerns, mentioned in Chapter 1,
that make mobile software development inherently different from software de-
velopment for stationary systems. With this in mind, an entirely new market is
expanding around developing software tools and frameworks for mobile appli-
cation development. Most of what exists today is in the infancy stage; therefore,
we can expect a significant amount of organic evolution in these frameworks and
tools: The weak will die and the strong will evolve and improve. Nevertheless,

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.2 Fully Centralized Frameworks and Tools 31

we can start to see families of frameworks and tools as well as the features that
create the taxonomy of this space. In this chapter, our focus will be on the feature
sets and the taxonomy while using real tools and frameworks in the market today.
The reader should focus on the concepts of the frameworks rather than the imple-
mentations. Although some will die and others will evolve, the reasons for their
formulation, design concepts, and feature sets will remain applicable.

Frameworks and tools for mobile application development are evolving based
on the growth of architectural techniques and innovations that accommodate the
dimensions of mobility. Although the purpose of any significant tool and frame-
work used in mobile application development should be to reduce the complexity
of the mobile application, all tools, regardless of their implementations, attempt to
address the same issues. However, depending on the architectures that each may
support, their implementation and usage significantly vary. Therefore, it makes
sense to create the taxonomy of these tools based on the architectures. Let us
begin by looking at the frameworks and tools that address mobile application
development in a fully centralized architecture.

2.2 FULLY CENTRALIZED FRAMEWORKS AND TOOLS

Developing fully centralized mobile applications differs from other fully central-
ized applications by virtue of QOS, limited power supply, active transactions, and
location awareness (four of the dimensions of mobility mentioned in Chapter 1).
Fully centralized mobile applications typically have custom-designed clients to
perform specific tasks. So, the user interface on the devices used to access the
centralized system is optimized to the task being performed. The software on such
devices is typically embedded in nature and is designed to do only one thing. Also,
because of this embedded nature of fully centralized mobile systems, resources of
the device are not a concern in software development: The abilities of the client
are known beforehand. Platform proliferation, once again for the same reason, is
not a concern: Software systems in fully centralized mobile systems are all about
the software on the fully centralized host; the client devices are dumb with little or
no ability to perform dynamic computing tasks and what little software exists on
them is embedded. Therefore, three of the dimensions of mobility—namely plat-
form proliferation, limited device capabilities, and support for a variety of user
interfaces—do not apply to fully centralized applications.

Location sensitivity, in most fully centralized systems, is achieved as an integral
part of the network system or hardware-based location information on the client
device (such as GPS modules). Call centers are a prime example of what can be
a fully centralized mobile application. A cell phone user may call a call center
to access the system. The call center may approximate the location of the user
through receiving information from the cellular telephony system, from a GPS
module on the cell phone communicating with the system through the same or
different channel. (Circuit-switched phone calls carry only voice whereas packet-
switched calls can contain multiple channels of data and voice.)

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

32 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

The application at the central host as well as the embedded software on the
client must be designed with QOS issues in mind. Because all of the software on
the device is embedded, the module handling the communications piece can be
considered tightly coupled to the other modules on the client; therefore, taking
into account that QOS issues become natural.

In summary, fully centralized mobile applications are about a monolithic layer
of software from the client to the server with very little software on the client. What
software resides on the client is typically embedded, or at least highly coupled to
the device, in nature. Fully centralized mobile applications are the right solutions
for applications that require little to no flexibility in changing the requirements
of the client over the lifetime of the application and that have large development
and deployment budgets allowing for custom-designed hardware and embedded
software. Some good examples of such systems are battlefield systems used in
determining the location of a target and sending it to a centralized system, which
then relays it to another system responsible for launching a missile. Another good
example is the kind of system used in grocery stores for inventory tracking as
stock personnel track and refill the on-the-shelf inventory. In this case the mobile
devices are customized to record information about groceries and relay them to
some centralized inventory management system.

This is seldom the case in the world of commercial application development. If
mobile applications are to be pervasive, the same agile economic models that sur-
round the stationary applications on the PC and servers must succeed. Precisely for
this reason, we will not spend much time dwelling on issues surrounding embed-
ded software. For those interested, there are a variety of resources for embedded
software development. Our focus in this text will be mobile applications that can
be used on at least a small variety of devices and ones that do not require custom-
designed hardware. With this said, let us look at N-tier client–server applications
and the corresponding tools and frameworks.

2.3 N-TIER CLIENT–SERVER FRAMEWORKS AND TOOLS

As we discussed in Chapter 1, client–server architectures allow us to enable com-
munication between two applications with one application acting as the server and
the other acting as the client. For mobile applications, the server may have special
needs, but it is typically powerful enough to run a wide range of applications. For
mobile applications, there may be special logic that treats the dimensions of mo-
bility. Client applications, in the case of mobile development, are typically those
being run on mobile devices. Writing large applications for the devices to serve as
the client is typically not possible, primarily because of the limited resources on
the devices and the large variety of them. So, more often than not, mobile appli-
cations are distributed. The state of the art, as of the date of authoring this text, in
proven distributed computing systems are the N-tier client–server architectures.

One of basic problems of application development that is magnified in mo-
bile environments is code portability and mobility. The varieties of the so-called
platforms (combination of hardware and operating systems) have prompted the

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.3 N-Tier Client–Server Frameworks and Tools 33

creation of tools and frameworks such as Sun’s Java Virtual Machine and Mi-
crosoft’s Common Language Run-time. The primary goal of these tools is to give
code more portability across platforms. The problem is magnified when consider-
ing the added factors that the variety of mobile devices dwarfs the variety among
PC and server operating systems, that virtual machines tend to be large and require
lots of memory and CPU cycles, and that, once more, they are designed primarily
with the primary task of designing applications for stationary computing systems.

Here, there are two factors that are inherently opposite in nature. First, we need
a layer of software, be it a virtual machine or otherwise, that abstracts us away
from the specificity of hardware. This is the only practical way to write software
rapidly for mobile systems. But then, as software layers are added, performance is
hampered and system requirements go up. This tension between these diametri-
cally opposed factors has given rise to the creation of numerous frameworks and
tools for mobile application design. More than ever, selection of the frameworks
and tools depends on the requirements of the application.

We can address this problem in three ways:

1. Thin-Client Wireless Client–Server: We can have some homogeneous browser
specifications and implement the browsers for each device in a client–server
environment. The browser can then load markup code and render it or even
load plug-ins. This approach would be similar to the Web-model approach
where the browsers are implemented for a variety of operating systems so that
Web developers do not have to worry about the environment in which those
browsers run. As we saw in Chapter 1, this would require a persistent and stable
connection to the network and only allow for the lowest common denominator
feature set among the various platforms and devices. So, at least today, this
model is implemented by having different families of devices and platforms
with one corresponding browser for each. We will look at various techniques
for serving the right type of content to each type of browser. Such tools and
techniques focus on building a server-side structure that serves up the right type
of markup language to the browser that interprets it on the client. The Wireless
Access Protocol (WAP) and its user interface markup language of WML give
us a framework for building thin-client wireless applications with an N-tier
client–server architecture.

2. Thick-Client Wireless Client–Server: The client application on the mobile device
may be a custom application. If so, this thick client may communicate with the
server, with the client executing some tasks and the server executing the others.
Stationary client–server architectures using thick clients typically use the client
as a means of storing a small subset of the data for use of the application when
disconnected from the network and performing business logic that does not
need to be centralized. Having thick clients for mobile devices is a bit more
difficult. For one thing, as we have mentioned time and time again, mobile
devices have very restricted resources. There are those who say that Moore’s Law
will eventually eliminate any practical restrictions that affect the application
developer; however, there are other problems. There is the deployment and
provisioning problem: How do you distribute software to such a wide range of

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

34 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

devices? How do you even write software for such a large variety of platforms?
The platforms that allow thick-client development for mobile devices address
this in two ways:
a. Some provide an operating system or a virtual machine that provides the

application programmers with a platform that lessens the number of permu-
tations for writing code. J2ME (Java 2 Micro Edition) allows this through
a small virtual machine that sits on top of the hardware (or the operating
system that is run on the hardware). Microsoft requires an installation of
some flavor of Windows on the device (such as Windows CE) that allows
the application programmer to write programs for Windows. Symbian also
provides an operating system for mobile devices. Both Sun Microsystem’s
Java and Microsoft technologies, despite their differences, allow developers
to create applications on top of an operating environment. These tools are
typically products of software vendors who want to sell software and do not
want to limit themselves to a given hardware platform.

b. Hardware manufacturers, such as Qualcomm and Texas Instruments, provide
programming environments directly on top of hardware (ASIC, EEPROM,
etc.). We will look at Qualcomm’s BREW as an example of this.

Client–server architectures that rely on a thick client require a full-blown de-
velopment platform for the device. Such platforms, however, may be used in
environments other than just thick-client client-server-based systems. For ex-
ample, we can use J2ME to build stand-alone applications for small mobile
phones. Typically, many of the same programming environments that are used
for building client applications on the devices for a client–server system are
those same environments used to build applications for the devices in a peer-
to-peer or mobile agent–based system. In the case of J2ME and Symbian for
example, the development tools provided by the platforms can be used for
building applications for a variety of architectures.

3. Stand-alone Applications: Lastly, we can build stand-alone applications for the
devices using those same platforms that we mentioned for the thick-client client-
server-based systems. The only difference here is that stand-alone applications
do not really need networking components. For example, many of the first
applications for the Palm operating system were only downloadable through
the cradle that attaches the Palm to the serial port of the device. From there, you
can download an application and run it with no network connectivity. Building
stand-alone mobile applications is somewhat of a novelty as the mobile user
needs to be able to at least synchronize the application with some external
system periodically. There are few applications, such as stand-alone games, that
just need to be downloaded and executed on the device.

But, in the mobile world, the manufacturer’s of devices want to differentiate their
hardware from their competitors. One way of doing this is by allowing the devel-
opers to write programs very specific to the device platforms in platform-specific
languages such as C or C++, as in the case of BREW and BREW-like environments.

Figure 2.1 shows some of the more popular platforms at the date of authoring
this text and their ability to provide functionality based on connectivity to the

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.3 N-Tier Client–Server Frameworks and Tools 35

Connectivity

Platform

Stand-alone
Networked

Wired Wireless

WAP

Symbian

BREW

Java

.NET

M
ob

ile
 P

la
tfo

rm
s

FIGURE 2.1. Some Products in Various Categories of N-Tier Client–Server Frameworks and
Solutions.

network. Today’s popular operating systems allow applications to be written with-
out a lot of low-level programming to access hardware. They also allow multiple
applications to use the same hardware simultaneously and have standard func-
tionality such as accessing permanent storage (such as disk IO), volatile storage
(such as RAM), and interface peripherals such as the monitor and the keyboard.
But, traditional operating systems are typically large and take up considerable per-
manent storage. They also typically require quite a bit of volatile storage to get
started. For this reason, embedded software development will always be around.
Platforms such as Qualcomm’s BREW present another alternative in writing ap-
plications for the device. Developing in such environments as BREW represents
the opposite end of the spectrum to Java: The applications are written specifically
for a given hardware platform without the traditional notion of the operating sys-
tem. Such platforms as BREW allow for developing software that is optimized for
a “chip set” or specific hardware. The code is then compiled and then “burned”
onto the device. Depending on the type of hardware used, this “burning” process
can be repeated n times. Because these types of tools and frameworks are specific
to the device itself, they focus on solving the problem of writing applications for
devices. So, the problem of transporting data back and forth between the network
and these devices as well as transforming them to the proper formats used by each
type of device remains unsolved.

There is yet another family of tools and frameworks written to handle pro-
cessing of data on the server and communicating with a wide variety of devices.
Typical tasks solved by these tools include support for messaging as a means of
asynchronous communication; support for HTTP or a similar protocol as a means
of synchronous communication; and the ability to transform different types of
XML by accommodating some complex set of rules that include workflow, device-
type recognition, and multichannel rendering of content. Apache’s Cocoon project

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

36 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

and IBM’s Wireless Transcoding Publisher are examples of frameworks that try to
fulfill some of these goals.

Whereas Java offers an open and relatively mature environment to program in
the same language on any platform, Microsoft is trying to take advantage of its
large lead in the software development market to extend its technologies to include
application development tools with its .NET and Windows CE technologies. Java
allows the developer to program in Java and run the code anywhere. In contrast,
.NET promises to allow the developer to program in any language and run it on
any .NET-based environment (various Microsoft Windows family of products).
Of course, this means that any device running the applications written using the
CLR (Common Language Runtime) has to run an operating system that supports
that CLR. Such operating systems are limited to the Windows family of operating
systems. So, although Java is language bound and cross-platform, .NET is platform
bound and cross-language.

2.3.1 Mobile Operating Systems and Virtual Machines
Although Java tries to solve the proliferation problem by making the code portable
between different platforms, there are other plausible approaches. One of these
approaches is to create tools that make the applications native to one platform.
Microsoft’s .NET framework deploys such a strategy. The tools provided by the
.NET framework allow the programmer to develop the application in a variety
of languages supported by the framework. The individual applications are then
compiled to code that can be executed on the same platform. Microsoft’s creation
of the .NET platform is spurred by economic reasons, namely to keep Windows as
the dominant computer operating system. However, this does not imply that the
tools provided by the .NET framework are either superior or inferior. It is simply
a different technical approach whose merit should be judged by the implementing
developers and the users of applications that use this platform.

The principal technical difference between the .NET and Java approaches is
that .NET generalizes by operating system and Java generalizes by programming
language. So, with .NET, every device, be it a PC or any other type of computing
device, is required to run some flavor of Microsoft Windows as its operating system.

Something important to remember as we go through various tools is that de-
veloping applications for mobile devices typically involves use of an emulator
provided by the platform or device manufacturer. In this way, the unit testing and
quality control of mobile applications differs from that of stationary applications:
Everything is typically finished and tested on the emulator first and, then, tested
on the actual device.

2.3.2 Hardware-Specific Tools and Frameworks
One way to deal with device proliferation is to avoid it! Device manufacturers can
allow the application programmers to develop code that directly takes advantage
of the device features and functionality. The notion of an operating system, in such
case, is much different than what we typically think of as an operating system.
The services offered by the operating system are few and very low level. The
downside here is a tight coupling to a platform that, in turn, can translate to

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 37

heavy reliance on the manufacturer of that platform. This is the approach that
Qualcomm offers in its BREW platform. BREW is a framework designed to allow
application developers program applications for devices based on Qualcomm’s
CDMA technology. We will look at CDMA further in Chapter 9. It is a physical layer
communication protocol that offers very efficient use of the bandwidth available
in a segment of the spectrum.

In this chapter, we will address the development tools and frameworks in a
client-server context. In Chapter 9, we will look at some mobile agent tools as
well as seeing how the tools that we look at in this chapter apply to mobile-
agent architectures. We will look at the various families of frameworks and tools
that may be used to develop mobile software applications and some commercial
platforms that fall into each family. We will select the most common environment
as opposed to the most elegant environments. There are many reasons for this,
the most obvious of which is that the commercial success of products, often, does
not have a direct relationship with the elegance of the technical solution. Also, as
engineers, we often have to select popular platforms to build systems for economic
and other business reasons. Once we have selected our frameworks and tool sets,
we will use them, later on in the book, to develop sample applications.

Let us start with Java, as it is today’s most popular application development
programming environment.

2.4 JAVA

Today, it is widely accepted that Java as a programming language offers the most
portable commercial environment for writing software applications. The success
of Java has been mostly in providing standard Application Program Interfaces
(APIs), a very thoughtfully designed infrastructure for OOP that prohibits many
bad design and implementation habits such as multiple inheritance. Standard and
open APIs offer a process of evolving a language that is open to many vendors.
Furthermore, there exist implementations of the virtual machine and the native
dependencies of the APIs for most popular operating systems. There are three
major categories of Java APIs and virtual machines, namely J2ME, J2SE, and J2EE.

Java offers three distinct features as a mobile application platform:

1. Java is an object oriented programming language. As any other programming
language, it can be used to write applications.

2. Java offers complete code mobility and weak mobile agent ability. Java allows
for platform-independent programming.

3. Java is a platform.

We will assume that the reader has at least an understanding of what Java is as a
programming language and will discuss the code mobility aspects of Java further
in Chapter 9.

First, Java, as with any other programming language, is just that: a programming
language. It allows us to program a set of instructions. Perhaps just as importantly,

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

38 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

Java is somewhat of a vendor-neutral language-based platform.” Java seems to have
solved the problem that has plagued many other programming languages in the
past: the lack of standardizing libraries. With C++ and many of the other program-
ming languages, one of the biggest problems has been the lack of industry-wide
standards in APIs, components, and tools. Different vendors have offered similar
components and frameworks with no uniformity among them in their APIs and
interfaces. Vendors have done this to differentiate their products; however, this
forces developers to rewrite code when moving from one component set or frame-
work to another or even to completely redo the architecture of the system. Java has
solved this problem by enforcing standard API interfaces to the components and
frameworks and allowing for vendors to compete on the basis of the implemen-
tation of the APIs. For example, Java Database Connectivity (JDBC) APIs present
the same interface to the developers regardless of what database is being used

Java, as a platform and programming language, offers mobile code. But, the
standard Java Virtual Machine was designed for desktop computers and requires
far too many resources for the typical cell phone, PDA, or mobile device. The
standard Java Virtual Machine is packaged, along with accompanying tools and
class libraries, into Java 2 Standard Edition (J2SE). A smaller version of the virtual
machine, along with a subset of classes and tools of J2SE plus a few additional
tools, forms J2ME designed for small devices.

2.4.1 J2ME
J2ME is a specification for a virtual machine and some accompanying tools for
resource-limited devices. J2ME specifically addresses those devices that have be-
tween 32 kB and 10 MB of memory. J2ME addresses the needs of two categories
of devices [Sun Micro J2ME Spec 2000]:

1. Personal, mobile, connected information devices. This portion of J2ME is called
CLDC for Connected, Limited Device Configuration. These types of devices
include cell phones, PDAs, and other small consumer devices. CLDC addresses
the needs of devices with 32 to 512 kB of memory. The virtual machine for the
CLDC is called KVM for K-Virtual Machine.

2. Shared, fixed, connected information devices. Internet-enabled appliances, mobile
computers installed in cars, and similar systems that have a total memory of
2 to 16 MB and can have a high bandwidth and continuous connection to the
network are in this group. CDC, or Connected Device Configuration, is the part
of J2ME that addresses such devices. CDC is a superset of CLDC.

Let us look at both CDC and CLDC and how we can use them to develop mobile
applications.

CLDC and MIDP
Figure 2.2 shows how J2ME components, and other parts of Java as a plat-
form, stack up. Figure 2.3 shows the breakdown of the J2ME MID Profile stack.
As we mentioned previously, CLDC is mainly intended for devices that are

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 39

FIGURE 2.2. J2ME Stack (CLDC/CDC and MIDP).

resource-starved such as mobile phones and PDAs. CLDC addresses the following
features:

1. Providing a virtual machine for providing language features. Perhaps the most
important thing to keep in mind for those who have built applications using
the Java Virtual Machine on desktops and servers is that the J2ME/CLDC Virtual
Machine is not at all like the version that comes with J2SE. To cut down on
the required resources for running it, the KVM does not provide many of the
advanced features that the J2SE Virtual Machine does. The KVM is based on
the Spotless project, which started at Sun Labs. The KVM takes up anywhere
from 40 to 80 kB depending on the device. The KVM is written in C (as are
most other Java Virtual Machines). Some features not offered on the KVM are
the following:
a. Floating point arithmetic: Floating point operations are expensive or require

the chipset on the device to have specific implementations for them. Many of

FIGURE 2.3. Layering of Functionality between CLDC and MIDP.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

40 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

the resource-starved mobile devices either do not have floating point specific
features on the chip set or do not expose them for use by applications software
running on the device.

b. Support for JNI: Java Native Interfaces (JNI) allow developers to write appli-
cations that use C/C++ programming languages along with Java in providing
Java APIs to modules or applications not written in Java.

c. Thread grouping: Advanced threading features are not offered on the KVM
and CLDC. Multithreading requires a baseline amount of resources to be
dedicated to creating, maintaining, and destroying threads. Each thread takes
up a certain amount of resources by simply existing, even if it never does
any actual work. Because the KVM is intended for resource-starved devices,
it is natural to assume that doing lots of advanced multithreading is not
something that makes much sense on such devices.

d. Full-blown exception handling: Exception and error handling seems to be one
of the first places that platform providers trim when building frameworks and
tools for limited devices. Although this makes more work for the application
developer, it allows the framework and the applications to be linear.

e. Automatic garbage collection of unused objects: Though the KVM does offer
some of the memory management features of the J2SE Virtual Machine, it
does not offer finalization of objects. This means that you have to tell the KVM
when you are done with an object. The KVM is not capable of finalizing based
on the scope of methods, etc.

f. Weak references: An object is said to be weakly referenced if it is necessary to
traverse the object that refers to it to reach it. The J2SE Virtual Machine does
not allow finalization of an object until all weak and strong references to that
object are cleared. The KVM does not provide this functionality for weakly
referenced objects. The elimination of weak references and finalization in the
KVM make programming for the KVM more like writing C and C++ applica-
tions than writing a typical J2SE application. Much of the automatic memory
management benefits of Java are in its ability to manage memory based on
weak references and to automatically finalize. These features have been elim-
inated to shrink the virtual machine. Although they allow the applications
to be faster, the static size of the applications grow as memory management
is more manual and there is a higher probability for typical C/C++ memory
management type bugs in the applications. This is not to imply that there
is no garbage collection. Indeed, there is a garbage collector in the KVM.
However, the garbage collector has to be manually notified when to discard
objects.

2. Providing a security framework for tasks such as downloading MIDlets (J2ME
CLDC/MIDP applications). Security is one of the most troublesome and compli-
cated features for providers of mobile application frameworks and tools. J2ME
builds on the experiences of Java applets in creating a security paradigm for
mobile applications. It should be noted that CLDC does not provide the full
J2SE security model, though it does provide enough low-level virtual-machine
security to guarantee that the application can not harm the device in any way.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 41

It also provides a sandbox model, though it is different than the J2SE sandbox
model.

The security sandbox of CLDC is provided by removing the ability to write
JNI code to access native functions on the device, providing a very limited set
of APIs (which we will look at next), taking away the ability to write custom
classloaders (there are no custom classloaders in CLDC), and a class file ver-
ification process that assures that the files called to be executed are Java class
files. The verification of a class file is also different from its counterpart in J2SE.
CLDC class file verification is a two-step process that offloads some of the task
of verification from the device. The CLDC verifier needs about 10 kB to execute.
But, because of the offloading of some of the verification process from run-time,
the size of the class files is slightly larger (about 5%).

3. Providing a reasonable amount of functionality for input and output. Most pro-
grams need a persistence mechanism. CLDC provides a very limited and yet
sufficient set of APIs to read and write to the nonvolatile memory provided by
devices. It should be noted that the persistence of data on the device is hardware
dependent.

4. Providing some internationalization capabilities. CLDC’s input/output (I/O) pack-
age (see the next section) provides input and output stream readers that can
handle different character encoding schemes. This allows internationalization
in two ways:
a. Dynamic: The program can determine the required character set dynamically

and use the proper character set at run time. Programmatically, this is the
more elegant option. However, it requires additional code to implement the
rules for discovery of the required character set. This approach works well
for small applications where the device resources are not taken to their limit.

b. Static: There can be multiple versions of the J2ME application ready to be
loaded onto the device. Provisioning of the application can take care of the
version of software that is distributed to the application. Though this ap-
proach is less elegant, both the amount of code downloaded by the device
and the amount of logic executed at run time can be reduced. The flexibility
of having different character sets for the same device is still available as dif-
ferent versions of the application are available for download on the network.

5. Providing a reasonable amount of networking capabilities. CLDC provides a con-
nection framework to provide basic networking capabilities. Profiles such as
MIDP build on top of this framework and can introduce more advanced net-
working capabilities.

As we saw, there are some features whose support was eliminated to shrink the
CLDC to a manageable size on the device. Some features have been intentionally
left out to be handled by “profiles” that are built on top of the CLDC. Profiles
address features that can be addressed, in the same manner, for a group of devices
but whose implementations vary because of the differences among those devices.
The best example of a feature set falling into a profile is the user interface capa-
bilities. Because various devices have different methods of entering data, different

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

42 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

screen sizes, etc., the best place for the user interface functionality is in the profile.
The areas addressed by profiles are the following:

1. download and installation of applications,
2. life-cycle management of applications,
3. user interface feature,
4. database functionality, and
5. event handling.

The Mobile Information Device Profile (MIDP) is currently the only widely known
and accepted CLDC profile. There are other profiles, such as Personal Digital Assis-
tant Profile (PDAP) designed for PDAs (typically assumed to have more memory,
processing power, and other resources than MIDs), that extend CLDC. MIDP is
designed for devices that are assumed to have the following characteristics:

1. Small displays of approximately 96 × 24 of 1:1 shaped pixels with a depth of
1 bit.

2. A minimum of 128 kB of nonvolatile memory (for storing information that is
not lost when the device is shut off and turned back on). This is mainly intended
for storing the application itself.

3. Wireless connection to the network (with all of the implications of what wireless
connectivity is at the time this text is being written: low-bandwidth, intermittent
connectivity, no standard protocol such as TCP/IP, etc.).

4. A minimum of 8 kB of nonvolatile memory for use by the application. This 8 kB
refers to information that the application should be allowed to store on the
device.

5. An ITU-T phone keypad (this is the standard alphabet mapping to the ten digits
on a phone keypad) or a QWERTY keyboard (such as those available on Palm,
RIM, or Handspring devices).

Now, let us quickly look at the Java APIs for CLDC and MIDP so that we can write
a simple application.

Overview of the CLDC and MIDP Java APIs
There is a core set of APIs that every implementer of CLDC (device manufacturers
and hardware integrators) must implement. These APIs fall within two groups:

1. J2SE-like APIs: There are three packages, namely java.lang.∗, java.io.∗, and
java.util.∗, that are inherited from the J2SE environment. It is important to
note that only a small subset of the classes available with J2SE in each package
is available for CLDC. Also, those classes available in these packages are not
identical to their J2SE counterparts in interface or implementation (though the
designers have done their best to keep the interfaces as similar as possible to
ease the task of porting).

2. CLDC-specific APIs: In the current version of CLDC (1.0.2) a small set of classes
provides I/O and networking capabilities particularly needed by small and mo-
bile devices. The package holding these classes is javax.microedition.io. The

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 43

main class that the J2ME application developers must familiarize themselves
with is the connector class. J2SE networking facilities assume the availability
of a TCP/IP connection. Obviously, this assumption is not a valid one for mo-
bile applications as a variety of communication protocols and schemes may
be used to allow the device to communicate with the network. So, CLDC de-
fines a connection framework in its Java API, providing a method for various
network providers, device manufacturers, and protocol designers to offer the
application developers options other than TCP/IP for communicating with the
network. For example, it is possible that a vendor provides WAP-style connec-
tions (WDP/UDP) that can be invoked by CLDC connection objects by passing
the right parameters to it. An example could be the following:

Connection c = Connector.open("http://www.cienecs.com");

As we mentioned previously, MIDP builds on the top of CLDC to offer the func-
tionality required to build a real application. Let us review the MIDP APIs quickly.

1. Timers: Two classes, java.util.Timer and java.util.TimerTask, allow developers
to write MIDlets that are started, one time or at some specified interval, at a
given time.

2. Networking: Whereas CLDC provides a generic connection framework that can
be built upon by the device manufacturers and network providers, MIDP pro-
vides HTTP implementation, a high-level application networking protocol, that
hides the lower layer implementation of networking between the device and
the network (TCP/IP, WAP, etc.). The javax.microedition.io.∗ package holds
the lone class of HttpConnection that allows connecting to network resources
through HTTP.

3. Storage: javax.microedition.rms.∗ (where rms stands for record management
system) provides a very simple API for storing and retrieving data. The query
capabilities provided by this package, though extremely rudimentary, are invalu-
able as they provide the basics of database-like access to nonvolatile persistence
on the device.

4. User Interface: javax.microedition.lcdui.∗ offers a set of rudimentary user in-
terface APIs to build interfaces for MIDlets. Like the storage package, the user
interface package is very simple. However, it accomplishes much by offering
an interface that is fairly generic, leaving the mapping of the interface to the
implementation to the MIDP implementers. This increases the portability by
allowing authoring of user interfaces without worrying about a great amount
of detail on the implementation of MIDP on a particular device (though it still
does not mean perfect portability).

Now, let us look at a simple J2ME/CLDC application.

Hello MIDP
CLDC applications only make sense as an application of a profile. Because the user
interface of the J2ME application is reserved for the profiles, writing a CLDC Hello

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

44 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

World application really does not make that much sense. The profile of choice for
our example, obviously, will be MIDP. Applications for MIDs (Mobile Information
Devices) are appropriately called MIDlets (like their counterparts of server-side
applications, which are called servlets, small browser-based applications called
applets, etc.).

As in applets and servlets, MIDlets are treated as components controlled by
a framework under the inversion of the control principle to which we refer to
frequently in this book. For a J2ME class to qualify as a MIDlet, it has to do the
following:

1. Extend the MIDlet class.
2. Implement the following methods:

a. startApp(): This method gets called after the class is instantiated. Think of
this like the run() method of a thread in Java.

b. pauseApp(): This method is called if the application has to be suspended for
some reason. Suspension of the application can be required for power saving,
an incoming phone call, or a series of other reasons.

c. destroyApp(boolean b): This is used to do any maintenance necessary before
the application is discarded. This method is necessary mainly because final-
ization and weak references are not available in J2ME. (It can be used for
release of other resources as well depending on the type of the application.)

Figure 2.4 shows a simple MIDP application that simply shows a message on the
screen and allows the user to exit the application.

A variety of vendors, such as Borland and Sun, offer J2ME development tools.
Sun Microsystems has a free tool kit that offers the following components for
development of J2ME applications:

1. KToolbar: This is the overtool that provides a GUI to manage collecting the
classes that are put into the MIDlet, any name-value property sets that are used
by the classes, and any resources such as icons used by the MIDlet. It also
provides GUI control over build and bundling of the MIDlet into a deliverable
package to the device.

2. Preverifier: As we mentioned previously, preverification of classes allows J2ME
to offload some work from the device.

3. Compiler: The J2ME compiler compiles the classes. Remember that J2ME classes
need to be preverified before they are ready to be used.

4. Emulators: There is a series of emulators that ship with any development kit.
Mobile device and mobile software vendors provide other emulators for J2ME.

5. Emulation of Performance: The Preferences tool allows the developers to adjust
for the virtual machine proficiency, network performance, storage monitoring,
and network traffic monitoring. These features have only been available in the
latest version of the tool kit. Though they may seem secondary, they actually
provide a huge leap over the previous versions of the tool as, for the first time,
some of the dimensions of mobility are treated within the tool kit. These are
namely limited devices resources and QOS.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 45

import javax.microedition.midlet.∗;
import javax.midroedition.lcdui.∗;

public class HelloMIDP extends MIDlet implements

CommandListenter {

public static final String HELLO = "Hello MIDP";

private Display mDisplay;

private Command mExit;

public HelloMIDP() {
mDisplay = Display.getDisplay(this);

mExit = new Command("Exit", Command.SCREEN, 1);

}

public void startApp() {
TextBox myMessage = new TextBox(HELLO, HELLO, 256, 0);

myMessage.addCommand(mExit);

myMessage.addCommand((CommandListener) this);

mDisplay.setCurrent(mDisplay);

}

public void pauseApp() {
//Our application is very simple and does not really

//require any manual finalization or other actions if

//the application is suspended. The implementation of

//this method is not trivial for more complicated

//applications.

}

public void commandAction(Command aCommand, Displayable

aDisplayHandle) {
if (aCommand == mExit) {

destroyApp(false);

}
}

public void destroyApp(boolean b) {
notifyDestroyed();

}
}

}

FIGURE 2.4. Hello MIDP.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

46 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

Though the Java community is working on it, unfortunately, J2ME still does not
treat multimodal user interfaces and location sensitivity at all. These are two di-
mensions of mobility that have gone nearly completely neglected in J2ME.

Using the KToolbar to generate an application is fairly intuitive once you have
your source code in. Tools such as Borland’s JBuilder and Websphere Anywhere
Suite offer editors specially customized for J2ME code. Once the code is com-
piled, you will run a ∗.jad file in one of the emulators. The ∗.jad files encapsulate
information about MIDlets.

To deploy a J2ME application, everything is bundled into a JAR file. A JAR
file can have one or more MIDlets (classes that inherit from the MIDlet class
and implement the appropriate methods). The JAR manifest file (a text file that
specifies the classes that are in the JAR file along with some attributes for those
classes) is used by the MIDP environment (implemented by the J2ME device) to
recognize and install the applications. There are a set of required attributes in the
manifest file needed for the environment to run an application. The J2ME tool
kit provides a GUI to create the attributes. Although the JAR manifest contains
a set of attributes for all of the MIDlets in the JAR, there is a JAD file for every
MIDlet. The JAD file acts as an application descriptor. The JAD file must have the
name, version, vendor, JAR URL, and JAR size of a MIDlet. It may contain other
information such as a description and an icon.

Treatment of Dimensions of Mobility by CLDC and Profiles
Because of the way profiles are layered on the top of CLDC, dimensions of mobility
are treated in a peculiar way. Let us look at the dimensions individually.

1. Location Awareness: To date, there is no treatment of location awareness in
J2ME. However, this is being treated. JSR 179, Location API for J2ME is defin-
ing an optional package to build on top of CLDC version 1.1 and higher. This
JSR is intended to work with various positioning methodologies such as GPS
or cell-based triangulation; however, it is explicitly intended to hide the im-
plementation, and complexities thereof, of the positioning system. Therefore,
the API will be agnostic to the method of finding the location. Currently, the
package name is proposed to be javax.microedition.location.

2. Network QOS: During the development, as we mentioned earlier, various de-
velopment tools offer emulation of QOS conditions for wireless devices. J2ME’s
connection framework addresses this issue, in an extremely elegant manner, af-
ter deployment of the application on the device. Because the connection frame-
work is able to create any type of connection, network providers and device
vendors can provide their own APIs on the device. The connection framework
also provides the flexibility to use datagrams of various protocols such as WAP.
Obviously, standard connections of TCP/IP and HTTP are available as well.

3. Limited Device Capabilities: KVM takes away large chunks of functionality, which
is helpful but not necessary, for development of applications to shrink the size of
the virtual machine. This was obviously done with limited device capabilities
in mind. The tools provided with the J2ME tool kit also provide settings to
emulate the behavior of the limited device such as a setting that allows one

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 47

to account for the performance of the virtual machine (KVM) on the various
devices.

4. Limited Power Supply Management: This is one of the areas left virtually un-
treated by J2ME. But, this lack of treatment seems to be common throughout
the application development platforms. Next-generation mobile platforms and
tools will include intuitive techniques to take into account the power supply
levels, at run time, to optimize the use and performance of the application.

5. Support for a Large Variety of User Interfaces: Though J2ME takes into account
the variations in simple graphical user interfaces in CLDC/MIDP, there are no
parts of that to treat multichannel user interfaces (e.g., mixtures of audio, video,
text, etc. for input and output to the system). This lack of treatment of voice
and other nontextual channels exists in both development and deployment
environments.

6. Platform Proliferation: By allowing one to select from a different sets of emula-
tors, J2ME provides fair support, at least in CLDC/MIDP stack, for developing
applications for various devices. In its architectural design, by breaking down
various devices into families of devices supported by CDC, CLDC, etc. and
creation of layers such as MIDP, J2ME is perhaps the most well designed appli-
cation development framework in treating platform proliferation. Furthermore,
though we do not address various embedded Java technologies outside of J2ME
in any considerable depth, Java, as a platform, offers the most comprehensive
treatment of the variation of hosts for software applications.

7. Active Transactions: Because CLDC/MIDP applications are components run by
a virtual machine and within a tightly controlled sandbox, writing an active
application is a difficult task. The components do not control their own life
cycles (they are controlled by a state machine that calls predefined methods
depending on the events that are sent to it), thereby making J2ME applications
inherently passive. It is possible to achieve a limited amount of active behavior
by polling. Supporting active transactions (sometimes referred to as push if it is
between two different hosts on a network) is something that the Java community
is actively discussing.

Overall, J2ME offers a very good treatment of dimensions of mobility. Although
some aspects are currently neglected, the Java community is continually working
on treating them. Though it may take a long time, it is comforting to know that
they will eventually treat each dimension and that the treatment will be vendor
neutral, creating an environment of competition where new products will flourish
and the better products will survive.

XML and J2ME
XML is the document format of choice when it comes to ubiquitous applications;
we will look at this and related XML issues in detail in the next chapter. How-
ever XML is not only text, but it also requires considerable horse power to
parse it. Although XML-based technologies such as XML-based Web services are
ideal for providing ubiquitous content for mobile devices, they are tremendously

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

48 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

troublesome for a resource-starved platform that has to save every bit of memory
and every cycle of CPU.

As you have noticed in our discussion of CLDC and the profiles that accompany
it, there is currently no special treatment of XML (though such are being discussed
at the time of writing this text in the Java community). There are three types of
parsers [Knudsen 2002]:

1. Model Parsers: These parsers go through the entire XML document and create
some representation of the document in a programmatic model. DOM (Docu-
ment Object Model) parsers are model parsers. Model parsers use considerable
memory and processing power because, regardless of what you need out of the
XML document, the entire document is parsed and represented in some other
format in memory.

2. Push Parsers: These parsers emit events as they parse through the document.
Once again, they go through the entire document; however, the advantage they
offer over the model parsers is that they do not keep a representation of the
document in memory.

3. Pull Parsers: Pull parsers do not go through the entire document. Rather, they
leave the control on how much of the document is parsed to the client.

Selecting the parser is somewhat of a balancing act that often requires some knowl-
edge of the average and maximum size of documents. The application always
knows what information it needs from the document. Putting together what needs
to be extracted from the document, the typical size of the document, and the size
of the application depending on the parser used tells us what the best fit for our
need is. For example, whereas pull parsers are typically larger in size (kXML is
a pull parser for CLDC/MIDP), they have a simple interface allowing for a small
application to do all the necessary work without taking up a lot of memory to store
the entire document. This works well for scenarios involving larger documents
and straightforward data extraction from XML. However, if the documents are
going to be small, the cost of storing them in memory is less, so a smaller model
or push parser does the job effectively.

We will have some samples later in this text that parse XML on the device with
J2ME.

Using UML to Model J2ME Applications
As we mentioned in Chapter 1, one of our objectives in this text is to tie the entire
development cycle into UML and use it as a tool to facilitate the development
process. Java and UML have been married during their evolution. As part of the
Java platform, it is natural that we think about modeling J2ME applications with
UML.

There are two aspects to modeling J2ME applications with UML. First, J2ME
applications have a great deal in common with all other Java applications: They are
written in Java, which is an object-oriented language. UML is designed to model
object-oriented languages. Second, there are features of desktop and server-side

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 49

virtual machines (e.g., J2SE Virtual Machine) that are not available in J2ME, such
as finalization and weak references. The elimination of these features forces the
developer to take care of some tasks manually. Most Java developers are not used
to managing memory semimanually or worrying about weak references; therefore,
UML gives us a great visual tool to track down weak references, make sure objects
are finalized in a proper way, etc.

Let us enumerate the various uses of UML in a J2ME application:

1. Class Diagrams: As with any other Java application, we can model the classes
and the relationships among them with UML class diagrams. The class diagrams
present us with an invaluable tool to see where weak references may be. To do
this, however, we need to be very explicit in specifying association types and
life-cycle controls within our UML diagrams. When it comes to modeling J2ME
classes with UML class diagrams, the more detail, the better. J2ME applications
are typically not very large (remember the resource restrictions), so a significant
amount of detail added to the class diagram does not create an unmanageable
situation.

2. State Diagrams: State diagrams can be used in representing the life cycles of the
various objects. With J2ME, having numerous state diagrams can be invaluable
in giving developers a visual tool to analyze the life cycle of various objects that
may need to be finalized and to reveal bugs that are caused by the lack of support
for weak references. State diagrams can also be used to represent the effect of
various events. Because CLDC applications, and most other J2ME applications,
are components used in an environment of inversion of control, the driver
component (for example the MIDlet) implements a particular set of methods
and/or inherits from some class with some default behavior. State diagrams can
help in clarifying the behavior of the components as various events, driven by
the user interface or otherwise, change the state of objects.

3. Component Diagrams: Though most J2ME applications are fairly small, compo-
nent diagrams can come in handy too. One of the techniques used in creating
multifunction J2ME applications is to divide them into smaller applications,
each represented by a component in a component diagram, and to make the
user interface hide the disparateness of the small applications, disguising them
as one large application.

4. Sequence Diagrams: As we will see in later chapters, these diagrams can be
extremely useful in representing user interfaces. The profile layer (MIDP) en-
capsulates the user interface implementation, and the MIDP APIs are designed
in such a way that user interface actions are specified generically and the spe-
cific functionality is delegated to the MIDP implementation. Because of these
features, sequence diagrams help in documenting the exact various interac-
tions on various implementations on MIDP on devices that are all CLDC/MIDP
compliant but vary slightly in specifics such as the number of buttons on the
keypad, extra buttons, the number of lines on the screen, etc.

We will discuss using UML for various parts of the development process of mobile
applications throughout this text. Keep in mind that UML is a general tool and

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

50 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

its use can be subjective when applied to specific things like various APIs and
platforms.

2.4.2 CDC
We have looked at CLDC, one of the two parts of J2ME intended for devices
(Java Card and other embedded technologies being somewhat tangent to our
discussions). The other part of J2ME is CDC, which is targeted at environments,
where more than 512 kB (usually about 2 MB) of memory is available for the Java
environment and the application [Laukkanen 2002]. Whereas CLDC can have a
variety of profiles built on top of it, CDC profiles are built on top of the so-called
Foundation Profile. Like CLDC’s KVM, the CDC has its own virtual machine, the
CVM (C Virtual Machine).

Unlike the KVM, the CVM supports all of the features that the J2SE Virtual
Machine does. The CDC is smaller than J2SE by the virtue of its lack of many of
the class libraries that are shipped with J2SE. The CVM also offers some changes
to improve performance on resource-starved devices. These include lower mem-
ory usage (about 60% less than the J2SE virtual machine), an extensible CVM
architecture (to add functionality), and a design that accommodates real-time op-
erating systems (RTOSs). Because the CVM has been implemented mostly in C,
it can be ported to, and between, real-time operating systems easily. (The more
assembly-level code exists in the implementation of a software application, the
more difficult it becomes to port to, and between, RTOSs because assembly code
is specific to platforms—hardware and operating system combinations).

The most significant classes eliminated from the CDC/Foundation Profile are the
GUI classes. To date, CDC implementations exist for several handheld operating
systems, including Windows CE, Linux, and Symbian.

In his paper [Laukkanen 2002] Laukkanen looks at the performance aspects of
CDC versus J2SE under a variety of conditions. For those planning on implement-
ing CDC applications, this paper is a must read. Laukkanen’s testing results show
that although CDC performs nearly as advertised with smaller applications (fewer
objects, threads, etc.), as the application gets larger, it begins to underperform.
Keep in mind, though, that in a resource-starved mobile device, we should not
have large applications anyway. Although CDC minimizes the use of memory
resources, as Laukkanen puts it, “the fact is that without Foundation Profile, the
CDC is quite useless.” This is because the architecture of CDC simply modularizes
the functionality of J2SE into multiple profiles, allowing the vendors and applica-
tion developers to only use the part of the Java platform that they need while still
having the full functionality of a full-blown Java Virtual Machine in CVM.

We will not be using CDC-based examples in this text. Although CDC increases
in its relevancy to mobile application development because of the increasing re-
sources on the mobile devices, the programming paradigm of CDC is not much
different than that of J2SE. So, writing CDC-based J2ME applications is much the
same as writing any J2SE application. Also, there is no special treatment of di-
mensions of mobility in CDC as, to date, it is mostly used for network appliances
(e.g., TVs) that are always connected and fairly stationary (though this does not

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 51

Power Supply

Reset

Magnetic Strip

Contacts

(Back of Card)

Check

Optional
Contact

Optional
Contact

Optional Contact

Input/Output

Front of Card

Embossing Area

Ground

FIGURE 2.5. Java Card.

mean that CDC has any limitations that prohibit it from being used for mobile
applications).

2.4.3 Java Card
Smart cards have been around for a long time. A smart card is a card that has an
embedded processor or some type of electronic memory device able to store data,
interface with some known set of devices, and allow the stored data to be retrieved.
Most smart card technology, prior to Java Card, has been based on proprietary
technologies. So, interoperability between different cards and card readers/writers
has only been possible if the manufacturer of the card or the reader/writer offers
an open API and the counterpart implements that open API. Obviously, with every
manufacturer having its own API, managing smart cards and their readers/writers
has been one of the most technically challenging tasks in creating smart cards. It
has also created economic scaling problems in using smart cards across different
businesses, locations, languages, etc.

The Java Card (Figure 2.5) specification is designed to solve these two problems.
The Java Card API provides an API that, when abided by, allows for interoperability
between different card readers/writers and cards regardless of the manufacturer and
Java Card API implementer.

Today, there are three types of smart cards [Ruuskanen 2000]:

1. IC (Integrated Circuit) Memory Cards: This is the most common type of smart
card. These types of cards hold a small amount of data (less than 4 kB) and
have no processing power. These cards are used as debit cards, security cards,
and others.

2. IC Microprocessor Cards: These cards typically have 16 kB or less of read-only
memory and half of kilobyte of random-access memory. Java Card falls into this
family. These types of cards provide a very small amount of processing power

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

52 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

that can be used for things like encryption and decryption of the user profile
information on the card.

3. Optical Memory Cards: These cards provide the largest amount of storage of all
smart cards. Though they do not provide any processing power, they can be
very useful since they hold up to 4 MB of data.

As in the case of CDC and CLDC, the Java Card has its own virtual machine,
the Java Card Virtual Machine (JCVM). But, the Java Card Virtual Machine is
fundamentally different from the other virtual machines we have discussed. The
JCVM never stops! The JCVM’s state is permanently persisted into the electroni-
cally erasable PROM (EEPROM) when the card is removed from the reader. It is
restored when it is inserted back into the reader.

Smart card technologies such as the Java Card offer a very unique and innovative
approach to problems solved by mobile applications. Smart cards are one of the
smallest devices in the range of mobile devices. Though they do not offer much in
the way of input/output or processing power, they introduce a different paradigm
of mobile computing where the user depends on card readers to exist everywhere
he or she goes. Though this paradigm is not as flexible as a device that is available
to the user all of the time, smart cards are smaller and less intrusive. The smart card
of the future may even offer things such as a small display for receiving messages
and wireless access to the network.

We will not discuss the Java Card much during the remainder of this text. Smart
card technologies promise to be a sizable part of the solution set to the mobile
computing problem; however, the applications for smart cards are very small,
passive, and typically not applicable to anything that is represented by UML.

Now, let us look at another key Java technology that can help us in tying the
network of mobile devices together.

2.4.4 JINI
The Java Naming and Directory Interface (JNDI) allows various resources to be
identified in a generic manner on the server side; however, it is far too heavy for
implementation on mobile devices. But, we already know that one of the neces-
sary pieces of functionality to write mobile applications is discovery of devices and
services. In Chapter 3 and the remainder of the book, we will look at platform-
independent discovery mechanisms such as RDF, CC/PP, and UAProf. Java, how-
ever, gives us Java Intelligence Network Infrastructure (JINI), a base technology for
ad-hoc networking. JINI provides lookup services and its own discovery protocol.
Let us go through the basic transactions that JINI provides:

1. Lookup: This is a JINI service that maps interfaces indicating the functionality
offered by a service to sets of objects that implement the service [Hashman and
Knudsen 2001]. Lookup functionality of JINI provides the basic foundation for
a federated service in which a variety of services cooperate and various processes
can offer each other various services.

2. Discovery: Before a given process begins using a service found by the lookup
process, it must find that service. The act of finding lookup services is called

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 53

discovery. This is typically done by the underlying infrastructure that offers the
JINI implementation.

3. Events: The various JINI participants can register to listen to the various events
emitted by the other JINI participants. Any so called JINI device (anything that
can become a participant in a JINI network) can register events with any other
JINI device. In this way, the architectural communication model is more like
peer-to-peer than it is client–server.

4. Leasing: JINI devices share resources through a process called leasing. The term
leasing is used because the amount of time for which the service is available
to the lessee is known in advance, at the time of the lease. This is a distinct
requirement of JINI. Although the amount of time for which the service is being
used by the lessee has to be known at the time of the lease, this time can be
dictated by the leaser (the device whose service is being used) or through a
negotiated process between the leaser and the lessee.

5. Joining: For a JINI device to offer its services to other devices, it first has to join
the JINI federation. This is done through a process called joining.

6. Transaction Management: Interactions between the various JINI devices may be
compound, being made of several simple atomic interactions. Because of this,
transaction management is needed to ensure the proper semantics are provided
to avoid partial results and bad data.

JINI specification merely provides us with a set of rules on how JINI devices must
behave. Most implementations that exist today are not designed for mobile de-
vices because they take up too many resources; however, there are some that offer
“mobilized JINI.” PSINaptic, for example, offers an implementation of JINI suit-
able for mobile devices in its JMatos. A clear advantage the JINI and other ad-hoc
networking technologies offer is that they allow mobile devices to roam through
a variety of networks. This promise, however, is difficult to fulfill primarily for
two reasons. First, the network operators of different networks roamed by a JINI
device may be operated by different entities, thereby having closed boundaries
to the JINI devices. Second, even if these network operators open up their net-
works for interoperability, a JINI implementation would have to live on the top
of a quilt of different low-level communication protocols implemented by each
network.†

As Eronen recognizes [Eronen 2000], the biggest downfall of JINI today is its
requirement of a virtual machine: “JINI’s Java dependency, while enabling most of
JINI’s best features, is at the same time the most limiting aspect of the technology.
A Java Virtual Machine that is required for each JINI service is not a light piece of
software.” Today, JINI and J2ME on the same device is not widely available. The
Java community is working on making JINI a more usable technology for mobile
devices with real implementations.

† As a side note, a group of JINI devices that are aware of one another are often called a JINI Federation.
The word “Federation” is frequently used in cooperative and ad-hoc networking environments to indicate
participation in a distributed computing system that requires some level of autonomous behavior on first
joining the federation, then allowing others to discover the device and the services on the device, and finally
interacting with the other members of the federation.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

54 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

2.4.5 Java-Based Peer-to-Peer Protocol
JXTA is a peer-to-peer protocol and part of the Java platform. As we discussed
in Chapter 1, peer-to-peer architectures allow peers to discover one another and
communicate. Whereas the process of discovery of other peers and the services
offered by those peers is covered by JINI as well as other protocols, JXTA provides
an actual protocol for those peers to send messages back and forth to one another.
The JXTA development community is now working on specifications that allow
both direct and indirect JXTA implementations for J2ME.

1. Direct Implementation: This is the case if the JXTA protocol and the relevant
APIs are provided on the J2ME device. The implementation may be done on
the top of one of the profiles (such as MIDP) or provided by the manufacturer
using native code and exposed as Java APIs on the top of CLDC.

2. Indirect Implementation: Because many devices may have some built-in native
networking capabilities, and because implementing multiple protocols on such
resource-starved devices is fairly expensive, it is possible to implement JXTA
through proxies. In this model, some or all of the peers connect to the other
peers through a proxy called a relay. This proxy, sometimes also referred to
as a surrogate, violates the trueness of a peer-to-peer architecture if it lives
outside of the device. However, it still allows us to take advantage of many
useful properties of peer-to-peer networks.

JXTA is the recommended APIs for peer-to-peer application layer protocols by Sun
Microsystems. However, this is one area of the Java platform where implementa-
tions such as Endeavor’s MAGI outside of the Java community have gained more
commercial success. JXTA has struggled to be adopted and is thin when it comes
to implementations and functionality. We will discuss the area of peer-to-peer
application architectures in detail in the latter sections of this text.

2.4.6 Where Does Java Fit In?
As subjective as it may be, within the developer community, it is well accepted
that Java, as a platform, offers the most open and the most complete solution to
application programming. Though it leads all other platforms in the marketplace,
whether or not it is the right approach to mobile applications remains under
question. Besides all of its strengths as a nonproprietary technology, Java enjoys a
unique process that allows it to evolve without bias toward any particular hardware
or software vendor: the Java Community Process. This process can roughly be
thought of as a negotiation process where various vendors get together and decide
on the evolution of the platform and the APIs. Obviously, J2ME and other parts
of Java relevant to mobile development evolve under the same process.

Unfortunately, this strength is also a weakness for this process is extremely
slow. Although this process has worked well in the evolutionary environment
of stationary application development, it remains to be seen whether J2ME and
other Java-related technologies can remain agile enough to adapt to mobile ap-
plication development. Desktop and server application development techniques
had matured by the time Java, as a programming language and as a platform,

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.5 BREW 55

came around. The same is not true of mobile application development techniques.
Mobile applications are still very young. The challenge for the Java Community
Process, as well as others who are forming Java as a platform, remains one of
finding the right balance among the low-level embedded approach to software de-
velopment, the high-level business application approach to software development,
and the incorporation of treatment for the dimensions of mobility.

As we wait to see the evolution of the platform, it is important to note that Java
remains the dominant force in mobile development and offers the most vendor
neutral and nonproprietary solutions to mobile application developers.

2.5 BREW

Qualcomm’s BREW (Binary Run-time Environment for Wireless) gives application
developers a new and different approach in producing mobile applications. BREW
is built directly into the hardware. It is offered as an API to access the CDMA,
GSM/GPRS, or UMTS chip sets that provide the support for it. But, it is primar-
ily intended for the variations of CDMA, a technology owned and licensed by
Qualcomm. BREW applications can be written on a PC using the BREW Software
Development Kit (SDK). Once the application is developed, it must be tested, and
then deployed. Deployment of BREW applications is a process done jointly by
Qualcomm and telecommunications carriers and not just the developer.

Though the creators of BREW say that they first came up with the acronym
BREW and then found the words to fit the acronym, the platform is somewhat
biased toward wireless applications that run on phones. And this may be the only
weakness of BREW as a mobile development platform. Although today developing
mobile applications means targeting cell phones or PDAs, this is changing rapidly
with new devices being introduced to the market.

BREW applications, also referred to as BREW applets, are written in C though
some support for C++ is provided (although some fundamental things such as
extending the base API through inheritance are not possible) and, using code
generation or virtual machine technologies, other languages such as Java can be
supported. One of the most impressive things about BREW is its near-full treatment
of dimensions of mobility in its architecture, feature implementation, and SDK.
Let us look at the various components that allow the developer to build a BREW
application.

2.5.1 BREW SDK Overview
To get started programming in BREW, the first thing you need to do is to go
to http://www.qualcomm.com/brew and register as a developer. This will allow
you to download the BREW SDK. To date, the BREW SDK is offered mainly as an
integrated set of components with Microsoft Visual C++ 6.0. Once you have down-
loaded the BREW SDK and installed it, you can begin developing. At the time of
authoring this text, the BREW SDK is at its 2.0 version and its effective use requires
installation of Microsoft Visual C++ 6.0. Once you have installed the BREW SDK,

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

56 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

you will have the following set of applications available for development:

1. BREW MIF Editor: Every BREW module, defined as the classes that make up
one or more BREW applications, has an associated Module Information File
(MIF). MIFs are required. Every BREW module must have a MIF. The MIF
Editor provides a GUI tool for editing the MIF file associated with the classes
that make up a module. The MIF Editor that comes with BREW SDK version
2.0 can be started as a wizard inside Visual C++ 6.0 or independently as a stand-
alone application. We will look at the use of the MIF Editor and building a
simple application.

2. BREW Device Configurator: This is a stand-alone application that allows devel-
opers to make up their own handset by configuring a vanilla mobile phone
and specifying the behavior of the keys, the look and feel of the screen, and
other specifics of the device. This development tool addresses the large variety
of existing devices by allowing developers to create their own device emulator
and testing the application. Remember, also, that because BREW is a platform
for writing application for the handset, it is possible to use the application to
build some adaptive behavior to adapt to each type of device. Still, the Device
Configurator is invaluable in that it allows developers to test the application on
their own emulated device environment.

3. BREW Emulator: For those who have designed and implemented any mobile
application, it is obvious that one of the most difficult steps in the development
process is the incremental unit testing. Although most platforms provide some
sort of a generic emulator, most do not allow for custom configuration of a
device (done by the Device Configurator) or using the custom configuration
to simulate running an application. This is what the BREW Emulator does.
But, the most impressive part is its treatment of location sensitivity, quality of
service, and telephony functionality. Not only does the BREW Emulator allow
the developer to load and run the application on a custom configuration, but also
it allows for the adjustment of various components of the network’s connectivity,
such as traffic up-delay and down-delay, so that the application may be tested
under various QOS conditions. The emulator also allows for emulating location-
sensitive applications by configuring a GPS output file manually and using it
to simulate the location input to the device. Finally, it allows the developer to
simulate various telephony events such as an incoming call or sending a Short
Messaging Service (SMS) message. The BREW Emulator, though primitive in
its look and feel, is perhaps the most complete emulator for applications that
run on mobile devices.

4. BREW Image Authoring Tool: There is an image authoring tool that allows cre-
ation of images for BREW. This tool can use PNG or BMP files.

5. BREW ARM Compiler:Many mobile devices are based on the ARM or Strong-
ARM hardware platform (registered trademarks of ARM Corporation). The
ARM Compiler enables the BREW developers to compile their code for
the mobile devices that carry the ARM-based technologies (16/32 bit RISC-
based microprocessors). The ARM Compiler has a licensing fee associated
with it.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.5 BREW 57

6. Image Converter: The tool set provides an image converter to convert 4-bit
bitmaps to 2-bit bitmaps as BREW only supports 2-bit bitmaps because of the
limited resources on mobile devices

7. BREW Resource Editor: If you have worked with Java or C++ to build GUI
client-side applications, then you are familiar with the concept of a resource
bundle. Resource files in BREW are a collection of images, strings, and dialog
look-and-feel components that allow changing the look and feel of the appli-
cation for internationalization and similar purposes without changing the code
base. The BREW Resource Editor gives the developers a GUI interface to manage
the resource files.

8. BREW Pure Voice Converter: This command line utility allows the developers
to convert wave files (audio) to Pure Voice files or vice versa.

9. BREW AppLoader: This tool allows the developer to deploy an application on
a handset through a PC connector. This is a testing and not a deployment tool.

10. BREW Grinder: The Grinder generates a variety of inputs and tests the appli-
cation.

11. BREW TestSig Generator and AppSigner: The TestSig tool provides the devel-
oper a mechanism to generate a test Class ID. The AppSigner uses the Class
3 Certification from Verisign (see Section 2.5.2 for how this plays into the
development process) to authenticate and sign an application.

Now, let us proceed by building a real BREW application.

2.5.2 Building and Deploying a Simple BREW Application
Before we start building a BREW application, let us understand the process of
deploying a BREW application. This process is quite different from the deployment
of most other mobile applications onto mobile devices.

To deploy a BREW application, here are the steps you would take (see Fig-
ure 2.6):

1. Download the SDK and get started: The first step is easy. Simply download the
free BREW SDK and begin developing your application. There are unit testing
tools such as the emulator that ship with the SDK so that you can test your
application in an emulated environment on your PC.

2. Obtain a Verisign Class 3 certificate: All BREW applications are fully authen-
ticated using a Verisign certificate. So, you will have to purchase a Verisign
certificate to start the process of getting your application onto a real handset.

3. Get a BREW phone: To test your application on a real device, you will have to
get a BREW phone. As we mentioned previously, though BREW is designed to
target a wide range of mobile devices, today support is only provided for mobile
phones. You can find a list of available phones on the BREW Web site. With a
data connection to your BREW phone, you can upload your sample application
to the phone and start testing it on the phone. However, you will not be able to
send it to any other devices or have anyone else download it onto their device.
Using the data connection is for simple testing only. To see how the application
works in a real environment and to deploy it to phones owned by actual users,
read on to the next steps.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

58 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

Download SDK
and Start

True BREW Test

Done

Yes

No Develop

Unit Test Get a Class ID

Obtain Class 3
Certificate from

Verisign

Get a BREW
Phone

Pricing and Carrier
Evaluation

FIGURE 2.6. Steps of Developing a BREW Application.

4. Register as a BREW developer: This is not a simple sign up for notifications and
other news about BREW. You will have to have the Verisign Class 3 certificate
before you can become an “Authenticated Developer.” Once you are an authen-
ticated developer, you are ready to work.

5. Obtain a Class ID for your application: During the development process, you can
use a dummy Class ID. But, to get the application out on a real device, you need
to get a Class ID for the application. This Class ID uniquely distinguishes your
application from all other BREW applications. Every BREW application has to
have a Class ID and the Class IDs are issued and provisioned by Qualcomm
centrally to avoid ID collision.

6. Perform a unit test and send it to a testing lab: If you are done with steps 1–5,
you are ready to submit your application for testing. To get the application
onto your phone, a Qualcomm-approved testing center needs to test your ap-
plication. It should be obvious that you want to bullet-proof the application
before submitting it to the testing center. This process is put in place to avoid
“crashing” the mobile device. Because the BREW application will be running
on a device whose environment is controlled by the device manufacturer and
the carrier, the constraints are much stricter than a stationary application run-
ning on a PC. A BREW application runs directly on top of the ASIC so the
potential for damage or a system crash as opposed to a mere application crash
is much higher. The testing lab assures that the application is resilient, written

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.5 BREW 59

according to the BREW specifications, and can coexist with other applications
on the mobile device.

7. Perform a pricing and carrier evaluation: Once the testing lab approves an ap-
plication, it is ready to be provisioned. Deployment of an application is done
by Qualcomm and the carriers supporting BREW. Therefore, the application
developer must submit the software to Qualcomm and the carriers for actual
deployment. Of course, deployment is done after the carrier and Qualcomm
approve of the application. There are a variety of factors such as the stability of
the application, how good the application is, the negotiated pricing, and oth-
ers that are critical in delivering the application to the mobile device. Though
these factors have nothing to do with the technical viability of the application,
they are business problems that must be solved before the application can be
deployed. This is both a strength and weakness in BREW. This model allows
the carriers (who are very protective of their domains), Qualcomm, and the
device manufacturers to have a say in the deployment process, thereby provid-
ing a sound economic foundation on which BREW is built. However, mixing
business propositions into the technical details of how an application is de-
ployed seems a little absurd from the developers’ perspective. This also means
that Qualcomm and the carrier are in complete control of provisioning and
distribution of the application.

Unfortunately, deploying a BREW application onto a device is not free. Before you
get an application up and working on a device, you need to pay various types of
fees for the Verisign certificate and, in practicality, become a Qualcomm developer,
requiring a significant membership fee depending on what type of membership
you want to sign up for. The positive spin on this, of course, is that the membership
fee pays for some marketing and weeds out those developers who do not have a
product and are just playing around with the platform. If you want to just learn
the platform, the best thing is probably just to download the SDK and the tools
after reading this section and then experiment with it.

Now, let us go on to the actual code.

2.5.3 Hello BREW
Once you have downloaded and installed the BREW SDK, you can get started.
Remember that BREW development is only practical within the Microsoft Visual
Studio 6.0 platform (with support for the .NET version of MS Studio coming soon).
Once you have installed the BREW SDK, you will be able to enter Microsoft Visual
Studio 6.0 and use the integrated components of the BREW SDK. You should note
that everything in the BREW API is in terms of interfaces. Extensibility is possible
through building your own BREW libraries, but a developer may not provide
implementations for the existing interfaces (and, therefore, may not inherit from
the existing APIs). Here is the procedure:

1. Click on File, New, and then Projects. You will see the BREW Application
Wizard. Choose it.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

60 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

2. The wizard will ask you if you want File, Network, Database, TAPI, or
Sound functionality. These selections correspond to the organization of the
BREW standard libraries:
a. Files: BREW provides an API that allows storage of small amounts of infor-

mation in structures with which application developers are familiar: files and
directories of files.

b. Database: Information is often better stored in a database instead of files if
the data must be searched, sorted, or indexed. BREW provides a set of APIs
to store, manipulate, and retrieve data that have a small amount of database-
like functionality. What BREW offers, it should be noted, is not nearly as
complete as a full-blown database system. However, it offers enough for
useful functionality.

c. TAPI (Telephony API): Because BREW is built on a wireless telephony platform
(CDMA), it is natural that it provides telephony functionality. At the time of
release of BREW SDK 2.0, functionality is limited to sending SMS messages
and switching back and forth between incoming and outgoing telephony
calls. However, being built on a telephony platform, it is almost certain that
BREW will offer functionality that provides control and manipulation of the
audio over the telephony channel, integration with voice recognition, and
other useful functionality.

d. Sound functionality: Sound functionality is provided through a set of multi-
media APIs. Sound can be stored on the device in BREW’s own format of
QCELP (a Qualcomm technology).

3. Once you have selected which libraries you will be using in your application,
you will need to create a MIF file for it. If you do not yet have a true valid Class
ID, you have to get the Verisign certificate, become a Qualcomm developer, and
go through the steps that we mentioned previously. Once again, every BREW
application must have an MIF file. Click on the MIF Editor. You will see these
different tabs on the wizard:
a. Applets: This is where you generate a test Class ID (or if you have already

become a Qualcomm developer, get a real Class ID from Qualcomm). The
other basic properties of the BREW application (as we mentioned before,
interchangeably referred to as BREW applet) are set in this pane. Note that if
you click on the Advanced button on this pane, another window pops up with
some features that seem to be programmatic. In BREW, certain behaviors of
the application such as its treatment of incoming telephony events (when a
call comes in while the application is running) have to be specified. Some
behaviors are fundamental to the behavior of the application and, therefore,
are required to have a footprint in the MIF file.

b. General: This pane is for entering the security-related information. Every
BREW application may provide access to other BREW applications and
modules or require a particular access level for certain functionality on the
device. It is important for this information to be on the MIF file because
other applications must know whether they are usable by other applica-
tions or not and so that the application container (the BREW environment

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.5 BREW 61

running on the BREW device) knows whether it can load and execute the
application.

c. Extensions and Dependencies: Because BREW applications can come in several
modules or have interdependencies among themselves, the MIF files allow
for specifying these dependencies. The Extensions and Dependencies panes
provide a graphical way of manipulating these dependencies.

Once you finish navigating through the wizard, the BREW wizard generates the
code for your simple application. Figure 2.7 shows the important functional
calls in the generated C code.

There are two things that should stand out to you:

1. AEEClsCreateInstance: This function, required for every BREW application, is
called by the BREW run-time environment. This is the initialization function.
AEEApplet New must be called within this function. AEEApplet New takes the
Class ID as an argument so that it can verify the validity of the application. It
also takes a pointer to the main event handler of the application as an argument,
giving the BREW run-time environment a call-back mechanism to listen for the
event that triggers the actions in the application. The type of this handle is
AEEHANDLER.

2. helloBREW HandleEvent: In our application, this is the event handler that is
passed into the constructor for the new application, thereby making it the main
event handler of the application. You can think of the event handler passed into
the AEEApplet NEW as the main() method of your application. This is similar
to the driver method of an object-oriented application. This is where the actual
displaying of the “Hello BREW” text is done.

You should note that there are some architectural concerns to understand about
BREW applications:

1. Everything in BREW is event driven. This comes from the tight coupling to the
hardware platform. So, the application starts by events that come from the user
activating it through the device keypad.

2. There are two groups of APIs you can use: those provided by Qualcomm as
part of the base BREW platform and those provided by third-party vendors
(such as device manufacturers), Qualcomm, and software vendors that provide
additional functionality on top of the standard BREW platform or a set of BREW
extensions. If you are developing an application in BREW, make sure that you
do not reinvent the wheel for every single problem. If you are trying to achieve
something that is basic, there is probably already a third-party vendor that
provides the functionality. There are various channels through which you can
find what is offered out there at the BREW developer site.

3. Though the BREW API itself is an object-oriented API, up to the SDK 2.0
version of the BREW tool set, developing BREW applications really only make
sense in C.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

#include "AEEModGen.h" //Module interface definitions

#include "AEEAppGen.h" //Applet interface definitions

#include "AEEShell.h" //Shell interface definitions

#include "AEEFile.h" //File interface definitions

#include "AEEDB.h" //Database interface definitions

#include "AEENet.h" //Socket interface definitions

#include "AEESound.h" //Sound Interface definitions

#include "AEETapi.h" //TAPI Interface definitions

static boolean helloBREW_HandleEvent(IApplet ∗ pi, AEEEvent

eCode, uint16 wParam, uint32 dwParam);

int AEEClsCreateInstance(AEECLSID ClsId,IShell ∗

pIShell,IModule ∗ po,void ∗∗ ppObj) {
∗ppObj = NULL;

if(ClsId == AEECLSID_TESTAGAIN){
if(AEEApplet_New(sizeof(AEEApplet), ClsId,

pIShell,po,(IApplet∗∗)ppObj,
(AEEHANDLER) helloBREW_HandleEvent,NULL)

== TRUE) {
//Add your code here . . .

return (AEE_SUCCESS);

}
}

return (EFAILED);

}
static boolean helloBREW_HandleEvent(AEEAPPLET ∗myApplet,
AEEEvent eCode, uint16 wParam, uint32 dwParam) {
AECHAR helloBREWString[] = {'H','e','l','l','o','','
B','R,'E','W',' \0'};

AECHAR goodbyeBREWString[]= {'B','y','e','','B','R,'E',
'W',' \0'};

switch (eCode) {
case EVT_APP_START:

IDISPLAY_DrawText(myApplet->m_pIDisplay,

AEE_FONT_BOLD, helloBREWString,-1,0,0,NULL,

IDF_ALIGN_CENTER)

IDISPLAY_Update (pMe->m_pIDisplay);

return(TRUE);

case EVT_APP_STOP:

IDISPLAY_DrawText(myApplet->m_pIDisplay,

AEE_FONT_BOLD, goodbyeBREWString,-1,0,0,

NULL,IDF_ALIGN_CENTER);

IDISPLAY_Update (pMe->m_pIDisplay);

return TRUE;

default:

break;

}
return FALSE;

}

FIGURE 2.7. Simple Application Generated by the Wizard.

62

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.5 BREW 63

BREW SDK 2.0 provides much more functionality than what we have presented
here. If you want to develop real BREW applications, the best thing to do is to
start at Qualcomm’s BREW site and read the documents that are provided. What
we have presented here is a bird’s-eye view of the development environment and
tools: the big picture that is often missing from the documentation provided by
the vendor itself. BREW offers a rich API to build wireless mobile applications.

2.5.4 Where Will BREW and BREW-Like Technologies Fit?
A fundamental difference between BREW (and similar frameworks and tools such
as Texas Instrument’s OMAP) and the other software frameworks and tools is
that the designers of BREW have approached the problem of building develop-
ment platforms for software application from a more hardware-oriented perspec-
tive. Most other platforms create a thick abstraction layer on top of the hardware
and hide the behavior of the hardware. BREW and like tools choose to build an
application framework based on the hardware platform. This has the following
implications:

1. Because mobile devices vary greatly in the features that they offer, it is difficult
to build a virtual machine or an operating system that allows full usage of all of
the functionality of these devices. In this way, BREW and its cousins OMAP and
others are superior in allowing the application developer to take full advantage
of device features. Also, on a resource-starved mobile device, this presents the
developer with the opportunity of optimizing applications for the platform.

2. Hardware-based platforms are inherently proprietary platforms from an appli-
cation development perspective. If an enterprise develops a set of applications
for BREW, neither porting over to other hardware-based application develop-
ment platforms such as OMAP nor porting over to software-based platforms
such as Windows CE and J2ME is a possibility. The code is specifically written
for the ASIC design of Qualcomm’s (or third-party licensee’s) hardware.

3. Though Qualcomm touts BREW as an “open platform,” this openness is only
relative. BREW is extensible by hardware manufacturers and software vendors.
But, basic APIs are provided by Qualcomm and other vendors are not allowed the
opportunity to compete in that market. This, in itself, is not important; however,
because the basic API is controlled by Qualcomm, issues such as integrating
with other mobile platforms and evolving the toolsets and APIs become very
much reliant on what Qualcomm wants to do with the platform. This, in turn,
reduces the true openness of the platform.

BREW, like J2ME, provides enough capabilities to be used as a framework for
writing mobile agents that implement weak mobility. We will look at mobile agents
closely in Chapter 9.

Although BREW uses Microsoft tools to ease development in addition to the
SDK that it provides, Microsoft itself is another vendor that provides a set of tools
and frameworks for development of mobile applications. Let us look at Microsoft’s
current offering in the mobile space, Windows CE.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

64 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

2.6 WINDOWS CE

An operating system is the master control program that enables the hardware by
abstracting it to the application via drivers [Development tools for Mobile and Em-
bedded Applications 2002]. Microsoft’s various products revolve around different
versions of an operating system. The versions that concern us, the mobile appli-
cation developers, most are Windows CE and Embedded Windows XP. Windows
CE has been around since 1997 and Embedded Windows XP is being released
at the time of authoring this text. These two operating systems are designed for
two different purposes. There are different flavors of the Windows CE operating
systems, of course, depending on the hardware platform. Some of these flavors are
the Pocket PC, Windows CE .NET, and Pocket PC 2002. These flavors largely de-
pend on the commercial bundling of different feature sets and hardware platforms
with which they are shipped (such as Compaq’s IPAQ). Embedded Windows XP,
in contrast, is a subset of the desktop version of Windows XP components. Devel-
opment for Embedded Windows XP is a bit more straightforward than developing
for Windows CE.

Mobile application frameworks that are based on an operating system treat
developing mobile applications in the same way as they treat their stationary
counterparts on PCs. As we mentioned previously, the operating system provides
basic access to the hardware such as I/O, networking, etc. So, the applications
that run on Windows CE and Embedded Windows XP are controlled by them,
respectively. Microsoft provides tools to build applications for each environment
too. These are as follows:

1. Embedded Visual C++: This is a tool set separate from Visual Studio, the typical
development environment for PC-based Windows applications. It allows for
authoring mobile applications in C++. Emulators and a debugger are provided.
The latest version of this tool provides advanced features such as exception
handling and run-time debugging, features you will cherish if you are actually
developing an application in C++ for mobile devices.

2. Embedded Visual Basic: This tool provides the ability to write applications using
Visual Basic. Visual Basic applications can be developed faster but do not offer
the developer the ability to tune and optimize the application for resource-
starved mobile devices. Therefore, Embedded Visual Basic is really not a suitable
tool for developing large commercial applications, but it does well for proof-of-
concept and prototype applications.

3. Smart Device Extensions for .NET: The .NET application programming platform,
the newest set of tools for building Microsoft Windows-based applications, can
be complemented with a set of extensions that allow developers to author .NET
applications for mobile devices.

4. Microsoft Mobile Internet Toolkit: This is really a server-side framework. We will
discuss it along with the other publishing tools later in this chapter.

As in the other Microsoft Windows platforms, Windows CE allows the use of
COM and ActiveX components in addition to the Win32 API. The other signifi-
cant features are markup language processing (HTML, XML, XSL, etc.), security
(e.g., SSL), a subset of the Windows ADO database access framework in ADOCE

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.6 Windows CE 65

(ADO for Windows CE), and limited functionality in coupling with the Microsoft
messaging queue in MSMQ.

2.6.1 Hello Visual Basic on Windows CE!
Building Microsoft Visual Basic applications on Windows CE is very similar to
building Visual Basic applications for the MS Windows desktop. The development
paradigm is based on forms and a series of GUI controls that can be placed on the
forms. To start, you will need to download and install the Microsoft eMbedded Vi-
sual Tools 3.0 (or higher as new versions become available). Then, do the following:

1. Start the eMbedded Visual Basic tool. You will find the environment different
from the Visual Basic IDE for the desktop, but it is very similar.

2. When you create a new project, the IDE automatically creates the base form for
your application. You will place the various controls on this form.

3. Drag and drop a label control anywhere on your form and type in “Hello Visual
Basic” in the “Caption” property of the control.

4. In the menu bar, you will see a combo box that allows you to select an emulator.
One of the emulators should be Pocket PC Emulator. Select it and then click
on the “Play” button in the menu bar.

That is all there is to it! Your application is finished. Just like MS Visual Basic for the
desktop gives desktop developers one of the fastest ways to develop applications,
eMbedded Visual Basic does the same for the Windows CE platform. Now, you
have to move the application onto a real device. Because Windows CE is different
for the various hardware platforms that it runs on (such as Pocket PC), you need
to compile your application for the appropriate platform.

To test your application on the real device, you will need to physically connect
the device to your desktop. There are various ways of connecting, the most popular
of which is the RS232 connection (the serial port) on your PC. Once you have
connected the device to your PC, you need to make the application installable on
a Windows CE device. To do this, perform the following steps:

1. From the Tools menu, select Remote Tools, and then Application Install Wizard.
2. The wizard will walk you through a simple installation process; one of the steps

is the selection of the hardware platform. You will be asked what processor
you want. This is because different devices use different processors (Intel x86
based, ARM, StrongARM, etc.). The compiler for each one of these processors
is different.

3. From here installation proceeds as with any other application on Windows CE.

To add more advanced functionality to the application, you will have to bind
the even listeners on the forms and controls to MS Visual Basic functions and
subroutines.

As in the desktop version of Visual Basic, you can pass variables into subroutines
and functions by value or by reference.

Remember that you can only develop applications, using eMbedded Visual
Basic, for the higher end hardware platforms for Windows CE. For example, you

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

66 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

cannot develop Microsoft Smart Phone applications with eMbedded Visual Basic.
When you develop a mobile application with Visual Basic, you should try to find
most of your components as COM/ActiveX components provided by third parties.

Now, let us look at developing applications with the Microsoft eMbedded Visual
C++ tool.

2.6.2 eMbedded Visual C++ on Windows CE
eMbedded Visual C++ is an environment, very similar to its desktop counterpart of
Visual C++ 6.0, designed for developing applications and software components for
Windows CE in C++. At the time of authoring this book, compilers are available for
varieties of ARM, MIPS, Intel’s x86, PowerPC, and Hitachi processors. eMbedded
Visual C++ (eVC) provides the following:

1. use of a subset of the Win32 APIs for building Windows CE applications,
2. use of a subset of the MFC (Microsoft Foundation Classes) libraries,
3. use of a subset of ATL libraries, and
4. a set of classes specific to the Windows CE platform.

As in the case of Visual C++ 6.0, eVC is a very advanced development environ-
ment compared to its counterparts in the marketplace as a development tool.
However, by looking at the libraries supported by eVC, it becomes obvious that
the developers are expected to use the tool primarily to build applications that
are subsets of some stationary application or to build their own libraries to sup-
port advanced functionality specific to mobile application development such as
location sensitivity.

eVC allows a significant amount of control over the look and feel of GUI ap-
plications designed for the Stylus and the small user interface. For example, most
navigation in Windows CE is done by a single press (referred to as Stylus Tap—
analogous to a mouse click). One also has the ability to press and hold, similar to
a double press (like a mouse double-click).

Just like Windows 2000, Windows CE utilizes a protected memory architecture.
When a Windows CE machine first boots, it creates a single 4 GB virtual address
space [Introduction to eVC++]. This, however, does not mean that there is 4 GB
of random-access memory (RAM) available! In fact, currently most Windows CE
devices are limited to under 64 MB. Moreover, although we expect mobile devices
to continue to grow in their processing ability and memory, it is unlikely that we
will ever want to run memory-intensive applications on mobile devices because
physical size is a limiting factor and battery life is not growing as fast as processing
power. This virtual address space is then divided into 33 different “slots,” each of
which is available for use by a process. The maximum size of each slot is 32 MB.
This is simply the model with which the memory is managed; it does not mean
that the device is required to have 4 GB of memory or that it offers 32 MB of
memory per process. Also, keep in mind that Windows CE does not allow paging
(file swaps), so you can exceed the available RAM. File swapping is something that
is typically not implemented as a strategy for improving the memory limitations
of mobile devices as it is cost prohibitive to the battery life and takes considerable
processing power.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.6 Windows CE 67

....

Private Sub Form_MouseDown(aMessage As String, aDisplay As

Boolean)

If aDisplay = true then

aMessage = "This Message Is Displayed When You Push

The Mouse"

End If

End Sub

....

FIGURE 2.8. Creating an eMbedded Visual Basic Application by Filling the Events.

When building eVC applications, keep the following in mind:

1. Graphics are expensive. Whether you decided to use GDI or another method
of rendering graphics, delivering them takes more memory, more CPU, more
time, and more power from the battery. So, try to avoid graphics when
possible.

2. Use events instead of polling when possible. Figure 2.8 shows some sample
code that involves events in Windows CE environment. Polling is expen-
sive for the same set of reasons as graphics are. Sleeps and event notifica-
tions are both features available to the eVC programmer to produce efficient
applications.

3. Be very frugal in the use of RAM in your applications. Remember that persistent
and RAM memory are typically handled by one set of hardware on mobile
devices. Today, most mobile devices, including Windows CE devices, do not
have hard drives (though this is changing).

4. As mentioned in item 3, because RAM and persistent memory often share the
same hardware, being frugal in persisting data or handling data in memory pays
off in reducing power consumption as well.

5. There is some functionality provided to the application developer to get the
status of the power consumption. You can use this functionality in two ways.
First, you can use it while designing and testing to see the power consumption
during the life cycle of the usage of the application. Alternatively, you may want
to use the power status (called up by GetPowerStatusEx function) to change
the behavior of the application. For example, if the battery is getting low, you
might want to persist the data to the network or locally and shut down the
application after warning the user.

6. Make sure that you clean up memory resources whenever you get a
WM HIBERNATE event (which sends the device into hibernation). Failing to
do a good memory cleanup there will lead to memory leaks and application
instability.

Figure 2.9 shows a simple application using eVC. The eVC wizard is friendly
and similar to the other wizards that ship with various Microsoft development
tools.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

#include <windows.h>

#include <windowsx.h>

#include "resource.h"

HWND mMainWindow = NULL;

HINSTANCE mInstance = NULL;

TCHAR mHelloWorldText[] = TEXT("HELLO WORLD");

BOOL InitApp(HINSTANCE anInstance);

LRESULT CALLBAC Show(HWND aWindowHandle, UNIT aMessage,

WPARAM aParm1, LPARAM aParam2);

int WINAPI WinMain(HINSTANCE cInstance, HINSTANCE pInstance,

LPWSTR aCmdLine, int aCmdShow) {return init(cInstance);}

BOOL init(HINSTANCE cInstance, int aCommand) {
WNDCLASS myWindow;

BOOL b;

mInstance = cInstance;

mMainWindow = CreateWindow(mHelloWorldText,

mHelloWorldText, WS-VISIBLE,

CW_USEDEFUALT,CW_USEDEFAULT,

CW_USEDEFAULT, NULL, NULL, cInstance,NULL);

If (! mMainWindow) {return FALSE;}
myWindow.style = CS_HREDRW | CS_VREDRAW;

myWindow.lpfnWndProc = (WNDPROC) Show;

b = (RegisterClass(&myWIndow));

if (!b) {return FALSE;}
ShowWindow(mMainWindow, aCommand);

Return TRUE;

}

LRESULT CALLBACK Show(HWND aWindow, UINT aMessage,) {
HDC aHDC = NULL;

PAINTSTRUCT aPaintStructure = NULL;

RECT aRectangle = NULL;

LRESULT aResult = TURE;

switch (aMessage) {
case WM_PAINT: {

aHDC = BeginPaint (aWindow, &aPaintStructure);

GetClientRect (hwnd, &rect);

DrawText (aHDC, L"Hello World", -1,

&aRectangle, DT_SINGLELINE | DT_CENTER |
DT_VCENTER);

EndPaint (hwnd, &aPaintStructure);

break;

}
default:

DestroyWindow(aWindow);

break;

}
return (LRESULT);

}

FIGURE 2.9. A Simple Application Written for Windows CE Using eVC++.

68

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.6 Windows CE 69

Something that we should not overlook before moving on is the ability to use
an asynchronous messaging model to communicate with the network. This is
possible through the use of Microsoft Messaging Queuing (MSMQ). There are a
couple of different scenarios under which the use of MSMQ implementation for
Windows CE would make sense:

1. Because the device may or may not be connected to the network at the time a
particular application is executing, messages from the application to the net-
work may have to be queued up.

2. To use the connection to the network efficiently, we may want to connect, send
a large amount of data to the network, disconnect, accumulate more data, and
then start the cycle over again. This can allow for more efficient usage of the
network connection.

MSMQ is integrated into all other versions of Microsoft Windows; therefore, it
allows for a certain amount of ubiquity as long as the application developer stays
within the Microsoft product bundle. As in the case of all of the other tools we
have looked at in the Windows CE arena, MSMQ for Windows CE offers a subset
of the functionality offered by its older and bigger brother running on the desktop
and server versions of Windows. Nevertheless, the ability to use a simple API to
communicate with the network asynchronously and without worrying about the
intermittent network connectivity is invaluable.

2.6.3 Databases on Windows CE
Data storage is one of the best addressed areas on the Windows CE platform. There
are three ways to store data on a Windows CE device:

1. MS SQL Server Windows CE Edition: This is the highest end solution providing
the most amount of functionality. However, it is also the one that takes up the
most resources on the device. MS SQL Server Windows CE offers a subset
of the functionality offered by the desktop/server version of MS SQL Server.
Advanced features such as Views and Stored Procedures are not supported. It
takes up more than 1 MB of resources on the device (not including the data
itself) and allows for replication and synchronization through HTTP.

2. CEDB: This solution allows storage of information in a small and simple
database. CEDB is typically a better solution for most applications on most
devices because it occupies fewer resources than the MS SQL Server for Win-
dows CE. CEDB offers crucial functionality, such as storage of information as
records, that make it more useful than a simple file system. Yet, it is light and
does not take up a lot of the resources on the device. It is important to note
that CEDB is not a relational database; for example, every record may have a
variable number of data members. So, working with CEDB is a bit different
from working with the typical relational database.

3. File system: As with most client-side mobile platforms, the application can
store data in a file system. This solution takes the fewest resources but may
increase the size of the application (to replicate functionality such as querying

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

70 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

the data that may be prebuilt into databases) and increases the development
time. Depending on the hardware and version of Windows CE, there is a range
of 16 to 256 MB of RAM-based storage available for storage and a range of 16
to 32 MB for the maximum size of a single file. The number of possible files
can be anywhere from 216 to 222. Though it may seem, at first glance, that
this is far more files than you could possibly want, because of the intermittent
connectivity issues with mobile applications, we often have to store a large
number of cached files.

To access these data programmatically, there is ADOCE (ActiveX Database Objects
for Windows CE). ADOCE provides a subset of functionality of ADO in storing and
manipulating data programmatically in memory and then persisting it. Although
persisting to a file system has to be done manually, ADOCE provides a good API
for persisting data to CEDB and MS SQL Server for Windows CE.

2.6.4 Windows CE and Web Services
As you will see in the next chapter, XML is the document standard for much of the
distributed content that exists today. Mobile applications, in particular, should be
designed in a way that they can take advantage of existing and future content and
be interoperable with existing systems. XML-based Web services are particularly
important as content can be exchanged over the Web and disparate systems may be
made interoperable using HTTP and XML. Such interoperability is a particular aim
of Web services. Microsoft’s .NET is a collection of various Microsoft technologies:
ones that had existed prior to .NET, new Web service–based functionality, C# as
a programming language, and several other important technologies.

.NET Web services are based on two key technologies: WSDL (Web Services
Definition Language) and SOAP (Simple Object Access Protocol). We will discuss
both of these in detail in the next chapter. When developing desktop and server-
side Microsoft Windows applications, ROPE (Remote Object Proxy Engine), a DLL
that provides a simple API to use SOAP, facilitates the job of building Web service–
based applications. Currently, ROPE is not available for Windows CE. Figure 2.10
shows a Visual Basic program for the Windows CE platform that builds and sub-
mits a SOAP envelope. However, XML parsing, communication through HTTP,
and other facilities are still available to build Web service–based applications. In
addition, Pocket SOAP, a SOAP client COM component for Windows CE, allows
Windows CE applications to directly interact with various Web services.

.NET adds much to the existing capabilities of the Windows CE platform.
Microsoft is certain to continue to add features to it to move the Windows CE
platform more toward a full-blown mobile development platform from its current
form as a subset of the desktop Microsoft Windows platform.

2.6.5 Treatment of Dimensions of Mobility by Windows CE
With the exception of treatment of the possibility of disconnected use of devices
from the network, unfortunately, there seems to be an inherent lack of treatment
of the dimensions of mobility by the current versions of Windows CE. However,

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.6 Windows CE 71

Option Explicit

Private mEnvelope As PocketSOAP.CoEnvelope

Private mTransport As PocketSOAP.HTTPTransport

Public Sub SOAPInit()

Set mEnvelope = CreateObject("PocketSOAP.Envelope.2")

Set mHTTP = CreateObject("PocketSOAP.HTTPTransport.2")

End Sub

Public Function Submit(aListener As String, aSOAPMethod As

String, _aParam_1 As Variant, aParam_2 As Variant, aURI As

String) As String

Dim myRequest As String

mEnvelope.SetMethod aSOAPMethod, aURI

mEnvelope.Parameters.Clear

mEnvelope.Parameters.Create aParam_1, aParam_2

myRequest = mEnvelope.Serialize

mHTTP.send aListener, myRequest

mEnvelope.parse mHTTP

Submit = mEnvelope.Parameters.Item(0).Value

End Function

FIGURE 2.10. Using eMbedded Visual Basic to Build and Submit SOAP Envelopes.

future versions are slated to have better support for treating the dimensions of
mobility.

As we mentioned before, Windows CE essentially treats mobile applications like
their stationary counterpart. Nevertheless, because of Microsoft’s market penetra-
tion in the personal computing arena, and because of the seamless compatibility
with all other Windows-based technologies, Windows CE has a very significant
base in the market and will continue to be one of the most widely deployed base
platforms for mobile applications. ActiveSync gives developers a well-integrated
mechanism for synchronizing data between the device and the network.

Windows CE treats the problem of disconnected use better than all of the
other problems of mobility. Because it is based on Windows and offers a practiced
data storage subsystem as well as a programmatic interface to do it in ADOCE,
storage of data as well as synchronizing/replication operations is well taken care
of in Windows CE.

Microsoft Smart Phone is a significant move on Microsoft’s part to treat mo-
bile applications in a fundamentally different manner from the typical desktop
application.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

72 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

2.6.6 Microsoft Smart Phone
Microsoft Smart Phone 2002, an attempt by Microsoft to enter the mobile tele-
phony market, can host custom applications written using the Smart Phone SDK.
This SDK is provided as a plug-in for eVC and enables the application developers
to develop applications for the Smart Phone much the same as they do for the
Windows CE platform using eVC.

The Smart Phone SDK provides some interesting controls that are designed
based on sophisticated user interfaces but are small for the screen of a mobile
phone. An example is the “Roll-over” box. This is similar in appearance to a
combo box but allows for flipping through a list of options by rolling.

Developing for the Smart Phone is much like of any other eVC++-based devel-
opment. The only thing to be aware of is the fact that deployment is different and
that the Smart Phone is designed to be more of a phone than a PDA.

2.7 WAP

Wireless Application Protocol (WAP) is the single framework most used in build-
ing mobile applications today. Despite all of its initial high promises, its lack of
meeting those promises, and being written off for dead, WAP seems to have sur-
vived the critics and continues to improve. WAP, which was initially intended to
be as pervasive for wireless and mobile applications as HTTP has been for the Web,
never achieved the level of success initially expected. However, to date, WAP has
the largest install base of all open application development platforms (second to
NTT Docomo’s closed and proprietary i-mode system) on mobile phones, meaning
that WAP is installed on more mobile phones than any other software.

WAP shares some similarities to HTTP. From its inception to now, it has become
more and more like HTTP. WAP 1.x and WAP 2.x are significantly different with
WAP 1.x being the basis for nearly all the current installations in the market today
and WAP 2.x being the target platform for WAP devices during 2003 and 2004.
Let us go over some basics about WAP.

1. WAP is intended for thin clients. Much like HTTP, the designers of WAP 1.x
were thinking about a thin-client technology: a case where nearly all logic is
calculated on the server and very simple display instructions are bundled in
some markup language to be displayed by the client. In HTTP, this markup
language was HTML; in WAP 1.x, it is WML, the Wireless Markup Language.
The latest version of HTTP and WAP 2.x both move to deploy XHTML, a
markup language designed for graphical user interfaces that can be extended
and is well formed with XML standards.

2. WAP is built on its own lower level communication protocol. Whereas HTTP as-
sumes the existence of TCP/IP (which in turn provides persistent connections),
WAP is built on its own set of communication protocols that wrap around TCP,
UDP, or a variety of other possible protocol implementations. This is a topic
of considerable discussion. TCP/IP is the way most computers are connected
together on the Internet. Yet, TCP is based on the existence of a persistent

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.7 WAP 73

connection. There is somewhat of an inherent conflict between a truly persis-
tent connection and wireless connectivity (the typical choice of connectivity
for mobile applications). This does not mean that it is impossible to have a
TCP/IP-based network that is wireless, but rather that the technical challenge
is higher by orders of magnitude when compared to wired networks. Reestab-
lishing a persistent connection in a low-bandwidth environment is slow and
takes network and device resources. This and a variety of other reasons are what
drove the WAP Forum to design the WAP 1.x connectivity model as they did.
In WAP 2.x, the WAP Forum has moved a bit to the TCP side on its position,
providing both datagrams and connections (TCP/IP connections) as methods
of connectivity. True persistent connections seem more realistic as wireless net-
works are being upgraded to GPRS, GSM, and other similar high-bandwidth
technologies.

3. Typical deployment of WAP includes a proxy or a gateway. Wireless carriers (also
referred to as bearer networks) like to have control of every single incoming and
outgoing bit of data that travels on their network. This is understandable as
usage time is the typical mechanism for billing. However, it introduces some
interesting nuances, such as the prevalence of proxies, into most of the deploy-
able architectural schemes for mobile applications. Proxies play many roles in
WAP. They provide a bridge between proprietary functionality implementations
of various wireless networks and standard implementations. They also provide
well-defined interfaces for various parts of WAP (e.g., WTLS, which treats se-
cure communication in WAP). These well-defined interfaces allow vendors to
compete based on implementations. They also allow the networks deploying
WAP to select best-of-bread solutions without compromising interoperability
or functionality.

4. WAP is a complete framework for mobile applications. Whereas most tools created
for development of applications treat a part of the mobile application chain, WAP
treats, or at least attempts to treat, all parts of the mobile equation. Although this
means that WAP treats the entire gamut of problems such as security, content
types, application layer protocol, and others, it also means that compromises
and idiosyncrasies are created because of the marriage of all of the different
parts of the mobile domain. The fact that WAP has various parts, however, does
not mean that some of its parts cannot be used individually. For example, J2ME
applications can use WAP as a communication protocol while not using the
WAP browser (instead using a client-side J2ME application to provide a richer
and better user experience).

To better understand WAP, let us briefly go through its major components. Rather
than address WAP comprehensively, as the most widely deployed mobile platform,
we will survey its various components and their functionality.

2.7.1 WAP Architecture
WAP adheres to a client–server architecture with implementation standards for
the client that interpret content, the communication mechanisms between the
clients and the servers, and additional required features in the servers, particularly

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

74 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

FIGURE 2.11. Basic Communication Architecture in WAP.

proxy servers. WAP attempts to follow the success of HTTP by mimicking some
of its properties and providing a standard for a thin client, commonly referred
to as a microbrowser. Figure 2.11 shows the basic communication architecture
in WAP.

WAP adds a couple of pieces of functionality to the communication between
the client and the server (WAP Gateway or WAP Proxy):

1. Handling of Telephony on the Device: Currently, devices and networks treat voice
and data differently. Most voice is processed, and will continue to be processed
for a very long time, through a telephony system that does not provide much
in the way of complex operations. WAP specifies that the client must be able to
handle simple telephony interactions on the device such as making an outbound
call.

2. Push: Push offers some degree of treatment for one of the dimensions of mobility,
namely support for active behavior.

It needs to be reiterated that the WAP architecture was designed with a subset of
the mobile application arena in mind: wireless applications. WAP does not treat
the entirety of mobile applications and dimensions of mobility. But, in focusing
on wireless applications, it treats QOS and lack of bandwidth or reliability thereof
extensively and fully. Furthermore, the WAP architecture lends itself to clients that
are very resource-starved such as cellular telephones. It begins to seem useless once
one begins to move toward the more powerful end of the device spectrum, starting
with PDAs and moving on.

2.7.2 WAP UI
To most software developers, developing WAP 1.x applications has been about
developing WML pages. WML was the markup language rendered by the WAP
microbrowsers. There are a plethora of good books on WML development (see
the references). WML offered some distinct advantages over HTML:

1. The WML tag set is smaller and therefore better suited for resource-starved
devices.

2. WML is XML compliant. HTML pages can be rendered in different ways by
different browsers partly because HTML is not well formed and there is more
than one way to do some things. This non-well-formed behavior of HTML also

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.7 WAP 75

causes a problem in that the HTML browsers are fairly complex to be able to
render all of the different possible permutations of tag sets. Finally, the well-
formed nature of WML allows for faster and less complex validation of WML
pages.

3. WML is designed with small monochrome screens in mind. It allows for things
like breaking a page into a deck of cards, displaying one card at a time, and
allowing client-side navigation between the cards.

4. WML has markup tags that allow interacting with the telephony functionality
of wireless devices offered through the WAP WTA agent.

There is a problem with WML though. Most existing content on the wired Internet
is in HTML. Because of the quirky properties of HTML, such as its non-well-formed
nature, conversion of HTML to WML is not a process that can be easily automated.
And when it is automated, it typically renders poor results because context of the
various pieces of content is only half the story when it comes to rendering user
interface elements. In its 2.x incarnation, WAP is taking an approach to converge
with the wired Web in using XHTML. Although XHTML is similar to HTML,
it is extensible and well formed, thereby allowing application of various XML
techniques such as application of XSLs to convert XHTML to WML and selection
of a subset of the XML document.

2.7.3 WAP Proxies and Gateways
There is typically an intermediary server between the wireless network that sup-
ports WAP and the supporting Internet protocol of HTTP. This intermediary server
can act as a proxy or a gateway. Note that the difference between a proxy and a
gateway is that a client determines when it will use a proxy [Fielding 2000]. Some
WAP-enabled devices do have the ability to change their proxy settings; however,
this feature is typically disabled from access by the user by the network provider
or the device manufacturer as it can circumvent billing mechanisms (especially
for the United States compared to Europe). Therefore, whether used as a proxy or
a true gateway, WAP intermediaries are typically referred to as WAP Gateways.

WAP gateways provide six important features:

1. Security: The WAP gateway provides a secure handoff point between WTLS
(Wireless Transport Layer Security) to external security mechanisms such as
SSL for HTTP in the form of HTTPS. Although the implementation of security
mechanisms on the WAP deployments can vary, the interface to the WAP gateway
must be able to support WTLS and the corresponding hookups to HTTPS.

2. Network Access: The WAP gateway is the access point for the WAP client devices.
Network providers are able to restrict access to users and connect their usage to
billing systems by using the WAP gateways. It is also possible to create so-called
walled gardens that disallow access to particular resources on the Internet or
provide other Internet-based services not offered to nonsubscribers.

3. Protocol Conversion: The gateway is responsible for converting Wireless Ses-
sion Protocol (WSP) to HTTP. This allows WAP to be based on a non-
TCP/IP application layer protocol (WDP) and yet interact with the HTTP-based

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

76 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

Internet. Since WDP and WSP are lightweight and very generic wrappers for
the implementation of the communication protocol by the network providers
and device manufactures (CDMA, TDMA, GSM, etc.), the gateway’s job is to
convert the communications received in the form of WDP and WSP and provide
HTTP client and server capabilities for communicating with other entities on
the Internet. Even though WAP 2.x moves more toward the HTTP model, for
backward compatibility reasons, the WSP/WDP layer remains.

4. Caching: If you have built an application with WAP using WML and WMLScript,
you have invariably ran into a problem with caching issues. The WAP gateways
provide a caching mechanism equivalent to (and even surpassing) that provided
by HTTP. In fact, most implementations of WAP gateways are configured, out
of the box, with extremely aggressive caching, leaving it to the developer of
the application to manually expire the cache using standard HTTP headers
or custom headers. The value delivered by the implementation of the various
caching functionalities on the WAP gateways is of questionable value. HTTP
seems to have got it right in the caching functionality it offers, so creating differ-
ent caching schemes for content is a hotly debated topic. Although bandwidth
preservation is something that aggressive caching can treat, it reduces porta-
bility and accessibility of content. Therefore, it reduces the pervasiveness of
content that needs to be accessed by various mobile applications.

5. Preparation of Content and Scripts: WML is textual, and text is not a very ef-
ficient format for transfer of data. Therefore, the gateway encodes WML into
“Compiled WML” (WMLC) before shipping it to the WAP-enabled device.
Also, for security and syntax-checking reasons, WMLScripts must be checked
and compiled before being sent to the client. Some WMLScripts use telephony
functionality that requires interactions with other servers on the network. Even
though the interface to these scripts are standard (such as making an outbound
call and dialing extra digits), the implementation varies depending on the net-
work. All of these types of tasks involve some preparation of content or code
before it is sent to the WAP-enabled device. The gateway takes care of these
tasks in WAP 1.x. Compilation and encoding, though still somewhat relevant,
is less relevant in WAP 2.x as the WAP Forum moves to a model that resembles
the Web-based user interfaces more with the use of XHTML.

6. Functionality Offered through WAP 2.x and Higher: Although WAP 2.x is not
yet deployed in the United States and is just beginning to be rolled out in
Europe, it offers a variety of changes to the role of the proxy/gateway in WAP
deployments. First, as WAP moves more and more toward the Web, and as
network QOS improves, WAP is beginning to offer a model of connectivity
that puts increasingly less functionality into the proxy. One thing is important
to remember though: The QOS issues will always exist because the nature of
mobile connectivity is inherently different from wired connectivity and because
intermittent connectivity can be caused by the mobile nature of the user and
devices. So, although the gateways are taking on less and less, they will always
be necessary to bridge the gap between the requirements of two distinct types
of network participants: mobile and stationary.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.7 WAP 77

In addition, WAP 2.x offers WAP push, support for UAProf (which we talk about
in Chapter 3), additional functionality for WTA (Wireless Telephony Application),
an External Functionality Interface (EFI) offering an extensibility mechanism for
WAP APIs, data synchronization using SyncML, a persistent storage interface for
storing data on the device, a multimedia messaging service, pictograms (small
images used in messages), and provisioning. All of this new functionality must
be supported by both the gateway and the client-side agent. This is because these
functions are not standard parts of the Web today and some server-side mechanism
must implement the support for such functionality.

2.7.4 Multimedia Messaging Services
The Multimedia Messaging Service (MMS) is the more mature child of the ever
popular Short Messaging Service (SMS). Although sending multimedia messages
can be implemented using any proprietary or standard technology, WAP’s MMS
specification is quickly gaining ground in becoming the industry standard for
multimedia messages.

WAP MMS has several different aspects that we will look at in more depth, but
let us go through an overview now:

1. Presentation: Because WAP is based on a thin-client architecture, the micro-
browser must know how to render the multimedia message. MMS presentation
is handled through SMIL (Synchronized Multimedia Integration Language).
SMIL, which we will look at in great detail later in this text, is an XML-based
language that allows one to specify the temporal behavior of various compo-
nents of a multimedia message (audio, pictures, text, etc.), how they may be
layered, how they are to be sequenced, etc.

2. Addressing: As in the case of any other type of message, an MMS message must be
addressed to a receiver and by a sender. The MMS addressing model contains
two addresses: the address of the MMS Proxy-Relay and the address of the
recipient user and terminal [WAP MMS Encapsulation 2002]. Basically, this
means that the MMS message must have the address of a server that knows how
to send it and the address of a receiver. The address of the receiver can be a valid
e-mail address [RFC822], a valid phone number, an IPv4, or an IPv6 address.

3. Delivery: Delivery of an MMS message is possible through a variety of interfaces.
These interfaces include the following:
a. MMS proxy-relay: This proxy server acts as an intermediary between MMS

clients and other messaging systems or MMS clients.
b. Standard e-mail interface: This interface would support any protocol sup-

ported by various Internet-based e-mail systems such as SMTP, POP, IMAP,
and others.

c. Legacy wireless messaging systems: Though there is no specific method or
interface for interfacing with legacy wireless messaging systems such as SMS,
the MMS specification recommends that such an interface be built by the
implementers of an MMSC.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

78 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

Push Over
the Air

Push Access
Protocol

WAP Browser

Mobile Access
Gateway PPG

Push Initiator

FIGURE 2.12. WAP 2.x Push.

The MMS proxy-relay can be hosted in the same environment or is a part of the
Push Proxy Gateway (PPG) to facilitate sending of the message. MMS is perhaps
one of the most critical parts of WAP 2.x as asynchronous messaging has been
one of the early successful applications of wireless communications. Although
asynchronous messaging is only a small subset of mobile applications, it is an
important part of mobile applications because it presents the perfect way to deal
with the disconnected user in an active manner: Simply send the message to the
user’s device as soon as it is available.

2.7.5 WAP Push
WAP Push is based on Push Access Protocol (PAP). Because of the thin-client
architecture of WAP, it should be noted that “push” refers to sending a piece of
content to the mobile device without the user explicitly requesting the particular
content. There is no treatment of pushing code modules to the client in WAP Push.

A Push operation (see Figure 2.12) is accomplished by allowing a Push Initiator
(PI) to transmit Push content and delivery instructions to a PPG, which then
delivers the Push content to the WAP client (henceforth referred to as “device” or
“terminal”) according to the delivery instructions [Openwave 2002].

A WAP Push event goes through the following:

1. The mobile device (wireless phone in the case of WAP) connects and regis-
ters with a so-called Master Pull Proxy. This registration process is similar to
registration of an object to become an event listener.

2. An application server, most probably external to the network of the wireless
access provider, establishes a connection to a PPG through PAP protocol.

3. The content of the message being pushed can be a multipart document following
the MIME format.

4. The user agent profile, through the implementation of UAProf, of the device
receiving the push is accessed. This profile specifies the behavior of the push
such as whether the user should be interrupted or not.

5. The message is then sent to the PPG. The device (previously registered with the
PPG) receives the message.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.7 WAP 79

Addressing of WAP Push is done through the MSISDN, which is typically the
phone number of the device.

2.7.6 Security
WAP treats security issues in a comprehensive manner—rightly so, as wireless
communications lend themselves to intruders more than their wired counterparts.
WTLS allows for a mapping to Internet-based security of TLS (also known as SSL).
WAP does not have application authorization. (This makes sense as WAP depends
on applications that are running on servers and probably connect through HTTP,
on a network running some protocol other than WAP.) It does, however, offer
guaranteed authentication of the user devices as well as guaranteed integrity of
the transactions that take place between the WAP-enabled devices and the WAP
gateways. We will look at the WAP security issues later in this text.

2.7.7 Treatment of Dimensions of Mobility by WAP
As we have already mentioned several times, WAP intends to solve the problem
of wireless applications rather than those of mobile applications. Because wireless
applications are a subset of mobile applications, it is able to solve only a subset
of problems presented to mobile application developers. So, once again, as we
did with the other tools that we have looked at, let us see how WAP as a mobile
application development platform measures up:

1. Location awareness: Though there is talk of supporting various location-based
APIs in future versions of WAP, the intended mechanism to support location
sensitivity in the 2.x version of WAP is the extensibility mechanism in EFI.
So, whereas WAP 1.x does not treat location awareness at all, WAP 2.x offers
a generic extensibility mechanism that can be applied to a variety of desired
functionalities such as location awareness. However, WAP 2.x fails in proper
treatment of location awareness functionality.

2. QOS: WSP, WDP, WTLS, and the other components that make WAP were
designed with a great deal of attention paid to QOS. This dimension of mobility
is perhaps best treated. However, it has been neglected until recently in WAP
2.x, where some attention has been paid to the possibility of using the device
in a completely disconnected fashion.

3. Limited device capabilities: WAP does a good job of properly treating resource-
starved devices. However, WAP is a thin-client environment and does not allow
the application developer to optimize, make creative and clever user interfaces,
or take advantage of an application that can run on the client. Whereas the
thin-client nature of WAP allows it to treat resource-starved devices, the thin-
client model is not particularly well suited for all mobile applications (which
does not mean that some mobile applications can take advantage of it).

4. Limited power supply: Though WML and XHTML pages can be optimized, once
again, the thin-client treatment of the applications disables the developers from
optimizing the applications and/or building applications that behave differently
depending on the amount of power available on the device.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

80 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

5. Support for a wide variety of user interfaces: WAP 1.x addressed the interface
problem of small screens by introducing the concept of cards and reducing the
tag set available to the developers to those only necessary to render a simple
user interface. WAP 2.x allows better support yet by moving toward XHTML
and mobile cascading style sheets.

6. Platform proliferation: With the exception of WML attempting to address the
small user interface of most mobile phones, WAP 1.x did not treat platform
proliferation in any way. With UAProf (User Agent Profiles) based on CC/PP
(both of which will be discussed in Chapter 3 and later on in this text), WAP 2.x
offers a discovery mechanism for device properties and services offered. Such
a mechanism is a necessity for treating platform proliferation. Because WAP 2.x
uses standard mechanisms such as UAProf for this task, it offers a more solid
and open solution over the other mobile application development tools to deal
with the problem of platform proliferation.

7. Active transactions: Though the WAP 1.x architecture is based on a completely
passive thin client, WAP 2.x allows for a more active client by adding WAP
Push. This is a big improvement over the previous version of WAP in that
application servers can invoke active behavior. However, WAP still lacks in this
area because of its thin-client architecture.

We will use WAP for our code samples frequently in this text. It is crucial to
remember, though, that WAP looks at the mobile application problem as a wireless
problem. In some ways, this is good: It allows WAP to achieve very specific goals
and treat very specific problems. The reality, however, is that the users of WAP are
looking for mobile solutions and not a subset of those mobile solutions (wireless
solutions). Therefore, WAP falls seriously short in many respects.

2.8 SYMBIAN EPOC

Symbian, one of the most powerful and popular platforms for mobile development,
was created jointly by Ericsson, Nokia, Panasonic, Psion, Samsung Electronics,
and Siemens. The effort in creating this new operating system targeted at mobile
devices started in 1998 and the first Symbian phones became available in 2001. The
majority of the user base of Symbian devices is in Europe with very little user base
in the United States; however, the market share in Europe is large and growing,
with other markets wide open between the various contenders of mobile operating
systems including Symbian. The Symbian OS 7.0 comes with considerable basic
functionality for mobile applications: support for MMS, HTTP communication,
SyncML synchronization, SMS, support for Mobile IP (through support for IPv6),
and short-range wireless networking with IrDA and Bluetooth.

Symbian started as an operating system that supported primarily C++, but it
evolved to providing support for Java as well. Like the other tools that we have
looked at, you can download the development SDK for free from the Symbian site
and there are a variety of commercial IDE (Integrated Development Environment)

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.9 Publishing Frameworks 81

that support application development for Symbian. The Java Virtual Machine im-
plementation of EPOC is based on the Personal Java standard.

Deploying Java applications to Symbian is much easier than deploying BREW
or J2ME and more like deploying them onto a Windows CE device. This is because
Symbian is designed more as a PDA operating system than as an ultra-light mo-
bile environment. Symbian’s latest operating system (Symbian OS 7.0) supports
multithreading.

We will not delve much into the details of programming a Symbian device.
Symbian, as an operating system, is in the same class as Palm OS and Windows CE
with one principle difference: Symbian has been designed for wirelessly connected
devices. If you are interested in this topic, we recommend you look at Symbian OS
C++ for Mobile Phones by Richard Harrison and published by Symbian Press and
Wireless Java for Symbian Devices by Jonathan Allin and also published by Symbian
Press.

2.9 PUBLISHING FRAMEWORKS

Thus far, we have discussed tools and frameworks designed to allow the device to
run an application such as J2ME, Windows CE, and BREW. We have also looked
at WAP as a thin-client infrastructure for building content-driven applications.
An alternative to these thick-client client–server models is a thin-client client–
server architecture where a standard browser interprets the markup language sent
to it by the server. What we have not looked at yet is work that may need to be
done on the server to produce content suitable for devices to render. And this
is where publishing frameworks, transcoding engines, and other types of server-
side applications can come to the rescue. Some of the major things that we need
such applications to accomplish are the following:

1. Presenting content in several different formats: Publishing frameworks have been
used, in the context of network computing applications such as the Web, to
create multiple views of the same document for the users. For example, a pub-
lishing framework may allow creation of HTML and PDF from the same data
set. It is important to note that this does not mean that a publishing framework
is a reporting system. Whereas reporting systems are required to manipulate
data, create summaries, and do a series of other tasks, publishing frameworks
are only required to push the data out into specific formats supported by the
publishing framework.

2. Matching the type of document requested with the type of document available (or
one that may need to be generated at run time): For the publishing framework to
publish a document readable by the requester, it needs to know what type of a
document is required. Although the type of document can be explicitly specified
by the requester, this creates requirements in how to communicate the necessary
document type between the requester and the publishing framework. To avoid
this situation, the publishing framework should be smart enough to use things

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

82 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

FIGURE 2.13. Publishing Content through a Publishing Framework.

such as HTTP headers, UAProf, or other requester-independent mechanisms to
recognize the requester.

3. Modularized infrastructure that separates the various components of the framework,
the processing components, and the content: As seen in Figure 2.13, publishing
frameworks should be designed so that the framework itself does not need to
be modified to use it. The processing modules (the modules that actually do the
custom work on publishing the raw content to the desired content of the appli-
cation developer) should be cleanly separated from the publishing framework
and specific content (though it is obvious that these processing components do
depend on the type of content). This modularization is critical in allowing ef-
fective use of the publishing framework because application developers should
not be expected to change the framework to make it work and neither should
they be expected to generate content. Likewise, content creators typically know
nothing about developing software applications.

Apache’s Cocoon is perhaps the best-known publishing framework today. Cocoon’s
framework is written in Java though the processing components can be written in
a variety of languages including ASP (Microsoft’s Advanced Server Pages), Java,
and XSL. We will look at Cocoon in great detail in this text. We will also look at
other examples such as IBM’s Wireless Transcoding Publisher.

Publishing frameworks address the user interface–related dimensions of mobil-
ity. Namely, they allow us to publish the same static or dynamic content to a variety
of devices, supporting a variety of user interfaces, by knowing the properties of
those devices. They also present us with a great opportunity to cleanly interna-
tionalize and localize the content—two aspects of content that can vary based
on the location of the user. Publishing frameworks can also publish content of
multiple types to multiple channels (for example, publish audio and text content,
each directed to the appropriate channel of the client). So, in summary, publishing
frameworks treat the user interface problems presented by the following:

1. Proliferation of mobile devices.
2. Localized and internationalized user interfaces and their relationship with lo-

cation of the user and the device being used.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.9 Publishing Frameworks 83

3. Selection of the segments of multichannel content and directing them to the
appropriate communication channels.

4. Selection and composition of content based on device information, such as the
amount of available memory or the amount of power left, or based on the QOS
and network properties. For example, whereas certain segments of the content
may always be required, others, such as banner ads, may be eliminated when
the device is running out of power or otherwise if the network latency is high
owing to poor QOS.

At first glance then, publishing frameworks seem to be somewhat of a silver bullet
for the problems of mobile application development. However, readers must be-
ware of the antipattern, frequently referred to in this text. Publishing frameworks
focus on the user interface. They are also very complex applications. Therefore,
publishing frameworks are typically not very distributed: They run on servers and
not the mobile devices; they are the server end of the thin-client architecture we
talked about. So, the user interfaces that they render are usually not very sophis-
ticated (HTML, XHTML, WML, VXML, etc.). They also do not take advantage of
the computing power of the device, nor are they aware of the state of the device
in a real-time or near-real-time manner. Just like we cannot use browsers to do all
of our PC-based computing, we cannot use the content produced by publishing
frameworks to solve all of the problems that mobile applications must solve.

Now, let us look at Cocoon, an open-source publishing framework by Apache
that demonstrates the qualities we look for in a publishing framework well suited
for mobile applications.

2.9.1 Cocoon
Because it is open source, and because it is widely accepted for implementing the
main principles of publishing, in this book we will use Apache Software Founda-
tion’s Cocoon as one of the tools for our examples of a publishing framework that
can publish content, in a centralized manner, to a variety of clients.

Cocoon, the brainchild of Stefano Mazzochi, started in 1999 and has gone
through one major revision from its inception. Cocoon 2.0, the revision of the
original Cocoon 1.0, will be the version on which we will focus in this text.
Cocoon’s architecture aims to separate content from style (the formatting of con-
tent), logic (how content is generated or chosen), and management of content (the
process of creating content and everything else that goes with it). In an article
Mazzochi wrote later [Cocoon 2002], he says Cocoon came about for the pur-
pose of handling documentation for open-source projects and that its name came
about as follows: “This was at the very end of 1998 and Ron Howard’s movie
Cocoon was playing on television, which explains the weird name only partially.
I believed at the time that these technologies were a key part of the future of the
Web, so a cocoon was just what was needed to allow them to incubate and grow
stronger.”

Cocoon is typically used as an XML-based publishing framework; however, it is
flexible enough to deal with any type of input and to generate any type of output.
As you will see in Chapter 3, XML is the preferred format for the content handled

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

84 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

Generators Serializers

XML

Binary

Java

PDF

VXML

WML

XHTML

Transformers

FIGURE 2.14. Cocoon’s Basic Architecture.

by mobile applications, so the two are well-fit in that we practically only need to
worry about XML-based input and output.

There is a great deal of documentation on Cocoon at Apache’s Web site.
Mazzochi and his team have produced high-quality documentation. Our purpose
here is not to duplicate that work, but rather to look at the functionality of Cocoon
from the perspective of mobile application development tasks. To do this, we will
start with the Cocoon architecture, its installation, creating content and style for
Cocoon, and finally managing application development for Cocoon.

Cocoon’s Architecture
Cocoon is a framework that employs the principle of inversion of control referred
to frequently throughout this book. Even though it is an open-source framework,
modifying it is not something for the faint of heart and requires a high level of
expertise in Java as well as design patterns not to mention a tremendous amount
of time to come up to speed on a fairly complex framework. As a user of Cocoon,
though, you will be happily surprised to see that creating components for Cocoon
is a fairly easy and straightforward task. Mobile application developers, as users
of Cocoon, develop components controlled by Cocoon. So, as far as we are con-
cerned, Cocoon is a “black-box” framework (one whose internal operation does
not concern us). As shown in Figure 2.14, there are three types of components in
Cocoon:

1. Generators: These components provide us with a method to feed data into our
black box. Generators give us a hook to pull the raw content into Cocoon.

2. Transformers: These components transform the raw content into other content.
3. Serializers: These components provide the output for our black box from the

transformed content provided to them by the transformers.

The latest version of Cocoon adds a new component called the aggregator. An
aggregator does just what the name implies: It aggregates various pieces of content.
Though this aggregation can be done using a transformer component, there are
occasions where it is more elegant. To reduce the complexity of our usage of
Cocoon, we will not discuss aggregators much here. Please refer to the Cocoon
documentation available at the Apache XML project [Apache XML 2002].

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.9 Publishing Frameworks 85

Whereas the generators and the serializers are typically the external hooks to,
respectively, the input and output into Cocoon, the transformers are the modules
that change the content to what it needs to be. Cocoon’s architecture allows feed-
ing the contents of one component into another, making it ideal for a modular
transformation of content.

Cocoon, in its current form, is a J2EE Web application archive (WAR file). In
this way, it can be deployed on any J2EE application server (or a subset thereof
in the form of a servlet engine such as Tomcat). In fact, Cocoon’s most prevalent
deployment is with Tomcat, another open-source project from Apache for building
Web-based applications using Java servlets.

Because Cocoon is a Web-based application, an interaction with Cocoon is
initiated through an HTTP request. This HTTP request is then routed through a
series of generators, transformers, and serializers to create, transform, and produce
the content to be sent back through the HTTP response. The route that the content
takes from its origination to being published to the viewing client is analogous
to a work flow. Cocoon documentation refers to this work flow–like treatment
of components as a “pipeline,” driving the name from Unix pipelining where the
output of one process is fed into another process. Pipelines are created with a set
of XML-based instructions in a configuration file called the sitemap. The sitemap
maps out the flow of request and response for all possible requests made into the
Cocoon Web application.

Installing and Using Cocoon
Before you install Cocoon, you should either have a J2EE 1.2 application server
or servlet engine installed and running. If you do not have one, there is a free
one available from Apache and you can find it at http://jakarta.apache.org. It is
called Tomcat. In fact, Tomcat is currently used as the industry de facto standard
for servlet engines.

Once you have an application server or Servlet engine installed, you need to
download the Cocoon WAR file from http://xml.apache.org. Simply install the Web
application and you are ready to go! Installing a WAR file involves only one step:
putting the WAR file in the webapps directory. You are now ready to use Cocoon
by simply typing in the URL of the application server plus /cocoon (for example,
http://localhost:8081/cocoon).

If you do this, you will get an introductory page on how to use Cocoon. There are
plenty of excellent examples that ship with the download of Cocoon. Go through
them if you are interested in writing your own components. They serve as a great
hands-on tutorial because writing components for Cocoon can be a little complex.

Now, let us look at what these components are and how we write them.

Generators, Transformers, and Serializers
As we mentioned in the previous section, the basic building blocks of a Cocoon-
based application are generators, transformers, and serializers. These components
must be authored in either Java or XSP, an XML-based language in Cocoon that can
be compiled into Java classes. By default, XSP is in JSP (Java Server Pages); how-
ever, it is extensible to support other scripting languages based on other languages

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

86 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

such as ASP (Microsoft’s scripting language for Web-based applications using MS
Visual Basic syntax) or whatever language is preferred. The only catch is that if
something other than Java is preferred for the XSP pages, you will have to write
a compiler that converts your XSP pages to Java classes. Let us go through the
components one by one:

1. Generators: The basic job of a generator is to take static or dynamic content
pointed to by the incoming request or a property of the incoming request (we
will discuss how the content is selected more when we discuss sitemaps) and
generate XML in the form of SAX events. Although Cocoon 1.x was based on
DOM, it was not efficient at handling large documents. So, in the interest of mak-
ing Cocoon more flexible and scalable, its designers moved to the SAX model
(discussed in Chapter 3) in Cocoon 2.x. There are a variety of generators that
are available with the standard download of Cocoon. Generators are Java classes
(or a collection of Java classes with one class that wraps their functionality).
To write a custom generator, the wrapper class must implement the interface
org.apache.cocoon.generation.Generator. There are a series of generators that
come with Cocoon including the following:
a. File generator: This generator can read an XML file and create SAX events

from it
b. Server pages generator: This particularly important generator creates another

generator, at compile time, which knows what type of scripting language is
used in the XSP page (if one is used for generation) so that it compiles the
XSP page properly.

c. JSP generator: The JSP generator allows usage of JSP pages as the source of
dynamic data.

d. Request generator: This generator is peculiar in that it creates a series of SAX
events with the data encapsulated in the incoming HTTP request.

There are other generators that come with Cocoon, these are just a few examples.
XSP pages can be used very effectively to generate dynamic content through
the server page generator. We will look at XSP briefly.

2. Transformers: As in the case of generators, there are several transformers that
come with the download of Cocoon. The most important of all these is the
Xalan transformer, which essentially uses the Xalan (another solid application
from Apache) XSL (Extensible Stylesheet Language) transformation engine to
transform XML using XSLs. Though there are other transformers that ship with
Cocoon, the transformers that allow XSL documents to be the engine for trans-
formation are key to writing Cocoon-based applications. The advantage that
XSL offers over other transformation techniques are numerous. XSLs are nei-
ther language dependent nor platform dependent, and they allow for mapping
any XML document to any other XML document. But, in case you need to
author your own transformer, you need to create a class that implements the
interface org.apache.cocoon.transformation.Transformer.

3. Serializer: Once the content has been generated and transformed, it needs to be
published to the client through the HTTP response. The serializer is responsible
for this. In most cases, we will want to publish XML because most clients are

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.9 Publishing Frameworks 87

moving toward supporting some XML-based format. For this, there is a stan-
dard XML serializer that comes with Cocoon. However, there are cases when
we need non-XML-based text or nontextual binary data. For these, we have
to write our own serializers. Once again, this is done by implementing the
interface org.apache.cocoon.serialization.Serializer. Along with Cocoon come
several handy serializers, including the FOPSerializer (which uses the Apache
FOP libraries to convert HTML to PDF). Although PDF is typically too CPU-
and memory-intensive for most mobile application clients, another serializer
that comes with Cocoon is the SVG serializer, which supports a new graphics
standard for the Internet in SVG. SVG is a promising area for rendering graphics
on mobile devices as it has mobile extensions.

A very simple and dynamic Cocoon application may use an XSP page to generate
the content, then an XSL document to transform it, and finally an XML serializer
to publish the produced document to the client. We will look at a simple example
later on.

The Cocoon Sitemap
Once we have written the classes or pages to generate the content, transform it,
and serialize it, we need to tell Cocoon: 1. in which sequence the input of one
component is fed into another and 2. which requests are diverted to go through
a particular set of components. Both of these tasks are accomplished through the
sitemap file (Sitemap.xmap). The sitemap is a file where the instructions that
form the pipelines (the work flow–like piping of input of one component into
another in chains to produce content in response to a request) and the definition
of Cocoon components are outlined using an XML-based syntax. So, the two pieces
of information we listed lie within the sitemap file.

Let us start with the second item. Assuming that we have a set of content flows,
the job becomes selecting which content flow should produce the response for a
given request. Because we know that the incoming request is an HTTP request,
we can look at the request headers, the request content, or the Universal Re-
source Identifier (URI) to extract information about the request. In Cocoon 2.x
and extensions such as DELI (Cocoon extensions produced by HP Labs to support
CC/PP and UAProf), support for more advanced mechanisms of discovery of the
client and client capabilities exist. So, the request has some information about the
client and the type of content that the client expects encapsulated in it directly in
the header, content, or URI or indirectly through mechanisms such as CC/PP and
UAProf (which will be discussed in detail in Chapter 3). Matchers and selectors
are the two components designed to do this.

We did not mention Matchers and selectors earlier because they are not com-
ponents that a user of Cocoon 2.x will typically have to extend or modify. Rather,
the reminisces of Matchers and selectors are seen in the sitemap file. Matchers
that come with Cocoon allow one to make lexical pattern matches using Reg-
ular Expressions (Perl-like syntax for comparing character strings) on the URI,
HTTP request parameters, and HTTP session parameters (where the session is
supported and applied). The selectors that come with Cocoon allow one to select

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

88 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

the pipeline based on browser type, HTTP header parameters in the request, HTTP
session parameters, or environment parameters (environment on which Cocoon
is running–for example, Linux environment variables).

Example 2.1: Using XML Based Tags in the Sitemap to Drive Components.

<map:match pattern="∗.wml">
<map:generate src="helloCocoon_xforms.xml" />

<map:transform src="xformsTowml.xsl" />

<map:serialize />

</map:match>

Example 2.1 shows a simple code snippet out of the sitemap file that directs
Cocoon to use an XForms file as the data source for the generator, apply an XSL
transform to it, and then use the default serializer to serialize out the content (the
default serializer simply produces XML). The condition for this set of events is
any file that has a wml extension.

Matchers are fairly simple. The tags within the matcher tags are processed se-
quentially. You can have one or more of each component, but the like components
have to be bunched together to keep the flow consistent (so that the first trans-
former gets its input from a generator rather than a serializer). Selectors offer
more complex logic. With selectors, you can use logic of the if-then-else type in
specifying which component is used under what conditions.

There are other components involved in the sitemap and the rest of Cocoon. For
example, action components provide an effort for further separating logic from
style and aggregators allow for composition of blocks of content into new blocks
of content. We will not look at these components as our intent here is a mere
introduction to Cocoon. To get an in-depth understanding of Cocoon refer to the
Cocoon documentation at Apache’s site. It is well written. But, before we look at
writing a simple mobile application with Cocoon, let us look at XSPs.

Introduction to XSP
As we mentioned previously, XSPs are used to feed dynamic content into a gen-
erator component. XSPs can use a variety of programming languages such as Java
in the form of JSP. In fact, Java Server Pagess are the default implementation. If
you want to use another programming language such as ASP (based on Microsoft’s
Visual Basic), you will have to write your own programming language processor
and compiled programming language components.

Internal to Cocoon are logic sheets, also referred to as tag libraries, which define
a set of custom tags usable in an XSP document in addition to the programming
language used for scripting. A standard set of logic sheets providing hooks to the
syntax for the scripting language supported must be provided. In the case of the de
facto scripting language, JSP, these are logic sheets that allow imports of classes,
declaring classes, defining methods, etc. There are two other logic sheets that come
with Cocoon: the request logic sheet and the session logic sheet. These two give
us hooks into the HTTP request and response.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.9 Publishing Frameworks 89

TABLE 2.1. Logic Sheet Tags

Request Logic Sheet Purpose

<xsp-request:get-parameter
name=“someURIParameter”/>

Allows retrieval of parameters from
the request into the XSP page (and
further using it in display or logic
of the page).

<xsp-request:get-header
name=“someHeaderName”/>

Allows retrieval of the value of a
header and its subsequent usage.

<xsp-request:get-attribute
name=“someAttribute”/>

Allows retrieval of the value of an
attribute in the servlet context of
Cocoon within the servlet
container.

<xsp-request:set-attribute
name=“someAttribute”/>

Allows setting an attribute in the
request. This attribute is only
useful when another component
looks inside the request to pick up
an attribute as the life cycle of the
attribute is limited to the HTTP
request.

Session Logic Sheet Purpose

<xsp-session:get-attribute
name=“someAttribute”/>

Allows retrieval of an attribute value
(string) stored in the session.

<xsp-session:set-attribute
name=“someAttribute”/>

Allows putting an attribute value in
the session for later retrieval.

<xsp-session:get-attribute-names/> Returns the name of the attributes
currently in the session.

These two logic sheets are the most important in creating dynamic content to
be consumed by a generator. Table 2.1 lists the important tags for each tag library.

Remember that this is not a comprehensive list. Such a list is available at
Cocoon’s Web site. Once again, our purpose for reviewing a subset of functionality
and syntax-related issues of Cocoon is to simply get a feel for the framework and
provide an intuitive high-level comparative understanding with other available
tools.

Code snippets of JSP (or whatever language is supported as we have explained)
must be wrapped within <xsp:logic></xsp:logic> tags to mark them for compila-
tion. There are a few other tags that we have to know about to write the most basic
XSP page. These include the following:

1. <xsp:page>: This tag (and its closing companion) wrap around the entire XSP
page.

2. <xsp:structure>: This tag wraps around multiple directives.
3. <xsp:include>: This tag imports classes to be used on the XSP page.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

90 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

4. <xsp:expr>: This is an XSP expression, similar to a JSP expression, where the
value of the expression is evaluated and printed out on the page.

There is much more to XSP and understanding it. For one thing, to write an
XSP page, you should be fluent in JSP and XSL. Unless Cocoon is the central
framework of your application, you are probably not going to implement the
components necessary to support another scripting language (though PHP and
others are being worked on by other various open-source development teams).
So, count on having to write JSP and XSLs. Actions, a new set of components that
allow better separation of logic and style, will let you extract the business logic
from your XSP pages better and leave only style-related elements in there. XSPs
provide a perfect tool for writing generic user interfaces, which we will discuss in
Chapter 5, allowing you to build user interfaces in layers and specializing them to
the specific clients when necessary.

Hello Cocoon
Now, let us look at building a very simple mobile application. Perhaps the most
popular use of Cocoon for mobile applications today is to generate XHTML, WML,
and HTML from the same content based on the requesting browser type. Let us
first build a basic XSP page that will create our basic content. This is seen in
Example 2.2.

Example 2.2: HelloCocoon.xsp.

<xsp:page language="java"

xmlns:xsp = "http://www.apache.org/xsp"

xmlns:xsp-request = "http://www.apache.org/xsp/request/2.0">

<content>

<para>This would be some text that shows on any

interface</para>

</content>

<xsp:logic>

String myBrowser = <xsp-request:get-header

name="user-agent">;

myBrowser = myBrowser.toUpperCase();

if (myBrowser.substring("IE")) {
<xsp:text>Some things, like a DHTML control, that only

work in IE</xsp:text>

}

list item 1

list item 2

</xsp:logic>

</xsp:page>

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.9 Publishing Frameworks 91

Notice that we can recognize the browser and add content using selectors and
aggregator components (not discussed here). But, we are shooting for a very simple
example.

Next, we need to transform this content. For our example, we will create the
transformer using an XSL page. There is an important side note here that we will
get to extensively in Chapter 5. The XSP page produces some content that needs
to be transformed. This content is XML-based content, but the question is what
document type definition (DTD) does this follow? Cocoon has provided a markup
language called XMLForm, which is a concoction taken from W3C’s XForms and
the popular open-source J2EE MVC implementation in Apaches Struts. XForms
alone should be the preferred markup language to use in rendering this intermedi-
ary user interface format. Whereas XMLForm is not a standard accepted by other
application frameworks and vendors and is something very specific to Cocoon,
XForms is not specific to Cocoon.

Example 2.3: Section 1 of XSL Document Transforming XMLForms to HTML.

<?xml version="1.0" encoding="iso-8859-1" ?>

<!--Basic XMLForm processing stylesheet. Converts XMLForm tags

to HTML tags.

Syntax is borrowed from the XForms standard:

http://www.w3.org/TR/2002/WD- xforms-20020118/

This style sheet is usually applied at the end of a

transformation process after laying out the XMLForm tags on

the page is complete. At this stage XMLFormtags are rendered

in device-specific format.

Different widgets are broken into templates to allow

customization in importing style sheets. Authors are Ivelin

Ivanov, Andrew Timberlake, Michael Ratliff, Torsten Curdt,

Simon Price, Konstantin Piroumian, and Robert Ellis Parrott.

-->

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform";

xmlns:xf="http://xml.apache.org/cocoon/xmlform/2002";>

<xsl:output method = "xml" omit-xml-declaration = "no"/>

<xsl:template match="/">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="xf:form">

<form>

<xsl:copy-of select="@∗"/>
<!--the xf:form/@view attributed is sent back to the

server as a hidden field-->

<input type="hidden" name="cocoon-xmlform-view"

value="test@cienecs.com"/>

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

92 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

<!--render the child form controls-->

<xsl:apply-templates />

</form>

</xsl:template>

<xsl:template match="xf:output">

[<xsl:value-of select="xf:value/text()"/>]

</xsl:template>

<xsl:template match="xf:textbox">

<input name="test@cienecs.com" type="textbox"

value="{xf:value/text()}">
<!-- copy all attributes from the original markup,

except for "ref"-->

<xsl:copy-of select="@∗[not(name()='ref')]"/>
<xsl:apply-templates select="xf:hint"/>

</input>

<xsl:template>

<xsl:template match="xf:textarea">

<textarea name="test@cienecs.com">

<xsl:copy-of select="@∗[not(name()='ref')]"/>
<xsl:value-of select="xf:value/text()"/>

<xsl:apply-templates select="xf:hint"/>

</textarea>

</xsl:template>

Example 2.3: Section 2 of XSL Document Transforming XMLForms to HTML.

<xsl:template match="xf:password">

<input name="test@cienecs.com" type="password"

value="{xf:value/text()}">
<xsl:copy-of select="@∗[not(name()='ref')]"/>
<xsl:apply-templates select="xf:hint"/>

</input>

</xsl:template>

<xsl:template match="xf:hidden">

<input name="test@cienecs.com" type="hidden"

value="{xf:value/text()}">
<xsl:copy-of select="@∗[not(name()='ref')]"/>

</input>

</xsl:template>

<xsl:template match="xf:selectBoolean">

<input name="test@cienecs.com" type="checkbox"

value="true">

<xsl:copy-of select="@∗[not(name()='ref')]"/>
<xsl:if test="xf:value/text() = 'true'">

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.9 Publishing Frameworks 93

<xsl:attribute name="checked"/>

</xsl:if>

<xsl:apply-templates select="xf:hint"/>

</input>

</xsl:template>

<xsl:template match="xf:selectOne |
xf:test@cienecs.com'listbox']">

<select name="test@cienecs.com">

<xsl:copy-of select="@∗[not(name()='ref')]"/>
<!-- all currently selected nodes are listed as value

elements -->

<xsl:variable name="selected" select="xf:value"/>

<xsl:for-each select="xf:item">

<option value="{xf:value}">
<!-- If the current item value matches one of

the selected values -->

<!-- mark it as selected in the listbox -->

<xsl:if test="$selected = xf:value">

<xsl:attribute name="selected"/>

</xsl:if>

<xsl:value-of select="xf:caption"/>

</option>

</xsl:for-each>

</select>

</xsl:template>

<xsl:template match="xf:test@cienecs.com'radio']">

<xsl:variable name="selected" select="xf:value"/>

<xsl:variable name="ref" select="@ref"/>

<xsl:for-each select="xf:item">

<input name="{$ref}" type="radio" value="{xf:value}">
<xsl:copy-of select="@∗[not(name()='ref')]"/>
<xsl:if test="xf:value = $selected">

<xsl:attribute name="checked"/>

</xsl:if>

</input>

<xsl:value-of select="xf:caption"/>

</xsl:for-each>

</xsl:template>

<xsl:template match="xf:selectMany | xf:test@cienecs.com'

listbox']">

<xsl:variable name="selected" select="xf:value"/>

<xsl:copy-of select="@∗[not(name()='ref')]"/>
<xsl:attribute name="multiple"/>

<select name="test@cienecs.com">

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

94 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

Example 2.3: Section 3 of XSL Document Transforming XMLForms to HTML.

<xsl:for-each select="xf:item">

<option value="{xf:value}">
<xsl:if test="xf:value = $selected">

<xsl:attribute name="selected"/>

</xsl:if>

<xsl:value-of select="xf:caption"/>

</option>

</xsl:for-each>

</select>

</xsl:template>

<xsl:template match="xf:test@cienecs.com'checkbox']">

<xsl:variable name="selected" select="xf:value"/>

<xsl:variable name="ref" select="@ref"/>

<xsl:for-each select="xf:item">

<input name="{$ref}" type="checkbox"

value="{xf:value}">
<xsl:copy-of select="@∗[not(name()='ref')]"/>
<xsl:if test="xf:value = $selected">

<xsl:attribute name="checked"/>

</xsl:if>

</input>

<xsl:value-of select="xf:caption"/>

</xsl:for-each>

</xsl:template>

<xsl:template match="xf:submit">

<!-- the id attribute of the submit control is sent to

the server -->

<!-- as a conventional Cocoon Action parameter of the

form cocoon-action-∗ -->

<input name="test@cienecs.com" type="submit"

value="{xf:caption/text()}">
<xsl:copy-of select="@∗[not(name()='id')]"/>
<xsl:apply-templates select="xf:hint"/>

</input>

</xsl:template>

<xsl:template match="xf:hint">

<xsl:attribute name="title"><xsl:value-of select="."/>

</xsl:attribute>

</xsl:template>

<!-- copy all the rest of the markup which is not recognized

above -->

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.9 Publishing Frameworks 95

<xsl:template match="∗">
<xsl:copy><xsl:copy-of select="@∗"/><xsl:apply-templates/>
</xsl:copy>

</xsl:template>

<xsl:template match="text()">

<xsl:value-of select="." />

</xsl:template>

</xsl:stylesheet>

Although XMLForm touches on issues such as persistence that are not related to
the user interface, it is very much a thin-client-based markup language. XForms,
in contrast, addresses only user interface issues and is more flexible in being used
in thick and thin clients. Nevertheless, because the existing Apache documentation
uses XMLForm for their examples, we will follow suit. As will be mentioned in
later chapters, particularly Chapters 5 and 6, we will cover use of XForms and its
integration with publishing frameworks.

Now, we need to transform the content generated by our simple XSP page. We
are going to do this using an XSL page. Although there are preexisting XSL pages
bundled with Cocoon to transform XMLForm pages into various other markup
languages, we will assume that we have to write our own XSL pages. Example 2.3
shows the XSL page that transforms a subset of an XMLForm document used in
our Example 2.2 into an HTML document. This code ships with Cocoon and can
be found at http://cocoon.apache.org.

Now that we have the basis for our transformers, how do we tell Cocoon to apply
them? As we mentioned previously, this is done in the sitemap. First, let us think
about what conditions we may need to apply to find out which transformer to
apply to the generated content. We could use the headers in the HTTP request,
the extension of the file resource requested in the URI, or a combination of those
to find out if the request is coming from a WML browser or an HTML browser. If
the device is a WAP 2.x-enabled device, we could also use CC/PP and UAProf to
recognize the capabilities of the device. Let us consider the simplest case though
and use the string pattern in the URI. Often, an extension of .html or .htm is
attached to a request that expects an HTML document for its response. In the
same manner, an extension of .wml is attached to a request that expects a WML
document for its response. Example 2.2 shows the XML snippet needed in the
sitemap file to finish our task.

In this way, we put the content generation logic into the generator components
and the XSP page, put the style information into the transformer, and put the
management of which style is applied to what content and when in the sitemap.

We have now created the basic components needed to publish content. As
you go through the documentation in Cocoon’s site, you will notice that Stefano
Mazzochi and the other authors of Cocoon designed Cocoon with the problem
of Web publishing in mind. Though Web services are not addressed, this con-
cept of publishing XML can be extended to provide a Web service framework
that competes in flexibility and extensibility with the best of other Web service

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

96 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

frameworks. Using Cocoon, we can generate XML documents that are consumed
by the requesting entity and then used for other purposes.

Though Cocoon is primarily used for publishing markup languages understood
by browsers, to solve the problems with mobile user interfaces in particular, it can
be used to publish XML that is further modified and indirectly used to produce a
user interface. In other words, we do not have to generate, transform, and serialize
content that is eventually consumable by one browser or another. A thick client
or other servers can consume the content. In such cases Cocoon provides us with
a neatly organized pipelining infrastructure.

We will discuss the use of Cocoon further in Chapters 6 and 7 in creating
graphical and voice user interfaces.

Example 2.4: XML Segments to Apply the Appropriate Pipeline for
Example 2.3.

<map:sitemap xmlns:"http://www.apache.org/cocoon/sitemap/1.0">

...

...

<map:pipeline>

<map:match pattern="∗.wml">
<map:generate type="serverpages" src="docs/{1}.xsp">
<map:transform src="stylesheets/XMLForm2WML.xsl"/>

<map:serialize type="wap"/>

</map:match>

<map:match pattern="∗.htm∗">
<map:generate type="serverpages" src="docs/{1}.xsp"/>
<map:transform src="stylesheets/XMLForm2HTML.xsl"/>

<map:serialize type="html"/>

</map:match>

</map:pipeline>

...

...

</map:sitemap>

2.9.2 IBM Wireless Transcoding Publisher
The best places to learn about IBM software are the IBM Red Books and the IBM
developer Web site. Meanwhile, the IBM Wireless Transcoding Publisher (WTP)
is IBM’s commercial product to satisfy the needs of those in need of a publish-
ing framework, plus some complementing utilities, to create mobile applications.
The particular document of interest for the suite of products that encompasses
the WTP, namely the IBM Wireless Everyplace Suite, can be found in the refer-
ence guide [Appleby et al. 2000]. Before we start though, let us understand that
the encompassing product, the Wireless Everyplace Suite, is actually intended to
do more than publishing. It is an integrated environment with IBM’s Websphere

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.9 Publishing Frameworks 97

Application Server and supports J2EE applications. However, our focus here will
be on the pervasive and mobile aspects of this suite of products and comparing it
to the open-source alternative in Cocoon.

As in the case of many products, we would have a tough time comparing the
features of the Wireless Transcoding Publisher to Cocoon one-to-one. For proper
comparison, we need to first look at the functionality by the umbrella product,
the Everyplace Suite.

Overview of IBM Everyplace Suite
The IBM Everyplace Suite covers a variety of topics that address more the overall
issues of mobility rather than solely publishing. The Everyplace Suite addresses
issues related to wireless connectivity, content management for wireless clients,
wireless security, provisioning and device management, and integration with the
IBM Websphere application suite of products. It also includes integration with
IBM’s messaging platforms, allowing for asynchronous communication.

In this way, the Everyplace Suite addresses some of the issues of various dimen-
sions of mobility, namely, QOS, multichannel user interfaces, device proliferation,
and active transactions. Of course, as with many other commercial products from
their rivals Microsoft, Sun Microsystems, and others, much of what is claimed
is marketing rather than true functionality. Nevertheless, the Everyplace Suite
does offer valuable functionality in the way of treating the issues of mobile ap-
plication development. In fact, of all commercial products that intend to address
all of the dimensions of mobility on the server, it offers the most amount of
functionality.

When it comes to security, the Everyplace Suite offers implementation of WTLS
and mapping to SSL, single sign-on, authorization for various components of your
application, and integration with LDAP (X.500) for simple lookups such as user
names and passwords. The Everyplace Suite also offers some very useful messaging
functionality in integrating with MQ Series messaging servers. MQe Application,
a component of the Everyplace Suite, runs on higher end mobile devices such
as those that can run EPOC or Windows CE that support Java. This feature is
particularly useful as it enables asynchronous messaging between any device that
can support MQe; this means that messages can be composed while the device is
disconnected and sent when it is reconnected, wait in the queue until the recipient
is available, and be delivered to the recipient upon its availability. Figure 2.15 shows
the layout for asynchronous communication using MQe.

The Everyplace Suite comes with a complete implementation of a WAP gateway,
which can be used as either a proxy server or as a true gateway (by the carriers
in the United States where gateway access is restricted to carriers and by all in
Europe where gateway access is open).

Basic WTP
WTP is a fairly open commercial product with its API in Java and a component-
based architecture. But it should be said that WTP, at least at its 1.1 version, is
intended to do far less as a publishing framework than Cocoon. The concepts still

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

98 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

Application Client

MQe

IP Stack

EWC

Application Server

Application ServerMQe

IP Stack

EWG

IP Stack

EWG

MQe Bridge

IP Stack

MQe Series

IP Stack

Wireless
Network

Wireless
Network

FIGURE 2.15. Using MQe for Asynchronous Communication with Mobile Devices.

remain somewhat the same: Content is generated, then transformed, and finally
published. So, let us compare and contrast the WTP and Cocoon:

1. WTP offers a large degree of functionality in converting existing HTML on
the Web to other markup languages such as WML that are consumable by
mobile devices. HTML is not well-formed XML (see Chapter 3). In fact, the
name Wireless “Transcoding” Publisher refers to this conversion of HTML to
other markup languages: “Transcoding” is the process of converting this HTML
to other markup languages by adding custom tags to the content and using
XSL transformation documents. Cocoon offers less out-of-the-box function-
ality here, but it is more flexible as you can create your own generators and
serializers, using your own domain-dependent or independent generators and
transformers. Apache’s Tidy is the tool to supplement Cocoon to get close to the
functionality offered by WTP in converting HTML to other markup languages.
WTP allows extension of the transformers through writing Java MEGlet’s (a
MEGlet being defined as a “content Monitor, Editor, or Generator” [Appleby
et al. 2000]). Extending WTP through MEGlets is similar to creating Cocoon
transformers.

2. WTP also offers custom transformers that convert a variety of image formats.
Some examples of such conversions are conversion of JPEG images to WBMP
images (the format displayable by WAP devices).

3. WTP offers a set of WAP devices, along with their profiles and suitable HTML
to WML transformers, that allow very simple publishing of HTML and XML
content to WML-enabled devices. Devices can be selected for how the content
is targeted.

4. WTP offers a very rich set of tools for developers. This is a big advantage
over all the other publishing frameworks available. These tools include various
GUI interfaces that facilitate management of device profiles, WTP components,
content-generation flows, and other tasks that the WTP is used for.

5. WTP provides integration with the other components of the Everyplace Suite.
Although this integration does not relate to the task of publishing, it facili-
tates building a system as a whole when using an all-IBM component-based
environment.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.10 Other Tools 99

Overall, WTP is more focused on providing development tools and integration
with the other IBM products to deliver a total solution whereas Cocoon provides
a more flexible and extensible infrastructure for publishing content for mobile
applications. There are also other products on the market by IBM competitors
such as Sun Microsystems and Microsoft. We chose WTP because it is open, uses
Java, and is widely used compared to the other products. Cocoon provides us
with the open-source (and therefore license-free) alternative. Your choice for your
project will depend on the requirements of your organization and your project.

2.10 OTHER TOOLS

We looked at publishing frameworks on the server side as well as programming
tools for creating distributed applications that run on a variety of devices. There
are a host of other tools that we will use for our examples in this text. Let us
categorize them briefly and introduce some real products and implementations.

2.10.1 Asynchronous Messaging Systems
HTTP represents the most pervasive synchronous messaging in computing today.
Though it is often misused and abused, it is flexible, extensible, and scalable. These
are properties that make it invaluable as a tool for exchanging synchronous mes-
sages between two systems. There are also less pervasive synchronous messaging
solutions such as OMG’s CORBA, Microsoft’s COM/DCOM, and others. Although,
to date, there is no equivalent to HTTP in the asynchronous world of messaging,
there are various asynchronous messaging solutions that we will need to look at
in this text.

The importance of asynchronous messaging in mobile computing is fourfold:

1. Asynchronous messaging systems are highly scalable, lending themselves to
networks that have to serve the exchanging of messages among millions of
different devices.

2. Active behavior on the part of a mobile device is less costly when implemented
using an asynchronous messaging model as opposed to a synchronous messag-
ing model. Synchronous messaging models either require persistent connec-
tions through which the active clients register with the active servers or use
some sort of a polling technique. Both of these methods have a high overhead.

3. Asynchronous messaging allows us to treat both the connected and the discon-
nected devices. Asynchronous messages either have no guaranteed time period
for delivery or have very long message expiration times. In both cases, the
message is delivered to the user when the user’s device is available.

4. Depending on the architecture, asynchronous messaging between the devices
(without the use of the network servers—in the case of peer-to-peer or mo-
bile agent architectures) can have a variety of performance as well as up-time
benefits.

Previously, we mentioned the IBM Everyplace Suite, a product that integrates a
variety of IBM’s solutions to deliver an integrated mobile application development

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

100 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

and deployment environment. The Everyplace Suite includes an adapted version
of the IBM MQ Series asynchronous messaging in MQe mobile messaging as well
as a Java API usable on the various mobile devices that support Java. Of course,
this environment is well integrated with the other versions of the MQ Series that
allow asynchronous messaging for medium-size and larger networks.

There are also competing products from various J2EE vendors as well as Mi-
crosoft (on the Windows platform) for asynchronous messaging. Categorizing the
asynchronous messaging tools is typically done through the type of APIs they ex-
pose (Java Messaging Service, Microsoft’s Windows Messaging, etc.) or the type of
service that they provide (either publish–subscribe or point-to-point). Most mes-
saging products today support both publish–subscribe and point-to-point mes-
saging models.

The key, then, becomes selecting a messaging platform standard before choos-
ing a specific product. Today, there are basically three camps: messaging on the
Microsoft platform, Java Messaging Service (JMS) implemented on a variety of
platforms, and performance-tuned messaging systems such as ones offered by
Tivoli and TIBCO with their own proprietary APIs. These products all address
messaging in a manner independent of the application domain. What suits you
and your organization depends on your needs; however, JMS-compliant platforms
offer the most interoperability—a factor that is extremely important in the world
of messaging where messages can be exchanged between disparate systems run by
a variety of organizations.

There is also asynchronous messaging specific to mobile applications such
as Short Messaging Service (SMS) and Multimedia Messaging Service (MMS).
Whereas implementations of such messaging systems used in mobile applications
can utilize products such as those compliant with a JMS interface or others such
as TIBCO, it is possible that to get the best performance, such broad-reaching
systems are written from scratch. There are currently a number of products in the
SMS market that allow asynchronous messaging implementations for text mes-
sages. Implementations for MMS are being worked on at the time this book is
being written.

2.10.2 UML Tools
Because this text aims to use UML and the methodologies surrounding it to bring
mobile application development methodologies up to par with typical software
development methodologies, it is befitting that we discuss some UML tools. We
will have more in-depth discussion of these tools in Chapter 4 (which solely
focuses on the topic of UML) and in later chapters. For now, let us take a quick
overview of what is out there and how we intend to use these tools.

Several of the founding fathers of UML are currently employed by Rational
Software, the company that produces the industry de facto standards for UML-
based development. So, the various Rational tools such as Rational Rose are only
“rational” to mention when discussing UML! Besides Rational Rose, most modern
object-oriented development tools now support designing in UML or integration
with a UML tool and there are a wide range of other tools that compete with
Rational Software’s product in implementing UML.

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.10 Other Tools 101

To date, because there are no established ways of using UML, or extending UML,
for mobile application development, there is no tool that supports the specific
needs of mobile applications, particularly as we will address them in this text.
However, there are tools that are more easily extended than the others. For our
purposes, we will be concerned with three such tools:

1. ArgoUML: ArgoUML is an open-source project managed by Tigris.org. As in
the case of all other open-source projects, the price is right: ArgoUML is free.
Despite its bug-ridden inception, it has become much more stable and clean.
Today, it is a commercial-grade tool for implementing software solutions with
UML-based techniques. ArgoUML is written in Java, so it can basically run on
any platform you choose for development.

2. Rational Rose: As we have already mentioned, Rational Software is the leading
provider of tools for UML-based development. Rational is the most sophisticated
of UML tools. By paying top dollar, you get a complete solution. Although
Rational adds considerable functionality in implementing various extensions
to UML, those extensions tend to be somewhat proprietary and incompatible
with other tools in the market. But, because extensions to a given version of UML
are fairly loosely defined, compatibility among the different tools is something
that is hard to come by anyway. All in all, if you and your organization have
the budget to get the Rational set of UML-based tools, it is the right way to go.
Rational Software products are typically written in C++ and aimed for Windows.
So, if you plan to develop on a platform other than Windows, you need to check
for the availability of the tool you want on the platform you intend to use for
development.

3. Object Domain: Like ArgoUML, Object Domain is written in Java so you can
develop on any platform that you want (e.g., Windows, Linux, or others). Ob-
ject Domain is not an open-source piece of software, but it is very extensible by
offering scripting in Python, the standard UML extension mechanisms, as well
as having an easily modifiable graphical widget set (so that if your organization
needs its own set of widgets for a particular domain, you can ask Object Domain
to add them without much delay or difficulty). We will use Object Domain fre-
quently for our examples as it is much more affordable than Rational Software’s
tools.

The main reason for our choosing the aforementioned tools for UML is that they
all allow extending the functionality of UML in a pragmatic way. ArgoUML is open
source and extensible in any way you want it by its open-source nature. Rational
Rose offers a variety of ways to extend UML, including the standard UML extension
mechanism; there are also more plug-ins for Rational tool sets than for any other
UML tool set. Object Domain offers graphical widgets that are flexible and very
extensible in their design; it offers perhaps the most flexible user interface. Object
Domain also offers Python-based scripting. These three tools are very distinct,
each representing a group of UML tools available in the marketplace. Which you
choose depends on the needs of your organization. The important point to keep in
mind is that when using a UML tool, you need to learn the extension mechanisms

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

102 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

Platform Specific Platform Independant

D
ev

ic
e

G
en

er
ic

D
ev

ic
e

S
pe

ci
fic

Java
J2ME

WAP

Server side tools
(Cocoon, IBM

Transcoding Publisher,
etc.)

Symbian
MS.NET

BREW

FIGURE 2.17. Mobile Development Tool Landscape.

because there are no formal UML extensions treating the problems or the process of
mobile application development, nor are there any implementations of industry de
facto extensions. After this book was authored, Borland acquired TogetherJ and is
now producing a complete development environment that supports Java and UML
development hand-in-hand. This offers some interesting possibilities in providing
a mature end-to-end development environment for mobile applications with UML
because Borland’s JBuilder has support for J2ME, J2SE, and J2EE. However, because
of the timing of authoring of this text, we will not be discussing this tool.

2.11 SO WHAT NOW?: WHAT DO WE DO WITH THESE TOOLS?

We dedicated this chapter to the categories of tools needed to develop mobile ap-
plications. We also looked at some commercial and open-source implementations
of the tools in each category. Let us quickly summarize the approach of each type
of platform considered.

First, we looked at running network-aware applications on a mobile device.
Virtual machines, such as Java’s, are clearly the best choice if we assume that all of
the device manufacturers will agree on a common software framework interface
(although they can choose their own implementations that abide by the specifica-
tions) and that the functionality offered by the devices will not vary greatly. J2ME
and CLDC provide a limited set of functionality to be augmented by the manu-
facturer and by the profiles. However, these profiles are designed to the lowest
common denominator of functionality among the devices: Supporting the super-
set of functionality among devices means that some device will never be able to

P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.11 So What Now?: What Do We Do with These Tools? 103

execute some of the functionality of the application, creating a nightmare for de-
velopers to deal with at run time. Also, growing CLDC is counterintuitive as it was
shrunk so that it can run on resource-hungry devices. We will call this approach
the single-language with virtual machine approach.

The second approach is the single-operating system multiple-language approach.
This is the approach that Microsoft has taken with the .NET platform. The advan-
tage of this approach is that the code is mobile regardless of what language it has
been written in. The obvious disadvantage is that the system users are tied to a sin-
gle operating system. Also, the operating system, much like the virtual machine,
must implement the lowest common denominator of functionality on its devices.
There is also the fact that a pragmatic manager does not allow the developers
to implement a solution in any language that their hearts desire. Today, software
development is dominated by C, C++, and Java. Although other languages such
as Eiffel and SmallTalk have very advanced features and may be considered more
evolved in some respects, they are not widely deployed commercially. We also re-
viewed BREW as an innovative, though very proprietary, approach to mixing the
best of the hardware world with the best of the software world in coming up with
a platform for mobile application development. There are other platforms that are
very significant. Later on, we will touch upon a couple of additional platforms,
such as Symbian, the most popular platform for wireless devices in Europe to date.

Then, we looked at the server-side tools such as Cocoon. Mobile applications, as
we continue to stress, are distributed by nature. Therefore, server technologies play
a crucial role in executing tasks that are too large and complicated for resource-
starved devices. Besides, the Web has shown the way for distributing content in
a thin-client environment. And though the thin-client environment does not fit
many mobile applications, it is still a useful method of distributing content.

Finally, we looked at some UML tools. In this text, we use UML itself as a
base tool for driving the development process and implementation of software in
building mobile applications. UML tools facilitate use of UML.

Next, we will look at XML and UML in more detail. Those two languages
will give us the basic pieces to get started on building real mobile applications
with UML.

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

CHAPTER 3

XML: The Document and
Metadata Format for
Mobile Computing

It is God whom every lover loves in every beloved!
Al Arabi

3.1 INTRODUCTION

The Extensible Markup Language—XML—is a subset of the Standard Generalized
Markup Language (SGML) specified in ISO standard 8879. SGML was created to
create and maintain complex and portable documents to be used in highly scalable
systems in a nonproprietary manner to any particular vendor. XML has become
a key technology in the development of content for the World Wide Web. Today,
with the birth of Web services, it is used for more than its original purpose of
representing documents.

There are many excellent writings and books on the topic of XML. If you are not
familiar with XML, you should probably stop here, familiarize yourself with the
basics of XML, and then come back and continue. In this chapter, our intent is to
outline some XML-based or XML-related technologies that are key in developing
mobile applications.

To understand how and why XML is used in mobile applications, we should
understand a brief history of how it came to be.

104

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.1 Introduction 105

3.1.1 Brief History
In the beginning, there was SGML. And then, from SGML, came the less intelligent,
but more likable son, XML.

If there were a bible of computer science, it would tell us the history of XML
with a bit more flare. But, that essentially sums up where XML came from.

When the Web was first created, XML’s sister, HTML, was born first. And you
guessed it: It has the same unisex parent, SGML. SGML, which is an international
standard for textual data, was conceived in the 1970s primarily by Charles F.
Goldfarb. It became a standard in the 1980s. SGML is extremely powerful, but
it is also very complex—so complex that not only is it difficult to author SGML
documents, but supporting SGML is very CPU and memory intensive. Moreover,
many features are not necessary for most documents. Formats that compare to
SGML are Postscript, RTF, DCA, and MIF. SGML applications are written in the
Document Type Definition format (DTDs). These are the same DTDs that are
used to design XML applications today. When you think SGML, think of two main
concepts: rules and structures. These form the basis of SGML. An SGML document,
much like XML, can be thought of in terms of a data structure of nodes. Each node
is an element. Rules, general to SGML, or specific to the document, make up the
semantics of SGML.

HTML was written in SGML specifically created for HTTP. HTML is parsed
using an HTML browser. HTML’s popularity increased much faster than SGML’s
did. It took SGML nearly a decade to just become a standard. HTML became the
most viewed type of user interface language within a few years (largely due to the
success of HTTP as a protocol). Though HTML was not extensible, it was designed
with some forgiving behavior. Eventually, this behavior proved to be one of the
disadvantages of HTML. In fact, one could create several HTML pages that look
identical but have significant differences in their source. Also, HTML was never
designed to handle data, just to render a simple user interface.

The complexity of SGML and downfalls of HTML made it clear that something
else was needed. And this is when Tim Bray and C. M. Sperberg-McQueen came
up with XML. XML evolved and became a W3C (World Wide Web Consortium)
Standard. XML’s primary purpose is to give us a markup language for documents
and features to encapsulate metadata about those documents.

Today, XML is used for much more than what it was originally intended for. Web
services, for example, use XML for not just encapsulating data and metadata but
also for representing behavior and providing an integration platform for disparate
systems. Although such uses of XML are questionable and have not been proven to
scale yet, one thing is certain: XML is the most universal vehicle today for creating
documents and for storing data. In this arena, it has been designed, deployed,
utilized, and proven.

XML is easy to read and understand. It is textual in nature, though references
to nontextual context can be made and binary information can be serialized into
an XML document.

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

106 XML: THE DOCUMENT AND METADATA FORMAT

Example 3.1: Representing an Address in XML.

<Address>

<StreetAddress>2652 McGaw Avenue</StreetAddress>

<City>Costa Mesa</City>

<State>California</State>

<Locale>

<Country_Code mId="1">US</Country_Code>

<Language mId="1">English</Language>

</Locale>

</Address>

A look at a simple example of representing an address shows us this. See Exam-
ple 3.1. Throughout this text, we will use an address example as a straightforward
method of writing some sample code. Let us see how we may represent a given
address in XML. XML is extensible, thereby allowing developers to create their
own applications of XML serving particular problem domains.

Now, let us look at how XML is used to facilitate development of mobile
applications.

3.1.2 XML and Mobile Applications
Mobile applications relate to XML in the following two ways:

1. Mobile applications should understand and be able to manipulate XML content.
As content on the Internet, and other networks, moves into an XML format,
it is very desirable that a given mobile application can handle XML. How the
XML is handled is of particular interest. Although the task of parsing and inter-
preting the XML can be done on the mobile device itself, or some proxy such
as an application server that processes all content for the device, issues such as
performance become of paramount concern. We will look at various ways of
dealing with XML content in this chapter.

2. Mobile applications use XML to facilitate their implementations. For example,
XML documents can be used by mobile applications to exchange data; configu-
ration of a device or a server may be encapsulated in an XML file; some protocols
such as WAP use XML as the means for presentation. There are countless places
where mobile applications and related frameworks can use XML internally. We
will look at some nonproprietary examples of such use in this chapter.

Whether the mobile application is handling XML content or using XML internally,
it must be able to construct XML documents, to parse them, and to take actions
based on the contents of the XML documents. When it comes to parsing XML,
there are two widespread methods: DOM and SAX.

3.1.3 DOM Parsing
The Document Object Model (DOM) is the tree representation of all of the XML
elements. Every element becomes a node and nodes. Nodes can have children to

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.1 Introduction 107

Address_Has_City

{ordered}
*

1

City

Address

Locale

+mId: int

+mId: String
+mType: String
+mLongitude: float
+mLatitude: float

+mName: String

+mCountryld: int
+mCountryName: String
+mLanguageld: int
+mLanguage: String

United States : LocateCosta Mesa : City

Home_Address : Address

FIGURE 3.1. Representing the Address Document with Class and Object Diagrams.

support nesting of nodes in the same way as an XML element can have other ele-
ments. The mapping of DOM to UML is very simple. Every node is an object, an
instance of a class. The XML attributes are the object attributes and the children
nodes are encapsulated data members. A DOM parser written in an object-oriented
language such as Java, C++, or C# goes through the entire XML document and
creates a tree of nodes, with the nodes being objects. DOM parsers are also re-
quired to preserve the order of elements. There may be meaning in the order of
elements. The same is not required of attributes. Figure 3.1 shows how a UML
Object Diagram can be used to represent a DOM. We will discuss Object Diagrams
further in Chapter 4.

DOM parsers allow a convenient method for accessing any piece of data in the
document. For the DOM parser to make the data available, it has to parse the
entire document; therefore, once the parsing is done, all of the data are available.
Also, as we just mentioned, because of the nature of what DOM is, it is very
easy and intuitive to implement DOM parsers in object-oriented languages or to
use object-oriented languages for an application that, in turn, uses a DOM parser.
Although DOM parsers are a good solution for parsing of most XML, they run
into performance problems when dealing with numerous documents or unusually
large documents. DOM is best when there is a one-to-one relationship between
the objects that we need from the document and the elements in the document.

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

108 XML: THE DOCUMENT AND METADATA FORMAT

Often, this is not the case and we can improve performance with custom code.
SAX parsers, in most cases, allow better optimization of performance.

3.1.4 SAX Parsing
SAX (Simple API for XML) creates a series of events as it parses through the XML
document instead of creating an object model of the entire document in memory.
There are two key advantages that SAX offers over DOM:

1. Most of the time, we do not need all of the information in the document. So, the
object model desired does not have to have every element and attribute of the
document. A custom object model in this case is more efficient. We can write
a custom object model and a driver that catches the SAX events as the SAX
parser reads through the document and emits them and fills up the custom
object model.

2. We do not have to wait for the entire document to be processed before using
the contents of the document. For very large documents, DOM becomes prob-
lematic as it has to load the entire document into memory before it makes its
contents available. In contrast, as a SAX parser progresses through processing a
document, it emits events; therefore, by nature, it allows immediate processing
of the information.

Undoubtedly, it is more work to write an application with a SAX parser than it is
with a DOM parser. Let us go back to our address example.

Example 3.2: Why Use SAX for Parsing an Address?

<Address>

<StreetAddress>2520 College Avenue</StreetAddress>

<Locale>

<Country>US</Country>

<PostalCode>92626</PostalCode>

<Language>English</Language>

</Locale>

<City>Costa Mesa</City>

<State>California</State>

</Address>

Let us say that we have a list of addresses in XML and need to categorize them
by the postage fee that needs to be paid for shipping materials to each. We could
use the DOM parser to load every address, formatted as the one in Example 3.2,
into an object model in memory. This would mean that we have read hundreds,
perhaps thousands, of addresses into memory. This could take a while. However,
for our particular application, we may only need the postal code. We could use
the SAX parser to emit an event that encapsulates the value of the postal code as
it parses through the document. This would give us considerable improvement in

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.1 Introduction 109

performance not just because we would be looking only for one piece of data, but
also because we have decreased the amount of memory usage.

SAX parsing can prove quite useful for mobile applications. Although many
documents are comprehensive and hold large amounts of information, only parts
of them are useful for certain devices. Considerable performance gain can be
achieved by using the SAX parser in such cases.

To create an XML document, we typically need the entire document. Therefore,
when persisting or streaming XML, the DOM parser is typically a better fit.

SAX and DOM parsers are available for most PC platforms (such as Java and
.NET) on a variety of operating systems. Apache’s Xerces is perhaps the most
popular parser for Java developers, offering both DOM and SAX parsing. Microsoft
supports SAX and DOM through an MSXML component for the .NET or other
Windows-based applications.

Parsing XML in mobile applications can be tricky. Most mobile devices are
typically resource-starved: short in memory, unreliably connected to the network,
and not having a lot of excess CPU to spend on parsing XML. Both Java and
Microsoft offer XML parsers for their mobile platforms. There are a variety of
XML parsing techniques for the J2ME with the KVM and CLDC. Profiles can add
additional XML parsing features to a given J2ME stack. kXML, for example, offers
an implementation of an XML parser with a Java API for the J2ME platform. kXML
is an API built on top of a SAX-based API and implementation. MIDP-NG (MIDP
Next Generation) is slated to have a built-in XML parser. Another alternative is
available through an open-source project at Source Forge called NanoXML.

Microsoft offers XML parsing on the Windows CE platform. Microsoft has a
trimmed-down version of the .NET XML parser for the .NET platform in its Smart
Device Extensions for Pocket PC, Windows CE 3.0.

WAP 1.x offers XML parsing in being able to process WML, an application of
XML. However, it does not offer an ability to process any other applications or
types of XML. WAP 2.x is a bit more friendly in allowing processing of XHTML,
but there is still no flexible XML processor slated for WAP 2.x.

Besides parsing, another core operation in dealing with XML is transforming it.
Because XML is well-formed, it has a well-defined data structure that can be trans-
formed to other well-formed data structures. The Extensible Stylesheet Language
(XSL) provides a simple mechanism for different applications of XML, addressing
the same problem domain, to exchange document instances. The primary standard
for transforming one type of XML to another is XSL.

3.1.5 Transforming XML with XSLT
XSL is an application of XML. It is a language for designing Extensible Stylesheet
Language Transformations (XSLT). The XSL specification also includes XML Path
Language (XPath), the expression language that enables navigation to particular
parts of an XML document, and XML Formatting Objects (XSL-FO), an appli-
cation of XSL that is designed specifically for specifying formatting of viewable
documents. Since the inception of XSL, XPath has become its own standard at

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

FI
G

U
RE

3.
2.

U
si

ng
XS

L
an

d
XS

LT
s

to
Pr

od
uc

e
th

e
Ri

gh
tC

on
te

nt
fo

rt
he

Ri
gh

tD
ev

ic
e.

110

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.2 XML Web Services 111

W3C as it proves useful in navigating documents whether or not a transformation
is performed; still, it is a core part of what is needed to use XSL successfully.

On the Web, XSLTs are used much the same way as Cascading Style Sheets
(CSS) to format HTML pages. The first-generation applications using XSLT and
CSS used them to layer look-and-feel attributes on top of some vanilla HTML.
Today, as much of the content on the Internet is moving from HTML to XML, it is
more customary to use XSLTs to produce HTML.

An important thing to know is that XSL templates operate on the DOM. There-
fore, the entire document must be available before we start transforming it. XSLT
pages are documents full of instructions for the XSLT processor. The XSLT proces-
sor may be an interpreter or a compiler. The latter performs better while requiring
a compilation action that may prevent real-time changes to the code base and
enforce more rigorous restrictions on the template.

When it comes to mobile applications, the most popular use of XSLTs is to
transform raw content designed for multiple types of user interfaces to a specific
type of content. The input must be XML and the output is most probably XML. A
typical content generation and transformation chain is shown in Figure 3.2. We
discuss frameworks and tools that support such transformations in other chapters
throughout this text.

Because XSL is a scripting language, it has control structures such as if–then
statements and loops. These control structures are meant to operate on XML
document elements, their values, and their attribute values. XSL takes one DOM
in and spits out another DOM. Mathematically, it nearly works as a mathematical
transformation.

Most of the tools that use XSL and its facilities to generate content for mobile
devices today perform the transformation process on the server side. Today’s mobile
devices do not have the ability to perform XSL transformations because they are
resource-starved. However, as devices are becoming more and more capable and it
is becoming more obvious that content is exchanged primarily in the XML format,
device vendors are moving to support XSLs as a part of the platform offered.

When running XSL processors on the device, one prefers to use an XSLT com-
piler to reduce overhead. Code is then generated, native to the platform (this could
be the operating system, such as Windows CE, or the language, such as Java), and
executed to process the input XML. Sun’s XSLT compiler, for example, enables the
developers to compile XSLT for J2ME CLDC for the MIDP on the Palm platform.

We will discuss XSL and related XSL technologies several times throughout this
text. Now, let us quickly look at XML-based Web services.

3.2 XML WEB SERVICES

Web Services are a prime example of an organic, as opposed to a synthetic, evo-
lution in technology. They exist because the HTTP protocol is ubiquitous: Just
about everyone today has access to the Web. Web services build on the HTTP
protocol methods, mostly GET and POST, to build an RPC (Remote Procedure
Call) that allows two systems to exchange messages over HTTP. But, why not use

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

112 XML: THE DOCUMENT AND METADATA FORMAT

CORBA, COM, JINI, or other distributed computing protocols? XML based Web
services are not efficient: They convert binary to text to convert it back to bi-
nary again. This is a weak point of XML based Web services when it comes to
dealing with mobile applications. However, there are work-arounds. Web services
are a text-based MMI (Machine-to-Machine Interface). However, they are simple
to build and they take advantage of the ubiquity of the Web. Protocols such as
CORBA have failed in becoming ubiquitous. Other protocols such as COM are
proprietary to a platform. The platform of Web services is the Web. Regardless
of level of efficiency, those two aspects alone create an economic reason for Web
services to exist. Another consideration that accompanies the use of Web services
(typically HTTP based though they can be based on other protocols such as SMTP)
is security. Because many people use Web services as a method to circumvent secu-
rity (since most firewalls are open for HTTP traffic on port 80), this also presents
a security problem.

Although Web services do not have to use XML, most do. Web services use XML
to represent both behavior and data. Even though the majority of Web services have
custom behavior defined as a part of their defining schema or DTD, it is possible
to build Web services that use only HTTP’s methods with messages containing
only data.

There are different types of Web services. Some Web services are designed to
allow for an RPC mechanism; XML-RPC and SOAP are examples. UDDI (Univer-
sal Description, Discovery and Integration Service) is an example of a Web service
that is a registry. WSDL (Web Services Definition Language) is sort of a meta-Web
service and focuses on what Web services can do and how they communicate—
the semantics of Web services—as opposed to defining a domain-dependent
schema.

As in any other technology, there are proprietary and nonproprietary Web ser-
vices. Though some vendors claim that completely proprietary services are not
possible, indeed this is a big misconception. For example, Microsoft’s Passport is
a proprietary Web service. Proprietary Web services may have an open schema
with definitions understood by all possible entities, but they may require software
or infrastructure specific to one or more vendors, and be closed to being imple-
mented by other vendors, for generating messages that use the given Web service
to interact with other systems or system components.

The ubiquity of Web services is what makes them interesting to use for mobile
applications. Device proliferation should not cause protocol proliferation. For this
reason, using Web services, in the absence of any other more efficient communi-
cation protocol, makes much sense for distributed mobile applications.

Let us go through a few different Web services. Keep in mind that Web services
are increasing in number and variation by day.

3.2.1 SOAP
SOAP is probably the best known of all Web services. SOAP started in 1998 and is
a behavioral application of XML. SOAP is a W3C standard and is implemented by
a variety of vendors such as Sun Microsystems, IBM, and Microsoft. SOAP is not

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.2 XML Web Services 113

designed to work with any specific transport protocols; it simply specifies the for-
mat of the message to be transported. However, the publicly available commercial
implementations of SOAP to date only support binding to HTTP.

SOAP services are accessed through URLs. In this way, every service offered has
a unique identifier. Example 3.3 shows the code for an address response in SOAP.

Example 3.3: Address Response in SOAP.

HTTP/1.1 200 OK

Content-Type: text/xml; charset="utf-8"

Content-Length: 434

<env:Envelope xmlns:env=http://www.w3.org/2001/06/soap-

envelope>

<env:Body>

<myAddressDefinition:GetAddressResponse

env:encodingStyle=http://www.w3.org/2001/06/soap-encoding

xmlns:myAddressDefinition=http://www.cienecs.com/

examples/SOAP/myAddress>

<Address>

<Street>2652 McGaw Avenue</Street>

<City>Irvine</City>

<State>California</State>

<Country>United States</Country>

</Addrss>

</myAddressDefinition:GetAddressResponse>

</env:Body>

</env:Envelope>

Let us briefly summarize the key concepts of SOAP:

1. Binding: As we already mentioned, SOAP is not a transport protocol. It only
defines the format of the messages to be exchanged by senders and receivers
in a messaging system. But, an application using SOAP must use a transport
protocol. The process of tying the XML message to the protocol so that it can
be shipped from one endpoint to another is called binding.

2. Node: Anything that produces or consumes a SOAP message is a node. Nodes are
the clients, servers, or peers in the system. Nodes can be SOAP receivers, SOAP
senders, or both. As the names imply, SOAP receivers are listening for SOAP
messages and can process them upon receiving them. SOAP senders produce
SOAP messages and find a receiving node to send them to.

3. Envelope: The SOAP envelope merely puts the tag boundaries around the SOAP
message in the XML document. The SOAP envelope is there to preserve the ex-
tensibility of XML and keep it well formed without creating multiple documents
(which would obviously add much complexity).

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

114 XML: THE DOCUMENT AND METADATA FORMAT

4. Body, header, block, and fault: These are the SOAP syntactical constructs specific
to the SOAP envelope structure.

The SOAP message format is an application of XML. The nodes must have XML
parsing capabilities so that they may bind to the transport protocol on one side
and to some computing system that actually does the computing task on the other
side. Although SOAP, and similar XML-based RPC mechanisms such as XML-
RPC, can simplify distributed computing, we need to keep in mind the following
inefficiencies:

1. There is a great price to be paid in performance. Parsing XML is expensive.
And building an application layer protocol such as SOAP on top of another
application layer protocol brings us very near to the dangers of overabstraction.

2. One significant source of inefficiency in SOAP is the use of multiple system
calls to send one logical message [Davis and Prashar 2002]. A given transaction
defined within the confines of one system may mean several calls to another
system. In other words, there may not be a one-to-one mapping between the
interface exposed and the implementation that uses the API. This can lead to
many different calls being made to complete one transaction, which otherwise
may be completed with one transaction. This factor acts as a multiplier to the
other performance problems of SOAP.

3. Encoding data instances (per the requirements of Section 8 of the SOAP Specifi-
cation) basically defines an object serialization method into an XML-based text
format. This has inherent inefficiency: Machines deal with binary information
and not text. So, the sender node must serialize to text-based XML and the
receiver node must first parse the XML and then map the text into the object
model that it requires to perform its internal functions.

Although these inefficiencies pose problems, SOAP can justify itself as a means of
connecting systems that use different networking technologies and do not require
high performance levels.

SOAP is a great example of a Web service that defines a domain-independent
protocol for sending remote procedure calls from one node on the network to
another. There are many other types of Web services. Let us look next at WSDL,
a Web service designed for discovery of other Web services.

3.2.2 WSDL
WSDL is an XML-based language used to describe other Web services and how
to interact with those Web services. WSDL provides a mechanism to define inter-
faces that can be used to generate code, thereby making Web services language
independent. WSDL is implemented as an XML document that holds a series of
definitions of various Web services. WSDL is to Web services described in various
XML formats what the Resource Description Framework (RDF) is to various re-
sources. The only difference is that WSDL is not part of the Semantic Web (to be

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.2 XML Web Services 115

discussed later in this chapter). WSDL is not a W3C recommendation; rather, it
is a proposal by IBM, Microsoft, and Ariba to W3C for future recommendation.
A WSDL document defines the following:

1. Type: A Web service may define its own data types in this section of the
WSDL document. WSDL types must be based on XSD (XML Schema, the
W3C standard) data types. This capability can be used to define custom data
types that make sense within the domain being served by the particular Web
services.

2. Message: This section of a WSDL document defines the format of the messages
being passed around among the different nodes. For example, in the case of
SOAP, this would be the definition of the SOAP Envelope.

3. Operation: This section of the document defines the various services offered by
the Web service. Think of this as the metadata for the remote procedure calls
that each Web service exposes.

4. Binding: WSDL does not force binding to a particular transport protocol. More-
over, most (well-designed) Web services do not force binding to a particular
protocol. In the binding section of the WSDL document, we can define what
protocol bindings are possible for a given Web service and how those bindings
are supported. It is also important to note that binding does not have to be to
a particular type of protocol. For example, WSDL could be used to describe a
Web service that is built on top of SOAP, which in turn could be using HTTP
for its transport protocol. Or, alternatively, it could be used to describe a Web
service built on top of HTTP itself (with messages that are in the XML format
to preserve the definition of a Web service).

5. Port: Whereas operations allow us to describe the metadata about each “pro-
cedure call,” ports are what we get after the operation is bound to a transport
protocol. The port is the mechanism used by the nodes to send messages back
and forth.

6. Port Type: Sometimes, a given operation may be supported by one or more
ports. If this is the case, we still need a way to group the ports that support that
operation so that a selection of which port offers what operation can be made.
Port type is a way to group ports, for this purpose, by the operations that they
support

7. Service: Service is the high-level abstraction that allows grouping of end points
and operations to create a Web service.

Example 3.4 shows a WSDL document for an address directory Web service.

Example 3.4: A WSDL Document for an Address Directory Web Service.

<wsdl:definitions name="myAddressService" xmlns="http://www.

cienecs.com/examples/wsdl/">

<wsdl:service name="myAddressService">

<wsdl:documentation name="myAddressDocumentation"/>

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

116 XML: THE DOCUMENT AND METADATA FORMAT

<wsdl:port name="myAddressPortName" binding=

"mySOAPAddressBinding">

<soap:address location=http://www.cienecs.com/

examples/wsdl/myAddress.xsp/>

</wsdl:port>

</wsdl:service>

<wsdl:message name="AddressQuery">

<wsdl:part name="mFirstName" type="xsd:string" />

<wsdl:part name="mLastName" type="xsd:string" />

<wsdl:part name="mSSN" type="xsd:integer" />

</wsdl:message>

<wsdl:message name="Address">

<wsdl:part name="StreetAddress" type="xsd:string" />

< wsdl:part name="City" type="xsd:string" />

< wsdl:part name="State" type="xsd:string" />

< wsdl:part name="Country" type="xsd:string" />

< wsdl:part name="PostalCode" type="xsd:string" />

</ wsdl:message>

< wsdl:operation name="FindAddress" parameterOrder=

"mFirstName, mLastName, mSSN">

< wsdl:input message="AddressQuery" />

< wsdl:output message="Address" />

</ wsdl:operation>

< wsdl:portType name="addressFinder" >

< wsdl:operation name="FindAddress" parameterOrder=

"mFirstName, mLastName, mSSN">

< wsdl:input message="AddressQuery" />

<wsdl:output message="Address" />

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="mySOAPAddressBinding" type=

"myAddressSOAPPort">

<soap:binding stype="rpc" transport=http://schemas.

xmlsoap.org/soap/http" />

<operation name="FindAddress">

<soap:operation soapAction=http://www.cienecs.com/

cocoon/examples/myAddressService />

</operation>

</wsdl:binding>

</wsdl:definitions>

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.2 XML Web Services 117

Web
Service

Web
Service

Web
Service

Mobile
Device

Mobile
Gateway

FIGURE 3.3. Web Services for the Mobile Infrastructure Using Gateways.

Once again, it is important to understand that WSDL is not a Web service; rather, it
is a facility to build introductory descriptions for other Web services. One example
of a Web service that uses WSDL is UDDI, which is designed for discovering and
introducing business services on the Internet. UDDI allows binding to both HTTP
and SOAP. UDDI is not a standard but is an industry effort driven by several large
entities such as Dell, HP, and IBM.

We have now looked at two different key Web service technologies. Let us see
how Web services are related to mobile application development.

3.2.3 Web Services and Mobile Applications
Web services and mobile applications can be related in two ways:

1. Web Service Proxy: The infrastructure of mobile applications can use Web ser-
vices for messaging. For example, a given system may allow mobile users to
find someone’s phone number through a directory service and subsequently get
the driving directions to that person’s place of residence. These two functions,
finding the phone number and the driving directions, may be fulfilled by two
different systems, each implemented in a different environment. So, the back
end for our mobile system may use Web services to connect to each one of these
systems and retrieve the information we need to return it to us. The interface
between the back-end system and the device remains consistent and can be im-
plemented through whatever communication protocol may be necessary. This
is the more likely scenario for most systems. Figure 3.3 shows a mobile device
using services offered by several Web Services through a gateway.

2. Direct Connection to Web Services: Mobile devices with more resources can di-
rectly access the network through the use of Web services (see Figure 3.4). Of
course, this requires a considerably advanced mobile device as we have to have
very efficient XML parsing as well as the ability to write substantial applications
that implement the application of XML that supports the particular Web ser-
vice to which the mobile device must connect to. The clear advantage of such

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

118 XML: THE DOCUMENT AND METADATA FORMAT

Web
Service

Web
Service

Web
Service

Web
Device

Mobile Device

SOAP /
HTTP

XML-RPC
HTTP

FIGURE 3.4. Mobile Devices Using Web Services Directly.

an implementation is the elimination of the proxy and the direct usage of the
service by the device. An example of a technology that allows us to do this is
XForms. We will discuss XForms in detail in Chapter 5. It provides a generic
user interface markup language that can be specialized for a particular user in-
terface. Specialization may be done at the receiving node (in our case the mobile
device) or at a sending node (server, peer, etc.). The beauty of XForms is that it
allows for binding to any transport protocol. Therefore, we can bind XForms to
use a Web service, thereby allowing the mobile device to communicate directly
with various available Web services.

We have now seen some basic ways in which XML is used for documents, for
metadata, and for behavioral systems. Note that our focus here has been on the
various types of XML applications rather than products or technologies that im-
plement them. Different vendors apply these technologies in a variety of ways,
each with their own proprietary flavor and twist.

Now, let us look at some applications of XML that have been specifically de-
signed for use by mobile devices and the other XML applications that they, in turn,
take advantage of.

3.3 KEY XML TECHNOLOGIES FOR MOBILE COMPUTING

Some standard applications of XML have been specifically designed with mobile
applications in mind. Standardization of such applications of XML is required to
provide interoperability between disparate systems.

As we mentioned previously, mobile applications should be able to handle XML
content. This may mean parsing the content to take some actions based on the
content, transforming the content for various user interfaces, or using XML as the

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.3 Key XML Technologies for Mobile Computing 119

metadata for handling various types of content. There are a set of standards by
W3C and proprietary recommendations by various vendors that apply for these
cases. We will focus on standards recommended by W3C as they are typically
more encompassing than proprietary recommendations. These standards apply
across various vendors that either base their interface to their products on W3C
standards or provide interoperability with them. Before we begin a survey of these
technologies, we must look at one key XML standard that is used by most other
applications of XML, XML Schema. XML Schema defines the data types and struc-
ture language for validating an XML document much the same way as DTDs used
to. Whereas DTDs are an SGML application and written in SGML, XML Schema is
an application of XML. Therefore, instances of XML Schema are XML documents
that can be parsed and treated as any other XML document.

3.3.1 XML Schema
XML Schema is an application of XML to define the type of elements and attributes,
the structure of the elements, and any constraints on the elements and attributes
of a given XML document. The XML Schema namespaces begin with xs; if you
have developed a sizable application in XML, you have probably seen or used some
XML Schema instance data as XSI or data types as XSD within XML documents.

Example 3.5: DTD of an Address.

<!ELEMENT address (streetAddress, city, state, zip) >

<!ELEMENT streetAddress (#PCDATA) >

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

Let us compare a simple DTD with its equivalent XML Schema. The DTD in
Example 3.5 defines an address. The XML Schema in Figure 3.5 does the same
thing.

XML Schema allows us to build new data types and to reuse those data types
across multiple documents. In our case, we have defined a data type called Address
that can be used across other documents. A document using XML Schema for
defining itself may look like the XML code shown in Figure 3.6.

Many XML applications use XML Schema to define new data types that can be
reused within the namespace of the given XML application, to define the structure
of the various elements within an instance document of the particular XML ap-
plication, and for allowing the developers to place constraints on the data defined
within the XML application. XForms is such a sample application that uses XML
Schema. The XForms definition is written in XML Schema: Its data types and
structure are defined by the XML Schema–based document that defines XForms.

Although the reader is expected to be familiar with various XML technologies,
let us quickly review the list of data types in XML Schema as they are referred to
frequently within this text.

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

120 XML: THE DOCUMENT AND METADATA FORMAT

<?xml version="1.0">

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema/"

targetNamespace="http://www.cienecs.com/examples/schema">

<xs:Address>

<xs:sequence>

<xs:element name="streetAddress" type="xs:string"/>

<xs:element name="city" type="xs:string" />

<xs:element name="state" type="xs:string" />

<xs:element name="postalCode" type="xs:string" />

<xs:element name="country" type="xs:string" />

</xs:sequence>

</xs:Address>

</xs:schema>

FIGURE 3.5. Using XML Schema to Define a Data Type for Address.

1. Basic XML Schema Data Types: There are several data types defined by XSD on
which all other data types are built. Here are some of the built-in types:
a. String (<xsd:string>): You may easily guess that this is a sequence of any

valid characters with the exception of those reserved for XML (the brackets,
comment sign, etc.). Several other built-in data types are driven from the
String.

b. Date (<xsd:date>): This element is used to specify dates. It allows for speci-
fying a format for the data and using character data as the text of the element.
The character data must comply with the format specified if one is specified.

c. Numeric (xs:decimal): There are several different numeric types allowed in
XML Schema. They are all derived from the decimal data type. The decimal
data type allows for specifying any decimal number, with no more than 18!

<?xml version="1.0">

<Address xmlns="http://www.cienecs.com/examples/XSD/Location"

xmlns:xsi="http://www.w3.org/2001/XMLSSchema-

instance"

xsi:schemaLocation="http://www.cienecs.com/examples/XSD/

Address.XSD">

<streetAddress>2652 McGaw Avenue</streetAddress>

<city>Irvine</city>

<state>California</state>

<postalCode>92626</postalCode>

<country>US</country>

</Address>

FIGURE 3.6. Using XML Schema to Define a Data Type for Address.

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.3 Key XML Technologies for Mobile Computing 121

(= 18 × 17 × 16 × . . . × 3 × 2 × 1) digits. See the XML Schema specification
for all of the other numeric types that inherit from the decimal type.

d. Boolean (<xs:Boolean>): This type allows specifying a Boolean. Values can
be “true” or “false.”

e. Base-64 Encoded Binary Data (<xs:base64Binary>): The text specified by this
data type is treated as base 64 encoded binary data.

f. Hexadecimal Encoded Binary Data (xs:hexBinary): This is the same as base 64
except the encoding is based on hexadecimal encoding.

g. URI (<xs:anyURI>): One of the most important concepts in various Web
related activities is the concept of a Universal Resource Identifier (URI). This
tag allows for specifying an element that refers to a URI. In this way, large
documents can be broken up into multiple documents and the XML Schema
definitions can be modularized.

2. Simple Data Types: These are data types that can only contain text. Simple data
types cannot have any attributes nor have elements nested within them. Simple
data can refer to the data types that are built into XML Schema or are custom data
types that are built on top of the built-in data types. The important point is that
they do not have children elements and that they do not have custom attributes.

3. Complex Data Types: These are the data types that contain other elements and/or
attributes. Complex data types are typically used to define custom data types.

XML Schema data types and structures are crucial to understanding the XML
applications specifically designed for mobile applications or ones that have put a
great amount of emphasis into accommodating mobile applications.

XHTML, Extensible Hypertext Markup Language, was one of the first such
applications of XML addressing many of the issues involved with mobile user
interfaces. Let us look at XHTML and other applications of XML that address the
problems of the mobile user interface.

3.3.2 XML-Based User Interface Technologies for
Mobile Applications
As we previously mentioned, one of the first markup languages to be pervasively
used was HTML. Most of the Web documents today exist in HTML. HTML is an
application of SGML, but it is not very clean. XHTML is an attempt at cleaning up
the HTML syntax and providing a version of HTML that is an application of XML.
XHTML will replace HTML past version 4.01 and it is an approved W3C standard.

One of the biggest problems that HTML presented was that it was not designed
to be used by a wide variety of user interface types. HTML was designed with
minimum requirements of a color screen of 640 × 480 pixels and the PC in mind.
Though some considerations were made for screens that did not display graphics,
not much else was available to the developer. Also, HTML was not strict enough
in enforcing syntax. So, programmatic changes to HTML to make it fit various
devices was not possible without making assumptions (which in turn create bugs).
During the first year or two of WAP applications, many companies based their
sole products on tools that converted HTML to XML. XHTML eliminates the need
for such techniques. XHTML allows for development of GUIs using a thin-client

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

122 XML: THE DOCUMENT AND METADATA FORMAT

model where the XHTML browser renders a GUI. We will look at XHTML in depth
in Chapter 6 where we look at GUIs for mobile applications.

Voice Extensible Markup Language (VXML) is another application of XML
specifically designed for voice user interfaces. VXML allows specification of a
command-based voice dialog through a markup language. We will discuss VXML
as a tool for creating voice user interfaces.

WML is the markup language of WAP version 1.x. It is designed for WAP
browsers to display a GUI that is mostly comprised of text with support for small
black-and-white pictures. WAP 2.x will use XHTML as its markup language be-
cause current devices have more capabilities and XHTML is a more flexible markup
language, allowing dynamic adaptation to various types of user interfaces.

Finally, and perhaps most importantly, XForms is an application of XML that
we discuss in great depth in Chapter 5. XForms allows us to build user interfaces
with a focus on the interactions and data exchanges between the user and the
user interface as opposed to specific types of user interface. XForms allows us
to separate concerns among presentation logic specific to the application, the
presentation logic specific to the device, the data exchanged between the user and
the system, and the interaction flow.

It is natural for XML to be the core of a user interface system infrastructure, mo-
bile or not. XML is textual, structured, and document based. Those three elements
are of utmost importance in building a human–computer interface (HCI).

There are other applications of XML for mobile application infrastructures as
well. We will now briefly introduce some applications of XML that control flow
of interactions. Let us start with CCXML, an application of XML designed to flow
the control of interactions with a telephony system.

3.3.3 CCXML
Call Control Extensible Markup Language (CCXML) is an application of XML
for managing voice calls. Whereas VXML defines user interfaces for the interac-
tions between a user and a voice-recognition system or a text-to-speech engine,
CCXML focuses on routing the calls and connecting calls. CCXML is specific to
the telephony part of voice user interfaces.

Because CCXML does not specify a binding to a particular voice system, it can be
used to implement call control in voice-over-IP or conventional PSTN telephony
systems, thereby assuring that the call control mechanism is independent of the
underlying implementation. CCXML was based on Java Telephony APIs (JTAPI).
We will look at both JTAPI and CCXML more closely in Chapter 7.

Next, let us take a brief look at an application of XML that allows us to specify
processing flows for various XML documents.

3.3.4 XML Pipeline
XML Pipeline is a W3C recommendation that specifies how to process various
XML resources. This standard takes many of its ideas from software building tools
such as GNU’s MAKE and frameworks such as Cocoon that use the concept of
inversion of control prevalently.

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.3 Key XML Technologies for Mobile Computing 123

XML Pipeline can be thought of in two different contexts:

1. It specifies the flow of processing instructions that are applied to one or more
given documents residing on one host. Take, for example, the process of apply-
ing a set of XSLs to a given document. Applying XSLs is not communicative:
Given document A, applying first XSL B, then XSL C, and finally XSL D may
result in a different output document than applying first XSL B, then XSL C,
and finally XSL D.

2. It specifies the flow of processing instructions that are applied to a variety of
XML documents, residing at a variety of hosts. Such processing is a superset of
processing documents residing on the same host as problems such as versioning
and timing can make processing the documents problematic.

Example 3.6: Sample XML Pipeline Document.

<?xml version="1.0">

<pipeline xmlns="http://www.w3.org/2002/02/xml-pipeline"

xml:base="http://www.cienecs.com/Examples/XMLPipeline">

<param name="target" select="'result'" />

<!-- This section defines the processes and links them

to their definitions (typically some hint to the

controller on where and how to start off the processes).

We chose Java for our examples, so the definition is in

terms of Java classes. -->

<processdef name="selector" definition="com.cienecs.mobile.

device_selector"/>

<processdef name="selected_content" definition="com.cienecs.

mobile.http.get_content_generator"/>

<processdef name="authenticator" definition="com.cienecs.

mobile.security.authenticator ($username) ($password)"/>

<processdef name="transformer" definition="com.cienecs.

mobile.transformer.xslt"/>

<!-- For our example, we chose a set of processes that

select some content based on the user's request. So, the

first thing to do is to find the content that the user

requested. -->

<process id="3" type="selected_content" >

<input name="uri_param_1" label="content_finder_param_1"/>

<input name="uri_param_2" label="content_finder_param_2"/>

<output name="cresult" label="generic_content_URI"/>

</process>

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

124 XML: THE DOCUMENT AND METADATA FORMAT

<!-- For our example, we want to transform the content based

on the device that the user is using. So, we need to fire

off a process that finds out the user's device type..-->

<process id="1" type="selector" >

<input name="deviceId" label="unique_device_id"/>

<input name="ccpp_header_string" label="ccpp_header_

string"/>

<output name="result" label="device_type"/>

</Process>

<process id="4" type="authenticator">

<input name="username" label="username" select=

"($username)"/>

<input name="password" label="password" select=

"($password)"/>

<output name="authenticated" label="authenticated"/>

</process>

<!-- Now, based on the user's device type and the selected

content, we can find the right type of transformer and

transform the content properly. -->

<process id="2" type="transformer" >

<input name="device_type" label="device_type"/>

<input name="generic_content_URI" label="generic_content_

URI"/>

<input name="authenticated" label="authenticated"/>

<output name="device_specific_content" label="device_

specific_content"/>

</process>

</pipeline>

Example 3.6 show a sample XML Pipeline document.
There are currently several efforts at designing standards that specify interfaces

for such processing. Examples are XPipe, DSDL, and XML Pipeline. We chose
XML Pipeline as it is a W3C standard. At the time this book is being authored,
XML Pipeline is only a recommendation.

XML Pipeline recognized five different types of processes [W3C XML Pipeline]:

1. Constructive processes produce new information, such as a new XML document,
as a result of the process. XSL processing is an example of a constructive process.

2. Augmenting processes add new types (definitions) of information. For example,
we can introduce new types in an XML Schema.

3. Inspection processes look at the content of a document and indicate whether
the inspection processes succeeded or failed based on whether the document

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.3 Key XML Technologies for Mobile Computing 125

conformed to a given set of rules. Validation of a document using an XML
Schema or a DTD is an inspection process.

4. Extraction processes copy a part of the document that they look into. The copied
section may then be removed from the document being inspected or left in.

5. Packaging processes are distributed processes that address the processing of
distributed resources. The scope of such an initiative is simply huge. So, even
the XML Pipeline specification clarifies that the XML Pipeline addresses only a
subset of those issues involved in providing a standard for specifying distributed
processing of distributed resources.

In XML Pipeline, resources, as in the case of RDF, are identified by URIs: Anything
that can be represented by a URI can be a resource. The controller is the entity
that processes the XML Pipeline document. It first validates the document, then
determines what the first process is, points the first process to its input, tells it to
run, and redirects the output where it should go.

The controller processes the instructions on the document based on the avail-
ability of the input. An obvious implementation may require multiple passes
through the document. Other implementations may use SAX to map the events to
language-specific event models. Regardless of the implementation, the controller
figures out which processes depend on which, then produces the results of ones
with appropriate available input in the order of availability of input.

Although XML Pipeline and similar pipelining languages are not likely to be
used on most mobile clients, they can prove invaluable in building distributed
mobile applications that are not tightly coupled to commercial implementations,
thereby allowing more flexibility in implementing the initial solution and in chang-
ing the implementation during the lifetime of the mobile application system.
Cocoon, for example, uses a pipelining system. Though Cocoon’s Sitemap, which
essentially accomplishes the same purpose as an XML Pipeline document for con-
tent generation, is written with a different vocabulary set, structurally and func-
tionally, it is very similar to an XML Pipeline document. Cocoon is one of the most
popular frameworks for generating the right type of content for the right type of
device/user interface (and, as we will see later in this book, it can be used for much
more than just that).

XML Pipeline has become a recommendation very recently, and even more
recent is the release of the first (currently only) reference implementation for it
by Sun Microsystems. It is very likely that many frameworks, such as Cocoon,
will eventually migrate from proprietary pipelining languages to XML Pipeline.
XML Pipeline may need to be extended to accommodate features special for some
mobile application frameworks, but then, that is one of the beauties of XML: It is
extensible!

3.3.5 WBXML
The WAP Binary Extensible Markup Language (WBXML) format defines a way to
represent XML in 0’s and 1’s instead of text. The primary purpose of WBXML is to
reduce bandwidth requirements on transporting XML documents.

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

126 XML: THE DOCUMENT AND METADATA FORMAT

The interest in WBXML has gone far beyond WAP. The argument for binary
XML is that it reduces bandwidth and the time required for transport. Arguments
also have been made that parsing binary XML may be more efficient because
machines are better at dealing with numbers than text. However, this is in doubt.
Namely, without knowing the contextual usage of XML, it is questionable whether
it is possible to come up with an encoding scheme that applies with consistent
efficiency across one set of domains although not causing loss of efficiency across
another set of domains. So, although WBXML is a binary representation of XML,
it has been designed with a bias toward WAP; it does not necessarily work well
for other mobile application frameworks and protocols.

There are several open-source tools that provide parsing of WBXML. KXML,
an open-source application that we previously referred to as an XML parser in the
J2ME environment, has the ability to parse WBXML for the J2ME environment.
KXML is a DOM-based parser for WBXML. If you are looking for a SAX WBXML
parser, check out Trantor [Trantor 2002], a collection of various open-source
applications for mobile devices.

Making XML parsing, transport, and translation more and more efficient is one
of the hot topics of current discussions. Resource-starved mobile applications can
certainly use faster ways of dealing with XML and requiring less bandwidth to
transport it. There is currently no prevailing standard, nor implementation, nor
even consensus in the industry on how to do this.

We will not look at WBXML in any depth here. If you are interested in finding
out more about WBXML, check out W3C’s Web site.

3.3.6 SSML
The Synthetic Speech Markup Language (SSML) is an example of an application of
XML that addresses a specific functionality API. SSML and other markup languages
that address syntax serve mostly to get rid of proprietary APIs.

SSML is designed so that speech may be synthesized without use of proprietary
APIs. By using SSML, the speech synthesizer (typically a TTS—Text-To-Speech—
engine) can be changed without having to make programmatic changes in the
application that uses the engine.

We will discuss SSML in Chapter 7 when we reach voice user interfaces; the point
of discussing it now is that it is a good example for various markup languages that
are used for the infrastructure. In the case of SSML, it is used for the infrastructure
of the voice user interface. Although VXML remains the primary mechanism for
creating voice user interfaces, SSML allows nonplatform-specific programming
for a variety of features specific to a system that utilizes text-to-speech technolo-
gies. VXML allows simple TTS directives whereas SSML let us customize TTS
operations and build a rich voice user interface.

A great deal of mobile application development focuses on developing for mul-
tiple user interfaces. Various types of user interfaces require special functionality
and the appropriate syntax and instruction set to accommodate such custom func-
tionality. Applications of XML such as SSML prove to be invaluable in keeping the
custom portion of the mobile application infrastructure as platform-neutral as pos-
sible. Such technologies are also exemplified by the natural language grammars

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.3 Key XML Technologies for Mobile Computing 127

defined in XML. Although such grammars are not a direct part of any specific user
interface, they can be used to specify constraints as well as voice user interface
(VUI) voice-recognition grammars.

3.3.7 RDF
One of the biggest problems in development of mobile applications is that of
discovery and identification: How do all the various devices introduce what they
are and what they can do? The Resource Description Framework has been the dark
horse in the standards race for the mobile development discovery mechanism.

Though RDF was not designed to treat the problem of mobile application de-
velopment in particular, it has been talked about as the key enabling standard for
tying together the different resources in ad-hoc and steady-state mobile applica-
tion networks for several years now. Unfortunately, the standard has been slow in
evolving, implementations have been rare and slow in being developed, and the
promise remains far from being fulfilled. Nevertheless, RDF is a key technology
that we need to discuss.

RDF was created specifically to allow discovery of various resources (such as do-
cuments on the Internet), the indexing of them, and even the creation of resources
that are made up of other RDF resources by simply nesting the RDF descriptions.

The most popular example of RDF in introductory documents is its use to
encapsulate information about a Web document, such as author, subject, date of
publication, and copyright information. In this sense, RDF is used to encapsulate
metadata. The logical question following this is “Why not just use XML?” Well,
RDF can actually use XML, but it tries to accomplish a set of tasks that XML does
not address.

Any time we have a resource, not only do we need to identify the resource by
some metadata, but we also need to specify a relationship between the metadata
and the resource. Let us take, for example, a company named eBuilt, Inc. A piece of
metadata about this company could be its phone number. But, without specifying
the fact that the metadata item is the phone number, the item is meaningless. So,
RDF defines a mechanism for two things: It first structures the metadata and then
it relates the metadata to anything that can be represented by a URI.

RDF is part of the so-called Semantic Web. Tim Berners-Lee (the father of the
World Wide Web), James Hendler, and Ora Lassila define the Semantic Web as
follows:

The Semantic Web is an extension of the current Web in which information is given well-
defined meaning, better enabling computers and people to work in cooperation. [W3C
Semantic Web]

The Semantic Web is essentially an attempt to set forth standards and tools that will
allow organization of the information on the World Wide Web as we know it today.
RDF sits at the core of the Semantic Web and is designed primarily to describe
resources. Of course, what better way to describe something than a linguistic
semantic approach such as “The phone number for Cienecs is 714-555-5555.”
Following linguistic models, RDF uses such an approach to identifying resources.
There are three parts:

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

128 XML: THE DOCUMENT AND METADATA FORMAT

1. Resource: This is the thing that we are trying to describe with RDF: the data. It
can be of any format as long as we can represent it with a URI.

2. Property: This is the attribute of the resource that is to be described by the
statement (next). The property can be simple text or another resource.

3. Statement: This is the “sentence” that relates the property and the resource.
And, as a sentence, it has a “noun” or “subject”, an “object,” and a “predicate”
that describes the relationship between the subject and the object. For example,
consider the following statement about a mobile device: “The screen-size of
http://www.x.y.com/AMobilePhone.xml is 24 x 58.” The screen-size, in this
case, is the subject, in this case the property. The resource is described by the
URL (a subset of URI) http://www.x.y.com/AMobilePhone.xml. The value of
the property is “24 x 58” and the predicate defines the relationships among
the resource, the property, and the value of the property.

Example 3.7: Simple RDF Describing a Device.

<rdf:Description about='http://www.voicegenesis.com/RDF/

TestPhone.xml'>

<ScreenSize>24x48</ScreenSize>

<Wap=Support rdf:resource='http://www.voicegenesis.com/RDF/

wap/>

</rdf:Description>

Let us look at some sample code showing how we might use RDF to describe a
device (without taking advantage of any other standards for we will see later that
some mobile standards use RDF in a particular way). Example 3.7 shows an exam-
ple of how a test phone could be described using RDF in a nonstandard manner.

As you can see, RDF uses XML. In our example, the resource being described
is represented by an HTTP URL. This URL could be the URL that represents all
the devices of the “TestPhone” family because these devices may not be connected
or have an available Web server on them at all times. There are a couple of properties
that are used to describe the device (RDF resource), namely, the screen size and the
type of WAP support that the device may have. Note also that the first property is
simple text whereas the second property (the version of WAP support) is another
RDF resource.

When a TestPhone device is contacted by another device or the TestPhone
device contacts another device or the network, it needs to introduce itself (the
other device may be a mobile device, a server, a PC, etc.). Because TestPhone has
RDF support, it introduces itself by sending its RDF description, or a pointer to
its URI description such as a URI, to the receiver (the network or another device).
This is the RDF in Figure 3.7. Once the receiver of the description has the RDF,
if it supports RDF, it parses through RDF and interprets the description of the
described resource.

This might seem quite simple. One might think that the same exact thing could
be done using just XML. But, if you look closer, you will note some key differences
between RDF and simple XML:

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.3 Key XML Technologies for Mobile Computing 129

Cell Phone

URI

RDF Resource

RDF Value

x-up-subno: ABCDEF0123

http:/www.voicegenesis.com/TestPhone.xml

FIGURE 3.7. Using RDF for Describing Mobile Devices and Their Capabilities.

1. If we wanted to implement the same mechanism using simple XML, we would
have to build a schema that would define a canonical way of describing devices.
Unfortunately, not all manufacturers of devices and software want to define
devices the same way. Principally, the creators of resources have different ideas
about how their resources should be described. The same is true for the users of
different types of resources. There are a couple of ways that we can get around
this in XML: agree on a method to share definitions per domain area in XML
(which has given rise to the n × m different XML standards that attempt to come
up with canonical XML schemas or DTDs for n domains interpreted by m ven-
dor groups) or define a semantic way of doing the same thing using XML such
as what WSDL does. Obviously, the first becomes meaningless after a while.
Every vendor pushes its own biases for its own set of products in defining what
the schema or the DTD should be. WSDL and similar technologies define a for-
mat for describing various services. There are a separate set of problems with
this: The vendors tend to implement standards such as WSDL differently to
create product differentiation. Even without these differences, a domain layer
implementation has to reside that defines the network services offered by the
WSDL-compliant components of the network for a particular domain. RDF is
able to address these issues better than XML because it handles everything as
a resource. And resources can be described by other resources. RDF is simple,
yet it allows modeling of a sophisticated description of behavior by using exist-
ing resource descriptions of existing resources. It also lets the resource creators
and users define the resources however they want to as opposed to depending
on vendor-specific implementations.

2. On the Semantic Web, the target audience comprises machines rather than
humans [Melnik and Decker 2000]. Web services as they exist today, using
XML-based protocols such as SOAP on top of HTTP, have been questioned in
their ability to scale (though the term “Web service” does not really imply the
use of any particular technology—this is just the case for the implementations
that exist and are currently becoming popular). Remember that machines are
not designed to understand text. Computing machines do much better with 1’s
and 0’s. Whereas Web services essentially force the exchange of all information
through well-formed XML, there is no such restriction with RDF. All that is

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

130 XML: THE DOCUMENT AND METADATA FORMAT

necessary is that the resource can be described by a URI. Even though nontextual
data such as audio, video, MMIs, and many other resources on the network can
be described by XML, the implementation often seems unnatural. The metadata
describing some information may not be textual in nature or may be better
represented in a format other than well-formed XML. RDF allows this. The
biggest benefit of the Semantic Web, and RDF as a part of the Semantic Web,
is that it provides for a much more highly scalable environment than the XML-
only world of having to parse documents and reconstruct them repeatedly and
do complex, resource-consuming lexical operations.

3. The order in which elements appear in an XML document is significant and
often very meaningful [Bray and Brickley 2001]. When it comes to describing
resources, it does not matter which attribute of the resource we describe first
or even how we describe it, provided it is something that can be a URI. Hence,
RDF is more flexible in creating descriptions for various resources.

Note that RDF uses XML and that XML is still needed to build much of metadata;
nevertheless, RDF offers some interesting features not offered by XML alone. In
short, RDF gives us a simple, scalable, and flexible way of introducing and discover-
ing resources. Obviously, this addresses a wide range of problems with distributed
computing on the Web. But, particular to our interest, RDF addresses one of the
fundamental problems of mobile computing: “How do I know what resource is
receiving my message, what resource a given message comes from, and how I can
handle the message coming from this resource?” RDF allows us to treat all of
these as resources and provide descriptions for these resources, thereby providing
a mechanism for discovery and introduction.

For the mobile developer, the particular interest will be the applications of
RDF that let mobile devices and applications exchange information about each
other with each other. Two such applications of RDF are Composite Capabili-
ties/Preferences Profiles (CC/PP) and User Agent Profiles, both of W3C. We will
look at both in detail. First, let us look at RDF Schema.

3.3.8 RDF Schema
The RDF Schema defines an XML-based syntax for RDF. RDF Schema does not
define RDF. Rather, it is an implementation of RDF that uses XML Schema and
its relevant data types. As already mentioned, RDF is not, in itself, dependent
on XML. However, XML gives us the perfect tool to serialize it. To serialize RDF
and then unserialize it to and from XML, we have to establish a consistent XML
vocabulary with which disparate implementations supporting RDF can maintain
consistent semantics. This is why RDF Schema exists. Now, there are several XML
Schema vocabularies for RDF, one of which is RDF Schema. Another is DAML, or
DARPA Agent Markup Language.

As you may guess, RDF Schema is very simple and nonrestrictive. This is al-
most a requirement of anything on the Semantic Web. RDF Schema is important
to mobile applications because the serialization of many RDF-dependent mobile
standards is done in XML with a baseline vocabulary of RDF Schema. Examples
include CC/PP and UAProf, which we will see later on in this chapter.

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.3 Key XML Technologies for Mobile Computing 131

Much like the UML metamodel where classifiers and relationships between
them are defined, RDF Schema vocabulary has <rdfs:Resource>, <rdfs:Class>,
<rdfs:Property>, and <rdf:Statement> to explain resources, classes, and prop-
erties at a metalevel. A particular instance of RDF Schema, then, could be
equivalent to a class diagram. Another group of RDF classes (<rdfs:Literal>,
<rdfs:Container>, <rdf:Bag>, <rdf:Seq>, and <rdf:Alt>) provides data con-
structs such as containers and literals.

RDF Schema then uses the mathematical concepts of a domain and a range to
define data types that fall within a domain and a range of the metadata-level classes
and data constructs. For example, a comment is an RDF resource and is literal;
therefore its domain is rdfs:Resource and its range is rdfs:Literal.

Data types that you will see in standards using RDF will typically be those
defined by RDF Schema. To understand these data types better, refer to the RDF
Schema specification at W3C’s Web site. If you need additional data types, you
can do this by extending RDF Schema (which works for both simple and complex
data types).

We will use RDF and its applications throughout this text and see how it is used
to build real mobile applications.

3.3.9 UML and RDF
At their core, UML and RDF have much in common. Both define a meta-metadata
model. In UML, this is the layer that defines what classifiers are and the rela-
tionships among the classifiers. RDF defines entities as resources, properties, and
statements in a semantic model. So, you can think of the RDF Schema much the
same way as you think of the metadata model in UML: These are the templates for
instances of things. Finally, there are the instances themselves; they are the RDF
documents or the UML objects.

UML class diagrams provide a static modeling capability that is well suited for
representing ontologies [Cranefield et al. 1999]. This can be done by deriving
a semantic statement (as defined in RDF) from the classes and the relationships
among the classes (association, inheritance, aggregation, etc.). We can use the UML
Object Constraints Language (OCL) to complement the typical class diagrams to
give us full flexibility for modeling UML with RDF.

Figure 3.8 shows the RDF entity relationship (graph) for the address example
we have been using throughout the book. Figure 3.9 shows the equivalent as
represented by a UML class diagram (with no OCL used in our example).

Cranefield [Cranefield et al. 1999, Cranefield 2001] outlines a comprehensive
methodology for mapping RDF entities to class diagrams. It is noteworthy to
understand that though UML allows us to model RDF, RDF can describe more
things than UML can. So, in a sense, the things that can be represented by UML are
a subset of those that can be represented by RDF. Therefore, there may be scenarios
in which UML becomes very difficult to use (although probably never impossible
because you can use OCL almost like a programming language—a practice that is
not recommended).

There has also been a great deal of work done on representing UML in RDF.
This is probably less relevant to our goal: We are using UML as a tool to simplify

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

132 XML: THE DOCUMENT AND METADATA FORMAT

Bill Bernhardt
http://www.clenecs.com/–chief

Address

TownLocale

Zip Country

Street Location

Washington State Moses Lake Easy Street

US98837

FIGURE 3.8. Partial RDF Graph of an Address.

the development process, and RDF, with all of its great capabilities, is undoubtedly
more abstract and more difficult to understand than the simple shapes that UML
provides to represent programs.

Finally, when we map RDF to UML, we probably want to use RDF Schema to
specify data types (see Figure 3.9). Because UML accommodates a larger range of
data types and constructs than those introduced in RDF Schema, extensions may
be required to allow a full round trip between a UML model and an RDF graph
(actually, probably its serialization to XML).

We now return to our original reason to do all of this: RDF can be verbose and
complicated whether as an XML document or as a graph. UML gives us a way to
model RDF visually to reduce complexity. An example of when we may want to
do this is CC/PP, an application of RDF for recognizing the capabilities of various
mobile devices.

Person

Address
-street1 : String
-street2 : String
-zip : int

Town

Country

FIGURE 3.9. UML Representation of the Address in Figure 3.8.

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.3 Key XML Technologies for Mobile Computing 133

3.3.10 CC/PP
CC/PP is an extension of the HTTP protocol that uses RDF to describe the capabili-
ties of various devices and the user settings for each device. CC/PP was specifically
designed for various network resources to be able to recognize devices that try to
use them. CC/PP is implemented by adding an RDF statement, in XML format, to
the header of the request and modifying and adding to some other request headers.
Before we delve into the details of CC/PP, we should note that there are very few
devices today with actual implementations of CC/PP. However, device manufac-
turers are moving toward implementing this capability. In particular, WAP 2.x is
closely married to CC/PP and its sister standard UAProf (which we will look at
next).

Within this text, we will assume that the transport protocol for CC/PP is HTTP
and that CC/PP is implemented as an HTTP extension. However, it must be noted
that CC/PP does not require any particular transport protocol; binding with other
protocols may be provided.

A CC/PP implementation requires two pieces: implementation at the HTTP
server side and implementation at the HTTP client side. Because CC/PP is imple-
mented through an HTTP extension, it is important to remember that the basic
architecture is built on the HTTP model: stateless and client–server.

Let us start by looking at what needs to be implemented on the client side, in
our case, the mobile device:

1. The mobile device may be able to directly use HTTP. In this case, the imple-
mentation of the header extensions must be done on the device (most likely a
browser or some piece of software that uses an HTTP connection framework).

2. The mobile device may not be able to use HTTP directly. This is the case with
many mobile devices such as WAP phones. A proxy that creates the HTTP re-
quest must somehow implement the header extensions. The proxy may receive
the information in some other format from the device, may have the device
information in a registry referenced by some unique ID, or may simply guess
the capabilities of the device (which is not a good idea because CC/PP is de-
signed to remove the guess work). Because introducing a proxy to the system
adds another resource to be described, a reasonable question is whether CC/PP
requires description of the proxy as well as the device when a proxy is used
to augment or provide some of the information. The answer is that although a
description of the proxy is recommended, it is not required.

Example 3.8: Example of a CC/PP Profile.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:ccpp="http://www.w3.org/2000/07/04-ccpp#">

<rdf:Description rdf:about="http://www.cienecs.com/examples/

RDF/SampleDevice">

<ccpp:component>

<rdf:Description rdf:about="TerminalHardware">

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

134 XML: THE DOCUMENT AND METADATA FORMAT

<rdf:type rdf:resource="http://www.cienecs.com/

examples/RDF/PDA"/>

<display>34x50</display>

<memory>4Mb</memory>

</rdf:Description>

</ccpp:component>

</rdf:Description>

</rdf:RDF>

Let us look at a sample CC/PP profile (for an imaginary device) in Example 3.8. In
this example, the RDF statement describes some of the capabilities of the device
pointed to by the URI http://www.cienecs.com/examples/RDF/SampleDevice. Re-
member, in RDF, the subject can be a URI (because the implementation is in XML
and an Xpath-compliant expression would qualify for the URI). In this example,
we have only described the amount of memory and the display size available on
the particular device, but much more can be described using RDF.

This is made possible by the CC/PP RDF vocabulary and the accompanying
UAProf standard. The RDF vocabulary for CC/PP is a set of attribute names and
valid values for the RDF document instances to describe devices through CC/PP.
Obviously, CC/PP also defines the meaning of the vocabulary set so that it is used,
by various implementers, consistently. It is important to note that the vocabulary
set is extensible through the extensibility of XML and use of namespaces. However,
to provide interoperability among various devices and nodes that interact with
those devices, a small set of attributes and values have been predefined in the form
of CC/PP vocabulary. Keep in mind that any UAProf document is a valid CC/PP
document as CC/PP was designed after UAProf (which we will look at next) and
is meant to be backward compatible with it. Let us go through the CC/PP RDF
vocabulary.

CC/PP is made of a profile that has one or more components. Each component has
one or more attributes. If a device has multiple profiles, they must be encapsulated
in multiple XML documents.

1. Components: These are logical groupings of the attributes that describe the de-
vice. In CC/PP examples, you will often see three popular groupings of Terminal-
Hardware, TerminalSoftware, and TerminalBrowser. These three are definitely
good ways to group some of the attributes of the device. However, additional
components can be added as long as they may be represented by URIs (which
would most likely be a publicly available URL if we are talking about a real
device being used across many different networks). Components in turn have
attributes. Every CC/PP component is enclosed in opening and closing tags of
<ccpp:component> and </ccpp:component>.

2. Attributes: Every component has many other elements called “attributes.” Do
not mistake these with the XML attributes. These are component attributes
represented by XML elements in an XML representation of the RDF. It is rec-
ommended that one confine these attributes to a single level. In other words,

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.3 Key XML Technologies for Mobile Computing 135

try not to nest attributes unless absolutely necessary. The attributes of a compo-
nent are wrapped within the opening and closing tags of <rdf:Description> and
</rdf:Description>. The opening tag must have an XML attribute of rdf:about
to specify the subject of the component (the logical grouping of the attributes,
which we have determined to make up the component). The client profile at-
tributes have some important characteristics as follows:
a. Two frequently used attributes for every component are type and name. We

recommend that you always use these two. The type attribute is roughly
equivalent to the HTTP “accept” header: It tells us what types of content
are understandable by a given device. The values are the valid Multipurpose
Internet Mail Extension (MIME) content types.

b. Along with type and name, there is a recommended list based on the work
done by IETF. These attributes are specified in the CC/PP specification, but
we will list them here as they have special importance:

i. charWidth (ccpp:Integer): This attribute applies to devices with the ca-
pability to render text. It is the maximum number of characters that can
be represented horizontally across one line of the display.

ii. charWidth (ccpp:Integer): This is the maximum number of lines of text
that a textual display can show at one time.

iii. charset (ccpp:Text): This is the character set supported by the device.
This is a particularly important parameter as many devices are designed
to work with a variety of parameter sets and are configured by the
vendors prior to sale. This attribute can be set to all valid MIME character
sets such as UTF-8.

iv. deviceIdentifier (ccpp:URI): This attribute allows you to specify the de-
vice through a URI. In addition to the flexibility advantages that URIs
offer us, this attribute offers us the ability to abstract the versioning
away from the device so that backward compatibility can be done more
elegantly.

v. color (ccpp:Text): This attribute can be set to “gray,” “full,” or similar
values but can be somewhat useless because of its qualitative nature.
Unfortunately, this attribute was not designed to specify an RGB (or
similar numeric) range of colors. If you need to specify a range of colors
supported by a device, the chances are that you will need to specify
custom attributes to do this.

vi. pix-x (ccpp:Integer): For GUIs, this attribute describes the number of
pixels across the screen (horizontally).

vii. pix-y (ccpp:Integer): For GUIs, this attribute describes the number of
pixels vertically on the screen.

viii. schema (ccpp:URI): This attribute can be a URI pointing to a DTD, an
XML Schema, or an RDF Schema. Whichever document the schema
attribute points to is used to specify what type of documents are under-
standable by a given device. For example, this could be the WML DTD
for WAP 1.x phones and browsers.

c. If there is more than one value for a given attribute, the “set” of values is
implemented using <rdf:Bag> as the container of the set and <rdf:li> for

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

136 XML: THE DOCUMENT AND METADATA FORMAT

representing the elements of the set. CC/PP specification refers to “sets” of
attributes as the only type of complex data types. Amazingly, the other type
is the simple data type!

d. Simple data types are the atomic data types of CC/PP. (They cannot be broken
down into finer pieces without losing their meaning.) As you may have
noticed, CC/PP defines its own data types. These data types are based on
the RDF literal objects. These data types are URI, Text, Token, Integer, and
Rational Number. Refer to the CC/PP specification document [CC/PP W3C
Specification] for the details on these data types.

Once again, these attributes are specified based on the IETF media feature regis-
tration, which has defined a wide range of sets of tags used for describing various
media features. Try your best not to extend outside of the recommended attributes
of the CC/PP specification, although, because of the fast evolution of user inter-
faces and device capabilities, it is fully expected that extending is unavoidable.

One prime example of extensions that you might want to implement are at-
tributes that tell the other nodes which input and output channels are supported
(voice, text, graphics, etc.) and what the means of their support is (screen, speaker,
handset, phone keypad, etc.).

Let us now go back and look at profiles. There are four types of profiles prede-
fined by the CC/PP specification:

1. Profile: This is the top-level profile. All other profiles can be considered a subclass
of Profile.

2. Client-Profile: This profile describes the capabilities of a client (the mobile de-
vice). This is the most frequently used profile as CC/PP is most used to introduce
the capabilities of a device. An example is a profile that describes a WAP phone.
The client-profile typically includes those attributes of the device that do not
change often, so this is typically a static file or may be cached.

3. Proxy-Profile: This profile describes the capabilities of a proxy, if one is used.
An example is a profile that describes a WAP proxy. As in the case of the client-
profile, the settings on the proxy do not change frequently, so this is typically a
static file or may be cached.

4. Request-Profile: This profile is typically generated dynamically at run time. A
request-profile proxy is a combination of the proxy-profile and another profile
showing the features on the device supported by the proxy. This is an important
profile because the capabilities of the proxies and devices are often different.
For example, a WAP 2.x phone connected to a WAP 1.x proxy can only support
WAP 1.x-like features.

In addition to these profiles, there is a proxyProfile and a nextProfile, both of
which are used by the request-profile for referring to other profiles from within
the request-profile.

Figure 3.10 shows the relationships among the different profile types in UML.
(Note that this is an approximate mapping as there is more than one way of

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.3 Key XML Technologies for Mobile Computing 137

Profile

Request-Profile Proxy-Profile

proxyBehavior
component

Client-Profile

1
1

*
*

+<Proxy-Behavior>

+applicability: CC/PP attribute
+ccpp attributes: ccpp attribute

+proxyAllow: CC/PP attribute

+proxyBlock: CC/PP attribute

FIGURE 3.10. UML Representation of a Subset of the CC/PP RDF Model.

mapping RDF to UML, as we will discuss later.) The association between re-
quest request-profile and profile represents the use of a proxy-profile instance
and client-proxy instance, respectively, through the proxyProfile and nextProfile
attributes.

An example of a CC/PP document for a proxy is shown in Figure 3.11. Note that
we have introduced our own custom attributes for a custom proxy and a custom
device. This is not recommended. Try to use only those attributes recommended
by the CC/PP specification [CC/PP W3C].

One important feature of CC/PP that we have not discussed yet is the ability to
create default values for the client-profile values. Every component in an instance
of the client-profile can have default values. These default values are represented,
in the XML serialization of the CC/PP RDF, by using the <ccpp:defaults> tag. The
values within the components follow the same convention as any other CC/PP at-
tribute(s) for a given component. Default values are particularly important as they
prevent wasted network traffic and processing power in values that are repeated
for the majority of devices.

As a side note, remember that CC/PP is an RDF application. The XML repre-
sentation on which we have focused is simply an XML serialization of the given
RDF.

We have now reviewed the basics of CC/PP. There is one more piece, though.
Because CC/PP is designed to describe the capabilities of a device and the profile
preferences, some of the information, particularly in the profile preferences, may
be private. So, it is important to keep such information secure. Let us quickly look
at how we can achieve this.

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

138 XML: THE DOCUMENT AND METADATA FORMAT

<?xml version="1.0"?>

<!-- This section of the document defines the namespaces

external to the document.-->

<!DOCTYPE rdf:RDF [

<ENTITY ns-rdf 'http://www.w3.org/1999/02/22-rdf-syntax-

ns#'>

<ENTITY ns-rdfs 'http://www.w3.org/2000/01/rdf-schema#'>

<ENTITY ns-ccpp 'http://www.w3.org/2000/07/04-ccpp#'>

<ENTITY ns-ccpp-proxy 'http://www.w3.org/2000/07/04-ccpp-

proxy#'>

<ENTITY ns-ccpp-client 'http://www.w3.org/2000/07/04-

ccpp-client#>

<ENTITY ns-custom-client 'http://www.cienecs.com/

Examples/RDF/custom-device#>

<ENTITY ns-custom-proxy 'http://www.cienecs.com/Examples/

RDF/custom-proxy#]>

<!---This section of the document defines the actual

profile,in this case, a profile about MyProxy. -->

<rdf:RDF xmlns:rdf = '&ns-rdf;'

xmlns:rdfs = '&ns-rdfs;'

xmlns:ccpp = '&ns-ccpp;'

xmlns:ccpp-proxy= '&ns-ccpp-proxy;'

xmlns:ccpp-client= '&ns-ccpp-client;'

xmlns:custom-client ='&ns-custom-client;'

xmlns:custom-proxy='&ns-custom-proxy;'>

<ccpp-proxy:Proxy-profile rdf:about='http://www.cienecs.

com/Examples/RDF/MyProxy'>

<ccpp-proxy:proxyBehavior>

<ccpp-proxy:applicability>

<ccpp:Component>

<custom-proxy:Channel>

<rdf:Bag>

<rdf:li>play-only-audio</rdf:li>

<rdf:li>record-audio</rdf:li>

<rdf:li>play-only-video</rdf:li>

<rdf:li>text-entry</rdf:li>

<rdf:li>text-output</rdf:li>

</rdf:Bag>

</custom-proxy:Channel>

</ccpp:Component>

</ccpp-proxy:applicability>

FIGURE 3.11. Example of a Proxy Profile.

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.3 Key XML Technologies for Mobile Computing 139

<ccpp-proxy:proxyAllow>

<ccpp:Component>

<custom-proxy:Channel>

<rdf:Bag>

<rdf:li>text-entry</rdf:li>

<rdf:li>text-output</rdf:li>

</rdf:Bag>

</custom-proxy:Channel>

</ccpp:Component>

</ccpp-proxy:proxyAllow>

</ccpp-proxy:proxyBehavior>

</ccpp-proxy:Proxy-profile>

</rdf:RDF>

FIGURE 3.11 (continued)

Delivering Private Information with CC/PP
Because profiles and device description may have some information that is private,
we need a mechanism to maintain the privacy although allowing authenticated
users proper access level to the information.

As we mentioned previously, there are two ways to implement CC/PP: directly
through the client (the mobile device) or through a proxy (such as a WAP gate-
way). To date, there is no approved standard for CC/PP privacy implementation
through W3C; however, there is a recommendation draft that is very likely to
eventually become a standard. This recommendation is iterated in the document
CC/PP Implementer’s Guide: Privacy and Protocols [CC/PP P3P W3C 2001]. This
recommendation specifies the Platform for Privacy Preferences (P3P) of W3C be
used as the security measure. We will look at P3P in Chapter 14 when we discuss
security in depth. For now, you should know that P3P is a standard for expressing
privacy information regarding a resource.

There is also the variable of the transport protocol, which for security is
extremely important. The aforementioned document [CC/PP P3P W3C 2001]
outlines suggested standard interfaces for P3P with W-HTTP (Wireless Profiled
HTTP) and HTTP Exchange Protocol (this is the HTTP extension we already talked
about that allows transport of an XML serialized version of the CC/PP RDF).

CCPP-ex uses two headers, one for the defaults and one for the updates (profile-
diff:s), which are separated using MD5 hashes; A third header carries warning
information [CC/PP P3P W3C 2001]. For the details on P3P implementation
on CCPP-ex refer to the aforementioned document. In the next section, we will
look at how the UAProf standard treats security with P3P on top of W-HTTP
transport.

These two methods, P3P with W-HTTP and P3P with CCPP-ex, address both
devices and intermediaries such as gateways and proxies. However, other tech-
niques could be used to provide security and privacy if an intermediary is used.
If the device goes through the intermediary for all network access, and vice

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

140 XML: THE DOCUMENT AND METADATA FORMAT

HTTP
Proxy

Device

HTTP

HTTP

OTA

WSP / W-HTTP

Profile
Repository

Passive
Application

Server

Active
Application

Server

WAP
Gateway

Push
Proxy

FIGURE 3.12. Overview of WAP 2.x Architecture with CCPP-ex and W-HTTP.

versa, then the implementation of the device to intermediary security and privacy
becomes secondary and could be left specific to the implementation (though use
of standards are still recommended for extensibility and flexibility reasons).

Although there are other techniques for recognizing devices, such as using
custom headers in HTTP, CC/PP outlines a comprehensive method for describing
both capabilities of a device and the profiles including the user preferences on the
device using RDF. It is truly extensible and scalable. CC/PP is a very well-thought-
out standard. What we saw here is a quick summary of CC/PP with a focus on the
XML serialization and its usage for describing mobile devices. Now, let us look at
UAProf, a predecessor of CC/PP.

3.3.11 User Agent Profile Specification
Figure 3.12 shows an overview of WAP 2.x Architecture with CCPP-ex and W-
HTTP. User Agent Profile Specification, better known as UAProf, intends to solve
a subset of the problems addressed by CC/PP: to create an RDF-based mechanism
for describing the capabilities of a device and the profile preferences on that device.
In a way, UAProf is an application of CC/PP within the WAP specifications. CC/PP
is fairly general and designed to be used with a very wide range of devices. UAProf
is a specific application of CC/PP and related technologies (RDF, XML, etc.) to
WAP 2.x.

UAProf introduces a predefined vocabulary with well-defined meanings that ap-
ply particularly well to the domain of WAP. Specifically, the following components
are recognized [WAP UAProf]:

1. HardwarePlatform: This CC/PP component bundles the attributes that relate to
the hardware properties of the device (WAP phone). Attributes include model,
display size, and type of device.

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.3 Key XML Technologies for Mobile Computing 141

2. SoftwarePlatform: This CC/PP component describes the properties of the var-
ious software programs running on the device including the operation sys-
tem and any other applications (but browser attributes are typically put into
BrowserUA).

3. BrowserUA: This CC/PP component describes the characteristics of the HTML
browser.

4. NetworkCharacteristics: This CC/PP component describes the capabilities of the
network to which the device is connected. Attributes may include those related
to bandwidth and quality of service.

5. WapCharacteristics: Because the implementation of various WAP features is not
consistent throughout various devices, this component bundles the features
included, the versions supported, etc. regarding the various WAP components
such as the Wireless Telephony Application Interface (WTAI) functionality.

6. PushCharacteristics: WAP 2.x provides push functionality through a push proxy.
For the proxy and the remainder of the infrastructure to recognize the level of
support on the device for push, this component outlines push-related attributes
of the device such as MIME types supported for push.

To help you visualize the components of UAProf, you’ll find a partial representation
of the UAProf components using a UML Class Diagram in Figure 3.13. Because
UAProf is closely related to CC/PP, most of the rules that have to be applied to an
instance XML serialization of a device profile are the same as the rules for CC/PP.
There are a few additional rules as follows:

1. UAProf Namespace (prf): UAProf specifically requires use of namespaces for all
elements in the document. Particularly, all RDF elements must use the names-
pace of “rdf:” and “prf” for UAPRof elements. RDF and UAProf namespaces
must not be referred to as anything else.

2. Single Instance of Each Specified Component Type: This is not a requirement of
RDF or CC/PP, but to make a practical implementation, it is reasonable to
require that there is only one instance of every component type. This avoids
name collision.

3. rfd:ID and rdf:type: Every component must have an rdf:type and an rdf:ID at-
tribute. The rdf:ID must be unique in the document. If multiple component
parts are used to create a component, then all the subcomponents must have
the same rdf:ID. As an analogy to programming languages, think of rdf:type as
the variable declaration and the rdf:ID as the variable name or the pointer to the
variable instance. So, if you are operating on an element with the same rdf:ID,
you are in essence pointing to a component to work on. This allows the UAProf
parser to be able to merge multiple RDF subcomponents.

4. Merging: The notion of merging exists primarily to enable the system to combine
multiple parts of the same component. Merging rules (the rules that specify how
document A and document B are combined to produced document C) may be
specified or default rules will be used. If no merging rules are specified, then a
default set of rules for merging are used. Refer to the UAProf specification if you
need to understand the merging rules as the implementer of a UAProf parser or
a system that handles its own UAProf parsing.

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

W
A

P
C

ha
ra

ct
er

is
tic

D
ef

au
lts

W
A

P
C

ha
ra

ct
er

is
tic

D
et

ai
ls

N
et

w
or

kC
ha

ra
ct

er
is

tic
s

U
A

B
ro

w
se

rF
or

P
D

A

U
A

B
ro

w
se

rD
ef

au
lts

T
er

m
in

al
H

ar
dw

ar
e

T
er

m
in

al
S

of
tw

ar
e

M
yP

ro
fil

e

m
V

oi
ce

In
pu

tC
ap

ab
le

m
Im

ag
eC

ap
ab

le

m
K

ey
bo

ar
dS

up
po

rt

W
M

LV
er

si
on

X
H

T
M

LV
er

si
on

S
up

po
rt

B
ro

w
se

rU
se

rA
ge

nt
H

ar
dw

ar
eP

la
tfo

rm
T

er
m

in
al

H
ar

dw
ar

eD
ef

au
ltS

et
tin

gs

W
A

P
C

ha
ra

ct
er

is
tic

s

W
ta

iS
cr

ip
tL

ib
ra

rie
s

W
M

LS
cr

ip
tL

ib
ra

rie
s

FI
G

U
RE

3.
13

.
Pa

rt
ia

lR
ep

re
se

nt
at

io
n

of
UA

Pr
of

Co
m

po
ne

nt
s

in
th

e
U

M
L

Cl
as

s
Di

ag
ra

m
.

142

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.3 Key XML Technologies for Mobile Computing 143

There is much more to UAProf; our goal here was to briefly review it in an
introductory manner. UAProf allows extension of the vocabulary through well-
defined semantics for adding components as well as a mechanism to specify how
to merge such extensions with the existing required components. The impor-
tant thing to remember is that UAProf is specific to WAP. If you need a more
generic mechanism, you need to think about using CC/PP. However, “don’t re-
build Rome!” If your requirements are same as that laid out by the designers
of UAProf, then use UAProf! Remember that using existing standards gives you
two clear advantages: First, the problem has been thoroughly thought out by
experts and second, interoperability issues are simpler (not simple!) if you use
standards.

Example 3.9 shows a sample UAProf document. (Note that this sample does
not include all the required components.)

Example 3.9: A Sample UAProf Document.

<?xml version="1.0"?>

<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://www.wapforum.org/profiles/UAPROF/ccppschema-

20010430#">

<rdf:Description ID="MyVerySimpleDeviceProfile">

<prf:component>

<rdf:Description ID="HardwarePlaform">

<rdf:type resource="http://www.wapforum.org/

profiles/UAPROF/ccppschema-20010430#

HardwarePlatform">

<prf:SampleLocationSensitivityFunctionality>

<rdf:Bag>

<rdf:li>GPS</rdf:li>

<rdf:li>Proximity</rdf:li>

<rdf:li>Cell-site Triagulation</rdf:li>

</rdf:Bag>

</prf:SampleLocationSensitivityFunctionality>

<prf:InputCharSet>

<rdf:Bag>

<rdf:li>UTF-8</rdf:li>

<rdf:li>US-ASCII</rdf:li>

</rdf:Bag>

</prf:InputCharSet>

</rdf:type>

</rdf:Description>

</prf:component>

<prf:component>

<rdf:Description ID="SoftwarePlaform">

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

144 XML: THE DOCUMENT AND METADATA FORMAT

<rdf:type resource="http://www.wapforum.org/

profiles/UAPROF/ccppschema-20010430#

SoftwarePlatform">

<prf:AcceptDownloadableSoftware>Yes</prf:

AcceptDownloadableSoftware>

</rdf:type>

</rdf:Description>

</prf:component>

</rdf:Description>

</RDF>

3.4 XML AND UML

UML and XML relate in two ways:

1. UML’s standard serialization mechanism is XMI, an application of XML.
2. UML can be used to model various applications of XML.

XMI (XML Metadata Interchange)is briefly covered in Chapter 4. XMI is simply
an application of XML to serialize UML diagrams and accompanying information
added to the diagram in OCL and other textual information. The main purpose
of XMI is to specify a standard serialization format for all UML tools and facilitate
interoperability among them. As a side benefit, XMI presents us with possibilities
to use XML technologies to transform UML models into XML documents of other
formats such as XHTML. We will discuss XMI itself briefly in Chapter 4 and its
possible use in generating rudimentary user interfaces from UML models in Chap-
ter 6. For now, all you need to know is that any set of UML diagrams can be persisted
into an XMI file.

Our focus will be in discussing how to use UML to model XML applications.
There are advantages to modeling XML with UML, such as discovering the dif-
ference in two different schemas representing the same business domain, that fall
outside of the mobile realm. When it comes to mobile development, the primary
reasons for using UML to model XML applications are the following:

1. Using UML allows you to create one model for several code bases: As we have seen,
proliferation of code bases is a byproduct of device proliferation.

2. Using UML enables you to create a visual aid to design mobile applications: XML
applications can be quite verbose and long. For this reason, it is often difficult
to fathom various design complications by looking at XML documents. UML
diagrams are visual. They ease the process of designing and analyzing.

3. Using UML enables you to communicate the design and implementation throughout
the development process of an application that relies on XML: This has been a re-
curring theme for us. Because mobile applications, more so than their stationary

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.4 XML and UML 145

XML

XML Schema MetaModel

Model
(Class Diagram, etc.)

DTDs and
Schemas

XML Documents (Sequence Diagram,
Object Diagram, etc.)

Instance

UML

FIGURE 3.14. Mapping XML to/from UML.

counterparts, use myriad technologies, it is crucial to have one consistent tool
for communicating design and implementation. UML provides such a tool. Be-
cause various XML technologies are used prevalently throughout the way we
prescribe for building mobile applications, we need to know how to model XML
with UML.

We have already discussed RDF to UML mappings. As we mentioned, we are not
much interested in mapping UML to RDF for our purposes. RDF is widely accepted
to be more complex (though more flexible) than UML. With this said, let us look
at the types of mapping from XML to UML.

We can map XML to UML at three different levels (see Figure 3.14):

1. Metamodel (also known as meta-metadata): XML schemas, DTDs, and even some
applications of XML such as WSDL help us define an infrastructure for defining
vocabularies. We can map this layer to either the model or the metamodel layer
of UML. We can do this by extending mapping XML to existing features of
UML and, when necessary, extending UML. One of the authors of UML, Grady
Booch, along with others, has devised a mapping between XML and UML using
stereotypes and tagged values to extend UML to represent artifacts specific to
XML [Booch et al. 1999]. We will use this document along with others as a
guide in our mapping.

2. Model (also known as metadata): Various applications of XML provide us with
structures and definitions for a particular domain of problems. This is the model
layer. For example, VXML provides us with a model layer for building voice
user interfaces. Such domains are often referred to as “vertical” for those do-
mains focused on solving a business problem (i.e., MathML, CXML, eBXML,
etc.) or “horizontal” for those domains focused on solving a technical problem
across businesses (i.e., VXML, CCXML, etc.). Regardless of the type of problem
domain that the application of XML is designed to address, we can map the do-
main represented in the XML application’s XML Schema or DTD to a model in
UML using class diagrams, collaboration diagrams, and the other model-level
diagrams.

3. Instance (also known as Data): This is an actual instance of an XML document.
XML documents can be represented using a mixture of model and instance

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

146 XML: THE DOCUMENT AND METADATA FORMAT

diagrams in UML. If there is behavior encapsulated in the document, the be-
havior can be represented using sequence diagrams or state diagrams. OCL may
be needed to augment these for full and proper mapping. For the data, we can
use object diagrams; however, instance data is probably best kept in XML itself.
Graphical modeling of pure instance data seldom provides us with an easier
and more effective way of dealing with the data.

It should also be noted that UML involves more than just mapping of syntax
and modeling elements. UML includes features such as support for requirements
gathering in use-case diagrams and analysis in various development methodolo-
gies that have evolved around UML. Today, there is really no industry-wide ac-
cepted methodology for requirements gathering and analysis of XML schemas
or DTDs. Therefore, we will focus on the mapping of the elements of the two
standards.

Although generating the code for an entire application is something that we
shun, UML offers us all the tools that we need to generate metamodel and model-
level XML (DTDs, schemas, etc.). There is not much use in modeling instance
data and generating XML based on it as the verbosity of the UML diagrams often
make such an endeavor cost-prohibitive. Most of the time the mapping between
UML and DTDs or schemas is straightforward. But, there are times when there are
multiple ways to represent one UML feature in DTDs or schemas. In such cases, it
is typically not important which mapping we choose, as long as we are consistent
in applying the mapping throughout the generation of a given DTD or schema.

Let us start with the metamodel-level mapping of XML to UML.

3.4.1 XML Schema and UML
As we outlined in the previous section, XML Schema defines data types and pro-
vides facilities for defining new data types. (Although SGML provides for the same
functionality in DTDs and is much more powerful, it lies beyond the scope of this
text to provide a detailed mapping of SGML to UML.) Such functionality can be
mapped to UML. XML Schema provides many other applications of XML with the
data typing system. Let us start by mapping the XML Schema constructs to the
UML constructs.

Table 3.1 gives us a starting point to do this. We use primarily two documents for
our guide to construct this mapping: tML Guidelines for Mapping UML Notation
to XML Schemas and Vice Versa by Oasis [OASIS tML 2001] and UML for XML
Schema Mapping Specification [Booch et al. 1999].

The specific data types such as xsd:string can be mapped to language-dependent
class libraries such as java.lang.String in Java. Table 3.1 gives the most important
basic rules you need for mapping XML applications to UML and is not meant
to be exhaustive. The references used here outline further mapping of features
and constructs between XML and UML, but we will focus on mapping specific
applications of XML to UML, for example XForms to UML. Every application of
XML may use XML Schema data types and have its own data types.

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

TA
B

LE
3
.1

.
M

ap
pi

ng
X

M
L

S
ch

e
m

a
C

o
ns

tr
u
ct

s
to

U
M

L
C

o
ns

tr
u
ct

s

X
M

L
an

d
X

M
L

Sc
h

em
a

C
on

st
ru

ct
U

M
L

C
on

st
ru

ct
T

ip
s

on
M

ap
pi

n
g

N
am

es
pa

ce
pa

ck
ag

e
N

am
es

pa
ce

s
an

d
pa

ck
ag

es
bo

th
al

lo
w

lo
gi

ca
lg

ro
u

pi
n

gs
of

en
ti

ti
es

.B
ot

h
U

M
L

pa
ck

ag
es

an
d

X
M

L
n

am
es

pa
ce

s
ar

e
u

se
d

fo
r

re
fe

re
n

ci
n

g
n

am
es

th
at

m
ay

be
re

pe
at

ed
w

it
h

in
tw

o
di

ff
er

en
t

gr
ou

pi
n

gs
of

el
em

en
ts

or
cl

as
se

s.
T

h
e

pr
im

ar
y

pu
rp

os
e

of
bo

th
is

to
pr

ov
id

e
th

e
de

ve
lo

pe
r

an
d

th
e

fr
am

ew
or

k
w

it
h

so
m

e
or

ga
n

iz
at

io
n

al
gr

ou
pi

n
g

of
co

m
po

n
en

ts
an

d
to

av
oi

d
n

am
e

co
ll

is
io

n
s.

E
xa

m
pl

e
3.

10
sh

ow
s

h
ow

a
n

am
es

pa
ce

ca
n

be
u

se
d

to
re

pr
es

en
t

a
pa

ck
ag

e
in

Ja
va

ca
ll

ed
co

m
.c

ie
n

ec
s.

de
vi

ce
s.

N
ot

e
th

at
w

e
co

u
ld

h
av

e
ca

ll
ed

th
e

n
am

es
pa

ce
so

m
et

h
in

g
el

se
,s

u
ch

as
h

tt
p:

//
w

w
w

.c
ie

n
ec

s.
co

m
/t

es
t

de
vi

ce
s.

T
h

e
im

po
rt

an
t

th
in

g
to

re
m

em
be

r
is

th
e

ca
rd

in
al

it
y

of
th

e
m

ap
pi

n
g.

T
h

er
e

is
on

e
n

am
es

pa
ce

fo
r

ev
er

y
at

tr
ib

u
te

.I
n

ou
r

pa
rt

ic
u

la
r

ca
se

,w
e

h
av

e
ch

os
en

th
e

O
A

SI
S

re
co

m
m

en
da

ti
on

in
th

e
su

bj
ec

t
pa

rt
ic

u
la

rs
of

th
e

m
ap

pi
n

g:
1.

ta
rg

et
N

am
es

pa
ce

:T
h

is
is

th
e

n
am

e
of

th
e

n
am

es
pa

ce
.

2.
xm

ln
s:

T
h

is
sh

ou
ld

be
as

si
gn

ed
w

h
at

ev
er

sc
h

em
a

is
u

se
d

fo
r

th
e

da
ta

ty
pe

s
of

th
e

sc
h

em
a.

A
lt

h
ou

gh
yo

u
ca

n
cr

ea
te

yo
u

r
ow

n
da

ta
ty

pe
sy

st
em

,i
t

is
st

ro
n

gl
y

re
co

m
m

en
de

d
th

at
yo

u
u

se
X

M
L

Sc
h

em
a

or
so

m
e

ot
h

er
W

3C
st

an
da

rd
.

3.
T

h
e

“i
d”

an
d

“v
er

si
on

”
at

tr
ib

u
te

sh
av

e
to

be
ex

pl
ic

it
ly

de
fi

n
ed

in
th

e
U

M
L

to
be

ge
n

er
at

ed
.

A
tt

ri
bu

te
cl

as
s

da
ta

m
em

be
r

W
e

ca
n

m
od

el
at

tr
ib

u
te

s
as

da
ta

m
em

be
rs

of
cl

as
se

s.
E

le
m

en
t

cl
as

s
da

ta
m

em
be

r
W

e
ca

n
m

od
el

el
em

en
ts

as
da

ta
m

em
be

rs
to

o.
E

le
m

en
t

st
er

eo
ty

pe
d

cl
as

s
A

lt
h

ou
gh

w
e

ca
n

m
od

el
el

em
en

ts
as

da
ta

m
em

be
rs

,w
e

m
ay

ch
oo

se
to

m
od

el
th

em
as

st
er

eo
ty

pe
d

cl
as

se
s

an
d

u
se

ag
gr

eg
at

io
n

(p
os

si
bl

y
co

m
po

si
ti

on
if

en
ou

gh
in

fo
rm

at
io

n
is

sp
ec

ifi
ed

in
th

e
D

T
D

an
d

X
M

L
Sc

h
em

a)
to

m
od

el
an

el
em

en
t’s

n
es

ti
n

g
st

ru
ct

u
re

.
St

ru
ct

u
ra

ls
eq

u
en

ce
st

er
eo

ty
pe

an
d

ta
gg

ed
va

lu
e

(<
<s

eq
u

en
ce

>>
pe

r
[B

oo
ch

et
al

.1
99

9]
)

B
ec

au
se

th
e

or
de

r
of

ap
pe

ar
an

ce
an

d
n

es
ti

n
g

of
el

em
en

ts
in

X
M

L
is

si
gn

ifi
ca

n
t,

w
e

n
ee

d
to

m
od

el
th

is
or

de
r

in
U

M
L

.W
e

ca
n

sp
ec

if
y

th
e

n
ee

d
fo

r
or

de
r

th
ro

u
gh

th
e

st
er

eo
ty

pe
an

d
th

e
sp

ec
ifi

cs
of

th
e

or
de

r
th

ro
u

gh
th

e
ta

gg
ed

va
lu

e.

(c
on

ti
nu

ed
)

147

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

TA
B

LE
3
.1

(c
on

ti
n

u
e

d
)

X
M

L
an

d
X

M
L

Sc
h

em
a

C
on

st
ru

ct
U

M
L

C
on

st
ru

ct
T

ip
s

on
M

ap
pi

n
g

D
ef

au
lt

va
lu

e
st

er
eo

ty
pe

an
d

ta
gg

ed
va

lu
e

(<
<d

ef
au

lt
>>

pe
r

[B
oo

ch
et

al
.1

99
9]

)

T
h

e
de

fa
u

lt
va

lu
e

fo
r

a
gi

ve
n

da
ta

it
em

(a
tt

ri
bu

te
or

el
em

en
t

da
ta

)
in

X
M

L
ca

n
be

sp
ec

ifi
ed

.B
ec

au
se

th
is

do
es

n
ot

ex
is

t
in

U
M

L
,w

e
h

av
e

to
ex

te
n

d
U

M
L

u
si

n
g

st
er

eo
ty

pe
an

d
ta

gg
ed

va
lu

e
to

al
lo

w
fo

r
de

fa
u

lt
va

lu
e

fo
r

in
st

an
ce

s
of

cl
as

se
s.

A
bs

tr
ac

t
ty

pe
s

ab
st

ra
ct

st
er

eo
ty

pe
(s

u
ch

as
ab

st
ra

ct
cl

as
se

s)
[O

A
SI

S
tM

L
20

01
]

T
h

er
e

ar
e

da
ta

ty
pe

s
th

at
ar

e
to

be
ex

te
n

de
d

bu
t

n
ev

er
in

st
an

ti
at

ed
in

an
d

of
th

em
se

lv
es

.
Su

ch
da

ta
ty

pe
s

ar
e

sa
id

to
be

“a
bs

tr
ac

t”
(a

n
ot

io
n

in
O

O
P

di
sc

u
ss

ed
in

C
h

ap
te

r
4)

.
U

M
L

al
lo

w
s

sp
ec

if
yi

n
g

su
ch

da
ta

ty
pe

s
by

sp
ec

if
yi

n
g

th
e

ab
st

ra
ct

st
er

eo
ty

pe
.

E
n

u
m

er
at

ed
ty

pe
s

<<
en

u
m

er
at

io
n

>>
st

er
eo

ty
pe

(b
ot

h
[O

A
SI

S
tM

L
20

01
]

an
d

[B
oo

ch
et

al
.1

99
9]

)

E
n

u
m

er
at

ed
ty

pe
s

(e
n

u
m

er
at

io
n

s)
ar

e
da

ta
ty

pe
s

th
at

h
av

e
“l

is
t-

li
ke

”
st

ru
ct

u
re

an
d

tr
ea

tm
en

t.
E

n
u

m
er

at
io

n
s

in
X

M
L

Sc
h

em
a

al
lo

w
on

ly
si

m
pl

e
ty

pe
s

(l
it

er
al

s)
.S

o,
re

ga
rd

le
ss

of
im

pl
em

en
ta

ti
on

of
th

e
li

st
in

th
e

sp
ec

ifi
c

pr
og

ra
m

m
in

g
la

n
gu

ag
e

u
se

d
to

co
de

th
e

U
M

L
m

od
el

,w
e

ca
n

di
st

in
gu

is
h

a
cl

as
s

th
at

is
an

en
u

m
er

at
ed

ty
pe

by
a

st
er

eo
ty

pe
.

C
h

oi
ce

<<
ch

oi
ce

>>
st

er
eo

ty
pe

(b
ot

h
[O

A
SI

S
tM

L
20

01
]

an
d

[B
oo

ch
et

al
.1

99
9]

)

T
h

e
ch

oi
ce

cl
as

se
s

al
lo

w
u

s
to

sp
ec

if
y

a
gr

ou
pi

n
g

of
da

ta
in

X
M

L
Sc

h
em

a.
A

lt
h

ou
gh

gr
ou

pi
n

gs
ca

n
be

m
od

el
ed

u
si

n
g

cl
as

se
s,

th
e

ch
oi

ce
sp

ec
ifi

es
a

pa
rt

ic
u

la
r

ty
pe

of
a

gr
ou

p
th

at
al

lo
w

s
ch

oo
si

n
g

on
e

of
m

an
y

el
em

en
ts

.T
h

is
is

sp
ec

ifi
ed

th
ro

u
gh

a
st

er
eo

ty
pe

in
U

M
L

.
D

er
iv

at
io

n
by

ex
te

n
si

on
in

h
er

it
an

ce
(g

en
er

al
iz

at
io

n
)

or
re

al
iz

at
io

n
(i

m
pl

em
en

ti
n

g
an

in
te

rf
ac

e)
[O

A
SI

S
tM

L
20

01
]

W
e

ca
n

ex
te

n
d

da
ta

ty
pe

s
sp

ec
ifi

ed
in

X
M

L
Sc

h
em

a.
T

h
is

ex
te

n
si

on
ca

n
be

m
od

el
ed

u
si

n
g

in
h

er
it

an
ce

an
d

re
al

iz
at

io
n

.

148

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.4 XML and UML 149

Example 3.10: Mapping UML Namespaces to XML.

<schema targetNamespace="http://www.cienecs.com/devices"

xmlns="http://www.w3.org/2001/XMLSchema"

version="2002/04/01"

id="devices.xsd" >

<!-- The Schema Rules should go here -->

</schema>

There are also some additional rules that we can think of as “rules of thumb” when
mapping XML to UML:

1. If you are using XML Schema data types, make sure that there is a mapping
between the data types offered in the language of your choice (Java, C++, etc.)
and the XML Schema data types. Most tools will let you bring the core class
libraries of the popular programming languages (or may already have those
core classes). You will have to have the XML Schema data types in the model so
that you can use them to represent attributes of elements. If there is a data type
in the schema that is not part of the standard language libraries, you should
create the proper data type in the form of a class (metadata layer) so that it may
be referenced when creating the UML (and subsequently the schema or DTD
based on the UML).

2. If you are using DTDs, your job is a bit simpler in modeling the data types but
more difficult because DTDs are not well-formed XML. Also, because data types
are a bit more loose in DTDs, every data type has to become its own element
in the DTD (though you can reuse these data types once you have created a
namespace and a DTD for them). Fortunately, once again, most UML tools can
generate DTDs despite their format being not well formed.

3. Other data constraints can be represented using constraints or stereotypes. It is
largely up to the developer which to use and when to use them. The key is to
stay consistent.

4. Class diagrams are ideal for representing the structure of the XML document. If
XML is being used for messaging, you can use sequence diagrams to represent
the messaging interactions among the various systems or system components.

5. To represent dependencies in UML, we use the dashed association line with
an arrow. Stereotypes can be used to specify the particular type of the asso-
ciation unless there is a particular iconic version of the association (such as
aggregation). See Example 3.10 and corresponding Figure 3.15.

Figures 3.16 and 3.17 show a mapping of XML to UML for the address example
we use throughout this text. Figure 3.16 is an XML Schema that defines the grid
as a part of the GML standard (which we will look at in Chapter 12). Figure 3.17
is one possible class diagram that can be used as a UML representation of the
XML Schema. The XML Schema can be found at http://schemas.opengis.net/gml/
3.0.1/base/grids.xsd.

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

Channels

«access»

<schema targetNamespace="http://www.cienecs.com/Devices"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.cienecs.com/Channels"
version="2002/04/01"
id="devices.xsd">

Devices

<!-- The Schema rules should go here-->{Error}

</schema>

FIGURE 3.15. Mapping Package Dependencies from UML to XML Namespaces.

<?xml version="1.0" encoding="UTF-8"?>

<schema targetNamespace="http://www.opengis.net/gml"

xmlns:gml="http://www.opengis.net/gml"

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:xlink="http://www.w3.org/1999/xlink"

elementFormDefault="qualified" version="3.0.1">

<annotation>

<appinfo source="urn:opengis:specification:gml:schema-

xsd:grids:v3.0.1">grids.xsd</appinfo>

<documentation xml:lang="en">Grid geometries A subset

of implicit geometries designed for use with GML.

Coverage schema, but maybe useful elsewhere as

well.

Copyright (c) 2002 OGC, All Rights Reserved.

</documentation>

</annotation>

<include schemaLocation="geometryBasic0d1d.xsd"/>

<element name="_ImplicitGeometry" type="gml:

AbstractGeometryType" abstract="true"

substitutionGroup="gml:_Geometry"/>

<element name="Grid" type="gml:GridType"

substitutionGroup="gml:_ImplicitGeometry"/>

<complexType name="GridType">

<annotation>

<documentation>Implicitly defines an unrectified

grid, which is a network composed of two or more

sets of equally spaced parallel lines in which

the members of each set intersect the members of

the other sets at right angles.</documentation>

</annotation>

<complexContent>

<extension base="gml:AbstractGeometryType">

<sequence>

FIGURE 3.16. Sample XML Schema Representing the Opengis GML Grid.

150

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

<element name="limits" type="gml:

GridLimitsType"/>

<element name="axisName" type="string"

maxOccurs="unbounded"/>

</sequence>

<attribute name="dimension" type=

"positiveInteger" use="required"/>

</extension>

</complexContent>

</complexType>

<complexType name="GridLimitsType">

<sequence>

<element name="GridEnvelope" type="gml:

GridEnvelopeType"/>

</sequence>

</complexType>

<complexType name="GridEnvelopeType">

<annotation>

<documentation>Provides grid coordinate values for

the diametrically opposed corners of an envelope

that bounds a section of grid. The value of a

single coordinate is the number of offsets from

the origin of the grid in the direction of a

specific axis.</documentation>

</annotation>

<sequence>

<element name="low" type="gml:integerList"/>

<element name="high" type="gml:integerList"/>

</sequence>

</complexType>

<element name="RectifiedGrid" type="gml:

RectifiedGridType" substitutionGroup="gml:Grid"/>

<complexType name="RectifiedGridType">

<annotation>

<documentation>A rectified grid has an origin and

vectors that define its post locations.

</documentation>

</annotation>

<complexContent>

<extension base="gml:GridType">

<sequence>

<element name="origin" type="gml:

PointPropertyType"/>

<element name="offsetVector" type="gml:

VectorType" maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>

</schema>

FIGURE 3.16 (continued)

151

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

2

1.
.*

G
rid

.x
sd

ge
om

et
ry

B
as

ic
0d

1d
.x

sd

 G
M

LG
rid

.X
S

D

G
rid

Li
m

its
G

rid
E

nv
el

op
e

G
rid

Ty
pe

R
ec

tif
ie

dG
rid

A
bs

tr
ac

tG
eo

m
et

ry

In
te

ge
rL

is
t

P
oi

nt
P

ro
pe

rt
y

V
ec

to
r

FI
G

U
RE

3.
17

.
Po

ss
ib

le
U

M
L

Re
pr

es
en

ta
tio

n
of

th
e

Sc
he

m
a

of
Fi

gu
re

3.
16

.

152

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

3.5 Putting XML to Work 153

It is important to note that there is more than one way of mapping XML to UML
whereas there is only one way of mapping UML to XML (XMI). Therefore, two
UML diagrams used to model a particular application of XML may both be correct
despite their differences.

In fact, this is somewhat of a problem in mapping XML to UML. The recom-
mended strategy is to use the method of Booch et al. for basic mapping and defer to
what makes sense for a particular application of XML. For example, state diagrams
and sequence diagrams can be very useful in representing interaction sequences
outlined in VXML (which we will look at in Chapter 7). However, without un-
derstanding the semantics of VXML, it is not possible to intelligently and fully
use UML to model an instance VXML document. Mapping application-specific
features of XML to UML has another hidden benefit in encapsulating the seman-
tics of the application of XML and making it easier to understand those semantics
through the graphical tools that UML offers.

This ends our introductory look at the mapping between UML and XML. Let
us take a step back and review. There are two occasions when we want to model
XML schemas or DTDs with UML:

1. When we are designing schemas and DTDs: UML gives us all the tools we need
to actually design DTDs and schemas. Most of the UML tools such as Object
Domain and Rational Rose offer such capabilities. Typically, you can construct
a metamodel with class diagrams and, with a simple click, get a DTD or XML
Schema. Currently, DTD support is more widespread, but most tools are moving
to support both DTDs and XML schemas.

2. When we are reverse engineering: Sometimes we need to model an existing
schema or DTD with UML. The benefits range from understanding the schema
or DTD better to building custom parsing code using an object-oriented lan-
guage faster. Until, and if, UML becomes the standard way to model XML
schemas and DTDs, most of the time we will be reverse engineering existing
schemas and DTDs if we want to model them with UML.

As we previously mentioned, we will look at mapping of specific XML applications
to UML during the remainder of this text.

3.5 PUTTING XML TO WORK

XML has already become the de facto document standard for exchange of human-
readable data. Whether such will be the case for machine-to-machine communi-
cation is questionable; nevertheless, such applications exist and their popularity
is increasing.

In this chapter, we looked at a variety of XML-based technologies and took
an an introductory glimpse at their use in mobile applications. Then, we looked
at RDF, a part of the Semantic Web that is becoming pervasively more crucial
to mobile applications. We followed this by discussions of CC/PP and UAProf as

P1: IYP/... P2: IYP

0521817331c03 CB752-B’Far-v3 May 4, 2005 18:55

154 XML: THE DOCUMENT AND METADATA FORMAT

applications of RDF and XML for mobile applications and finished off the chapter
by talking about XML to UML mapping.

The significance of XML to mobile applications is twofold: First, it offers a
well-formed and deterministically modifiable format for human-readable data,
and second, it offers interoperability. Throughout the remainder of this book, we
will focus on building mobile applications that use XML as one of the core pieces in
their infrastructure and apply the principles that we learned here in this chapter.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

CHAPTER 4

Introduction to UML

David Brady

If one has to jump a stream and knows how wide it is, he will not jump. If he does
not know how wide it is, he will jump, and six times out of ten he will make it.

Persian Proverb

4.1 INTRODUCTION

The unified modeling language (UML) is a standardized language for modeling
software systems. Although small systems are easy for a single person or a small
group to comprehend and develop, large systems are more difficult to design
successfully, because there are often many people and entities controlling different
aspects of the system and defining how they should work from their own profes-
sional specialty or prerogative. For example, a large company requesting a new
piece of software might assign the job to a project manager who has a thorough
understanding of the overall system requirements, whereas a software developer
assigned to work on the system is likely to care more about the ways that indi-
vidual portions of a system work on a detailed level and less about the practical
requirements of users and management. Similarly, an end user of the system is
likely to care about how the user interface is organized and that the software is
built to facilitate ease of use for everyday users, rather than that a particular soft-
ware component was designed exquisitely or that the project fulfills the stated
requirements that its originator decided on. The process of building software can
be very complex, and, moreover, there are few cases where a single person has full
comprehension of how a system should be designed to fulfill all of its requirements.

Designing a system that takes into consideration all of the different requirements
for the system, from the viewpoint of its stakeholders, developers, users, domain
experts, and others, and which still can adapt to change readily and without causing
unforeseen problems is next to impossible without defining the system in a manner
that illustrates the various facets of a system, but still recognizing a common set

155

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

156 INTRODUCTION TO UML

of entities between those facets. If you have used UML in your projects as a
developer and have a fair understanding of the underlying concepts of UML, you
can skip this chapter and move on to the next. This chapter will serve as a very
basic introduction to UML. Many details of UML are missing here, but we have
gathered a basic introduction that should suffice for our purposes.

Let us first take the case of stationary applications and then we will extend it to
mobile applications. The problem for typical software applications is twofold: First,
systems are difficult to manage conceptually. By providing different diagrams that
illuminate differing views of a system, UML allows a system to be seen piece by
piece in consistent pieces, which, together, give a complete view of the system.

Second, with multiple people working with a microcosmic view of a system,
one person’s change can have an impact on aspects of the system that are unknown
to the others. Because the UML uses common elements in the different diagrams,
it becomes much easier to see the ramifications of a change throughout a system.
During the development process, team members often let their individual goals
take priority over the project at the expense of the business goals for which it was
designed. Their misguided targets are often caused by an adherence to outdated
requirements and their inaccurate interpretation of them. So keeping a model
synchronized with the requirements that are being defined while maintaining
accuracy becomes of the utmost importance.

The solution to the problem leads us to modeling. Because modeling helps the
design phase so significantly, a byproduct is often reduced costs of the system.
Furthermore, it is an effective way to ensure at the outset that a system can be
built, that the costs of doing so are not unreasonable, and that the system will
fulfill the business requirements and meet the needs of its users.

Modeling is not unique to software. It is used in a variety of disciplines to think
through a system or product, describe it, and discover design flaws before it is built.
Modeling is used in architecture, in mathematics, in the sciences (seismology is
a good example), in civil engineering, in auto manufacturing, and in an almost
infinite number of things that are conceptually complex and benefit from a mod-
eling illustration of the problem at hand, its ability to encourage understanding of
its parts, and the facilitation of communication among the people involved. You
can think of the model as a blueprint of the software system to be built. A model
should include different perspectives of the system from the viewpoints of the
various team members, such as developers, end users, and the entity that deter-
mined the need for the system and instigated its development. The UML provides
different views based on who is interpreting the model and in what way.

What the UML provides in a nutshell, then, is a manner of modeling software
that provides a full range of views, from very general overviews of how the system
works as a whole, to detailed interactions and descriptions of how each object
functions and communicates.

Modeling a software system has many benefits and goals. First, modeling helps
people to visualize a system as they want it to be. It provides a template for
constructing the system, which specifies details of system implementation in a
specific enough way that software developers can implement it rapidly and with
fewer work stoppages to clarify requirements. By separating system development

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.1 Introduction 157

by architecture, UML allows architects to focus on building systems, whereas
developers are able to implement them more rapidly because the system’s various
components are already defined for them. Architects can specify how something
should be built without implementing it themselves, yet this can be done in a
specific manner that essentially gives the developer a blueprint for the software.

Another benefit of UML is that is helps us to document the decisions that are
made throughout the design process. In complex systems, it is difficult for a single
person to understand both a specific component of a system and its context in
the system as a whole. One way of dealing with this limitation is to narrow our
focus to one aspect at a time. UML facilitates this by allowing us to model individual
parts of a system while also providing a broad overview.

Most developers use some sort of modeling technique inherently. From diagrams
sketched on napkins to complex models of their own design, to textual descrip-
tions or logic tables, developers almost always draw out a system or components
of a system in some manner to help them think through the problem before the
implementation. The problem, however, is that many developers have their own
methodologies for modeling, which, though they help to illuminate the system’s
structure for that particular person, may fail to take into consideration needs of
the system beyond the developer. Furthermore, that particular developer’s method
of modeling a system may be largely incomprehensible to others. Although no
particular modeling technique works perfectly for everyone, UML provides di-
agrams that are applicable to many different roles. More importantly, however,
UML, because it is a standardized language that is well documented by a detailed
specification, can be understood by anyone with sufficient training. By providing
a standard, UML encourages application designers to use a consistent vocabulary
and methodology.

The more complex the project, the higher the likelihood that you will fail to
complete it successfully or that it will not be completed as intended. Worse, many
systems start out simply and then become more complex; thus the initial simple
design fails to encompass the complexity that the system grows into. When this
happens without an adequate modeling system, things rapidly spiral out of control
and result in heaping piles of “spaghetti code” (code so unwieldy that it looks like
spaghetti in a visual sense).

When object-oriented languages began to appear in the mid-1970s, they were
conceptually new for software developers and architects accustomed to using pro-
cedural languages. Because procedural languages have a well-defined flow, they are
easy to model with simple flow charts. That model was only able to express a small
part of how object-oriented systems interoperate. Something else was needed to
illustrate the way that object-oriented systems interacted.

There was no shortage of ideas about how object-oriented software should be
modeled, as a variety of different methodologies quickly emerged. The late 1980s
saw a plethora of competing methodologies and plenty of experimenting within
those. By 1994 there were close to fifty of them competing to become the de facto
standard. As we mentioned earlier, the result of not standardizing on a single
methodology is a fragmented vocabulary and the inability to communicate. By
providing a standard, UML encourages a consistent methodology.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

158 INTRODUCTION TO UML

The creators of the early methodologies, including Grady Booch, Ivar Jacobson,
and James Rumbaugh, began collaborating and their work eventually developed
into UML. Also involved in the effort were Fusion, Shlar-Mellor, Coad-Yourdan,
and David Harel. In 1994, Grady Booch and James Rumbaugh decided to unify their
own personal methodologies. They had both recognized the strengths of the other’s
techniques as well as the benefits of the State Machine as a behavioral component,
so they combined the three and created the Object Modeling Technique (OMT)
with input from Eran Gery on object-oriented state chart diagrams.

In 1996 they expanded their modeling language into UML and established the
UML Consortium, enlisting the support and design assistance from major com-
puting and software-related companies, including DEC, Hewlett-Packard, IBM,
MCI, Microsoft, Oracle, Rational, and Texas Instruments. The UML 1.0 Standard
was completed in January 1997. At this point the UML Consortium was expanded
again to include a wider variety of companies. They released UML version 1.1 in
July of that same year. In November 1997 the Object Management Group (OMG)
adopted UML 1.1.

At the time of authoring this text, the UML 2.0 specification is months away from
being released in its final form. This represents the first version to be developed by
committee instead of primarily Booch, Jacobson, and Rumbaugh. UML 2.0 has
been improved in many ways. It aims to be more consistent and adds many new
features. Sequence diagrams have been enhanced to support data-flow modeling.
Interface and architecture elements have added support for elaborated interfaces,
ports, interaction fragments, and operators. It also supports multiplicities and
conditions for the extends relationship and is now explicit between use case and
state diagrams. Timing diagrams have been added and show a timeline across the
horizontal axis. Most importantly, as far as we are concerned, there are two formal
methods of adding large-grained functionality to UML 2.0 to treat specific domains
such as mobile applications. First, the metamodel can be modified to create an
extension; alternatively, profiles can be created to extend UML 2.0. Those things
that we add to UML in this text can be represented by either a profile or a metamodel
change. Because this book is written with UML 1.4 in mind, we do not address
this issue; however, a profile may be preferred for practical purposes.

The current version of UML is 1.4. The full UML Specification and support-
ing documentation are located at the Object Management Group’s Web site:
http://www.omg.org.

4.1.1 Why Was It Created?
UML was created as a language to model an object-oriented system from many
different views. We can get a top-down view of the system’s basic purpose, we
can focus on its detailed structure, or we may choose to look at our system from
the perspective of a conceptual user. Additionally, the UML creators strove to
address the problem of conceptualizing a system. Because object-oriented systems
of any complexity tend to be difficult to comprehend by a single person, UML
attempts to simplify the complexity by breaking down the model into various
view points of the same components of a system, thus making it easier to see how
various parts of the system work in context, and hopefully eliminating the need for

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.1 Introduction 159

all participants to fully comprehend the entire system as a whole. More ambitiously,
the creators of UML strove to create a modern language usable by both humans
and machines.[Booch, Rumbaugh, and Jacobsen 1999] In other words, UML was
created not only with the intention of helping humans understand and create a
system, but also with the intention of allowing for machine-generated code based
on models and the reverse, models based on an existing code base.

Forward engineering combined with a standards-based modeling language is
currently emerging through widespread availability in software development pack-
ages offered by IBM, Microsoft, Borland, and others. Good template-based open-
source tools are emerging as well (e.g., the AndroMDA project, which can be found
at www.andromda.org).

These fourth-generation tools have enabled highly complex systems to be
changed with relative ease and can save costs by reducing the staff hours re-
quired to develop and maintain a system. Their benefits are only beginning to
be exploited and as they increase, so will its adoption, which will enable more
complex and more capable systems. Surely this century will be recorded as the
birth of the industrial age of software, that is, software creating software.

4.1.2 Understanding UML
Many guides to UML mix methodology with modeling. Although both are obvi-
ously important in the software development process, you should be very clear
on one point: UML is a language, and, like any language, it is a flexible tool that
can be used in a variety of ways. Its purpose is to explain and illustrate ideas in
a meaningful way, and, although opinions abound on which way is the correct
way to express an idea, those ideas are simply opinions. It is important to under-
stand that UML has a detailed specification that details the syntax and regulations
for each diagram and their various elements. In this text, however, we will mix
methodology with modeling because our primary concern is in the application of
UML to mobile software.

UML is modeled on human languages, like English, and was designed to
take advantage of the strengths of human languages: flexibility and extensibil-
ity. Like any language UML has a set of rules that ought to be followed, like
the grammar of a human language. Just like the rules of the English language
dictate that you should capitalize a proper name, the rules of UML dictate that
the name of a class should be in the top section of the class rectangle. These
are the rules of language, and following them ensures that your sentences—or
diagrams—are clear to your audience. Often, though, you will find the rules of
UML interspersed with opinions about how UML should be used. To go back to
the English analogy, there are plenty of people that say formal writing should be
done in the third person. That is their particular preference for how formal writing
should be done, but it is not a rule of the English language. When reading about
UML it is important to keep that distinction in mind. In the following sections,
we will describe the basic purpose of the major diagrams in UML, their common
uses, and the rules of their use. We intend this to be a guide to the rules of UML,
rather than a stylistic modeling guide.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

160 INTRODUCTION TO UML

Rarely is a single model sufficient to model a system; modeling a system usually
requires several different models to illustrate a system as well as its subsystems.
For an example of this, think about modeling your car, which can be modeled
in terms of its architecture, and also in terms of the different systems it contains,
such as the transmission and braking system. How we model a system depends on
the perspective, application, and use of the system by the observer and this is
something that has been taken into account in UML. As we discussed earlier,
one of the benefits to using UML is that it provides different views on the same
elements of a system and therefore can help to show how a change in one aspect of a
system can have an impact on other parts and their interacting behaviors. Viewing
a system through its diagrams can help you understand how your decisions have
an impact on the other parts of the system. UML is composed of a variety of
different diagrams, each of which provides a different view of the system, while
maintaining the relationships among the contained components. Each diagram
represents a different view of the same entities.

Because of this, a modeling tool greatly enhances the usefulness of the mod-
els because relationships among its parts are carried over between diagrams by the
software, rather than relying on a human to understand and enforce the changes
between them. When software, rather than a human, enforces consistency and
rules that are established in other diagrams, change management for a system
becomes comparatively easy, with the added bonus that it also is easier for a system’s
documentation and code to remain synchronized. This, as you may imagine, helps
to solve one of software’s age-old problems.

UML specifies nine major types of diagrams, divided into five different views
of the system. These five system views correspond to the major phases of a soft-
ware development project. These views are, respectively, per order defined in the
specification, as follows:

1. System Requirements View: This view is defined by the end users’ interaction
with the system and other systems and is manifest in the form of a use case
diagram.

2. Design View: This view is used where the system vocabulary is defined. Diagrams
included in the design view include class, object, interaction, state, and activity
diagrams.

3. Process View: This view models the processes and procedures of a system. Dia-
grams related to the process view are the same as for the design view, but with
an emphasis on the active classes.

4. Implementation View: This view includes diagrams that are useful to software de-
velopers as they create the system and includes the sequence and collaboration
diagrams.

5. Deployment View: This view describes the system from the viewpoint of a system
engineer.

Together, all of these views provide a fairly complete picture of a software system
that can be used as a blueprint for its development. In this text, we will be focused
on all of these different views according to the application to mobile software

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.1 Introduction 161

development, so you will see the appropriate extensions in the place of the appro-
priate discussion.

UML distinguishes between static and dynamic types of diagrams. Static dia-
grams, which are also called structural diagrams, are used to represent the structure
of a system, and things within the system that do not change. The static diagrams
include class diagrams, object diagrams, component diagrams, and deployment
diagrams. Dynamic diagrams, in contrast, illustrate the dynamic aspects of a sys-
tem, which are also known as its behavioral aspects. The dynamic diagrams in
UML are use case diagrams, sequence diagrams, state chart diagrams, collabora-
tion diagrams, and activity diagrams.

In the proposed UML 2.0 draft, the relationship between use cases and state
diagrams is now explicit.

4.1.3 Building Blocks of UML
We will start with some basic terminology needed to understand UML:

1. System: A collection of subsystems organized for a purpose, described by a set
of models, possibly from different viewpoints.

2. Subsystem: A grouping of elements that constitute a specific behavior offered
by the containing elements.

3. Model: An abstraction representing a complete and self-consistent simplification
of reality created to better understand the system.

4. View: A projection into the organization and structure of a system, focused on
one aspect of that system.

5. Diagram: Semantically, in the UML specification, a graphical presentation of a
set of elements.

Let us get started with some of the basic defining elements of UML. Classifiers are
the fundamental building units of UML. Classifiers refer to the parts of UML that
may have instances. Classifiers may have both structural features, such as attributes,
as well as behavioral attributes, such as operations. A classifier acts as a template
for the instances from which they are derived, and each instance of a classifier
shares the behavioral and structural features that are specified by the classifier.
The following elements are all classifiers:

1. Class[D2]: UML classes are perhaps the single most frequently used artifact in
UML. UML classes encapsulate the attributes and behaviors shared by a certain
group of entities. UML classes closely follow the definition of classes in object
oriented programming.

2. Interface: A named set of operations that characterize the behavior of an element.
3. Data Type: A type with values that have no individual identity. These can include

primitive data types, built-in data types, and enumerated types.
4. Signal: An asynchronous message sent from one instance to another to com-

municate things such as state, status, and events.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

162 INTRODUCTION TO UML

5. Component: A physical element of a system that provides the realization of a set
of interfaces. Components can include source code, executable code, libraries,
and data files.

6. Node: A physical element of a system that is able to do computations. Nodes
exist at run time and typically have memory and processing capabilities.

7. Use Case: A set of action sequences whose result is of value to a particular actor,
as well as variant cases of those sequences. In the proposed UML version 2.0
draft, the relationship between use cases and state diagrams are explicit.

8. Subsystem: A group of elements that specify the behavior of its containing ele-
ments.

The heart of UML’s usefulness lies in its diagrams. The nine major types are as
follows:

1. Class diagrams show classes, interfaces, and collaborations and the relationships
among them. Class diagrams are used to represent the static design of a system.

2. Object diagrams show a group of objects and their relationships. Object dia-
grams show static views of objects, which are snapshots of a system at a given
point in time. Object diagrams, like class diagrams, show the static view of a
system, but from the perspective of a specific scenario, rather than a general
case.

3. Collaboration diagrams are a type of interaction diagram and are semantically
equivalent to sequence diagrams. They emphasize the organization of and re-
lationships among objects that send and receive messages. Collaboration dia-
grams show a set of objects involved in an interaction, the relationships among
them, and the messages they send and receive. Collaboration diagrams are used
to illustrate the dynamic view of the system.

4. Sequence diagrams, like collaboration diagrams, are interaction diagrams. They
are semantically equivalent to collaboration diagrams. When designing a sys-
tem, in fact, you often start with a sequence diagram and then turn it into a
collaboration diagram to determine the structure. Sequence diagrams empha-
size the order of messages at a moment in time. They show a group of objects and
the messages that are sent and received arranged sequentially according to their
temporal progression. Sequence diagrams are used to illustrate the dynamic
view of the system.

5. Activity diagrams show the dynamic view of the system by capturing the flow
from one activity to the next within a system and are semantically equivalent
to state diagrams. Activity diagrams model a group of activities and the flow of
activity, sequential or branching, from one to the next, as well as the objects
that participate in that flow, either as users of the system or recipients of the
action. Activity diagrams typically emphasize the flow of control among objects
but can be used for more generic purposes as well.

6. State chart diagrams show a State Machine, which includes states, transitions,
activities, and events, and are semantically equivalent to activity diagrams. Like
activity diagrams, they show a dynamic view of the system. State chart diagrams,
or state diagrams, are particularly important in modeling how a particular class,

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.2 The User View 163

interface, or collaboration behaves and are used to illustrate behaviors that are
ordered by events.

7. Component diagrams model physical software components, such as source code,
libraries, and executables, and the relationships among them, particularly as
they relate to realized interfaces. They are used to model a static view of the
system’s implementation and typically map to classes, interfaces, or collabora-
tions.

8. Deployment diagrams model a set of nodes—that is, computational resources—
and the relationships among them. As such, deployment diagrams model a static
view of a system’s deployment. Deployment diagrams are related to component
diagrams, because a node typically contains one or more components.

9. Use case diagrams show a set of scenarios depicting interactions with the system
and the resulting behavior. They show the relationships between the system and
its users and together represent snapshots of the system in action or its static
views. They are analogous to the film industry’s storyboards used for a movie
production.

Activity and state chart diagrams, as well as sequence and collaboration diagrams,
are listed as being semantically equivalent. In other words, these diagrams dis-
play the same information. Why, then, you may wonder, do we need two separate
diagrams for each case? The answer is that, because the material contained in
both can be difficult to conceptualize, providing two separate viewpoints helps to
illuminate that facet of the system. In addition to being semantically equivalent,
interaction diagrams (i.e., sequence and collaboration diagrams) are isomorphic,
which means that they carry an additional requirement: You should be able to
display the information in a sequence diagram in a collaboration diagram without
loss of information and vice versa.

Another set of similar diagrams are class, component, and deployment diagrams.
They are all drawn similarly and have as their distinguishing feature only the major
diagram element that is shown. Class diagrams show classes, whereas component
diagrams and deployment diagrams show components and nodes, respectively.

4.2 THE USER VIEW

The user view is going to be of particular importance within the context of our
discussions. The user view encapsulates how the user looks at the system and his
or her interactions with the system. This view is particularly important to mobile
computing, because, as we will see in Chapters 5–8, the view of the user may
depend on the device, the network, and the dimensions of mobility. Let us start
with use cases and use case diagrams: those building blocks that let us start to put
together requirements for a project.

4.2.1 Use Case Diagrams
A use case diagram is a high level requirements overview that shows one path of
activity or scenario from start to finish. A use case diagram depicts a system in

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

164 INTRODUCTION TO UML

terms of user interaction and shows scenarios of system use as well as a sequence
of events initiated by a user, another system, hardware, or the passage of time.
A use case can be drawn as a diagram, or it can simply be a list of steps that are
performed in a given interaction. To produce effective use cases, you should be
sure that each use case represents only a specific interaction with the system.

Use cases are designed to model a system’s behavior without delving into its
inner-workings. For example, a use case for a mobile user receiving a traffic report
might detail the step-by-step process of communication between a mobile user
and the traffic service used to retrieve current traffic reports without describing
how the interaction works in a detailed manner. Every use case diagram should
illustrate a complete flow of events including what event triggers the use case and
when it ends. Remember, however, that use case diagrams are not concerned with
the system’s implementation details. Rather, they should illustrate the high-level
scenarios possible within a system.

Because use case diagrams show system events on a high level, they should
describe the flow of events in a manner that is clear and concise enough to be
comprehensible to people unfamiliar with the system. To that end, it is important
to provide only the information necessary to understand a particular behavior in its
context in a use case, while ensuring that you have provided sufficient information
to explain the scenario in its context.

Use cases are classifiers and have attributes and operations (just like classes, as
you will see later in the chapter). These may be used in interaction diagrams to
specify the behavior of a use case. Because use cases are classifiers, you can also
attach State Machines to them. State Machines are covered in more detail later on
in this chapter.

There are three general types of use case flow of events: the main case, variations
to the main case, and the exceptional case. The main case is the flow of events
assuming that everything goes according to plan. The main case is the best and
most common scenario. Variations to the main case include flows of events that
vary from the main case. An exceptional case illustrates the path through the
system in a single error case. Use cases defer the detail of their implementation
process to other diagrams specified by UML. The sequence of specific events that a
use case represents generically are specified in a use case diagram. A collaboration
diagram shows the objects necessary to complete the process along with their
relationships and interactions.

4.2.2 Using Use Cases
Use cases are helpful in designing aspects of the system with which users will
interact, including things like GUIs, voice interfaces, and a variety of other poten-
tial ways that a user might interact with the system. When users are involved in
creating use cases, that generally means that the system will likely be more useful
to them and that it will respond in a way in which they expect. Use scenarios
should be from the viewpoint of the different types of users, forming a represen-
tative collection of use cases. The users’ role depends on the stated purpose of the
interaction.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.2 The User View 165

Use case diagrams can benefit system development in many ways. They can help
with user interface design, aid developers in gaining a high-level understanding
of the system requirements, and can be used as a basis for developing testing
plans.

Use case diagrams are useful in the process of defining how a product or system
will be used and what requirements it will have to meet. Most software projects be-
gin by management defining the specific requirements. This initial phase typically
produces a system design document or specification that will detail the system
to be built. These design specifications also serve as a reference for the software
developers during the implementation of the system.

Once the design document is created, however, it becomes a significant chal-
lenge to prevent the ideas captured in this document from becoming out of date as
the system requirements change. This frequently occurs when the requirements
change verbally or by some other means, but the design document is not updated
to reflect the changes. The result is that developers become less confident in the
accuracy of the design document and they tend to use it less frequently, growing
more dependent on their individual memory and interpretation of how the system
should be built.

This is a problem that consistently plagues software development teams and has
proven to be difficult to solve. One reason most solutions fail is that they require
an awkward maintenance step that would not be needed at all except to keep
the requirements synchronized. Therefore, a successful solution is one that can be
maintained while defining and modifying requirements and one that is naturally
integrated into the developers’ implementation process.

Use cases are one such solution. When used successfully, use cases drive dis-
cussions with the software’s founders and are fully integrated with the developer’s
design documents. As we will see throughout the rest of this chapter, use cases
are the underlying design concept that weaves together all the other UML dia-
grams and helps us to ensure that the software that is built is the software the
founders designed. Use cases are also valuable in the testing phase of an appli-
cation. Because quality assurance teams responsible for the testing of an applica-
tion may be unfamiliar with its scenarios of use, use cases can show them how
the application was designed to be used and can help them in developing test
plans.

An actor typically initiates a use case and derives some benefit from its use. This
benefit may be realized by the actor who initiated the use case, but it could also
be a different actor. An actor may be an actual person, another system, or even a
hardware device, but it always represents a set of roles that will be interacting with
the system from the outside. Table 4.1 shows an overview of the elements used in
creating use case diagrams.

Figure 4.1 shows three actors: a mobile user, a 911 emergency system, and
a service administrator. You will notice that each actor is represented as a stick
figure, although they may be actual humans or computer systems, such as the 911
emergency system. The one thing that all three of these actors have in common is
that they represent interactions with entities that reside outside of the system we
are modeling.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

TA
B

LE
4
.1

.
O

ve
rv

ie
w

o
f

th
e

E
le

m
e
nt

s
in

U
se

C
as

e
s

D
ia

gr
am

s

E
le

m
en

t
Ic

on
ic

N
am

e
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

U
se

C
as

es
U

se
C

as
eN

am
e

A
u

se
ca

se
is

re
pr

es
en

te
d

by
an

ov
al

th
at

is
la

be
le

d
w

it
h

th
e

n
am

e
of

th
e

u
se

ca
se

.A
u

se
ca

se
el

em
en

t
re

pr
es

en
ts

a
sy

st
em

be
h

av
io

r,
ge

n
er

al
ly

en
ou

gh
to

n
ot

cl
u

tt
er

th
e

di
ag

ra
m

an
d

sp
ec

ifi
ca

ll
y

en
ou

gh
to

il
lu

st
ra

te
th

e
pu

rp
os

e
an

d
co

n
te

xt
of

th
e

be
h

av
io

r.
A

ct
or

s

A
ct

or
N

am
e

A
ct

or
s

ar
e

ei
th

er
a

ro
le

or
an

en
ti

ty
th

at
pa

rt
ic

ip
at

es
in

a
sy

st
em

.A
ct

or
s

ca
n

be
,

am
on

g
ot

h
er

th
in

gs
,h

u
m

an
u

se
rs

or
ot

h
er

sy
st

em
s.

Sy
st

em
s

ca
n

h
av

e
a

va
ri

et
y

of
u

se
rs

,s
u

ch
as

cu
st

om
er

s,
em

pl
oy

ee
s,

an
d

ot
h

er
co

m
pu

te
r

sy
st

em
s.

T
h

ey
ea

ch
re

pr
es

en
t

a
ro

le
or

se
t

of
ro

le
s

th
at

in
te

ra
ct

s
w

it
h

th
e

sy
st

em
fr

om
th

e
ou

ts
id

e.
Id

en
ti

fy
in

g
al

lt
h

e
ac

to
rs

is
an

im
po

rt
an

t
st

ep
in

de
fi

n
in

g
th

e
co

n
te

xt
of

th
e

sy
st

em
.E

ac
h

on
e

ca
n

in
te

ra
ct

w
it

h
th

e
sy

st
em

in
a

n
u

m
be

r
of

di
ff

er
en

t
w

ay
s.

A
ss

oc
ia

ti
on

A
ss

oc
ia

ti
on

s
ar

e
sh

ow
n

as
so

li
d

li
n

es
be

tw
ee

n
di

ag
ra

m
el

em
en

ts
.A

n
as

so
ci

at
io

n
be

tw
ee

n
an

ac
to

r
an

d
a

u
se

ca
se

in
di

ca
te

s
th

at
th

ey
co

m
m

u
n

ic
at

e
w

it
h

on
e

an
ot

h
er

.T
h

is
as

so
ci

at
io

n
ca

n
al

so
in

di
ca

te
th

at
th

ey
ar

e
se

n
di

n
g

an
d

re
ce

iv
in

g
m

es
sa

ge
s

to
an

d
fr

om
on

e
an

ot
h

er
.

N
ot

es

Te
xt

ua
l N

ot
es

 G
o

In
 H

er
e

N
ot

es
,w

h
ic

h
co

n
ta

in
co

m
m

en
ts

,o
r

h
u

m
an

-r
ea

da
bl

e
de

sc
ri

pt
io

n
s,

ca
n

be
in

cl
u

de
d

in
u

se
ca

se
di

ag
ra

m
s.

T
h

e
de

ta
il

of
a

u
se

ca
se

di
ag

ra
m

ca
n

be
ei

th
er

in
a

de
si

gn
do

cu
m

en
t

or
in

n
ot

es
at

ta
ch

ed
to

th
e

di
ag

ra
m

.B
ew

ar
e,

th
ou

gh
,t

h
at

n
ot

es
ca

n
qu

ic
kl

y
cl

u
tt

er
u

p
a

di
ag

ra
m

.U
su

al
ly

ea
ch

u
se

ca
se

di
ag

ra
m

w
il

lh
av

e
a

pa
ge

in
a

de
si

gn
do

cu
m

en
t

w
it

h
in

fo
rm

at
io

n
ab

ou
t

th
e

in
it

ia
ti

on
of

th
e

u
se

ca
se

by
an

ac
to

r,
pr

ec
on

di
ti

on
s

of
th

e
u

se
ca

se
,t

h
e

st
ep

s
in

it
s

sc
en

ar
io

,i
ts

po
st

co
n

di
ti

on
s,

an
d

th
e

ac
to

r
to

be
n

efi
t

fr
om

it
.

166

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

G
en

er
al

iz
at

io
n

G
en

er
al

iz
at

io
n

pr
ov

id
es

bo
th

a
co

m
pl

ex
ve

rs
io

n
an

d
a

ge
n

er
ic

ve
rs

io
n

of
a

sc
en

ar
io

an
d

is
ap

pl
ic

ab
le

to
bo

th
ac

to
rs

an
d

u
se

ca
se

s
in

a
u

se
ca

se
di

ag
ra

m
.

U
se

ca
se

ge
n

er
al

iz
at

io
n

sp
ec

ifi
es

a
re

la
ti

on
sh

ip
w

h
er

e
a

u
se

ca
se

in
h

er
it

s
it

s
pa

re
n

ts
’

co
n

te
xt

an
d

be
h

av
io

r.
G

en
er

al
iz

at
io

n
al

lo
w

s
th

e
ch

il
d

u
se

ca
se

to
ov

er
ri

de
be

h
av

io
r

of
it

s
pa

re
n

t
an

d
to

be
su

bs
ti

tu
te

d
in

pl
ac

e
of

it
s

pa
re

n
t.

G
en

er
al

iz
at

io
n

is
u

se
d

to
m

od
el

ob
je

ct
-o

ri
en

te
d

in
h

er
it

an
ce

.T
h

e
u

se
ca

se
ge

n
er

al
iz

at
io

n
re

la
ti

on
sh

ip
is

re
n

de
re

d
w

it
h

th
e

st
an

da
rd

n
ot

at
io

n
fo

r
ge

n
er

al
iz

at
io

n
:a

so
li

d
li

n
e

w
it

h
an

op
en

ar
ro

w
h

ea
d.

P
ac

ka
ge

P
ac

ka
g

eN
am

e

G
ro

u
pi

n
g

u
se

ca
se

s
to

ge
th

er
by

re
la

te
d

in
te

ra
ct

io
n

s
is

a
w

ay
to

si
m

pl
if

y
a

se
t

of
be

h
av

io
rs

.F
or

ex
am

pl
e,

in
a

sy
st

em
w

it
h

m
an

y
su

bs
ys

te
m

s,
it

m
ay

be
di

ffi
cu

lt
to

de
fi

n
e

al
lt

h
e

re
qu

ir
em

en
ts

.C
at

eg
or

iz
in

g
a

sy
st

em
’s

m
an

y
re

qu
ir

em
en

ts
in

to
re

la
te

d
be

h
av

io
rs

is
a

w
ay

of
m

an
ag

in
g

th
e

co
m

pl
ex

it
y

an
d

m
ay

al
so

be
u

se
fu

lf
or

gr
ou

pi
n

g
de

si
gn

di
sc

u
ss

io
n

s
w

it
h

th
e

ap
pr

op
ri

at
e

u
se

rs
.

In
cl

u
de

<
<

In
cl

ud
e>

>
T

h
e

in
cl

ud
e

re
la

ti
on

sh
ip

de
sc

ri
be

s
an

ac
ti

on
th

at
is

re
pe

at
ed

w
it

h
th

e
pu

rp
os

e
of

sa
vi

n
g

yo
u

fr
om

h
av

in
g

to
de

sc
ri

be
th

e
sa

m
e

be
h

av
io

r
re

pe
at

ed
ly

.S
ay

th
at

yo
u

h
av

e
se

ve
ra

lu
se

ca
se

s,
ea

ch
w

it
h

a
si

m
il

ar
se

ri
es

of
st

ep
s,

an
d

yo
u

w
an

t
to

av
oi

d
re

pe
at

in
g

th
os

e
sa

m
e

st
ep

s
in

ea
ch

u
se

ca
se

.W
h

at
yo

u
do

in
th

is
ca

se
is

in
cl

u
de

a
u

se
ca

se
co

n
ta

in
in

g
th

os
e

st
ep

s
in

to
ea

ch
u

se
ca

se
th

at
re

qu
ir

ed
th

em
.T

o
in

cl
u

de
a

u
se

ca
se

,y
ou

w
ou

ld
fi

rs
t

m
ak

e
a

u
se

ca
se

th
at

re
pr

es
en

te
d

th
e

co
m

m
on

st
ep

s
sh

ar
ed

by
th

e
ot

h
er

u
se

ca
se

s.
T

h
en

yo
u

w
ou

ld
in

cl
u

de
th

at
u

se
ca

se
in

th
e

m
or

e
de

ta
il

ed
u

se
ca

se
s

th
at

re
qu

ir
ed

th
em

.
T

h
e

in
cl

u
de

re
la

ti
on

sh
ip

,a
st

er
eo

ty
pe

n
ot

at
ed

by
<
<

in
cl

u
de
>
>

,d
if

fe
rs

fr
om

th
e

ot
h

er
u

se
ca

se
re

la
ti

on
sh

ip
s

in
th

at
th

e
in

cl
u

de
d

u
se

ca
se

n
ev

er
st

an
ds

al
on

e
an

d
is

al
w

ay
s

in
cl

u
de

d.
E

ss
en

ti
al

ly
,t

h
is

is
an

ex
am

pl
e

of
de

le
ga

ti
on

.T
h

e
in

cl
u

de
re

la
ti

on
sh

ip
is

m
od

el
ed

as
a

de
pe

n
de

n
cy

st
er

eo
ty

pe
an

d
is

so
m

et
im

es
st

er
eo

ty
pe

d
w

it
h

th
e

u
se

’s
ke

yw
or

d.

(c
on

ti
nu

ed
)

167

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

TA
B

LE
4
.1

(c
on

ti
n

u
e

d
)

E
le

m
en

t
Ic

on
ic

N
am

e
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

E
xt

en
ds

<
<

ex
te

nd
s>

>
A

u
se

ca
se

ca
n

al
so

be
re

u
se

d
w

it
h

th
e

ex
te

n
ds

re
la

ti
on

sh
ip

,i
n

w
h

ic
h

yo
u

ad
d

st
ep

s
to

an
ex

is
ti

n
g

u
se

ca
se

.T
h

is
is

kn
ow

n
as

ex
te

n
di

n
g

a
u

se
ca

se
.I

n
th

is
re

la
ti

on
sh

ip
,t

h
e

ba
se

u
se

ca
se

in
co

rp
or

at
es

th
e

be
h

av
io

r
of

an
ot

h
er

u
se

ca
se

in
h

er
en

tl
y.

U
n

li
ke

w
it

h
th

e
in

cl
u

de
re

la
ti

on
sh

ip
,t

h
e

ba
se

u
se

ca
se

ca
n

st
an

d
al

on
e.

A
dd

it
io

n
al

ly
,i

t
ca

n
be

ex
te

n
de

d
u

si
n

g
sp

ec
ifi

ed
ex

te
n

si
on

po
in

ts
.T

h
e

ex
te

n
ds

re
la

ti
on

sh
ip

is
de

n
ot

ed
by

ge
n

er
al

iz
at

io
n

ar
ro

w
s

(c
lo

se
d

ar
ro

w
h

ea
d)

.
T

h
e

ex
te

n
ds

re
la

ti
on

sh
ip

is
u

se
fu

li
n

m
od

el
in

g
op

ti
on

al
sy

st
em

be
h

av
io

r
an

d
fo

r
se

pa
ra

ti
n

g
op

ti
on

al
fr

om
re

qu
ir

ed
be

h
av

io
r.

A
n

ex
am

pl
e

of
th

e
ex

te
n

ds
re

la
ti

on
sh

ip
is

th
e

J2
M

E
,w

h
ic

h
co

n
ta

in
s

bo
th

re
qu

ir
ed

pa
ck

ag
es

(a
m

in
im

u
m

co
n

fi
gu

ra
ti

on
)

an
d

op
ti

on
al

pa
ck

ag
es

fo
r

re
so

u
rc

e-
pl

en
ti

fu
ld

ev
ic

es
.

T
h

e
ex

te
n

ds
re

la
ti

on
sh

ip
,a

st
er

eo
ty

pe
n

ot
at

ed
by

<
<

ex
te

n
ds
>
>

,r
el

at
es

an
ex

te
n

si
on

u
se

ca
se

to
a

ba
se

u
se

ca
se

,s
pe

ci
fy

in
g

h
ow

th
e

be
h

av
io

r
de

fi
n

ed
fo

r
th

e
ex

te
n

si
on

u
se

ca
se

au
gm

en
ts

th
e

be
h

av
io

r
de

fi
n

ed
fo

r
th

e
ba

se
u

se
ca

se
.T

h
e

ba
se

u
se

ca
se

do
es

n
ot

de
pe

n
d

on
pe

rf
or

m
in

g
th

e
be

h
av

io
r

of
th

e
ex

te
n

si
on

u
se

ca
se

.
T

h
e

ex
te

n
ds

re
la

ti
on

sh
ip

is
al

so
u

se
fu

li
n

m
od

el
in

g
po

te
n

ti
al

fl
ow

s
of

ev
en

ts
th

at
co

u
ld

oc
cu

r
at

a
gi

ve
n

po
in

t
ba

se
d

on
an

in
te

ra
ct

io
n

w
it

h
an

ac
to

r,
an

d
it

ca
n

be
u

se
d

to
ca

pt
u

re
ex

ce
pt

io
n

al
be

h
av

io
r

an
d

va
ri

at
io

n
s

fr
om

th
e

n
or

m
.F

or
ex

am
pl

e,
yo

u
m

ay
w

an
t

to
of

fe
r

so
m

e
op

ti
on

al
be

h
av

io
rs

,i
n

ad
di

ti
on

to
th

e
re

qu
ir

ed
on

es
.

T
h

is
m

ay
be

m
od

el
ed

by
sp

ec
if

yi
n

g
a

n
u

m
be

r
of

ex
te

n
si

on
po

in
ts

.T
h

is
re

la
ti

on
sh

ip
m

ay
al

so
be

u
se

d
to

m
od

el
di

ff
er

en
t

sc
en

ar
io

s
ba

se
d

on
an

ac
to

r’s
in

te
ra

ct
io

n
.

T
h

e
pr

op
os

ed
U

M
L

2.
0

dr
af

t
n

ow
su

pp
or

ts
m

u
lt

ip
li

ci
ti

es
an

d
co

n
di

ti
on

s
fo

r
th

e
ex

te
n

ds
re

la
ti

on
sh

ip
.

168

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

C
on

st
ra

in
ts

{C
on

st
ra

in
t d

ef
in

iti
on

 in
 O

C
L}

U
se

ca
se

co
n

st
ra

in
ts

al
lo

w
n

ew
ru

le
s

to
be

ad
de

d
an

d
ex

is
ti

n
g

ru
le

s
to

be
m

od
ifi

ed
.

F
or

ex
am

pl
e,

yo
u

m
ig

h
t

ad
d

a
co

n
st

ra
in

t
to

a
u

se
ca

se
th

at
re

qu
ir

es
a

pa
rt

ic
u

la
r

pe
rm

is
si

on
or

va
li

d
pa

ss
w

or
d.

C
on

st
ra

in
ts

al
lo

w
th

e
U

M
L

to
ad

ap
t

to
n

ew
la

n
gu

ag
es

by
li

m
it

in
g

a
m

od
el

to
sp

ec
ifi

c
se

m
an

ti
c

ru
le

s.
T

h
is

al
lo

w
s

th
e

U
M

L
to

ad
ap

t
to

n
ew

te
ch

n
ol

og
ie

s
as

th
ey

be
co

m
e

av
ai

la
bl

e.
B

ec
au

se
of

th
is

,c
on

st
ra

in
ts

ar
e

a
va

lu
ab

le
ex

te
n

si
on

m
ec

h
an

is
m

to
th

e
U

M
L

.
C

om
m

u
n

ic
at

es
R

el
at

io
n

sh
ip

-A
ct

or
E

nd
-U

se
C

as
eE

nd
*

*
T

h
is

is
a

re
la

ti
on

sh
ip

be
tw

ee
n

an
ac

to
r

an
d

a
u

se
ca

se
.I

t
in

di
ca

te
s

th
at

th
e

ac
to

r
co

m
m

u
n

ic
at

es
w

it
h

th
e

sy
st

em
(t

h
ro

u
gh

so
m

e
u

se
r

in
te

rf
ac

e)
an

d
gi

ve
s

in
pu

t
an

d
re

ce
iv

es
ou

tp
u

t
th

at
re

la
te

to
th

at
u

se
ca

se
.L

ik
e

th
e

si
m

pl
e

as
so

ci
at

io
n

,i
t

is
in

di
ct

ed
by

a
st

ra
ig

h
t

li
n

e,
bu

t
on

e
en

d
m

u
st

be
at

ta
ch

ed
to

an
ac

to
r

an
d

th
e

ot
h

er
to

a
u

se
ca

se
.

U
se

s R
el

at
io

n
sh

ip
<

<
us

es
>

>
A

u
se

ca
se

m
ay

“u
se

”
an

ot
h

er
u

se
ca

se
:I

t
do

es
n

ot
h

av
e

to
“i

n
cl

u
de

”
or

“e
xt

en
d”

th
e

ot
h

er
u

se
ca

se
to

u
se

it
.T

h
is

re
la

ti
on

sh
ip

is
in

di
ca

te
d

by
a

sp
ec

ia
li

ze
d

as
so

ci
at

io
n

w
it

h
a

st
er

eo
ty

pe
of

<
<

u
se

s>
>

.T
h

is
re

la
ti

on
sh

ip
in

di
ca

te
s

th
at

tw
o

u
se

ca
se

s
sh

ar
e

co
m

m
on

be
h

av
io

r.
T

h
e

re
la

ti
on

sh
ip

ca
n

th
en

be
co

n
st

ra
in

ed
to

m
or

e
sp

ec
ifi

ca
ll

y
de

sc
ri

be
th

e
re

la
ti

on
sh

ip
.

169

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

170 INTRODUCTION TO UML

Mobile User 911 Emergency System Service Administrator

FIGURE 4.1 Example of a Use Case Where Multiple Actors Interact with the System.

If we were to list all the ways each actor could interact with our system, we
would be well on our way to defining all the behaviors our system is capable of.
Conversely, if we neglected to include a key actor, our system would be missing
some major functionality.

With the actors defined, we list all the interactions each one can have. Each
interaction represents a specific behavior of the system. Each one of these behaviors
is called a use case. A use case diagram typically includes an actor, a use case, and
their relationship. Figure 4.2 show an example.

Figure 4.3 is a use case diagram that shows a generalization relationship between
a cell phone user, a PDA user, and the user of an advanced hybrid device such as
the Handspring Treo (which has both PDA and phone capabilities). This diagram
implies that a mobile phone user might operate under one set of circumstances,
whereas a PDA user has a different set, and the cell phone user has the attributes
of a mobile phone user as well as those of a PDA user. Keep in mind that the
attributes of each are not defined here and that the exact manners in which the
generalization relationship is defined remains ambiguous. That is because such
details are beyond the scope of this diagram.

Figure 4.4 is a use case diagram that shows an actor (our mobile user) interacting
with a request dispatcher, which presumably accepts a request from the user and
dispatches it to the appropriate service to handle the user request. The request
dispatcher communicates with the traffic service, to fulfill the user’s request. The
traffic service interacts with the map service. Note here, again, that the diagram
does not actually tell us how the request dispatcher routes requests, or how the
traffic service uses the map service. All the use case diagram does is establishes

Mobile User

Traffic Report

FIGURE 4.2 Use Case of a User Receiving Traffic Information.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.3 The Structural View 171

Cell Phone User PDA User

Hybrid (PDA/Phone) User

FIGURE 4.3 Using Generalization to Build Inheritance of Properties among Actors.

that the relationship exists. Other diagrams will help to define how the specific
relationships and interactions among users actually work.

4.3 THE STRUCTURAL VIEW

Class diagrams are used to model classes, interfaces, collaborations, and the as-
sociations among them. They are the most common diagram type in UML and
are used to model a static design view of a system. Class diagrams are used to
model the basic building blocks of a system, its collaborations, and schema. They
are the foundation of component and deployment diagrams, which we will talk
about later in this chapter. They are sometimes referred to as static (as opposed to
behavioral) structural diagrams.

Mobile User

RequestDispatcher

Traffic Service Map Service

FIGURE 4.4 An Actor (Mobile User) Interacting with the System in a Use Case Diagram.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

172 INTRODUCTION TO UML

Class diagrams can contain a variety of classifiers to further delineate their
structural and behavioral features. Classes can have associations, which illustrate
relationships between classes, and have a variety of applicable stereotypes that may
be used to further define more detail to relationships. Class diagrams can contain
objects to show state as well as conditions for which an expression applies to a
state. Class diagrams are one of the core diagrams in UML. A class diagram is a
foundation diagram for both deployment and component diagrams and models
the structural view of a system.

Classes can be named with a simple name or a pathname, which includes
package information for the class. Classes may also have attributes and operations.
Packages are a way of organizing a set of classes into logical units. Typically all
of the classes in a package work together to form some common functionality.
Many object-oriented languages support this concept directly and enforce access
permissions based on packages. The attributes of a class represent the state of an
object of that class. As the attributes change, so does the state of the object. The
operations of a class represent its behavior. Class diagrams can show signals, which
are primarily used in state chart and activity diagrams. Signals are stereotyped with
the <<signal>> keyword. Signals are not permitted to contain operations.

Classes can be either active or passive. Active classes are modeled as a regular
class with a heavy border. They are responsible for initiating the flow of control in
an interaction. Passive classes have regular borders and participate in an interaction
by being invoked by an active class and always return control back to the calling
class before the interaction ends. When creating a class diagram, the primary
elements that you will be dealing with are classes and interfaces. These can be
thought of as the core elements of a class diagram, whereas the other elements show
relationships between classes and interfaces. Table 4.2 shows the basic elements
of the structural view.

4.3.1 Defining Classes
As previously mentioned, class diagrams are perhaps the most frequently used di-
agrams in UML. Their semantics are particularly important to understand because
they are the staple of UML diagramming.

Class attributes are optionally defined in the second compartment. Class vari-
ables take the form of variableName:dataType and may optionally define an initial
value. See Table 4.3.

You specify an attribute’s visibility by preceding its name with a visibility symbol:
+ for public access, − for private access, and # for protected access. See Table 4.4.

Formal notation for an attribute is as follows:

[visibility] name [multiplicity] [: type] [= initial-value] [(property)]

We will discuss multiplicity and the optional property stereotypes later in this
section.

Class methods are optionally defined in the third compartment of a class. For
example, the methods may be an additional behavior for an existing interface or
internal utility methods used by the class itself. Like attributes, you may specify as

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

T A
B

LE
4
.2

.
Th

e
S

tr
u
ct

u
ra

l
V

ie
w

E
le

m
en

t
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

C
la

ss
es

C
la

ss
N

am
e

T
h

e
ba

si
c

el
em

en
t

of
th

e
cl

as
s

di
ag

ra
m

is
th

e
cl

as
s.

M
or

e
th

an
an

y
ot

h
er

di
ag

ra
m

,
cl

as
s

di
ag

ra
m

s
ca

n
u

su
al

ly
be

tr
an

sl
at

ed
di

re
ct

ly
to

co
de

—
so

m
et

im
es

re
fe

rr
ed

to
as

fo
rw

ar
d

en
gi

n
ee

ri
n

g.
T

h
e

cl
as

s
is

dr
aw

n
as

a
re

ct
an

gl
e

an
d

m
ay

be
sp

li
t

in
to

m
u

lt
ip

le
co

m
pa

rt
m

en
ts

.E
ac

h
of

th
es

e
co

m
pa

rt
m

en
ts

pr
ov

id
es

di
st

in
ct

in
fo

rm
at

io
n

ab
ou

t
th

e
cl

as
s

be
in

g
m

od
el

ed
.W

it
h

th
e

ex
ce

pt
io

n
of

an
on

ym
ou

s
cl

as
se

s,
a

di
ag

ra
m

of
a

cl
as

s
in

di
ca

te
s

th
e

cl
as

s’s
n

am
e

at
th

e
to

p
of

th
e

re
ct

an
gl

e
fo

r
w

h
ic

h
it

re
pr

es
en

ts
.T

h
e

n
am

e
is

ty
pi

ca
ll

y
a

n
ou

n
th

at
de

sc
ri

be
s

th
e

n
at

u
re

of
th

e
cl

as
s.

Yo
u

m
ay

op
ti

on
al

ly
sh

ow
a

cl
as

s’s
n

es
te

d
pa

ck
ag

e
st

ru
ct

u
re

by
in

di
ca

ti
n

g
th

e
pa

th
n

am
e,

w
h

ic
h

in
cl

u
de

s
th

e
fu

ll
y

qu
al

ifi
ed

pa
th

of
th

e
cl

as
s

w
it

h
ea

ch
of

th
e

su
bp

ac
ka

ge
n

am
es

se
pa

ra
te

d
by

do
u

bl
e

co
lo

n
s:

Si
m

pl
e

n
am

e:
Vo

lu
n

te
er

P
at

h
n

am
e:

or
g:

:k
in

dp
eo

pl
e:

:V
ol

u
n

te
er

It
s

n
am

e
ca

n
be

an
y

n
u

m
be

r
of

le
tt

er
s,

n
u

m
be

rs
,a

n
d

pu
n

ct
u

at
io

n
m

ar
ks

ex
ce

pt
th

e
co

lo
n

(s
in

ce
it

is
u

se
d

to
se

pa
ra

te
pa

ck
ag

e
n

am
es

),
an

d
n

am
es

ar
e

ty
pi

ca
ll

y
ca

pi
ta

li
ze

d.
N

ou
n

ph
ra

se
s

m
ay

be
u

se
fu

lt
o

in
di

ca
te

m
or

e
co

m
pl

ex
cl

as
se

s.
In

su
ch

ca
se

s,
ca

p-
n

ot
at

io
n

is
u

se
fu

lf
or

m
ak

in
g

th
e

n
am

e
m

or
e

re
ad

ab
le

.
C

ap
-n

ot
at

io
n

is
th

e
pr

ac
ti

ce
of

ca
pi

ta
li

zi
n

g
ea

ch
w

or
d

in
th

e
ph

ra
se

,w
it

h
ou

t
u

si
n

g
sp

ac
es

to
se

pa
ra

te
ea

ch
w

or
d.

D
ep

en
di

n
g

on
th

e
de

ta
il

le
ve

ly
ou

w
is

h
to

m
od

el
,a

cl
as

s
m

ay
in

cl
u

de
m

u
lt

ip
le

co
m

pa
rt

m
en

ts
;t

h
es

e
ar

e
m

os
t

co
m

m
on

ly
u

se
d

to
sh

ow
th

e
n

am
es

of
th

e
cl

as
s’s

at
tr

ib
u

te
s

an
d

op
er

at
io

n
s.

T
h

e
to

p
co

m
pa

rt
m

en
t

li
st

s
th

e
n

am
e

of
th

e
cl

as
s.

T
h

e
se

co
n

d
co

m
pa

rt
m

en
t

li
st

s
th

e
cl

as
s’s

at
tr

ib
u

te
s,

an
d

th
e

th
ir

d
li

st
s

th
e

op
er

at
io

n
s

of
th

e
cl

as
s.

M
or

e
co

m
pa

rt
m

en
ts

m
ay

be
ad

de
d

as
w

el
l.

(c
on

ti
nu

ed
)

173

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

TA
B

LE
4
.2

(c
on

ti
n

u
e

d
)

E
le

m
en

t
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

A
cl

as
s’s

at
tr

ib
u

te
s

ar
e

u
se

d
to

st
or

e
it

s
st

at
e

in
fo

rm
at

io
n

.F
or

yo
u

r
in

it
ia

ld
es

ig
n

s,
yo

u
r

m
ai

n
ob

je
ct

iv
e

m
ay

be
to

id
en

ti
fy

al
lo

f
a

cl
as

s’s
at

tr
ib

u
te

s
by

sh
ow

in
g

on
ly

it
s

at
tr

ib
u

te
n

am
es

.A
s

yo
u

m
ov

e
cl

os
er

to
th

e
im

pl
em

en
ta

ti
on

st
ag

e
of

de
ve

lo
pm

en
t,

yo
u

m
ay

ad
d

m
or

e
de

ta
il

s
to

in
cl

u
de

th
e

at
tr

ib
u

te
’s

vi
si

bi
li

ty
an

d
da

ta
ty

pe
s.

D
at

a
ty

pe
s

ar
e

sh
ow

n
af

te
r

th
e

at
tr

ib
u

te
n

am
e

w
it

h
a

co
lo

n
se

pa
ra

ti
n

g
th

e
n

am
e

an
d

ty
pe

.S
h

ow
in

g
da

ta
ty

pe
s

is
es

pe
ci

al
ly

u
se

fu
lf

or
m

od
el

in
g

to
ol

s
th

at
ca

n
u

se
th

e
ty

pe
s

to
ve

ri
fy

m
et

h
od

ca
ll

s,
or

fo
r

au
to

m
at

ic
al

ly
(b

as
ed

on
a

gi
ve

n
ru

le
se

t)
m

ak
in

g
su

gg
es

ti
on

s
fo

r
ap

pr
op

ri
at

e
u

se
s.

Se
tt

in
g

an
at

tr
ib

u
te

’s
vi

si
bi

li
ty

is
ak

in
to

gr
an

ti
n

g
pe

rm
is

si
on

s
to

ot
h

er
cl

as
se

s
to

ac
ce

ss
th

em
.I

n
de

ed
,t

h
ey

ar
e

so
m

et
im

es
re

fe
rr

ed
to

as
ac

ce
ss

m
od

ifi
er

s.
In

te
rf

ac
es

<
<

in
te

rf
ac

e>
>

N
am

e
In

te
rf

ac
es

ar
e

m
od

el
ed

li
ke

cl
as

se
s

bu
t

ar
e

st
er

eo
ty

pe
d

w
it

h
th

e
<
<

In
te

rf
ac

e>
>

st
er

eo
ty

pe
.L

ik
e

cl
as

se
s,

al
li

n
te

rf
ac

es
m

u
st

h
av

e
a

n
am

e.
T

h
at

n
am

e
ca

n
be

a
si

m
pl

e
n

am
e,

or
a

pa
th

n
am

e,
li

ke
ja

va
::u

ti
l::

L
is

t.
A

lt
h

ou
gh

in
te

rf
ac

es
ar

e
si

m
il

ar
to

bo
th

cl
as

se
s

an
d

ty
pe

s,
th

ey
ar

e
di

ss
im

il
ar

in
th

at
th

ey
ca

n
n

ot
sp

ec
if

y
an

y
at

tr
ib

u
te

s,
an

d
th

ey
ca

n
n

ot
pr

ov
id

e
im

pl
em

en
ta

ti
on

s
to

op
er

at
io

n
s,

w
h

ic
h

ar
e

kn
ow

n
as

m
et

h
od

s.
A

s
w

it
h

cl
as

se
s,

th
e

op
er

at
io

n
of

an
in

te
rf

ac
e

ca
n

in
cl

u
de

in
fo

rm
at

io
n

ab
ou

t
th

ei
r

co
n

cu
rr

en
cy

,v
is

ib
il

it
y,

co
n

st
ra

in
ts

,s
te

re
ot

yp
es

,
an

d
ta

gg
ed

va
lu

es
.

In
te

rf
ac

es
m

ay
pa

rt
ic

ip
at

e
in

a
va

ri
et

y
of

re
la

ti
on

sh
ip

s
as

w
el

l,
in

cl
u

di
n

g
ge

n
er

al
iz

at
io

n
,a

ss
oc

ia
ti

on
,a

n
d

de
pe

n
de

n
cy

re
la

ti
on

sh
ip

s.
T

h
e

re
la

ti
on

sh
ip

of
a

cl
as

s
to

an
in

te
rf

ac
e

is
ca

ll
ed

re
al

iz
at

io
n

.T
h

e
re

al
iz

at
io

n
im

pl
ie

s
th

at
th

e
in

te
rf

ac
e

is
a

co
n

tr
ac

t
th

at
th

e
cl

as
s

ag
re

es
to

fu
lfi

ll
.R

ea
li

za
ti

on
re

la
ti

on
sh

ip
s

m
ay

al
so

ex
is

t
be

tw
ee

n
co

m
po

n
en

ts
an

d
in

te
rf

ac
es

,w
h

er
e

th
e

co
m

po
n

en
t

pr
ov

id
es

a
so

u
rc

e
co

de
or

ex
ec

u
ta

bl
e

im
pl

em
en

ta
ti

on
of

th
e

in
te

rf
ac

e.
T

h
e

in
te

rf
ac

e
is

re
sp

on
si

bl
e

fo
r

de
fi

n
in

g
th

e
op

er
at

io
n

s
th

at
th

e
im

pl
em

en
ti

n
g

cl
as

s
or

co
m

po
n

en
t

w
il

l
pr

ov
id

e,
w

it
h

ou
t

di
ct

at
in

g
ac

tu
al

im
pl

em
en

ta
ti

on
of

th
os

e
op

er
at

io
n

s.

(c
on

ti
nu

ed
)

174

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

TA
B

LE
4
.2

(c
on

ti
n

u
e

d
)

E
le

m
en

t
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

P
ac

ka
ge

P
ac

ka
g

eN
am

e

G
ro

u
pi

n
g

u
se

ca
se

s
to

ge
th

er
by

re
la

te
d

in
te

ra
ct

io
n

s
is

a
w

ay
to

si
m

pl
if

y
a

se
t

of
be

h
av

io
rs

.F
or

ex
am

pl
e,

in
a

sy
st

em
w

it
h

m
an

y
su

bs
ys

te
m

s
it

m
ay

be
di

ffi
cu

lt
to

de
fi

n
e

al
lt

h
e

re
qu

ir
em

en
ts

.C
at

eg
or

iz
in

g
a

sy
st

em
’s

m
an

y
re

qu
ir

em
en

ts
in

to
re

la
te

d
be

h
av

io
rs

is
a

w
ay

of
m

an
ag

in
g

th
e

co
m

pl
ex

it
y

an
d

m
ay

al
so

be
u

se
fu

lf
or

gr
ou

pi
n

g
de

si
gn

di
sc

u
ss

io
n

s
w

it
h

th
e

ap
pr

op
ri

at
e

u
se

rs
.

A
ss

oc
ia

ti
on

A
n

as
so

ci
at

io
n

sp
ec

ifi
es

a
re

la
ti

on
sh

ip
be

tw
ee

n
m

u
lt

ip
le

cl
as

si
fi

er
s,

pr
ov

id
in

g
a

te
m

pl
at

e
fo

r
a

se
t

of
li

n
ks

be
tw

ee
n

in
st

an
ce

s
of

th
os

e
cl

as
si

fi
er

s.
It

is
m

od
el

ed
as

a
li

n
e

be
tw

ee
n

tw
o

el
em

en
ts

an
d

is
la

be
le

d
w

it
h

a
n

am
e.

T
h

e
n

am
e

of
an

as
so

ci
at

io
n

sh
ou

ld
al

w
ay

s
be

ca
pi

ta
li

ze
d.

A
ss

oc
ia

ti
on

s
h

av
e

an
op

en
ar

ro
w

h
ea

d
at

on
e

en
d,

in
di

ca
ti

n
g

th
e

di
re

ct
io

n
in

w
h

ic
h

yo
u

re
ad

th
e

as
so

ci
at

io
n

.T
h

es
e

ar
e

kn
ow

n
as

n
av

ig
at

io
n

ar
ro

w
s.

M
an

y
ti

m
es

w
h

en
yo

u
ar

e
at

th
e

be
gi

n
n

in
g

st
ag

es
of

m
od

el
in

g
a

sy
st

em
,y

ou
r

de
si

gn
is

n
ot

ye
t

re
fi

n
ed

en
ou

gh
to

de
te

rm
in

e
th

e
ty

pe
of

as
so

ci
at

io
n

th
at

va
ri

ou
s

cl
as

se
s

w
il

lh
av

e.
In

si
tu

at
io

n
s

li
ke

th
is

,i
t

is
be

tt
er

to
m

od
el

th
e

as
so

ci
at

io
n

s
be

tw
ee

n
cl

as
se

s
ge

n
er

ic
al

ly
,r

at
h

er
th

an
to

n
ot

ca
pt

u
re

th
em

at
al

l.
A

go
od

ru
le

of
th

u
m

b
is

th
at

yo
u

sh
ou

ld
st

ar
t

si
m

pl
y,

th
en

el
ab

or
at

e
as

yo
u

r
de

ta
il

s
em

er
ge

.A
dd

it
io

n
al

ly
,w

h
en

m
od

el
in

g
u

se
ca

se
s,

if
yo

u
se

e
th

at
cl

as
se

s
in

te
ra

ct
w

it
h

on
e

an
ot

h
er

du
ri

n
g

th
e

co
u

rs
e

of
a

u
se

ca
se

,t
h

en
th

at
is

u
su

al
ly

a
go

od
in

di
ca

ti
on

th
at

th
er

e
is

an
as

so
ci

at
io

n
be

tw
ee

n
th

em
.A

ss
oc

ia
ti

on
s

ca
n

al
so

be
la

be
le

d
w

it
h

a
ro

le
na

m
e,

w
h

ic
h

sh
ow

s
ad

di
ti

on
al

in
fo

rm
at

io
n

ab
ou

t
th

e
as

so
ci

at
io

n
an

d
h

ow
th

e
re

la
te

d
cl

as
se

s
pa

rt
ic

ip
at

e
in

th
at

as
so

ci
at

io
n

.R
ol

e
n

am
es

ar
e

pl
ac

ed
at

th
e

en
d

of
an

as
so

ci
at

io
n

n
ea

re
st

th
e

cl
as

s
th

at
th

ey
co

rr
es

po
n

d
to

.
R

ol
e

n
am

es
ar

e
al

w
ay

s
sp

ec
ifi

ed
as

lo
w

er
ca

se
n

am
es

to
di

st
in

gu
is

h
th

em
fr

om
th

e
as

so
ci

at
io

n
n

am
e.

T
h

e
n

u
m

be
r

of
in

st
an

ce
s

of
a

gi
ve

n
cl

as
s

th
at

ca
n

pa
rt

ic
ip

at
e

in
a

gi
ve

n
in

te
ra

ct
io

n
is

sh
ow

n
w

it
h

a
m

u
lt

ip
li

ci
ty

in
di

ca
to

r.
A

m
u

lt
ip

li
ci

ty
in

di
ca

to
r

ca
n

be
a

si
n

gl
e

n
u

m
be

r,
su

ch
as

1,
a

ra
n

ge
of

n
u

m
be

rs
,l

ik
e

0,
..

.,4
,o

r
an

u
n

li
m

it
ed

n
u

m
be

r,

(c
on

ti
nu

ed
)

175

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

TA
B

LE
4
.2

(c
on

ti
n

u
e

d
)

E
le

m
en

t
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

re
pr

es
en

te
d

by
an

as
te

ri
sk

(*
).

A
n

as
te

ri
sk

on
it

s
ow

n
in

di
ca

te
s

0
or

m
or

e
in

st
an

ce
s.

G
en

er
al

iz
at

io
n

A
ge

n
er

al
iz

at
io

n
re

la
ti

on
sh

ip
sp

ec
ifi

es
th

at
a

se
t

of
cl

as
se

s
al

ls
h

ar
e

a
ge

n
er

al
su

bs
et

of
be

h
av

io
rs

,w
h

ic
h

is
de

fi
n

ed
in

a
pa

re
n

t
cl

as
s.

T
h

e
pa

re
n

t
cl

as
s

is
th

e
m

os
t

ge
n

er
al

ca
se

,a
n

d
at

tr
ib

u
te

s
an

d
op

er
at

io
n

s
sp

ec
ifi

ed
in

it
w

il
la

ls
o

be
pr

ov
id

ed
by

it
s

ch
il

d
cl

as
se

s.
In

st
an

ce
s

of
ch

il
d

cl
as

se
s

m
ay

be
u

se
d

an
yw

h
er

e
th

e
pa

re
n

t
is

u
se

d.
T

h
e

ch
il

d
w

il
lt

yp
ic

al
ly

ad
d

n
ew

at
tr

ib
u

te
s

an
d

op
er

at
io

n
s.

A
cl

as
s

th
at

h
as

n
o

pa
re

n
t

cl
as

s,
bu

t
h

as
at

le
as

t
on

e
ch

il
d

cl
as

s,
is

kn
ow

n
as

a
ba

se
cl

as
s.

A
cl

as
s

th
at

h
as

n
o

ch
il

d
cl

as
se

s
is

ca
ll

ed
a

le
af

cl
as

s.
C

la
ss

es
th

at
h

av
e

a
si

n
gl

e
pa

re
n

t
fo

ll
ow

w
h

at
is

kn
ow

n
as

th
e

si
n

gl
e

in
h

er
it

an
ce

m
od

el
,w

h
er

ea
s

ch
il

d
cl

as
se

s
w

it
h

m
u

lt
ip

le
pa

re
n

ts
fo

ll
ow

th
e

m
u

lt
ip

le
in

h
er

it
an

ce
m

od
el

.G
en

er
al

iz
at

io
n

is
m

od
el

ed
by

a
so

li
d

li
n

e
w

it
h

a
cl

os
ed

ar
ro

w
h

ea
d

po
in

ti
n

g
to

w
ar

d
th

e
pa

re
n

t
cl

as
s.

C
ol

la
bo

ra
ti

on
A

co
ll

ab
or

at
io

n
is

a
gr

ou
p

of
cl

as
si

fi
er

s
an

d
as

so
ci

at
io

n
s

th
at

w
or

k
to

ge
th

er
in

a
sp

ec
ifi

c
w

ay
to

pr
ov

id
e

so
m

e
co

op
er

at
iv

e
be

h
av

io
r.

F
or

ex
am

pl
e,

a
da

ta
ba

se
co

n
n

ec
ti

on
an

d
an

en
cr

yp
ti

on
al

go
ri

th
m

m
ig

h
t

co
ll

ab
or

at
e

in
a

sy
st

em
to

pr
ov

id
e

u
se

r
au

th
en

ti
ca

ti
on

.A
di

ag
ra

m
of

a
cl

as
s

by
it

se
lf

is
n

ot
ve

ry
u

se
fu

lf
or

vi
su

al
iz

in
g

an
op

er
at

io
n

al
sy

st
em

.R
at

h
er

,t
h

e
m

an
n

er
in

w
h

ic
h

cl
as

se
s

w
or

k
to

ge
th

er
is

m
or

e
u

se
fu

lf
or

il
lu

st
ra

ti
n

g
th

e
m

ea
n

s
by

w
h

ic
h

a
sy

st
em

be
h

av
io

r
is

ca
rr

ie
d

ou
t.

R
ea

li
za

ti
on

R
ea

li
za

ti
on

is
a

co
n

tr
ac

t
be

tw
ee

n
tw

o
en

ti
ti

es
in

w
h

ic
h

th
e

im
pl

em
en

ti
n

g
en

ti
ty

gu
ar

an
te

es
th

e
be

h
av

io
r

sp
ec

ifi
ed

in
a

gi
ve

n
in

te
rf

ac
e.

R
ea

li
za

ti
on

sp
ec

ifi
es

a
be

h
av

io
ra

lc
on

tr
ac

t
w

h
er

e
on

e
cl

as
si

fi
er

,u
su

al
ly

an
in

te
rf

ac
e,

sp
ec

ifi
es

a
co

n
tr

ac
t

th
at

th
e

ot
h

er
gu

ar
an

te
es

to
ca

rr
y

ou
t.

R
ea

li
za

ti
on

is
sh

ow
n

by
a

da
sh

ed
li

n
e

w
it

h
a

cl
os

ed
ar

ro
w

h
ea

d.
In

F
ig

u
re

4.
5

a
C

al
lR

eq
u

es
tH

an
dl

er
re

al
iz

es
bo

th
th

e
vo

ic
e

an
d

ke
yp

ad
in

te
rf

ac
es

.

(c
on

ti
nu

ed
)

176

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

T
h

at
is

,a
co

m
po

n
en

t
th

at
re

al
iz

es
an

in
te

rf
ac

e
m

ay
be

re
pl

ac
ed

w
it

h
a

di
ff

er
en

t
co

m
po

n
en

t,
as

lo
n

g
as

it
im

pl
em

en
ts

th
e

sa
m

e
in

te
rf

ac
e.

In
te

rf
ac

es
pl

ay
a

ke
y

ro
le

in
cr

ea
ti

n
g

sy
st

em
s

th
at

ar
e

m
or

e
ea

si
ly

m
ai

n
ta

in
ed

an
d

u
n

de
rs

ta
n

da
bl

e.
F

or
ex

am
pl

e,
m

an
y

of
th

e
le

ad
in

g
so

ft
w

ar
e

te
ch

n
ol

og
ie

s,
in

cl
u

di
n

g
E

n
te

rp
ri

se
Ja

va
B

ea
n

s
(E

JB
s)

,C
O

M
+,

an
d

C
O

R
B

A
,u

se
in

te
rf

ac
es

as
a

w
ay

to
se

pa
ra

te
th

e
im

pl
em

en
ta

ti
on

la
ye

r
fr

om
th

e
de

si
gn

.I
n

th
is

w
ay

,e
ac

h
la

ye
r

m
ay

be
w

or
ke

d
on

in
de

pe
n

de
n

tl
y,

ch
an

ge
d,

an
d

re
pl

ac
ed

as
lo

n
g

as
th

e
co

n
tr

ac
t

is
ad

h
er

ed
to

.
A

gg
re

ga
ti

on
-O

w
ne

r
-O

w
ne

d
*

1
A

n
ag

gr
eg

at
io

n
is

w
h

en
on

e
ob

je
ct

co
n

ta
in

s
on

e
or

m
or

e
ot

h
er

ob
je

ct
s.

A
n

ag
gr

eg
at

io
n

is
m

od
el

ed
as

a
so

li
d

li
n

e
w

it
h

an
op

en
di

am
on

d
at

th
e

en
d

of
th

e
li

n
e

n
ea

re
st

th
e

cl
as

s
th

at
co

n
ta

in
s

th
e

ag
gr

eg
at

e
pa

rt
s.

T
h

e
ag

gr
eg

at
io

n
re

la
ti

on
sh

ip
is

al
so

kn
ow

n
as

th
e

“h
as

a”
re

la
ti

on
sh

ip
an

d
is

dr
iv

en
by

th
e

co
n

ta
in

in
g

cl
as

s.
T

h
e

ag
gr

eg
at

e
pa

rt
s,

h
ow

ev
er

,m
ay

ex
is

t
ou

ts
id

e
th

e
co

n
ta

in
in

g
cl

as
s.

T
h

er
e

is
a

st
ro

n
ge

r
fo

rm
of

ag
gr

eg
at

io
n

,c
al

le
d

co
m

po
si

te
ag

gr
eg

at
io

n
.I

n
co

m
po

si
te

ag
gr

eg
at

io
n

,o
bj

ec
ts

ca
n

on
ly

be
lo

n
g

to
on

e
co

m
po

si
te

at
a

ti
m

e
an

d
if

yo
u

h
av

e
an

ob
je

ct
w

it
h

a
co

ll
ec

ti
on

an
d

yo
u

cl
on

e
th

at
ob

je
ct

,t
h

e
cl

on
e

ge
ts

it
s

ow
n

in
st

an
ce

of
th

at
co

ll
ec

ti
on

.T
h

ey
do

n
ot

sh
ar

e.
C

om
po

si
ti

on
-O

w
ne

r
-O

w
ne

d
*

1
C

om
po

si
ti

on
is

a
fo

rm
of

ag
gr

eg
at

io
n

w
it

h
st

ro
n

g
ow

n
er

sh
ip

an
d

jo
in

s
th

e
pa

rt
s

in
tr

in
si

ca
ll

y
to

th
e

w
h

ol
e;

pa
rt

s
w

it
h

fi
xe

d
m

u
lt

ip
li

ci
ty

m
ay

be
cr

ea
te

d
af

te
r

th
e

co
m

po
si

te
it

se
lf

,b
u

t
on

ce
cr

ea
te

d
th

ey
li

ve
an

d
di

e
w

it
h

it
;s

u
ch

pa
rt

s
ca

n
al

so
be

ex
pl

ic
it

ly
re

m
ov

ed
be

fo
re

th
e

de
at

h
of

th
e

co
m

po
si

te
.

D
ep

en
de

n
cy

T
h

e
de

pe
n

de
n

cy
re

la
ti

on
sh

ip
is

u
se

d
to

il
lu

st
ra

te
ca

se
s

in
w

h
ic

h
on

e
en

ti
ty

re
li

es
on

an
ot

h
er

.T
yp

ic
al

ly
,t

h
is

in
di

ca
te

s
th

at
on

e
cl

as
s

is
pa

ss
ed

as
an

ar
gu

m
en

t
to

a
m

et
h

od
ca

ll
on

th
e

ot
h

er
.T

h
e

de
pe

n
de

n
cy

re
la

ti
on

sh
ip

si
gn

ifi
es

th
at

ch
an

ge
s

to
on

e
cl

as
s

ca
n

br
ea

k
th

e
im

pl
em

en
ta

ti
on

of
th

e
de

pe
n

de
n

t
cl

as
s.

T
h

e
de

pe
n

de
n

cy
re

la
ti

on
sh

ip
is

m
od

el
ed

as
a

da
sh

ed
li

n
e

w
it

h
an

op
en

ar
ro

w
h

ea
d

an
d

is
al

so
u

se
d

fo
r

n
ot

es
an

d
pa

ck
ag

es
.

In
di

re
ct

A
ss

oc
ia

ti
on

In
di

re
ct

as
so

ci
at

io
n

sh
ow

s
th

at
on

e
cl

as
s

u
se

s
an

ot
h

er
an

d
is

so
m

eh
ow

in
vo

lv
ed

in
th

e
re

la
ti

on
sh

ip
.

177

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

178 INTRODUCTION TO UML

TABLE 4.3. Declare Variables

Declaring Variables variableName:dataType
Declaring Variables with an Initial Value variableName:dataType = value

little or as much detail as required. An operation’s name typically starts lowercase
and then uses cap-notation. You may specify a parameter list similarly to a variable
definition. An operation’s name, parameters, and return type comprise its signa-
ture. A method is an implementation of a operation, whereas an operation only
specifies a service that a class provides.

The formal syntax for operations is as follows:

[visibility] name [(parameter list)] [: returnType][{property string}]

Each parameter in the operation’s parameter list has a formal syntax of its own,
which is

[direction] name : type [= defaultValue]

There are three possible values for the direction element in a parameter’s syntax:
in, out, and inout. A parameter with a direction of in cannot be modified. A
parameter whose direction is out can be modified with the intent of communicating
information to the caller of the operation. A parameter whose direction is inout may
be modified. As with the definition of an attribute, a parameter list can optionally
specify default values for parameters.

An operation’s property string can be used to specify greater detail such as
its concurrent behaviors or its influence on the object’s state. Its possible values
include leaf, isQuery, sequential, guarded, concurrent.

The leaf property string, which is distinct from the leaf class, indicates that an
operation cannot be overridden. UML refers to such an operation as a concrete op-
eration. The isQuery property string indicates that the execution of the operation
does not alter the state of the system.

The sequential property string is used in situations where the operation’s callers
must coordinate among themselves to ensure that only one flow is in the object
at a given time, indicating that the object’s integrity cannot be guaranteed when
faced with multiple concurrent flows of control.

The guarded property string indicates that all calls to the object are sequential-
ized for that particular operation, and thus the integrity of the object is guaranteed

TABLE 4.4. Visibility Identifiers in UML

− private
+ public
protected

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.3 The Structural View 179

TABLE 4.5. Method Types

Void Method visibility methodname(variableName:dataType,
variableName:dataType):

Method with Return
Type

visibility methodname(variableName:dataType,
variableName:dataType): returnType

Simplified Method Methodname

in the face of multiple concurrent flows of control. This means, essentially, that the
operation ensures that only a single call is executed simultaneously. The concur-
rent property string indicates that the operation is treated like an atomic operation
and that the operation is thus capable of handling multiple concurrent calls with-
out compromising the integrity of the object. Consider the following:

visibility methodname(variableName:dataType, variableName:dataType): return-
Type

Visibility shows the access level of that particular method. The methodname
defines the name of the actual method to be used. The parameter list is a listing of
variables that are passed into the method. These take the form of class variables,
as is covered in the previous section.

The final element of a method is the returnType, which, when omitted, indicates
that the method is void. Stereotypes can also be used for method definitions to
indicate special circumstances for methods. For example, use of the constructor
stereotype indicates that all subsequent methods are object constructors. The misc
stereotype indicates that subsequent elements are regular methods.

The method definition section can be simplified in many ways (see Table 4.5).
First, the parameter listing can be simplified by omitting names for the elements
passed to the method. Second, ellipses (. . .) can be used to indicate that the class
contains additional methods not specified in the diagram. Finally, a method listing
can use the simple notation that lists only function names, omitting additional
detail like the parameter list.

Additionally, class rectangles can be used to model the responsibilities. A class’s
responsibilities can be modeled in a fourth box. Responsibilities are often used
in early stages of development before a class’s operations and attributes are well
defined. Responsibilities are useful to describe what, generally, a class will do.

You may use the stereotype <<type>> to indicate a class of objects that all
share a general subset of operations and that all may be treated in a similar manner.
Types are typically seen in generalization relationships.

Abstract Classes
Abstract classes can also be illustrated within a class diagram. An abstract class
is modeled like a regular class, except that its name is placed in italics. As the
diagram in Figure 4.5 depicts, Voice and Keyboard are both interfaces that are
realized by the CallRequestHandler class.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

180 INTRODUCTION TO UML

“Interface”

VoiceEventHandler

“Interface”

KeyboardEventHandler

CallRequestHandler

FIGURE 4.5. Representing an Abstract Class.

Roles
Roles are general behaviors of entities, describing how they perform in a given
context. Roles are tied to interfaces, so a class that implements a given interface
plays a particular role. Individual interfaces can each represent a role, and a class
can implement many interfaces and thus have many roles. A role can be thought of
as an abstraction that represents generally the way that an object reacts in a certain
situation. Roles can be labeled on associations and can be formally declared using
the <<type>> stereotype.

Classes and components may realize multiple interfaces. Interfaces are similar to
abstract classes: Both specify a set of operations that, respectively, an implementing
or extending class will manifest and neither can be directly instantiated. They are
different, however, in that abstract classes may have attributes, whereas interfaces
may not.

Using interfaces helps to delineate the responsibilities of people who are build-
ing the various aspects of a system. Additional detail can be provided about an
interface by specifying pre- and postconditions to its interfaces, or by using the
OCL (Object Constraint Language) to formally specify its semantics. Interfaces
specify a service that a class or component provides to others by specifying the
operations they are guaranteed to provide. A well-structured interface has a clear
purpose that can be easily understood without delving into the details of its im-
plementation. Interfaces are represented in a class diagram in a manner similar to
classes. Like classes, they are drawn as a rectangle and typically contain two or
three compartments, representing the interface name, methods, and additional in-
formation. As with classes, they can have additional compartments. An additional
requirement of interfaces is that they have an interface stereotype on top.

Stereotypes
Stereotypes are ways of extending the UML to more specifically suit your needs.
They allow you to expand upon and customize existing elements for your pur-
poses. There are several common stereotypes defined by UML for classifiers, com-
ponents, relationships, and others. Stereotypes ensure that UML can adapt to new
technologies and languages.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.3 The Structural View 181

Employee

- mName : String

+ mYearsOfEmployment : float

- mEmployeeCount : int

+ getYearsOfEmployment() : float

getEmployeeCount() : int

+ getName() : int

FIGURE 4.6. Employee Class.

Tagged values are an extension of an element’s properties that enable specific
extensions that may be meaningful when implementing the system. Tagged values
are represented by a string containing name/value pairs, enclosed in curly braces
({}). In cases where the context of a value is clear, the corresponding name can
be omitted.

Tagged values can be useful in forward engineering to provide additional details
about how code should be produced. Additionally, tagged values can be used
to specify author and versioning information, the programming language, auto-
documentation information, and other details. Tagged values must be specified
below the name of the element they correspond to.

Constraints specify conditions that are required for the model to be “well
formed.” For example, you could use a constraint to specify that a user must
be logged in to the system to use a particular operation. Constraints also allow
you to add new rules or alter existing ones. They can be used to list the applicable
values of a property. They can be written as plain text or may also be specified using
the OCL. Like tagged values, constraints are placed within curly braces. Unlike
tagged values, a constraint is placed near the associated element. Constraints can
apply to a variety of elements, including properties, associations, or operations.

The leaf stereotype can be applied to classes, meaning that they cannot be
extended (or play the parent role in a generalization relationship).

Figure 4.6 shows a class representing an employee. Its purpose is to illustrate
the structure of the Employee class and to provide us with basic information
about it, such as its fields and its operations, as well as some detail about each.
The representation of a single class constitutes the simplest of class diagrams—
it shows only a single class. The top section of the class rectangle contains the
name of the class, in this case Employee. The middle section of the class rectangle
shows the field of the class. Note that here we have three fields, name, years of
employment, and count of employees. Name and employee count have private
access whereas years of employment has public access. Note also that the variable
for employee count is static.

In the third section of the class rectangle are the operations that the Employee
class defines. In this case, getYearsOfEmployment is public and returns a floating
point number whereas getEmployeeCount is a protected static method that returns
an integer. Finally, getName is also a public method that returns a string. (Note

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

182 INTRODUCTION TO UML

that this class is not exactly practical; we probably would not have a field that is
public and a method that simply returns that field that is also public.)

4.3.2 Object Diagrams
Object diagrams represent the structural view in UML, and, although they are tech-
nically separate diagrams, they can also be seen as variations of class diagrams—
they are actually just class diagrams that contain objects and links, rather than
classes and associations. Because objects are instances of classes and links are in-
stances of associations, object diagrams can be seen as different scenarios based
on the template of a class diagram. Object diagrams represent a snapshot of a
system at a given time and are often used with class diagrams to show various
object configurations. Multiple object diagrams can be distilled into a single class
diagram that allows for them all. Object diagrams, which are also commonly called
instance diagrams, can also be compared to collaboration diagrams, which we will
discuss later on in this chapter. Object diagrams model instances of the elements
illustrated in class diagrams. An object diagram shows the state of objects within
a system at a single moment in time. It expresses the static part of an interaction,
but without any of the messages passed among the objects it contains.

Why Use Object Diagrams?
Because many objects have precise relationships to one another, failures of a sys-
tem are more often due to inappropriate object states or failures of communication
between objects, rather than flawed logic. Object diagrams thus play an impor-
tant role in system design, as they can help to illuminate the relationships among
various objects and identify situations in which system failure may occur. Object
diagrams can be used to model the static design or static process view of a system;
that is, they show how a system’s objects are related to one another and the asso-
ciations among them, without showing the actual interactions among the objects.
Interactions among objects are shown by interaction diagrams, which include both
sequence and collaboration diagrams. In addition to sequence and collaboration
diagrams, component and deployment diagrams, which are used to model physical
components of a system, can also show objects. When these diagrams contain only
instances, and do not show messages, they can be seen as special cases of object
diagrams. Object diagrams let you model static data structures. Object diagrams,
are, in their appearance, very similar to class diagrams. Whereas class diagrams
are composed primarily of objects and associations, object diagrams are composed
of objects and links, which are instances of classes and associations, respectively.

An object is an instance of a class and may represent a concrete implementation
of an interface. Objects have state, which may change the manner in which the
object behaves. Object rectangles look very similar to class rectangles, except that
the names of objects are underlined to differentiate them from classes. Anony-
mous objects, however, do not require that their names be underlined. Objects
are unique; that is, each object has its own identity. You will sometimes hear ob-
jects referred to as instances. The terms instance and object are synonymous and
can be used interchangeably with few exceptions. Object and instance are used

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.3 The Structural View 183

interchangeably because objects are instances of classes, the most common in-
stances in object-oriented systems are objects.

The term object tends to be more clear than instance, however, because you can
have instances of associations, which are links, as well as instances of components,
nodes, or use cases. You can specify active objects by putting a thick border around
them. Active objects represent the root of a flow of control, which means that
they initiate the flow of control in an interaction. Objects can also be added to
class diagrams to show state. Multiple objects are shown as a stack of two object
rectangles.

Some of the important object attributes are the following:

1. Object Names: The names of objects, with the exception of anonymous objects,
are underlined to differentiate them from classes. Object names are located in
the top compartment of the object rectangle and take the form instanceName:
ClassName, where both the instance name and the class name are optional. So,
in David:Person, David and :Person are all legal object names. Note that the
class name is preceded by a colon to distinguish it from the instance name. As
with class diagrams, the instance and class names are typically shown using
cap-notation, although this is a stylistic preference and not a requirement of
UML. Objects that do not have a specified type are known as orphan objects.
Orphan objects must specify at least a name. Object names, like class names,
can also be specified as a pathname. Naming objects clarifies their purpose and
makes them easier for people to talk about.

2. Object Operations: Objects, like classes, can specify operations. To show that an
operation is being called on a particular object, you can use the dot notation,
which specifies the object name, followed by a period, followed by the name of
the operation. Depending on the object’s relationships, it, like any other object,
may be polymorphic.

3. Object State: Objects have state, which is a changeable condition derived from
the current values of each of its properties. These properties include the object’s
attributes as well as its aggregate parts; therefore, an object’s state is dynamic.
Changes in an object’s state can be modeled on an object diagram by providing
multiple instances of the same object, each with a different state. Furthermore,
State Machines can be associated with objects for a period of time. An object’s
state is specified below its name, in square brackets. Because objects can have
multiple states simultaneously, you can also provide a list of states in that
location.

Relationships among Objects
Like classes, objects can be related to one another as well as to some other ar-
tifacts in UML such as classes. In this section, we will go through these various
relationships.

Relationships are defined by links and stereotypes. Links are instances of asso-
ciations and specify a relationship between two objects. Links can be named, in
which case their names should be capitalized. Links can also have roles, which

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

184 INTRODUCTION TO UML

mName = “John Doe”
mYearsOfEmployment = 2.4
mEmploymentCount = 185

e1:Employee

FIGURE 4.7. An Employee Object: An Instance of the Employee Class.

are typically lowercase and next to the object they describe. A link between two
objects indicates that one object can send a message to the other.

There are five stereotypes that can be applies to the objects in an object diagram:

� instanceOf: The instanceOf stereotype shows that the recipient object is an in-
stance of the classifier that supplies it. Although the class that an object is an
instance of can be shown as a part of the object’s name, the instanceOf stereo-
type could be used, for example, to illustrate that the object is an instance of a
class from which the object’s class inherits.

� instantiate: The instantiate stereotype specifies that the recipient object creates
instances of the supplier class.

� becomes: The becomes stereotype specifies that the recipient object and the
supplier object are the same object, but that each represents that object at a
different point in time, and possibly with different states, values, or roles. The
becomes stereotype applies to messages and transitions.

� copy: The copy stereotype is used to show that one object is an exact but wholly
independent copy of another.

� transient: The transient stereotype is used to mark objects that are created dur-
ing an interaction’s execution but are destroyed before the completion of that
interaction.

This object diagram in Figure 4.7 shows an instance of the Employee class that
we defined in the last section. You will notice that the representation for an object
is very similar to the class rectangle that we saw in the last section. The name on
an object, however, is underlined; this is a clear mark that distinguishes classes
from objects in a UML diagram. Additionally, you will notice that the fields that
we defined in the class diagram are provided in the second section of the object
diagram and that they have values associated with them. These values apply to the
single instance (e1) that this object diagram defines. An object diagram illustrates
an object as it appears at a given moment in time. It is neither necessary nor
desirable to capture every aspect of an object in an object diagram.

4.4 THE BEHAVIORAL VIEW

The diagrams in the behavioral view are designed to do just what the name “be-
havioral view” suggests: to represent the behavior of the components within the
system and how those components interact with one another. The behavior view
can also be used to model the behavior of the entire system as a whole.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.4 The Behavioral View 185

4.4.1 Interaction Diagrams
Interaction diagrams are a category of diagrams in UML, rather than a specific
diagram in their own right. Interaction diagrams include sequence diagrams and
collaboration diagrams and describe how a particular behavior is accomplished
through object interactions. Interactions are composed of messages sent between
objects to accomplish a purpose. Interaction diagrams are modeled as flows of
control that can include sequential execution as well as branches, forks, loops,
concurrency, and recursion. You can think of interaction diagrams as special cases
of object diagrams, showing the messages passed between objects.

Sequence diagrams model interactions by focusing on the ordering of messages
as they occur over time. Collaboration diagrams, in contrast, place greater focus
on the relationships between objects. Although they still show the sequence of the
messages passed between objects, the ordering of those messages is of secondary
importance to the relationships between the objects passing those messages. In
spite of their differences, sequence and collaboration diagrams are isomorphic,
meaning they have similar structures and appearance but differing ancestry: They
display identical information in different manners, so that you should be able to
create a sequence diagram from a collaboration diagram, and vice versa, with no
additional information.

Messages specify a name, optional parameters for the message, and the message’s
sequence in the interaction. Messages are modeled by a directed line with a closed
arrowhead. At a minimum, messages are labeled with the name of the operation
that they represent. Messages represent a communication between objects, which
includes the passage of information from one object to another, and results in an
action being carried out as a result of the message. Messages can also be used to
illustrate the creation or destruction of objects. The receipt of a message can also
be considered an instance of an event. It triggers an executable statement to be
called, which may result in a change of state. There are five typical actions used
in UML that can be specified in interaction diagrams: call, return, send, create,
and destroy. These are specified as stereotypes. The call action specifies that an
operation on an object should be invoked. The return action indicates that a value
will be returned to the object that invokes the operation. The send action describes
one object sending a signal to another. If an object does not exist at the start of the
interaction, the create action can be used to specify the object’s creation during
that interaction. Similarly, if an object is destroyed during an interaction, this is
indicated with the destroy action. To model additional behavior not specified by
the five basic actions, you may specify a string containing complex expressions,
although UML does not specify the syntax of such strings. The objects in an
interaction diagram generally represent object prototypes playing a particular role
in the interaction, rather than concrete, real-world entities.

Relationships between objects are modeled as links. As we saw in the last section,
links are instances of associations, just as objects are instances of classes. A link
between objects indicates that they are able to exchange messages, and it specifies
the path along which those messages can be dispatched. Links can also specify
common stereotypes that indicate the scope of the object they are attached to.

The association stereotype indicates that the object is in scope by means of
association. The self stereotype indicates that the object is in scope because it

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

186 INTRODUCTION TO UML

dispatched the operation. The global stereotype indicates that the object is in
an enclosing scope. The local stereotype indicates that the object is in the local
scope. The parameter stereotype indicates that the object is in scope because it
is a parameter. Most attributes of an association are applicable to a link as well,
with the exception of the multiplicity indicator, which cannot be applied to links.
When an object passes a message to another object, it is delegating an action to the
receiving object. A sequence of messages always has a beginning and continues
for the duration of the process or thread that owns it. Each process or thread
contains a unique flow of control that contains messages ordered sequentially by
time. These sequences are most commonly modeled as nested flows of control
with solid, filled arrowheads. Alternatively, they can be represented by flat flows
of control, which are modeled as solid lines with stick arrowheads. The name of
the controlling process or thread can be placed at the root of the sequence, and, if
specified, should take the form

threadOrProcessName:methodCall

You may also specify its return values. More specificity can be given to a sequence
with timing marks and constraints, guarded conditions, branching, and iteration.

There are several stereotypes that can be applied to links to illustrate the creation
and destruction of objects. The new stereotype specifies that the instance is created
at that point in the interaction; the destroyed stereotype signifies that the object
is destroyed before the termination of that interaction. The transient stereotype
indicates that the object is created during the interaction and destroyed before
the interaction completes. Changes to the state of an object during the course
of an interaction are illustrated by multiple copies of an object, each showing
different states. In a sequence diagram, these two objects would be placed on the
same lifeline to show that they are different states of the same object, whereas on
a collaboration diagram they would be connected and marked with the become
stereotype.

Sequence and collaboration diagrams vary greatly in their manner of display-
ing messages, and, as such, each is better suited for displaying certain kinds of
information. Sequence diagrams, for example, are easily able to illustrate separate
paths extending from a branch, where each has separate messages extending from
it, as well as message returns and both synchronous and asynchronous messages.
Collaboration diagrams, by contrast, are not terribly well suited for displaying
detailed information about messages and are better able to illustrate simple mes-
sages in the context of the overall relationship of objects in a diagram, because a
complex arrangement of messages or various message types easily clutters up a
collaboration diagram.

4.4.2 Sequence Diagrams
Sequence diagrams typically contain objects, links, and messages. Like all dia-
grams, they can also contain notes and constraints. The two features that distin-
guish sequence diagrams from their semantic equivalents, collaboration diagrams,
are lifelines and focus of control. You can think of a sequence diagram as a table that

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.4 The Behavioral View 187

shows objects on its X axis and messages progressing through time along its Y axis.
Although there is no particular meaning to the order of objects in a sequence dia-
gram from left to right, by convention the object that initiates the action specified
in the diagram will be listed at the left of the diagram and increasingly subordinate
objects will be listed to the right.

The order of messages does have a special significance, which is their tempo-
ral ordering. Messages occurring first should be placed at the top of a sequence
diagram; subsequent actions should follow, in sequential order. A sequence dia-
gram represents the detail of how a behavior gets completed by showing classes
exchanging messages sequentially over time. It displays messages in order of oc-
currence, which build on one another to accomplish a desired behavior. Sequence
diagrams portray a behavior, which can consist of either a single message ex-
change or a set of them. Sequence diagrams illustrate the states of an object and
its communications over time.

Sequence diagrams can take either a generic form or an instance form. The generic
form describes a message exchange sequence within a set of classes. The instance
form of the sequence diagram describes a single message exchange that follows
the generic form. The generic form includes neither loops nor branches. Sequence
diagrams are especially good at specifying scenarios where the sequence of events
or the timing of a message exchange is critical, or where concurrency needs to be
modeled, or for a synchronous message exchange. Sequence diagrams illustrate
the passage of time in the vertical dimension of the diagram. Typically time begins
at the top of the page and proceeds toward the bottom. This can, however, be
reversed. Although the passage of time illustrated in a sequence diagram may
be quantified in the diagram, the sequence of events is more important than the
amount of time that passes during the illustrated sequence. The horizontal plane of
a sequence diagram shows the class roles that participate in the specified sequence.
The ordering of these roles is insignificant.

Because many other diagrams do not show time, it can be difficult to tell how
a system operates in time. Sequence diagrams clarify this as well as concurrent
processes. A simple sequence diagram shows only a single scenario (or one in-
stance) and shows simple messages, each moving the flow of control from one
object to another. A simple diagram does not show concurrency. There are some
simple things that you can do while building a sequence diagram that will make
it more useful and effective. First, giving the diagram a clear name helps commu-
nicate its purpose to others. Next, you only need to include the elements that are
essential to the understanding of the interaction that the diagram models. Adding
too much information can obscure the interaction rather than clarifying it. How-
ever, you should use caution and avoid making the diagram so minimalist that it
misinforms the diagram viewer. Finally, use branching sparingly as it can make
a sequence diagram that is difficult to follow. Complex branching sequences are
better illustrated in activity diagrams.

The elements of sequence diagrams are listed in Table 4.6.
In Figure 4.8 we see a high-level interaction among a mobile user, a traffic

service, and a map service. The diagram is laid out vertically with the actions
presented progressing in order from top to bottom. The diagram is divided by

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

188 INTRODUCTION TO UML

TABLE 4.6. The Elements of Sequence Diagrams

Element Description

Lifeline A lifeline is a dashed line arranged vertically down a sequence
diagram that represents an objects existence through the
passage of time. Lifelines represent the life of an object
during an interaction. If the object that the lifeline
represents exists when the interaction starts, the lifeline
must begin at the top of the diagram. If the lifeline’s object
exists at the end of the interaction, then the lifeline must
end at the bottom of the diagram. Otherwise, the lifeline
must start at the point in the diagram where the object is
created. The message that creates it should have an
arrowhead pointing to it. If the lifeline’s object is destroyed
during the interaction, the lifeline must be terminated with
an X at the point that the object is destroyed.

Because most objects exist for the entirety of an interaction,
most lifelines extend from the top of the diagram to the
bottom, with all of an interaction’s objects aligned at the top.
However, when an object is created during the interaction,
the object’s lifeline will start at the message that creates it.
This message will be marked with the create stereotype to
show that the object is being created at that point. Similarly,
if an object is destroyed during an interaction, its lifeline
will stop at the point that it is destroyed, and the message
that causes the object’s destruction will be marked with the
<<destroy>> stereotype. The end of the lifeline on a
destroyed object will be marked with a large X to identify
the object’s destruction.

Activation Activations represent a focus of control and are represented as
a thin rectangular box shown over the lifeline during a
method call. An activation must have an initiation time,
which should be aligned with the top of the rectangle that
represents it. The completion time of an activation should
be aligned with the bottom of the rectangle. Activations may
have a label that states their operation and have the ability
to call or pass control to other objects. They may be
recursive (i.e., they may be self-invoking) and may be used
in conjunction with a variety of different objects, including
concurrent or nonconcurrent objects and multiple active
objects.

They extend along the lifeline for the period of time that an
object is performing an action, whether it performs the
action directly or via a subordinate procedure. Additionally,
the completion of an action may be marked explicitly with a
return.Recursion, which is either a self-call or a callback

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.4 The Behavioral View 189

Element Description

from another object, can be modeled with an additional
activation rectangle stacked just to the right of its parent.

Class Roles The class role is an element that defines the behavior or the
class in a given context. Class roles illustrate general ways
that a group of entities participates in interactions and
collaborations. A class role is denoted by a class rectangle
and shows only the information relevant to the definition of
that role. A class role may have a multiplicity expression
that indicates that a set of objects—rather than a single
object—participates in a role. Additionally, class roles may
use other notations applicable to classes and objects to
further clarify their properties and behavior.

In the name compartment of the class rectangle representing
the role, the class role must have its role name, which
should be underlined. The role name is followed by a colon
and then the name of the class that represents the role. This
name is also underlined. The role name can be omitted, in
which case the colon separating the role from the class name
remains and the role is played by an anonymous object. The
class role may also provide information in compartments
other than the name compartment to further delineate other
properties of the role; however, this information is typically
omitted.

Interaction Interactions are classes that define sequences of message
exchanges among classes working together to accomplish a
purpose. The purpose of an interaction is to illustrate the
communications between these entities. They may have
associations to use cases and operations. In this case, the role
of the sequence diagram is to specify the behavior provided.

Object Objects are drawn in the standard way, as a rectangle, with an
underlined name.

Returns Returns indicate a return from a message rather than a new
message. Unlike regular messages, returns are indicated
with a dashed line. You can draw them for each message, or
only when you think that they add clarity to the diagram.

Object
Creation

If a system creates a new object as it executes, that can be
shown on a sequence diagram as well. The new object will
be represented as a rectangle with an underlined name, as
for any other object. The difference between a newly created
object and preexisting objects, however, is the positioning of
that object on the diagram. Although preexisting objects
will appear at the top of a sequence diagram, newly created
objects should appear vertically in the diagram, in a place

(continued)

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

190 INTRODUCTION TO UML

TABLE 4.6 (continued)

Element Description

that corresponds to its point of creation. The message that
creates the new object should be labeled Create(). This
implies two things. On a general level, it implies an
operation, whereas on a more specific level, it implies an
object constructor. Alternatively, you can use the
<<Create>> stereotype to show object creation.

Time Time is shown on a sequence diagram as a vertical progression,
which begins at the top of the diagram and ends at the
bottom.

Message Messages indicate communication among the various objects
in a sequence diagram. They are represented as solid lines
with varying arrows to represent their message type, which
can be one of three types: simple, synchronous, or
asynchronous. The message arrow is drawn between the
lifelines of two objects to indicate their communication.
Messages are named by a label on their message arrow. This
may include a return list of comma-separated values,
arguments to a message, and additional control information.
The order of messages in a diagram is shown from top to
bottom.

Simple messages have an open arrowhead and indicate the
transfer of flow of control from one object to another.

Synchronous messages have a solid arrowhead. With a
synchronous message, the object sends a message and then
awaits a response from the recipient. Asynchronous
messages have a half-open arrowhead. With an
asynchronous message, the object sends a message but does
not wait for a response from the receiving object. Because an
asynchronous message, unlike a synchronous one, does not
block the caller, the caller can carry on with its own
processing. Useful tasks for asynchronous messages include
the creation of new threads of control and new objects and
communications with existing running threads.

The difference between synchronous and asynchronous
communication can be seen in the difference between the
TCP and UDP protocols. Additional detail specified on a
message can also help to clarify its functionality. A
multiplicity marker can be used to show a message that is
sent multiple times. The multiplicity marker should be
followed by an indication of the number of times that the
message is sent. Messages can also contain control
information, which generally comes in the form of a
condition or an iteration marker. A condition shows the case
when a message is sent [isOverdue]. A message marked with
a condition will be sent only if that condition is true.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.4 The Behavioral View 191

Element Description

Although this is useful for illustrating simple conditions,
you should keep in mind that more complex cases lend
themselves to separate sequence diagrams for each case.

To represent an “if” condition, you place the condition that
you want to test for in square brackets above the message
arrows. Each condition creates a fork, which separates a
message into different paths; that is, it causes a branch of
control in the lifeline of the recipient object and separates its
lifeline into separate paths. Branches and forks eventually
merge. An iteration marker shows that a message is sent
many times to multiple recipient objects, as would happen
in an iteration. The basis of the iteration is shown in square
brackets, which are preceded by the multiplicity marker (*).

A “while” condition can also be shown on a sequence diagram
and is represented by a set of square brackets, preceded by
the multiplicity marker (*).

Recursion is an operation that involves an object invoking
itself. This is shown by a message arrow that originates from
and returns to the same object.

To lend clarity to the document, message sequence numbers
and sending and receiving times of messages may also be
displayed. Asynchronous messages are modeled with a solid
line and a half arrowhead. Simultaneous messages are shown
by two messages extending from a lifeline at the same point.

Labels Labels are elements that clarify a document. Their placement
is arbitrary: They can be placed in either margin of the
diagram or near the element to which they refer.

lifelines, which help to show which object has responsibility for each step along the
horizontal plane. This is a generic sequence diagram, and, as such, it uses simple
messages, that is, messages that do not indicate whether they are synchronous or
asynchronous but simply show a communication from one object to another. At
the top of the diagram, the mobile user requests the fastest route from the traffic
service, and passes it two parameters: its current location and its target location.
The traffic service then contacts the map service asking for a list of frequent routes
from one point to the other. Again, it is important to keep in mind that this is
a general case designed to illustrate the communication among these objects on
a high level and that steps may be—and should be—omitted from this diagram.
It is possible, for example, that the traffic service may choose two better-known
points near the user’s origin and destination that will be more applicable to the map
service’s listing of frequent routes. The map service responds to the traffic service
with a collection of frequent routes based on the input it was given. The traffic
service then takes the routes provided by the map service, derives the shortest route

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

192 INTRODUCTION TO UML

Mobile User

getFastestRout(s:Location, e:Location)()

getFrequentRoutes(s, e)()

routes()

shortest route()

TrafficService MapService

FIGURE 4.8 Using Sequence Diagrams to Show the Temporal Nature of Interactions.

(we assume that it does this based on traffic conditions, but, again, the diagram
does not specify how the action is completed), and returns it to the mobile user.

This sequence diagram elaborates on some of the details left out of our generic
diagram in the last example. You will recall from our last example that the way
in which the traffic service determined the shortest route from the list that the
map service provided was not specified. This diagram elaborates further on that
sequence. Because, even with our added detail, this is still a high-level and not
very detailed diagram, we have just added this detail to the diagram from our last
example. Typically, however, when you are creating sequences that add further
detail to a preexisting sequence diagram, that detail will be shown in a separate se-
quence diagram. Another difference between this sequence diagram and the last is
that it uses synchronous messages rather than simple messages. The synchronous
messages indicate that the message sender waits for a response from the recipi-
ent before sending additional messages. Also, the section from getTravelSegments
through storeJobResults is labeled with the word routes preceded by the multi-
plicity marker. This indicates that the listed actions will be executed once for each
route returned to the traffic service from the map service. Finally, you will notice
that the final three messages in that section go from the traffic service directly back
to the traffic service. That indicates that the traffic service completes the operation
itself.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.4 The Behavioral View 193

4.4.3 Collaboration Diagrams
A collaboration diagram is an interaction diagram that emphasizes the organization
of and relationships among objects, rather than the sequential progression of the
messages passed among them, as sequence diagrams do. The primary elements of
the collaboration diagram are objects, links, and messages. The diagram elements
that distinguish collaboration diagrams from their isomorphic equivalent—the
sequence diagram—are paths and sequence numbers.

When creating a collaboration diagram, it is useful to begin by modeling the
objects that are going to participate in the interaction, as you would to build an
object diagram. With the objects established, you can then model the relationships
among them and finally the messages that they send among themselves to complete
the interaction.

A collaboration diagram shows the interaction among objects. At their core,
collaboration diagrams and sequence diagrams are equivalent. That is, they show
the same information. The way they show that information, however, allows for
different and useful perspectives from each diagram. Whereas a sequence diagram
emphasizes the temporal ordering of a series of events, a collaboration diagram
illustrates the interactions of various objects. Collaboration diagrams are useful
for exploring the manner in which one object affects another, as well as to detail
its behavior. Both diagrams illustrate an interaction between classes that defines a
behavior. Sequence diagrams have the passage of time as their focal point; collab-
oration diagrams focus on the interactions playing a smaller role. Collaboration
diagrams are excellent at illustrating the links between objects.

Collaboration diagrams can be thought of as an extension to the class diagram,
showing not only the associations among objects but also the messages that the
objects send to one another. “Multiplicities” are usually left out of a collaboration
diagram to prevent it from getting too cluttered. Collaboration diagrams can also
appear in an instance or generic formats. The order of messages is shown by
sequence numbers on a collaboration diagram. As with a sequence diagram, a
collaboration diagram can show conditions, iterations, and loops.

Some interaction diagrams focus on grouping of classes and associations that
are involved in realizing and implementing a specific behavior. Such a diagram
will illustrate class and association formats and their interactions.

Collaboration diagrams can take either a generic or instance form. The generic
form shows a general case of interactions among classes and associations, whereas
the instance form shows objects and links and an actual message exchange that is
consistent with the generic form of the diagram. You can think of the difference
between the generic form of a collaboration diagram and the instance form as
being similar to the difference between a class diagram and an object diagram.
The generic form shows the interaction in general terms and can be extrapolated
into different instance cases.

Collaboration diagrams must illustrate the class roles and association roles
among them that are relevant to realizing the behavior that they depict. They may
include message flows, attached to the association roles. A diagram that does not
include messages can be used to show the context in which interactions occur
without explicitly defining those interactions.

Table 4.7 shows some interaction diagram characteristics.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

TA
B

LE
4
.7

.
S

o
m

e
In

te
ra

ct
io

n
D

ia
gr

am
C

ha
ra

ct
e
ri

st
ic

s

E
le

m
en

t
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

O
bj

ec
ts

In
st

an
ce

O
n

e
of

th
e

pr
im

ar
y

el
em

en
ts

on
a

co
ll

ab
or

at
io

n
di

ag
ra

m
is

th
e

ob
je

ct
.A

n
ob

je
ct

is
de

pi
ct

ed
in

it
s

u
su

al
fo

rm
at

,w
h

ic
h

is
th

e
cl

as
s

re
ct

an
gl

e
w

it
h

an
u

n
de

rl
in

ed
n

am
e

in
th

e
fo

rm
of

ob
je

ct
N

am
e:

cl
as

sN
am

e,
w

h
er

e
ei

th
er

ca
n

be
om

it
te

d.
T

h
e

cl
as

s
n

am
e

is
pr

ec
ed

ed
by

a
co

lo
n

to
av

oi
d

am
bi

gu
it

y
sh

ou
ld

on
ly

th
e

ob
je

ct
n

am
e

or
cl

as
s

n
am

e
be

sh
ow

n
.

T
im

e
E

xp
re

ss
io

n
N

/A
T

im
e

ex
pr

es
si

on
s

ca
n

be
u

se
d

w
it

h
op

er
at

io
n

s
to

in
di

ca
te

th
e

ex
pe

ct
ed

ti
m

e
re

qu
ir

em
en

ts
fo

r
a

gi
ve

n
op

er
at

io
n

.A
ti

m
in

g
m

ar
k

is
an

id
en

ti
fi

er
th

at
pr

ec
ed

es
th

e
n

am
e

of
th

e
m

es
sa

ge
it

ap
pl

ie
s

to
.F

ro
m

a
ti

m
in

g
m

ar
k,

yo
u

ca
n

de
ri

ve
th

e
st

ar
t

ti
m

e,
st

op
ti

m
e,

an
d

ex
ec

u
ti

on
ti

m
e,

w
h

ic
h

ca
n

su
bs

eq
u

en
tl

y
be

u
se

d
in

an
ex

pr
es

si
on

,c
on

ta
in

ed
w

it
h

in
a

ti
m

in
g

co
n

st
ra

in
t.

L
in

k
A

s
in

an
ob

je
ct

di
ag

ra
m

,a
li

n
k

is
an

in
st

an
ce

of
an

as
so

ci
at

io
n

an
d

sh
ow

s
a

re
la

ti
on

sh
ip

be
tw

ee
n

ob
je

ct
s.

A
li

n
k

be
tw

ee
n

tw
o

ob
je

ct
s

in
di

ca
te

s
th

at
on

e
ob

je
ct

ca
n

se
n

d
m

es
sa

ge
s

to
an

ot
h

er
.

A
ct

iv
e

O
bj

ec
t

In
st

an
ce

T
h

er
e

ar
e

so
m

e
in

te
ra

ct
io

n
s

in
w

h
ic

h
a

pa
rt

ic
u

la
r

ob
je

ct
co

n
tr

ol
s

th
e

fl
ow

.S
u

ch
an

ob
je

ct
ty

pi
ca

ll
y

se
n

ds
m

es
sa

ge
s

to
pa

ss
iv

e
ob

je
ct

s
an

d
in

te
ra

ct
s

w
it

h
ot

h
er

ac
ti

ve
ob

je
ct

s.
A

si
tu

at
io

n
in

w
h

ic
h

tw
o

or
m

or
e

ac
ti

ve
ob

je
ct

s
do

w
or

k
si

m
u

lt
an

eo
u

sl
y

is
kn

ow
n

as
co

n
cu

rr
en

cy
.A

n
ac

ti
ve

ob
je

ct
is

m
od

el
ed

li
ke

an
y

ot
h

er
ob

je
ct

ex
ce

pt
th

at
it

s
bo

rd
er

is
dr

aw
n

th
ic

ke
r

an
d

bo
ld

er
th

an
th

at
of

a
re

gu
la

r
ob

je
ct

.
Sy

n
ch

ro
n

iz
at

io
n

M
es

sa
ge

N
am

e(
)

Sy
n

ch
ro

n
ou

s
M

es
sa

ge

M
es

sa
ge

N
am

e(
)

A
sy

n
ch

ro
n

ou
s

M
es

sa
ge

In
a

sy
n

ch
ro

n
iz

ed
in

te
ra

ct
io

n
,o

n
e

en
ti

ty
se

n
ds

a
m

es
sa

ge
bu

t
do

es
n

ot
w

ai
t

fo
r

a
re

sp
on

se
fr

om
th

e
re

ce
iv

in
g

ob
je

ct
.B

ec
au

se
an

as
yn

ch
ro

n
ou

s
m

es
sa

ge
,u

n
li

ke
a

sy
n

ch
ro

n
ou

s
m

es
sa

ge
,d

oe
s

n
ot

bl
oc

k
th

e
ca

ll
er

,t
h

e
ca

ll
er

ca
n

ca
rr

y
on

w
it

h
it

s
ow

n
pr

oc
es

si
n

g.
U

se
fu

lt
as

ks
fo

r
as

yn
ch

ro
n

ou
s

m
es

sa
ge

s
in

cl
u

de
th

e
cr

ea
ti

on
of

n
ew

th
re

ad
s

of
co

n
tr

ol
an

d
n

ew
ob

je
ct

s
an

d
co

m
m

u
n

ic
at

io
n

s
w

it
h

ex
is

ti
n

g
ru

n
n

in
g

th
re

ad
s.

Sy
n

ch
ro

n
iz

ed
m

es
sa

ge
s

ar
e

in
di

ca
te

d
by

a
li

n
e

en
di

n
g

in
a

fu
ll

ar
ro

w
w

h
er

ea
s

as
yn

ch
ro

n
ou

s
m

es
sa

ge
s

ar
e

in
di

ca
te

d
w

it
h

a
li

n
e

en
di

n
g

in
a

h
al

f
ar

ro
w

.

194

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

M
u

lt
i-

R
ol

es

M
ul

ti-
R

ol
e

O
bj

ec
ts

M
u

lt
i-

ro
le

s
ar

e
re

pr
es

en
te

d
as

a
st

ac
k

of
tw

o
re

ct
an

gl
es

.T
h

ey
ar

e
cl

as
s

as
so

ci
at

io
n

s
th

at
re

pr
es

en
t

a
se

t
of

ob
je

ct
s

th
at

pa
rt

ic
ip

at
e

in
an

in
te

ra
ct

io
n

or
co

ll
ab

or
at

io
n

.
M

u
lt

i-
ro

le
s

ar
e

u
se

d
to

il
lu

st
ra

te
th

e
ro

le
s

of
a

se
t

of
en

ti
ti

es
.

M
u

lt
i-

ro
le

s
ca

n
be

cl
as

s
ro

le
s,

in
w

h
ic

h
ca

se
th

ey
m

ay
re

ce
iv

e
m

es
sa

ge
s.

W
h

en
a

m
u

lt
i-

ro
le

re
ce

iv
es

a
m

es
sa

ge
,t

h
e

in
di

ca
ti

on
is

th
at

th
e

m
es

sa
ge

is
re

ce
iv

ed
by

th
e

se
t

of
in

st
an

ce
s,

ra
th

er
th

an
ea

ch
in

st
an

ce
in

th
e

se
t.

In
ot

h
er

w
or

ds
,t

h
ey

de
sc

ri
be

a
se

t
of

ob
je

ct
s

as
a

si
n

gl
e

en
ti

ty
,r

at
h

er
th

an
de

lv
in

g
in

to
th

ei
r

in
di

vi
du

al
be

h
av

io
rs

.T
o

pe
rf

or
m

an
op

er
at

io
n

on
ea

ch
ob

je
ct

in
a

se
t

of
in

st
an

ce
s,

a
m

u
lt

i-
ro

le
re

qu
ir

es
tw

o
m

es
sa

ge
s.

T
h

e
fi

rs
t

m
es

sa
ge

ex
tr

ac
ts

li
n

ks
fr

om
th

e
se

t
an

d
th

e
se

co
n

d
m

es
sa

ge
go

es
di

re
ct

ly
to

ea
ch

ob
je

ct
re

fe
re

n
ce

d
by

an
ex

tr
ac

te
d

in
k.

T
h

es
e

se
pa

ra
te

m
es

sa
ge

s
ca

n
be

co
m

bi
n

ed
in

to
a

si
n

gl
e

m
es

sa
ge

th
at

in
cl

u
de

s
an

it
er

at
io

n
an

d
an

op
er

at
io

n
to

pe
rf

or
m

on
ea

ch
ob

je
ct

.
M

u
lt

i-
ro

le
s

ca
n

al
so

be
at

ta
ch

ed
to

a
m

u
lt

ic
la

ss
ro

le
u

si
n

g
a

co
m

po
si

ti
on

li
n

k.
A

s
as

so
ci

at
io

n
ro

le
s,

m
u

lt
i-

ro
le

s
m

u
st

u
se

th
e

m
u

lt
ip

li
ci

ty
in

di
ca

to
r

(*
)

to
im

pl
y

th
at

th
er

e
ar

e
m

an
y

in
di

vi
du

al
li

n
ks

.A
s

as
so

ci
at

io
n

ro
le

s,
m

u
lt

i-
ro

le
s

m
ay

al
so

pr
op

ag
at

e
m

es
sa

ge
s.

M
es

sa
ge

s
S

om
eM

es
sa

ge
()

In
a

co
ll

ab
or

at
io

n
di

ag
ra

m
,a

m
es

sa
ge

is
sh

ow
n

by
an

ar
ro

w
th

at
ap

pe
ar

s
n

ea
r

th
e

as
so

ci
at

io
n

li
n

e
be

tw
ee

n
ob

je
ct

s.
M

u
lt

ip
le

m
es

sa
ge

ca
n

be
at

ta
ch

ed
to

th
e

ar
ro

w
,

w
h

ic
h

po
in

ts
to

th
e

ob
je

ct
th

at
re

ce
iv

es
th

e
m

es
sa

ge
.T

h
e

la
be

ln
ea

r
a

m
es

sa
ge

de
sc

ri
be

s
it

s
co

n
te

n
ts

.A
m

es
sa

ge
u

su
al

ly
te

ll
s

th
e

re
ci

pi
en

t
to

ex
ec

u
te

an
op

er
at

io
n

.A
pa

ir
of

pa
re

n
th

es
es

en
d

th
e

m
es

sa
ge

an
d

co
n

ta
in

an
y

pa
ra

m
et

er
s

th
at

n
ee

d
to

be
pa

ss
ed

to
it

.M
es

sa
ge

s
in

co
ll

ab
or

at
io

n
di

ag
ra

m
s

co
rr

es
po

n
d

to
th

e
m

es
sa

ge
be

tw
ee

n
cl

as
s

ro
le

s
in

a
se

qu
en

ce
di

ag
ra

m
.M

es
sa

ge
s

ar
e

in
di

ca
te

d
by

ar
ro

w
s,

as
in

a
se

qu
en

ce
di

ag
ra

m
.

A
n

ob
je

ct
ca

n
al

so
se

n
d

a
m

es
sa

ge
to

m
u

lt
ip

le
ob

je
ct

s
of

th
e

sa
m

e
cl

as
s.

M
u

lt
ip

le
ob

je
ct

s
of

a
si

n
gl

e
cl

as
s

ty
pe

ar
e

re
pr

es
en

te
d

as
a

st
ac

k
of

re
ct

an
gl

es
w

it
h

th
e

cl
as

s
n

am
e.

L
ab

el
in

g
th

e
m

es
sa

ge
w

it
h

*[
al

l]
in

di
ca

te
s

th
at

th
e

m
es

sa
ge

go
es

to
al

l
re

ci
pi

en
ts

in
an

u
n

sp
ec

ifi
ed

or
de

r.
O

rd
er

of
re

ce
ip

t
ca

n
,h

ow
ev

er
,b

e
sp

ec
ifi

ed
,

u
si

n
g

a
w

h
il

e
co

n
di

ti
on

w
it

h
an

im
pl

ie
d

or
de

r
(e

.g
.,

li
n

e
po

si
to

in
=

1.
n

). (c
on

ti
nu

ed
)

195

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

TA
B

LE
4
.7

(c
on

ti
n

u
e

d
)

E
le

m
en

t
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

A
m

es
sa

ge
ca

n
re

pr
es

en
t

a
re

qu
es

t
fo

r
an

ob
je

ct
to

re
tu

rn
a

va
lu

e,
in

w
h

ic
h

ca
se

it
is

w
ri

tt
en

as
an

ex
pr

es
si

on
w

it
h

th
e

n
am

e
of

th
e

re
tu

rn
ed

va
lu

e,
fo

ll
ow

ed
by

:=
,

th
en

th
e

n
am

e
of

th
e

op
er

at
io

n
an

d
qu

an
ti

ti
es

to
op

er
at

e
on

,a
s,

fo
r

ex
am

pl
e,

to
ta

lP
ri

ce
:=

co
m

pu
te

(i
te

m
P

ri
ce

,s
al

es
Ta

x)

T
h

e
po

si
ti

on
fo

ll
ow

in
g

th
e

:=
is

re
fe

rr
ed

to
as

th
e

m
es

sa
ge

si
gn

at
u

re
.

M
es

sa
ge

s
m

ay
al

so
h

av
e

a
re

tu
rn

li
st

,w
h

ic
h

sp
ec

ifi
es

va
lu

es
re

tu
rn

ed
by

th
at

m
es

sa
ge

.A
re

tu
rn

li
st

is
a

li
st

of
co

m
m

a-
se

pa
ra

te
d

n
am

es
th

at
de

si
gn

at
e

th
e

m
es

sa
ge

’s
re

tu
rn

va
lu

es
.I

t
is

a
re

qu
ir

em
en

t
of

U
M

L
th

at
th

e
n

am
es

in
th

e
re

tu
rn

li
st

m
at

ch
th

e
n

u
m

be
r,

ty
pe

s,
an

d
or

de
r

of
th

e
op

er
at

io
n

’s
fo

rm
al

re
tu

rn
li

st
.T

h
e

n
am

es
fr

om
th

e
re

tu
rn

li
st

ar
e

n
ot

in
cl

u
de

d;
th

e
as

si
gn

m
en

t
op

er
at

or
(:
=)

is
li

ke
w

is
e

om
it

te
d.

C
on

di
ti

on
[c

on
di

ti
on

]
C

on
di

ti
on

s
ca

n
al

so
be

re
pr

es
en

te
d

on
a

co
ll

ab
or

at
io

n
di

ag
ra

m
,j

u
st

as
th

ey
ar

e
on

a
se

qu
en

ce
di

ag
ra

m
.T

h
ey

ar
e

pl
ac

ed
in

sq
u

ar
e

br
ac

ke
ts

be
fo

re
th

e
m

es
sa

ge
la

be
l.

N
es

ti
n

g
is

sh
ow

n
on

a
co

ll
ab

or
at

io
n

di
ag

ra
m

u
si

n
g

su
bd

ec
im

al
po

in
ts

.W
h

en
a

tr
an

sa
ct

io
n

is
ov

er
,y

ou
sh

ou
ld

ad
d

th
e
<
<

tr
an

sa
ct

io
n

ov
er
>
>

st
er

eo
ty

pe
to

th
e

m
es

sa
ge

.
O

bj
ec

t
St

at
e

C
h

an
ge

<
<

be
co

m
e>

>
A

co
ll

ab
or

at
io

n
di

ag
ra

m
ca

n
al

so
sh

ow
ch

an
ge

s
in

th
e

st
at

e
of

an
ob

je
ct

.T
o

sh
ow

st
at

e
ch

an
ge

s,
th

e
fi

rs
t

st
ep

is
to

m
od

el
th

e
or

ig
in

al
st

at
e

of
an

ob
je

ct
by

pr
ov

id
in

g
an

ob
je

ct
w

it
h

it
s

st
at

e
in

sq
u

ar
e

br
ac

ke
ts

af
te

r
it

s
n

am
e.

N
ex

t
yo

u
pr

ov
id

e
an

ad
di

ti
on

al
ob

je
ct

re
ct

an
gl

e
to

sh
ow

th
e

st
at

e
to

w
h

ic
h

th
e

ob
je

ct
tr

an
si

ti
on

s
in

sq
u

ar
e

br
ac

ke
ts

ju
st

as
th

e
fi

rs
t

di
d.

W
it

h
bo

th
st

at
es

sh
ow

n
,y

ou
il

lu
st

ra
te

th
e

tr
an

si
ti

on
fr

om
on

e
to

th
e

ot
h

er
by

co
n

n
ec

ti
n

g
th

em
w

it
h

a
da

sh
ed

li
n

e
an

d
an

op
en

ar
ro

w
h

ea
d,

la
be

le
d

w
it

h
th

e
<
<

be
co

m
e>

>
st

er
eo

ty
pe

.
P

at
h

St
er

eo
ty

pe
A

pa
th

,w
h

ic
h

is
a

st
er

eo
ty

pe
at

ta
ch

ed
at

th
e

en
d

of
a

li
n

k,
in

di
ca

te
s

th
e

m
an

n
er

in
w

h
ic

h
on

e
ob

je
ct

is
li

n
ke

d
to

an
ot

h
er

.T
h

e
m

os
t

co
m

m
on

pa
th

s
fo

u
n

d
in

a
co

ll
ab

or
at

io
n

di
ag

ra
m

ar
e

lo
ca

l,
gl

ob
al

,p
ar

am
et

er
,a

n
d

se
lf

.

196

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.4 The Behavioral View 197

Because sequence diagrams and collaboration diagrams show the same things,
it should be easy to convert well-designed diagrams from one type to the
other. In sequence diagrams, the ordering of messages is important, and al-
though this is of less importance to a collaboration diagram, it is still important,
then, that the sequence be shown. That is done with a number, followed by a
colon, preceding each message, which shows its sequence in the overall flow of
behavior.

The sequence of messages is shown by their being numbered. There are two
ways this numbering is commonly done, although UML specifies the decimal
notation. Simple numbers are common too [Fowler and Scott 1999]. Decimal
notation makes it clearer which operation is calling another.

Each message may specify a comma-separated list of sequence numbers that
correspond to other messages that must have executed and completed prior to
its execution. Sequence numbers that precede the sequence number of the cur-
rent message are implicitly considered to be predecessors and do not need to be
specified. This can be extremely useful when illustrating the synchronization of
threads. Messages can have a guard condition, which is a Boolean condition that
must return true for the message to execute. Additionally, messages may specify
branching concurrency and iteration.

A message may have parentheses that contain either an argument list or a
comma-separated list of parameters passed into a method. These must match the
order type and number specified in the parameter list of the operation. A message
may use data tokens to represent its argument and return lists. Data tokens are
small circles drawn near messages that are labeled with the names of parameter
return values. Data tokens have a small arrow to indicate the flow of data. For
argument names, that arrow points toward the message; returns point away from
the message.

As in sequence diagrams, the messages in a collaboration diagram can take
one of three forms: simple messages, synchronous messages, and asynchronous
messages. Simple messages have an open arrowhead and indicate the transfer of
flow of control from one object to another. Synchronous messages have a solid
arrowhead.

Sequence numbers are used to specify the order in which messages occur. They
begin with message number one, and increase by one for each ensuing message.
To show the ordering of nested messages, you use Dewey Decimal notation. A
single link can illustrate multiple messages being sent in multiple directions. Each
of these messages should have a unique sequence number.

You can model iterations in a collaboration diagram by prefixing the message
with an iteration expression. An iteration expression is specified by an asterisk
(*), followed by an operational expression that is enclosed in square brackets. An
asterisk without the subsequent expression indicates that there is an iteration but
does not specify any details of how that iteration occurs. The iteration marker
indicates that not only the current message, but also all nested messages, will be
repeated as specified by the expression in square brackets.

You can also specify a condition to a message that represents a Boolean con-
dition that dictates whether or not the message should be executed based on

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

198 INTRODUCTION TO UML

Location

2..x

1..x

1..1

1..1

TravelSegment

Route

FIGURE 4.9. A Simple Class Diagram Representing the Relationship Between Locations, Routes,
and Travel Segments.

the evaluation of that expression. To model a condition, you prefix the mes-
sage’s sequence number with an expression representing the condition, in square
brackets.

Usually collaboration diagrams will illustrate a sequential flow of events, al-
though they can show branching. The separate paths of a branch will each have
the same sequence number, although each path must specify a mutually exclusive
condition. For both iteration and branching, UML does not specify how to build
the expression, so you can use pseudo code or another language.

Collaboration
A collaboration is a named group of static and dynamic elements that work to-
gether to perform a behavior. Collaborations realize operations and use cases.
They are indicated, at a high level, by a dashed oval, containing its name. A more
detailed view of a collaboration can be seen in class diagrams, which illustrate
their structural aspects, and in interaction diagrams, which show their behavioral
aspects.

So, let us start with a class diagram, seen in Figure 4.9, and then use a collabo-
ration diagram to expound upon the interactions among the different classes. The
first element defined in our diagram is a Route class, which has an aggregation
relationship with the TravelSegment class. Notice the multiplicity marker along
the association line between the two classes near TravelSegment. It indicates that
one or more travel segments will make up our route. Each travel segment has
a starting location and an ending location. These locations are specified by an
additional aggregation relationship between the TravelSegment and Location ob-
jects. This relationship specifies that each travel segment will have exactly two
locations: a starting location and an ending location. The location object stores its
coordinates in minutes, seconds, and degrees from the nearest longitudinal and
latitudinal coordinates.

The TravelSegment, then, is a collection of location objects, where two locations
exist for each travel segment. Routes are similar collections of one or more routes.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.4 The Behavioral View 199

1

-segments: Collection

Location

Route

TravelSegment

-start:Location

-end:Location

-cleg:int

-min:int

-secint

2

FIGURE 4.10

The diamond symbol on the association line between the objects on this diagram
signifies that they have an aggregation relationship. The fact that the aggregation
diamond is not filled in means that the objects they contain may exist outside
of this collection. For example, you might have a collection of locations that
represented the various locations of a particular restaurant. We can use an object
diagram, such as the one in Figure 4.10, to illustrate roughly the same thing, except
this time we are representing instances and not the structures that created those
instances.

The collaboration diagram in Figure 4.11 expands on our last example, adding in
the traffic service and the map service. You may want to refer back to the diagrams
that we looked at in the sequence diagram section to compare the diagrams at this
point. You will recall that the sequence diagram and the collaboration diagram
show the same information from different perspectives, so looking back to that
last example should shed some light on this diagram. Since our last example, we
have added map service and traffic service objects to the diagram. The route object,
you will recall, is composed of travel segments, which are in turn composed of
locations. The route object has an association relationship with the traffic service
and the map service. The relationship simply specifies that the objects involved are

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

200 INTRODUCTION TO UML

Location TravelSegment

Route

3. getTrafficConditions(segments): Times

3.1 calculateTravelTime(Times): Time

1. getFrequentRoutes(location1, location 2): Routes

2. getTravelSegments(Route): TravelSegments

TrafficService

MapService

FIGURE 4.11 A Collaboration Diagram for a Mapping Service.

aware of each other, but the details of how they actually interact are not specified
in this diagram.

The traffic service and the map service have a similar association relationship.
In addition to that, they have an arrow between them that indicates that messages
are being passed between the two. You may notice that the traffic service sends
messages to itself. These are the self-calls that we saw illustrated in the sequence
diagram. The sequence that the messages are called in is not as important to
a collaboration diagram. The sequence is shown less prominently as a numerical
sequence that precedes the message name. Here these are shown using the decimal
notation specified by UML. Simple sequence notation can be used, but decimal
notation is preferred for its clarity.

Events and Signals
Events and signals are applicable to activity and state diagrams. Things that happen
within a system are known as events. Events are occurrences that are significant
to the system and can be located in both time and space. Because events can be
either asynchronous or synchronous, their modeling is highly dependent on the
modeling of threads and processes. A signal is a special case of an event, which is
an asynchronous stimulus sent from one object to another.

Events come in two varieties: internal and external. Internal events are events
that occur within the system, among the objects it is composed of, and do not
require an external stimulus. Events that are external to the system are communi-
cated between the system’s actors and the system itself. External events include,
for example, a user of the system pressing buttons on its user interface. UML spec-
ifies four primary types of events: signals, calls, time passage, and state change.

Signals are objects that are sent by one object and received by another. Like
classes, signals can have instances, generalization relationships, operations, and

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.4 The Behavioral View 201

attributes. The attributes of a signal are the parameters passed to it. Signals are
typically noted on the models of objects and interfaces that send them. This rela-
tionship can also be specified by a dependency relationship marked with the send
stereotype.

Calls, Time Passage, Events, Exceptions, and States
A call represents the inception of an operation and is similar to the sending of a
signal. Calls may cause a change of state within a state machine and can be either
synchronous or asynchronous, though asynchronous calls are more common. In
terms of how they are modeled, calls and signals are not distinguishable, as they
both are shown as a simple transition labeled with their name and any parameters
passed to them. Call events, however, can be differentiated because their receivers
will specify them in their operation list. Additionally, whereas signals are typically
handled by state machines, calls are usually handled by methods.

Time events are used in UML to indicate the passage of time. They are modeled
with the after keyword followed by an expression evaluating to a period of time,
which can either be simple (in 7 seconds) or complex (1.5 milliseconds after XYZ
occurs). The starting time of the expression need not be explicitly mentioned.
If it is omitted, its default value is the time elapsed since the current state was
entered. State change is represented by a change event that is also used to specify
the satisfaction of a certain condition. Change events are shown with the when
keyword, followed by a conditional expression. These expressions can mark either
a set time, such as 1:24 A.M., or an ongoing test, such as when humidity is greater
than 50%.

Signal and call events both involve at least two objects, a sending object and one
or more recipients. Multicasting is when a single object sends a signal to multiple
objects, or to a given set of listener objects. Broadcasting is when an object sends
a signal to a general messaging bus, to any object that may be listening.

Exceptions, indicating aberrant conditions, are a special type of signal. They are
modeled, like interfaces, as stereotyped classes. The <<Exception>> stereotype
is used to mark an exception. Exceptions may be associated with the operations
that may cause them.

An event is an occurrence with a temporal and spatial context. There are two
types of events: external and internal. External events are interactions between the
system and its actors, whereas internal events are internal to the system. UML
specifies four event types: signals, calls, time passage, and state change. Signal
events are defined like classes, stereotyped with the signal keyword with the name
of the event specified below the signal stereotype. To indicate that a particular
class sends a signal, use the dependency relationship between the class and the
signal, labeled with the send stereotype. A call event is a method invocation and is
modeled by showing the event name along with its parameters. You can distinguish
a call event from a signal by their handlers: A signal is handled by its State Machine,
whereas a call event is handled by a method.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

In
it

S
er

vi
ce

S
to

p
S

er
vi

ce
s

[y
es

]:

[y
es

]:

[n
o]

:
[n

o]
:

W
ai

tin
g

F
or

 R
eq

ue
st

P
ro

ce
ss

in
g

R
eq

ue
st

R
ed

ire
ct

 R
eq

ue
st

C
an

ce
l?

V
al

id
 R

eq
ue

st
?

In
pu

t I
nt

er
ac

tio
n

FI
G

U
RE

4.
12

Sa
m

pl
e

U
M

L
St

at
e

Ch
ar

tD
ia

gr
am

.

202

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.4 The Behavioral View 203

State Machines and State Chart Diagrams
State chart diagrams show change over time. Objects in any given system will
change over time to accommodate interactions with users and other systems. This
is known as an object changing state. A state chart diagram represents a State
Machine, which shows the states and transitions describing the response of an
object of a given class to external stimuli. States are used to convey the condition
that an object is in at a given point; transitions show the manner in which these
conditions are related. It shows the possible states of an object, the transitions
between states, and the starting and end points in a series of state changes. State
diagrams are used to illustrate the lifecycle of an object by rendering its potential
states and responses. They describe all possible states of an object. State diagrams
are usually drawn for a single class, to show the possible states for an instance of
that class throughout its entire lifetime. A State Machine thus models the behavior
of a single object.

A State Machine defines a behavior that encompasses the various states an object
goes through during its lifetime. State Machines show the events that an object can
receive during its lifetime and the manner in which the object responds to these
various events. State Machines model dynamic aspects of a system by specifying
the detail of an object’s lifetime. When an event occurs in a system, an activity will
take place in response to that event. The response varies based on the object’s state.
A State Machine illustrates the possible responses based on the objects potential
states.

Activities, which are nonatomic executions occurring within a State Machine
over a period of time, result in an action composed of atomic executions resulting
in either a return value or a state change. State Machines can be modeled from
two different perspectives, emphasizing either flow of control between activities
or transitions between an object’s potential states.

Objects react to a variety of things, including signals and events, the invocation
of operations, the passage of time, change in a guard condition, and their own
creation and destruction. A State Machine chronicles an object’s reactions to these
occurrences. Table 4.8 shows the basic components of state diagrams.

Figure 4.12 shows a simple state chart diagram. History states, which are mod-
eled as with an H enclosed in a circle, are useful in cases where states need to
recall a past state of one or more of their substates. When a state is not modeled
as a history state, that indicates that the state, when it is entered, begins with the
substate in its initial state. There are cases where this is not desirable, and where
a state may prefer that its substate instead begin in the last state that it was in. To
model this, a state should be marked as a history state, which indicates that the
substate should resume at its last known state. Cases where a transition should
activate the last entered state can be indicated by an outside transition attached
directly to the history state.

A composite state has no history when it is first entered; however, the history
state is available subsequently. When a nested State Machine reaches its final state
it reverts back to its initial state for the purposes of the history state.

State Machines have an initial and a final state. The initial state is represented
by a solid circle; the final state is modeled as a solid circle enclosed in another

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

TA
B

LE
4
.8

.
S

ta
te

D
ia

gr
am

E
le

m
e
nt

s

E
le

m
en

t
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

St
at

es
S

ta
te

N
am

e
St

at
es

ar
e

po
in

ts
in

an
ob

je
ct

’s
li

fe
w

h
er

e
it

fu
lfi

ll
s

a
pa

rt
ic

u
la

r
se

t
of

co
n

di
ti

on
s,

an
d

du
ri

n
g

w
h

ic
h

it
is

ab
le

to
pe

rf
or

m
a

pa
rt

ic
u

la
r

ac
ti

vi
ty

or
w

h
er

e
it

w
ai

ts
fo

r
ce

rt
ai

n
ev

en
ts

.O
bj

ec
ts

th
at

re
sp

on
d

to
an

as
yn

ch
ro

n
ou

s
st

im
u

lu
s

or
th

at
de

te
rm

in
e

th
ei

r
cu

rr
en

t
be

h
av

io
r

fr
om

th
ei

r
pa

st
co

n
di

ti
on

s
ar

e
w

el
ls

u
it

ed
to

be
m

od
el

ed
as

St
at

e
M

ac
h

in
es

.
St

at
es

ar
e

re
n

de
re

d
as

re
ct

an
gl

es
w

it
h

ro
u

n
de

d
co

rn
er

s.
Tr

an
si

ti
on

s
ar

e
so

li
d

di
re

ct
ed

li
n

es
w

it
h

op
en

ar
ro

w
h

ea
ds

be
tw

ee
n

st
at

es
.S

ta
te

s
sp

ec
if

y
a

n
am

e,
w

h
ic

h
di

st
in

gu
is

h
es

th
em

fr
om

ot
h

er
st

at
es

.S
ta

te
s

th
at

do
n

ot
h

av
e

a
sp

ec
ifi

ed
n

am
e

ar
e

an
on

ym
ou

s.
St

at
es

ca
n

sp
ec

if
y

en
tr

y
an

d
ex

it
ac

ti
on

s,
w

h
ic

h
ar

e
ac

ti
on

s
th

at
ar

e
tr

ig
ge

re
d

w
h

en
a

st
at

e
is

en
te

re
d

or
ex

it
ed

,r
es

pe
ct

iv
el

y.
St

at
es

m
ay

h
av

e
in

te
rn

al
tr

an
si

ti
on

s,
w

h
ic

h
ar

e
tr

an
si

ti
on

s
th

at
th

e
st

at
e

h
an

dl
es

in
te

rn
al

ly
.I

n
te

rn
al

tr
an

si
ti

on
s,

u
n

li
ke

ot
h

er
tr

an
si

ti
on

s,
do

n
ot

tr
ig

ge
r

th
e

st
at

e’s
en

tr
y

an
d

ex
it

ac
ti

on
s.

St
at

es
m

ay
h

av
e

St
at

e
M

ac
h

in
es

n
es

te
d

w
it

h
in

th
em

,w
h

ic
h

h
av

e
tw

o
va

ri
et

ie
s.

N
es

te
d

st
at

es
th

at
ar

e
en

te
re

d
si

m
u

lt
an

eo
u

sl
y

ar
e

ca
ll

ed
co

n
cu

rr
en

t
st

at
es

;
n

es
te

d
st

at
es

th
at

m
ay

on
ly

be
en

te
re

d
on

e
at

a
ti

m
e

ar
e

se
qu

en
ti

al
st

at
es

.
St

at
es

ca
n

al
so

sp
ec

if
y

de
fe

rr
ed

ev
en

ts
,w

h
ic

h
ar

e
ev

en
ts

w
h

ic
h

th
at

pa
rt

ic
u

la
r

st
at

e
ca

n
n

ot
h

an
dl

e,
bu

t
w

h
ic

h
it

w
il

lp
as

s
on

to
su

bs
eq

u
en

t
st

at
es

th
at

th
e

ob
je

ct
en

te
rs

,u
n

ti
lo

n
e

of
th

os
e

st
at

es
h

an
dl

es
th

e
ev

en
ts

.S
ta

te
s

th
at

do
n

ot
h

av
e

St
at

e
M

ac
h

in
es

n
es

te
d

w
it

h
in

th
em

ar
e

kn
ow

n
as

si
m

pl
e

st
at

es
,w

h
er

ea
s

st
at

es
th

at
do

h
av

e
n

es
te

d
st

at
es

ar
e

ca
ll

ed
co

m
po

si
te

st
at

es
.C

om
po

si
te

st
at

es
m

ay
th

em
se

lv
es

be
co

m
po

si
te

st
at

es
,a

n
d

th
er

e
is

n
o

li
m

it
to

th
e

le
ve

lo
f

n
es

ti
n

g
th

at
a

st
at

e
ca

n
co

n
ta

in
.

St
at

es
ar

e
n

am
ed

w
it

h
n

ou
n

s
th

at
de

sc
ri

be
th

em
an

d
ar

e
ty

pi
ca

ll
y

dr
aw

n
fr

om
th

e
vo

ca
bu

la
ry

of
th

e
sy

st
em

.T
h

es
e

n
am

es
ar

e
ty

pi
ca

ll
y

sp
ec

ifi
ed

u
si

n
g

ca
p-

n
ot

at
io

n
,a

n
d,

by
co

n
ve

n
ti

on
,b

eg
in

w
it

h
a

ca
pi

ta
ll

et
te

r.

204

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

Tr
an

si
ti

on
Tr

an
si

ti
on

s
m

od
el

th
e

re
la

ti
on

sh
ip

s
be

tw
ee

n
a

so
u

rc
e

st
at

e
an

d
a

ta
rg

et
st

at
e.

T
h

ey
ar

e
de

n
ot

ed
as

a
so

li
d

ar
ro

w
be

tw
ee

n
st

at
es

an
d

ar
e

la
be

le
d

w
it

h
a

de
sc

ri
pt

iv
e

st
ri

n
g.

A
n

en
ti

ty
in

on
e

st
at

e
pe

rf
or

m
s

ac
ti

on
s

th
at

m
ay

ca
u

se
it

to
m

ov
e

in
to

an
ot

h
er

st
at

e,
ei

th
er

w
h

en
an

ev
en

t
oc

cu
rs

,o
r,

if
it

op
er

at
ed

co
n

di
ti

on
al

ly
,w

h
en

it
s

co
n

di
ti

on
is

sa
ti

sfi
ed

.T
h

e
m

ov
em

en
t

fr
om

on
e

st
at

e
to

an
ot

h
er

is
kn

ow
n

as
a

tr
an

si
ti

on
“fi

ri
n

g.
”

T
h

e
tr

an
si

ti
on

li
n

e
is

th
e

li
n

e
co

n
n

ec
ti

n
g

tw
o

st
at

es
.

E
ve

n
ts

E
ve

n
tN

am
e

E
ve

n
ts

ar
e

oc
cu

rr
en

ce
s

th
at

tr
ig

ge
r

an
ob

je
ct

to
ch

an
ge

st
at

es
.T

h
ey

ar
e

u
se

d
to

m
od

el
th

e
oc

cu
rr

en
ce

s
an

d
st

im
u

li
th

at
ef

fe
ct

an
en

ti
ty

.E
ve

n
ts

ar
e

sh
ow

n
as

a
st

ri
n

g
th

at
co

n
ta

in
s

th
e

n
am

e
of

th
e

ev
en

t.
T

h
e

ev
en

t’s
n

am
e

w
il

lr
ef

er
en

ce
th

e
op

er
at

io
n

it
re

pr
es

en
ts

in
th

e
cl

as
s

th
at

re
ce

iv
es

it
.T

h
e

ev
en

t
n

am
e

m
ay

be
fo

ll
ow

ed
by

a
se

t
of

pa
re

n
th

es
es

co
n

ta
in

in
g

a
li

st
of

th
e

pa
ra

m
et

er
s

pa
ss

ed
to

th
e

ev
en

t.
A

n
ev

en
t

m
u

st
ap

pe
ar

n
o

m
or

e
th

an
on

ce
in

an
y

gi
ve

n
st

at
e.

S
ig

na
l R

ec
ei

pt

E
ve

n
ts

ca
n

ta
ke

a
va

ri
et

y
of

fo
rm

s,
in

cl
u

di
n

g
si

gn
al

ev
en

ts
,c

al
le

ve
n

ts
,c

h
an

ge
ev

en
ts

,a
n

d
ti

m
e

ev
en

ts
.A

lt
h

ou
gh

ev
en

ts
ty

pi
ca

ll
y

tr
ig

ge
r

tr
an

si
ti

on
s,

th
ey

ar
e

n
ot

re
qu

ir
ed

to
do

so
.A

n
ev

en
t

th
at

do
es

n
ot

tr
ig

ge
r

a
tr

an
si

ti
on

is
lo

st
or

ig
n

or
ed

.E
ve

n
ts

m
ay

al
so

tr
ig

ge
r

m
u

lt
ip

le
tr

an
si

ti
on

s.
O

n
ly

on
e

of
th

es
e

tr
an

si
ti

on
s

w
il

lfi
re

,b
as

ed
on

th
e

pr
io

ri
ti

es
of

th
e

sp
ec

ifi
ed

tr
an

si
ti

on
s.

S
ig

na
l S

en
d

A
n

ev
en

t
th

at
is

m
ar

ke
d

w
it

h
th

e
“a

ft
er

”
ke

yw
or

d
w

il
lg

en
er

at
e

an
ev

en
t

af
te

r
a

sp
ec

ifi
ed

pe
ri

od
of

ti
m

e.
A

dd
it

io
n

al
ly

,a
n

ev
en

t
ca

n
be

m
ar

ke
d

w
it

h
th

e
“w

h
en

”
ke

yw
or

d
in

di
ca

te
s

th
at

an
ev

en
t

ca
n

be
ge

n
er

at
ed

as
th

at
co

n
di

ti
on

be
co

m
es

tr
u

e.
A

si
gn

al
is

a
m

es
sa

ge
th

at
tr

ig
ge

rs
a

tr
an

si
ti

on
in

th
e

re
ce

iv
in

g
ob

je
ct

’s
st

at
e

ch
ar

t
di

ag
ra

m
.

E
ve

n
ts

,i
n

th
e

co
n

te
xt

of
St

at
e

M
ac

h
in

es
,a

re
oc

cu
rr

en
ce

s
th

at
ca

n
tr

ig
ge

r
a

tr
an

si
ti

on
fr

om
on

e
st

at
e

to
an

ot
h

er
.

(c
on

ti
nu

ed
)

205

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

TA
B

LE
4
.8

(c
on

ti
n

u
e

d
)

E
le

m
en

t
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

D
ef

er
re

d
E

ve
n

t
D

ef
er

re
d

ev
en

ts
ar

e
ev

en
ts

th
at

a
pa

rt
ic

u
la

r
st

at
e

m
ay

ch
oo

se
to

po
st

po
n

e
u

n
ti

la
st

at
e

th
at

is
m

or
e

ap
pr

op
ri

at
e

fo
r

h
an

dl
in

g
th

os
e

ev
en

ts
is

en
te

re
d.

D
ef

er
re

d
ev

en
ts

ar
e

in
di

ca
te

d
w

it
h

th
e

ke
yw

or
d

“d
ef

er
”

(“
/d

ef
er

”)
an

d
re

qu
ir

e
th

e
pr

es
en

ce
of

an
in

te
rn

al
ev

en
t

qu
eu

e.
T

h
es

e
ev

en
ts

ar
e

re
m

ov
ed

fr
om

th
e

qu
eu

e
w

h
en

an
ob

je
ct

th
at

do
es

n
ot

de
fe

r
th

em
is

en
te

re
d.

A
ct

io
n

A
ct

io
nS

ta
te

N
am

e
A

ct
io

n
s

ar
e

cl
as

se
s

th
at

de
fi

n
e

an
at

om
ic

ex
ec

u
ta

bl
e

pr
oc

ed
u

re
or

se
ri

es
of

st
at

em
en

ts
.A

n
ac

ti
on

,u
n

li
ke

an
ac

ti
vi

ty
,c

an
n

ot
be

in
te

rr
u

pt
ed

.T
h

ey
ar

e
as

so
ci

at
ed

w
it

h
tr

an
si

ti
on

s
an

d
ar

e
as

su
m

ed
to

ex
ec

u
te

qu
ic

kl
y

(a
lt

h
ou

gh
,o

f
co

u
rs

e,
sp

ee
d

is
re

la
ti

ve
).

U
si

n
g

th
e

de
fe

r
ke

yw
or

d,
ac

ti
on

s
ca

n
be

u
se

d
to

sh
ow

a
de

fe
rr

ed
ev

en
t.

N
or

m
al

ly
an

ev
en

t
is

ei
th

er
h

an
dl

ed
im

m
ed

ia
te

ly
or

ig
n

or
ed

by
a

sy
st

em
.S

om
et

im
es

,h
ow

ev
er

,y
ou

w
il

lw
an

t
to

be
ab

le
to

m
od

el
a

sy
st

em
w

it
h

th
e

ab
il

it
y

to
sa

ve
ev

en
ts

an
d

de
fe

r
th

ei
r

h
an

dl
in

g
u

n
ti

lt
h

e
ob

je
ct

en
te

rs
an

ot
h

er
st

at
e.

A
ct

io
n

s
th

at
cr

ea
te

an
in

st
an

ce
of

a
cl

as
s

ar
e

ca
ll

ed
cr

ea
te

ac
ti

on
s,

w
h

er
ea

s
ac

ti
on

s
th

at
de

st
ro

y
an

in
st

an
ce

of
a

cl
as

s
ar

e
ca

ll
ed

de
st

ro
y

ac
ti

on
s.

N
ei

th
er

cr
ea

te
n

or
de

st
ro

y
ac

ti
on

s
ca

n
h

av
e

a
ta

rg
et

ob
je

ct
.R

et
u

rn
ac

ti
on

s
re

tu
rn

ei
th

er
a

si
n

gl
e

va
lu

e
or

a
se

t
of

va
lu

es
to

th
e

ca
ll

er
.T

er
m

in
at

e
ac

ti
on

s
ca

u
se

ob
je

ct
s

to
se

lf
-d

es
tr

u
ct

.T
er

m
in

at
e

ac
ti

on
s

ca
n

n
ot

ta
ke

ar
gu

m
en

ts
.L

oc
al

in
vo

ca
ti

on
ac

ti
on

s
ar

e
ac

ti
on

s
th

at
oc

cu
r

w
it

h
in

a
st

at
e

an
d

th
at

do
n

ot
ge

n
er

at
e

a
ca

ll
or

si
gn

al
ev

en
t.

E
xc

ep
ti

on
ac

ti
on

s
in

di
ca

te
th

at
an

er
ro

r
oc

cu
rr

ed
du

ri
n

g
ex

ec
u

ti
on

.I
n

th
e

ca
se

of
an

ex
ce

pt
io

n
ac

ti
on

,t
h

e
se

n
de

r
st

op
s

ex
ec

u
ti

on
an

d
tr

an
sf

er
s

co
n

tr
ol

to
th

e
ex

ce
pt

io
n

’s
re

ce
iv

er
.T

h
e

re
ce

iv
er

is
de

te
rm

in
ed

by
th

e
se

qu
en

ce
of

in
te

ra
ct

io
n

s
du

ri
n

g
ex

ec
u

ti
on

,r
at

h
er

th
an

by
an

ex
pl

ic
it

sp
ec

ifi
ca

ti
on

.

206

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

A
ct

io
n

s
m

ay
sp

ec
if

y
a

co
m

m
a-

se
pa

ra
te

d
li

st
of

ac
ti

on
cl

au
se

s
to

be
ex

ec
u

te
d

se
qu

en
ti

al
ly

,b
u

t
n

ot
at

om
ic

al
ly

.
A

ct
io

n
s

ar
e

co
m

pu
ta

ti
on

s
w

it
h

tw
o

m
aj

or
re

qu
ir

em
en

ts
.F

ir
st

,t
h

ey
ar

e
at

om
ic

,
m

ea
n

in
g

th
at

th
ey

ca
n

n
ot

be
in

te
rr

u
pt

ed
.S

ec
on

d,
th

ey
ar

e
ex

pe
ct

ed
to

be
ex

ec
u

te
d

in
a

sh
or

t
am

ou
n

t
of

ti
m

e.
A

ct
io

n
s

re
su

lt
in

ei
th

er
a

ch
an

ge
of

st
at

e
or

a
re

tu
rn

va
lu

e.
T

h
er

e
ar

e
sp

ec
ia

la
ct

io
n

s
th

at
ar

e
sp

ec
ifi

ed
fo

r
st

at
es

,c
al

le
d

en
tr

y
an

d
ex

it
ac

ti
on

s.
T

h
es

e
ar

e
ex

ec
u

te
d

w
h

en
a

st
at

e
is

en
te

re
d

or
ex

it
ed

,
re

sp
ec

ti
ve

ly
,a

n
d

ar
e

sp
ec

ifi
ed

w
it

h
in

th
e

st
at

e
bo

x
w

it
h

th
e

pr
efi

x
en

tr
y/

fo
r

an
en

tr
y

ac
ti

on
an

d
ex

it
/f

or
an

ex
it

ac
ti

on
.F

ol
lo

w
in

g
th

e
sl

as
h

of
ea

ch
is

th
e

n
am

e
of

th
e

ac
ti

on
to

be
ex

ec
u

te
d

in
th

os
e

ca
se

s.
T

h
es

e
ar

e
u

se
fu

lf
or

ca
se

s
in

w
h

ic
h

yo
u

al
w

ay
s

w
an

t
to

ex
ec

u
te

th
e

sa
m

e
ac

ti
on

u
po

n
en

te
ri

n
g

or
le

av
in

g
a

st
at

e
w

it
h

ou
t

re
ga

rd
to

th
e

tr
an

si
ti

on
th

at
to

ok
yo

u
to

th
e

st
at

e.
T

h
er

e
is

an
al

te
rn

at
iv

e
ap

pr
oa

ch
to

th
is

,a
s

w
el

l,
w

h
ic

h
is

th
at

,u
si

n
g

a
fl

at
St

at
e

M
ac

h
in

e,
yo

u
ca

n
sp

ec
if

y
th

es
e

ac
ti

on
s

on
ea

ch
tr

an
si

ti
on

th
at

en
te

rs
or

ex
it

s
a

st
at

e
de

pe
n

di
n

g
on

th
e

ty
pe

of
ac

ti
on

th
at

yo
u

ar
e

tr
yi

n
g

to
sp

ec
if

y.
A

lt
h

ou
gh

th
is

ap
pr

oa
ch

is
eq

u
iv

al
en

t
se

m
an

ti
ca

ll
y,

it
is

n
ot

re
co

m
m

en
de

d
as

it
is

co
m

pa
ra

ti
ve

ly
er

ro
r

pr
on

e,
re

qu
ir

in
g

yo
u

to
ch

an
ge

th
e

ac
ti

on
to

m
u

lt
ip

le
tr

an
si

ti
on

s,
as

w
el

la
s

to
ch

an
ge

m
u

lt
ip

le
tr

an
si

ti
on

s
sh

ou
ld

th
e

re
qu

ir
em

en
t

fo
r

or
th

e
sp

ec
ifi

ca
ti

on
of

th
e

ac
ti

on
ch

an
ge

.
U

n
le

ss
th

e
en

tr
y

or
ex

it
ac

ti
on

cr
ea

te
s

an
ob

je
ct

,t
h

ey
m

ay
n

ot
h

av
e

ar
gu

m
en

ts
,

n
or

m
ay

th
ey

h
av

e
gu

ar
d

co
n

di
ti

on
s.

A
ct

io
n

s
ar

e
at

om
ic

ex
ec

u
ti

on
s

th
at

ar
e

co
n

si
de

re
d

to
oc

cu
r

m
or

e
or

le
ss

in
st

an
ta

n
eo

u
sl

y.
A

ct
iv

it
y

A
ct

iv
ity

N
am

e
U

n
li

ke
ac

ti
on

s,
w

h
ic

h
ar

e
sh

or
t-

li
ve

d
at

om
ic

se
qu

en
ce

s
as

so
ci

at
ed

w
it

h
tr

an
si

ti
on

s,
ac

ti
vi

ti
es

ar
e

as
so

ci
at

ed
w

it
h

st
at

e
an

d
ar

e
ex

pe
ct

ed
to

ta
ke

lo
n

ge
r

th
an

an
ac

ti
on

.A
dd

it
io

n
al

ly
,a

ct
iv

it
ie

s
ar

e
n

on
at

om
ic

;t
h

at
is

,t
h

ey
ca

n
be

in
te

rr
u

pt
ed

.A
ct

iv
it

ie
s

co
n

si
st

of
a

se
qu

en
ce

of
op

er
at

io
n

s
an

d
ac

ti
on

s.
A

ct
iv

it
ie

s
m

ay
al

so
be

ex
pr

es
se

d
u

si
n

g
n

es
te

d
st

at
e

ch
ar

t
di

ag
ra

m
s.

(c
on

ti
nu

ed
)

207

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

TA
B

LE
4
.8

(c
on

ti
n

u
e

d
)

E
le

m
en

t
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

O
bj

ec
ts

in
a

pa
rt

ic
u

la
r

st
at

e
w

il
lg

en
er

al
ly

re
m

ai
n

id
le

,w
ai

ti
n

g
u

n
ti

la
n

ev
en

t
oc

cu
rs

th
at

tr
ig

ge
rs

th
em

to
do

ot
h

er
w

is
e.

T
h

er
e

ar
e

ca
se

s,
h

ow
ev

er
,w

h
er

e
yo

u
m

ay
w

is
h

to
m

od
el

a
st

at
e

du
ri

n
g

w
h

ic
h

an
ob

je
ct

pe
rf

or
m

s
a

pa
rt

ic
u

la
r

ac
ti

vi
ty

w
h

il
e

it
re

m
ai

n
s

in
th

at
st

at
e.

T
h

is
is

m
od

el
ed

w
it

h
a

do
/t

ra
n

si
ti

on
,

w
h

ic
h

sp
ec

ifi
es

an
ac

ti
vi

ty
th

at
th

e
ob

je
ct

pe
rf

or
m

s
u

n
ti

la
ft

er
th

e
st

at
e’s

en
tr

y
ac

ti
on

is
pe

rf
or

m
ed

,a
n

d
u

n
ti

la
n

ev
en

t
tr

ig
ge

rs
th

e
ob

je
ct

to
ch

an
ge

st
at

es
.T

h
e

ac
ti

vi
ty

sp
ec

ifi
ed

by
a

do
/t

ra
n

si
ti

on
m

ay
be

th
e

n
am

e
of

an
ot

h
er

St
at

e
M

ac
h

in
e,

or
it

m
ay

be
a

se
m

ic
ol

on
-d

el
im

it
ed

li
st

of
ac

ti
on

s
to

pe
rf

or
m

.A
lt

h
ou

gh
th

e
ac

ti
on

s
th

em
se

lv
es

ar
e

n
ot

in
te

rr
u

pt
ib

le
,i

f
th

e
st

at
e

w
it

h
an

on
go

in
g

ac
ti

vi
ty

is
a

su
bs

ta
te

,i
ts

su
pe

rs
ta

te
m

ay
h

an
dl

e
ev

en
ts

th
at

ca
u

se
it

s
st

at
e

to
ch

an
ge

.
G

u
ar

d
C

on
di

ti
on

[c
on

di
tio

n]
G

u
ar

d
co

n
di

ti
on

s
ar

e
co

n
di

ti
on

s
th

at
ar

e
sp

ec
ifi

ed
by

a
B

oo
le

an
ex

pr
es

si
on

en
cl

os
ed

in
sq

u
ar

e
br

ac
ke

ts
.T

h
is

co
n

di
ti

on
m

ay
in

cl
u

de
co

n
di

ti
on

s
re

la
te

d
to

th
e

ob
je

ct
’s

st
at

e.
G

u
ar

d
co

n
di

ti
on

s
in

di
ca

te
a

co
n

di
ti

on
th

at
m

u
st

be
sa

ti
sfi

ed
fo

r
a

tr
an

si
ti

on
to

be
fi

re
d;

th
ey

ar
e

n
ot

ev
al

u
at

ed
u

n
ti

lt
h

e
tr

an
si

ti
on

’s
tr

ig
ge

r
ev

en
t

h
as

oc
cu

rr
ed

.I
t

is
po

ss
ib

le
th

at
a

si
n

gl
e

so
u

rc
e

st
at

e
ca

n
h

av
e

m
u

lt
ip

le
tr

an
si

ti
on

s
w

it
h

th
e

sa
m

e
tr

ig
ge

r
ev

en
t

as
lo

n
g

as
th

es
e

tr
an

si
ti

on
s

h
av

e
m

u
tu

al
ly

ex
cl

u
si

ve
gu

ar
d

co
n

di
ti

on
s.

O
bj

ec
ts

S
om

eC
la

ss
In

st
an

ce
:C

la
ss

N
am

e
[S

om
eS

ta
te

]

O
bj

ec
ts

on
ly

re
m

ai
n

in
a

pa
rt

ic
u

la
r

st
at

e
fo

r
a

ce
rt

ai
n

pe
ri

od
of

ti
m

e
an

d
ca

n
be

in
m

an
y

di
ff

er
en

t
st

at
es

th
ro

u
gh

ou
t

th
e

co
u

rs
e

of
th

ei
r

li
fe

ti
m

es
.

O
bj

ec
ts

ar
e

m
od

el
ed

in
a

st
at

e
ch

ar
t

di
ag

ra
m

u
si

n
g

th
ei

r
st

an
da

rd
fo

rm
.A

n
ob

je
ct

ca
n

on
ly

h
av

e
on

e
cu

rr
en

t
st

at
e,

al
th

ou
gh

m
u

lt
ip

le
st

at
es

of
a

si
n

gl
e

ob
je

ct
ca

n
be

il
lu

st
ra

te
d

by
m

od
el

in
g

th
e

ob
je

ct
on

ce
fo

r
ea

ch
st

at
e

it
en

te
rs

.A
co

m
po

si
te

st
at

e,
th

at
is

,o
n

e
w

it
h

m
u

lt
ip

le
co

n
cu

rr
en

t
su

bs
ta

te
s,

de
te

rm
in

es
it

s
st

at
e

as
th

e
st

at
es

of
al

li
ts

pa
rt

s.
In

a
st

at
e

ch
ar

t
di

ag
ra

m
,o

bj
ec

ts
ca

n
be

sa
id

to
m

od
el

th
e

w
ay

in
w

h
ic

h
an

ob
je

ct
re

sp
on

ds
to

a
st

im
u

lu
s

fr
om

th
e

ou
ts

id
e.

A
n

ob
je

ct

208

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

ca
n

ch
an

ge
st

at
es

as
a

re
su

lt
of

an
ev

en
t

an
d

m
ay

pe
rf

or
m

bo
th

ac
ti

on
s

an
d

ac
ti

vi
ti

es
ei

th
er

w
it

h
in

or
w

h
il

e
ch

an
gi

n
g

st
at

es
.B

ef
or

e
an

ob
je

ct
is

de
st

ro
ye

d
it

al
so

h
as

a
fi

n
al

st
at

e.
P

se
u

do
-S

ta
te

s

H H
*

A
dd

it
io

n
al

ly
,a

st
at

e
m

ay
al

so
be

w
h

at
is

kn
ow

n
as

a
ps

eu
do

-s
ta

te
.P

se
u

do
-s

ta
te

s
h

av
e

n
o

st
at

e
va

ri
ab

le
s

an
d

n
o

ac
ti

vi
ti

es
,a

n
d

th
er

ef
or

e
th

ey
ar

e
n

ot
co

n
si

de
re

d
“f

u
ll

”
st

at
es

.T
h

er
e

ar
e

th
re

e
va

ri
et

ie
s

of
ps

eu
do

-s
ta

te
:i

n
it

ia
l,

fi
n

al
,a

n
d

h
is

to
ry

.
T

h
e

in
it

ia
lp

se
u

do
-s

ta
te

is
re

pr
es

en
te

d
by

a
sm

al
ls

ol
id

ci
rc

le
.T

h
e

fi
n

al
ps

eu
do

-s
ta

te
is

re
pr

es
en

te
d

by
a

ci
rc

le
su

rr
ou

n
di

n
g

a
sm

al
ls

ol
id

ci
rc

le
.T

h
er

e
ar

e
tw

o
ty

pe
s

of
h

is
to

ry
:d

ee
p

an
d

sh
al

lo
w

.S
h

al
lo

w
h

is
to

ry
is

in
di

ca
te

d
by

an
H

en
cl

os
ed

in
a

ci
rc

le
an

d
de

ep
h

is
to

ry
in

in
di

ca
te

d
in

th
e

sa
m

e
w

ay
,e

xc
ep

t
it

h
as

a
m

u
lt

ip
li

ci
ty

si
gn

fo
ll

ow
in

g
th

e
H

.

E
ve

n
t

L
ab

el
s

T
h

e
tr

an
si

ti
on

la
be

lh
as

th
re

e
pa

rt
s,

al
lo

f
w

h
ic

h
ar

e
op

ti
on

al
.T

h
e

tr
an

si
ti

on
la

be
l

ta
ke

s
th

e
fo

ll
ow

in
g

fo
rm

:
E

ve
n

t[
G

u
ar

d]
/A

ct
io

n
Yo

u
ca

n
ad

d
de

ta
il

s
to

it
,l

ik
e

a
tr

ig
ge

r
ev

en
t

(a
n

ev
en

t
th

at
ca

u
se

s
a

tr
an

si
ti

on
to

oc
cu

r)
.T

h
is

sh
ou

ld
be

w
ri

tt
en

n
ea

r
th

e
tr

an
si

ti
on

li
n

e,
u

si
n

g
a

fo
rw

ar
d

sl
as

h
(/

)
to

se
pa

ra
te

a
tr

ig
ge

ri
n

g
ev

en
t

fr
om

an
ac

ti
on

.
T

h
e

ev
en

t
po

rt
io

n
of

th
e

la
be

li
n

di
ca

te
s

w
h

ic
h

ev
en

t
ca

u
se

s
th

e
tr

an
si

ti
on

to
fi

re
.

P
ar

am
et

er
s

fr
om

th
at

ev
en

t
ar

e
av

ai
la

bl
e

to
bo

th
th

e
ac

ti
on

on
th

e
tr

an
si

ti
on

an
d

th
e

ac
ti

on
s

in
th

e
su

bs
eq

u
en

ts
ta

te
.A

n
ev

en
tc

an
ca

u
se

a
tr

an
si

ti
on

w
it

h
ou

t
an

as
so

ci
at

ed
ac

ti
on

.A
tr

an
si

ti
on

ca
n

al
so

be
ca

u
se

d
by

a
st

at
e

co
m

pl
et

in
g

an
ac

ti
vi

ty
ra

th
er

th
an

an
ev

en
t.

T
h

is
is

kn
ow

n
as

a
“t

ri
gg

er
le

ss
tr

an
si

ti
on

.”

(c
on

ti
nu

ed
)

209

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

TA
B

LE
4
.8

(c
on

ti
n

u
e

d
)

E
le

m
en

t
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

Tr
an

si
ti

on
L

ab
el

T
h

e
tr

an
si

ti
on

la
be

lm
ay

ad
di

ti
on

al
ly

sp
ec

if
y

a
gu

ar
d

co
n

di
ti

on
in

sq
u

ar
e

br
ac

ke
ts

.A
gu

ar
d

co
n

di
ti

on
is

a
co

n
di

ti
on

th
at

w
il

lr
et

u
rn

ei
th

er
tr

u
e

or
fa

ls
e.

O
n

ly
if

th
e

gu
ar

d
co

n
di

ti
on

re
so

lv
es

to
tr

u
e

w
il

lt
h

e
tr

an
si

ti
on

fi
re

.Y
ou

sh
ou

ld
en

su
re

th
at

yo
u

r
gu

ar
d

co
n

di
ti

on
s

ar
e

m
u

tu
al

ly
ex

cl
u

si
ve

,s
in

ce
on

ly
a

si
n

gl
e

tr
an

si
ti

on
ca

n
be

ta
ke

n
ou

t
of

a
st

at
e.

T
h

e
tr

an
si

ti
on

la
be

lm
ay

al
so

h
av

e
as

it
s

th
ir

d
pa

rt
a

fo
rw

ar
d

sl
as

h
,w

h
ic

h
is

fo
ll

ow
ed

by
an

ac
ti

on
ex

pr
es

si
on

or
se

qu
en

ce
th

at
w

il
ls

h
ow

th
e

ac
ti

on
s

re
su

lt
an

t
fr

om
th

e
tr

an
si

ti
on

’s
fi

ri
n

g.
W

h
en

a
tr

an
si

ti
on

h
as

n
o

ev
en

t
w

it
h

in
it

s
la

be
l,

th
at

m
ea

n
s

th
at

th
e

tr
an

si
ti

on
oc

cu
rs

as
so

on
as

an
y

ac
ti

vi
ty

as
so

ci
at

ed
w

it
h

th
e

gi
ve

n
st

at
e

is
co

m
pl

et
ed

.A
n

in
te

rn
al

st
at

e
tr

an
si

ti
on

is
a

tr
an

si
ti

on
th

at
oc

cu
rs

in
re

sp
on

se
to

ev
en

ts
bu

t
do

es
n

ot
tr

ig
ge

r
a

st
at

e
ch

an
ge

.A
s

yo
u

m
ig

h
t

as
su

m
e,

in
te

rn
al

st
at

e
tr

an
si

ti
on

s
do

n
ot

in
vo

ke
th

e
en

tr
y

or
ex

it
ac

ti
on

s
of

th
e

st
at

e.

210

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.4 The Behavioral View 211

circle. States are drawn as rectangles that have rounded corners. States can be
either active or inactive. A state is entered when a transition fires. It is at this point
that the state is considered to be active. When a transition fires to exit a state, the
state becomes inactive. A state may be the source of an outgoing transition or the
target of an incoming transition.

A state may have provided an optional name compartment, which contains the
name of that state. States that do not provide a name compartment are anonymous.
A state may provide an additional internal compartment where it specifies its
internal transitions. If a state provides this compartment it should be labeled as
such. Internal transitions specify actions and activities that are performed while
an object is in that state and that do not trigger a state change. Internal transitions
do not trigger the entry and exit actions of the state.

A state may specify nested State Machines of any number. Nested State Ma-
chines are state chart diagrams that are nested within a particular state, each one
corresponding to an action. These can be modeled by tiling the nested state dia-
grams within the state. A state that contains one or more nested State Machines
is known as a composite state. In relation to the nested states, or substates, the
composite state is known as the superstate. Nested states may be referred to using
pathnames, which follow the syntax of the class pathname, except that instead of
specifying a package structure, they specify the states in which they are nested,
to the composite state, delimited by pairs of colons (::). A state may have addi-
tional compartments to describe additional information pertaining to that state,
although they do not typically.

The state element can be subdivided into three sections to show details of the
state. The top third of the state element contains its name. This must be included,
but the other two sections are optional. The middle third of the state element
contains state variables. This can include things like timers and counters, which
show state-related information. The lower third of the state box contains the
activities of a particular state. These are the events and actions that occur during
this state. Typically, activities are divided into three types. First, there are entry
activities that are executed upon entering the state. Next, there are do activities
that occur while in the state. Finally, there are exit activities that are executed upon
leaving the state.

An activity can be specified within a state using the form do/activity, where
activity specifies the name of the particular activity being represented. An action
that does not cause a transition from one state to another is known as an internal
transition. These can be specified within a state with text in the form of eventName/
actionName, where eventName is the event that caused the action to be executed
and where actionName specifies the action that is executed in response to the event.
States can also contain nested State Machines. Substates are changes of state within
a state. There are two distinct varieties: sequential and concurrent. Sequential
substates occur one after the other. Concurrent substates proceed simultaneously.

A dotted line is used to separate concurrent substates. A state with concurrent
substates is known as a composite state. The nested state chart diagrams in a state
illustrate the activities of the state. States may be simple, with no nesting, they
may be top-level, not nested themselves, but containing nested states, or they

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

212 INTRODUCTION TO UML

may be substates. History pseudo-states are represented by the history symbol,
which is a letter H enclosed by a circle. The history state signifies that a composite
state remembers the state of its substate when the object transitions out of that
composite state. A history state that remembers states through multiple levels of
nesting is called deep and is represented by an H followed by an *, enclosed in
a circle. The standard history marker is shallow; that is, it only remembers the
highest nested substate.

A self-transition is a transition in which the source state and the target state are
the same state. Unlike with an internal state transition, however, the entry and exit
actions of the state are executed with a self-transition. Completion, or automatic,
transitions are transitions that can occur without an event trigger. The completion
transition fires automatically upon the completion of the actions within a state.

When transitions are not mutually exclusive, they may conflict with one an-
other. In the case of a conflict, it is necessary for priorities to be established to
resolve the conflict, with one exception. The transitions of substates always have
a higher priority than those of their containing states. Otherwise, however, it is
necessary to specify the priority of transitions when ambiguity exists. A transi-
tion may specify its sending time as well as its receiving time. The sending and
receiving times are formal names that can be in expressions used to specify con-
straints. Compound transitions are transitions that contain several simple transi-
tions, which are grouped using branching, forks, and joins. Transitions may also
be a part of a branch or a decision. A decision uses guard conditions to indicate
the basis for choosing potential transitions.

Transitions may point toward composite states, which indicates that the state’s
initial state, as well as the initial state of all of its substates, should be entered.
Transitions may also come out of composite states. In this case, the transition
applies not only to the top-level state but also to its nested states. In other words,
transitions are inherited by nested states. Inherited transitions may be overridden
by a nested transition with an identical trigger event. When a composite state is
exited, its nested states exit actions are triggered and, when they complete, the
object transitions into another state. Transitions may be drawn directly to a nested
state at any level. The entry actions for all states that are entered as a result of
this transition are fired when the transition occurs. A transition is a relationship
between two different states that indicates that when an event triggers the first state
to change states, the object to which these states apply will enter the subsequent
state.

The state of the object before a particular transition fires is the source state of that
transition, and the subsequent state is called its target state. The event that causes
the transition to occur is known as a trigger event, but the transition only fires
assuming that its guard conditions are met. Guard conditions are preconditions of
a transition and indicate that the transition may only fire when those conditions
are met. In a case where a trigger event occurs but the transition’s guard condition
is false and no other transitions are applicable to that event, the event is simply lost.

There can be many sources for a given transition, as well as multiple targets.
Actions that are handled within a state and that do not cause a state change are

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.4 The Behavioral View 213

known as internal transitions. Although they are conceptually similar to self-
transitions, that is, transitions where the source and target states are the same
state, they are distinct. The major difference between self-transitions and internal
transitions is that self-transitions cause a state change, and thus fire the state’s entry
and exit actions. Internal transitions, in contrast, do not cause a state change and
thus do not invoke the state’s entry and exit actions. Internal transitions may have
events that specify parameters and guard conditions. They can be considered to
be interrupts.

Transitions between states can also be triggerless, which means that there is
no event required to change from one state to the next. Triggerless transitions,
which are also known as completion transitions, generally belong to states that
perform some activity and are triggered implicitly when that activity completes.
Event triggers can be polymorphic.

Activity Diagrams
An activity diagram illustrates the steps involved in an operation or process. Activ-
ity diagrams model the focus of control in an interaction and the specification of a
behavior. Activity diagrams are similar to flowcharts, where the steps of a flowchart
are roughly equivalent to the activities represented in an activity diagram. Activity
diagrams can also be seen as a simplified view of what occurs during a process.
Activity diagrams describe the activities that a set of objects engage in and can
be associated with classes, methods, and use cases. They illustrate the activities
and actions that an object engages in to complete a behavior. In contrast to state
diagrams, which show behavior in response to external events, activity diagrams
describe behavior that is the result of internal processing.

Activity diagrams are an extension of state chart diagrams, where most if not
all of the states are activity states. They are triggerless; that is, they happen uncon-
ditionally. Activity diagrams have both an initial state and a final state. Activity
diagrams borrow much of their terminology from state chart diagrams. Activity
diagrams are typically used for business modeling and to validate use cases. Ac-
tivity diagrams show the dynamic aspects of a system, showing a system’s flow of
control from activity to activity, or the flow of an object as it moves from state to
state. Whereas interaction diagrams emphasize the flow of control from one object
to the next, activity diagrams illustrate an object’s flow of control from activity to
activity and the activities that take place between objects.

Whereas interaction diagram illustrates objects and the messages that they pass
to one another, activity diagrams focus on the operations that are passed among
objects. In this regard, they are similar to Pert charts. Activity diagrams are partic-
ularly useful for constructing executable systems via forward information because
the flow of control is so similar to a program’s flow of execution. Activity diagrams
help to model a process in numerous ways. First, they help with the initial visual-
ization of the process, and the specification of its parts and their flow from one to
the next. Activity diagrams also assist in creating and documenting the process.
Activity diagrams are essentially flow charts, illustrating an activity that progresses
over time.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

214 INTRODUCTION TO UML

The most common elements in an activity diagram are activity states, action
states, objects, and transitions. Additionally, they may contain forks and joins,
branches, and states, both simple and composite. As is true for UML’s other dia-
grams, activity diagrams may also contain notes and constraints.

Activity diagrams are primarily used to model workflow and to model the details
of an operation. They can be attached to use cases to model a scenario of that use
case or they can be attached to collaborations to expand upon the dynamic aspects
of a group of objects. They can additionally be used to elucidate the behaviors
of classes, interfaces, nodes, and components. When modeling workflow, it is
useful to consider object flow, or the manner in which objects will participate.
To determine the boundaries of the workflow, it is helpful to identify both the
preconditions and postconditions of the workflow’s initial and final states. Activity
diagrams are useful for their flowchart-like functionality in modeling operations
and provide additional capabilities that are not found in flow charts, like the ability
to model forks, joins, and branches. Activity diagrams focusing on operations
typically focus on the details of the computation. The context of such a diagram
typically includes any parameters passed into the operation, as well as objects local
to it.

Activity diagrams, in addition to being useful for modeling workflow and op-
erations, can be used to model any sequence of activity, including procedures for
a given scenario, the software development process, or any other scenario. Al-
though there are many other ways of modeling a flow of activities outside of UML,
including flow charts, activity diagrams are particularly useful in that they are tied
semantically to the various elements, other diagrams, and specifications of UML.
This allows the activity diagram to exist in a context of other models, allowing,
for example, an operation referenced by an action to be type checked against its
target classes or object.

When deciding what to model in an activity diagram, it is useful to start with
operations that are difficult to understand just by examining the code that defines
them. In other words, operations that are complex or have detailed algorithms that
are not apparent on first glance are good candidates for activity diagrams. You will
typically use several activity diagrams to model a single operation or workflow. As
such, you should avoid the temptation to encompass all facets of an operation or
workflow into a single diagram. Rather, you should focus only on those elements
that require illumination and leave out those that are easily understood without
assistance from a diagram.

Activity diagram elements are listed in Table 4.9.
An activity diagram can illustrate object flows or an object’s participation in

the flow of control. To illustrate an object flow in an activity diagram, you add
the object to the diagram with a dependency relationship with the activity or
transition that creates, destroys, or modifies the object. When showing an object’s
participation in an activity, you can provide additional information about that
object, such as its state, changes to the values of its attributes, and its role. As in
an object diagram, you specify the object’s state in square brackets directly under
its name and the values of its attributes are specified in the compartment below
the object’s name.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

TA
B

LE
4
.9

.
A

ct
iv

it
y

D
ia

gr
am

E
le

m
e
nt

s

E
le

m
en

t
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

A
ct

iv
it

y
A

ct
iv

ity
N

am
e

A
n

ac
ti

vi
ty

is
a

st
at

e
du

ri
n

g
w

h
ic

h
so

m
et

h
in

g
oc

cu
rs

.T
h

is
co

u
ld

be
an

ac
tu

al
ac

ti
vi

ty
,l

ik
e

bu
yi

n
g

a
bo

ok
,o

r
th

e
ex

ec
u

ti
on

of
a

“s
of

tw
ar

e
ro

u
ti

n
e.

”
Ju

st
as

a
st

at
e

ch
ar

t
di

ag
ra

m
ca

n
be

br
ok

en
in

to
su

pe
rs

ta
te

s
an

d
su

bs
ta

te
s,

an
ac

ti
vi

ty
di

ag
ra

m
ca

n
be

br
ok

en
in

to
su

ba
ct

iv
it

ie
s.

A
ct

iv
it

ie
s

ar
e

n
on

at
om

ic
,m

ea
n

in
g

th
ey

ca
n

be
in

te
rr

u
pt

ed
,w

it
h

on
go

in
g

ex
ec

u
ti

on
s

oc
cu

rr
in

g
w

it
h

in
a

St
at

e
M

ac
h

in
e.

A
ct

iv
it

ie
s

re
su

lt
in

an
ac

ti
on

,w
h

ic
h

is
an

at
om

ic
,o

r
n

on
in

te
rr

u
pt

ib
le

,e
xe

cu
ta

bl
e

co
m

pu
ta

ti
on

re
su

lt
in

g
in

a
ch

an
ge

of
st

at
e

or
re

tu
rn

va
lu

e.
St

ar
t

P
oi

n
t

T
h

e
st

ar
ti

n
g

po
in

t
of

an
ac

ti
vi

ty
di

ag
ra

m
is

re
pr

es
en

te
d

by
a

so
li

d
ci

rc
le

.I
t

in
di

ca
te

s
th

e
po

in
t

at
w

h
ic

h
th

e
ac

ti
vi

ty
re

pr
es

en
te

d
in

th
e

di
ag

ra
m

be
gi

n
s.

E
n

d
P

oi
n

t
T

h
e

en
d

po
in

t
of

an
ac

ti
vi

ty
di

ag
ra

m
is

re
pr

es
en

te
d

by
a

so
li

d
ci

rc
le

en
cl

os
ed

in
an

ot
h

er
ci

rc
le

.I
t

in
di

ca
te

s
th

e
po

in
t

at
w

h
ic

h
th

e
ac

ti
vi

ty
re

pr
es

en
te

d
in

th
e

di
ag

ra
m

te
rm

in
at

es
.

D
ec

is
io

n
A

de
ci

si
on

is
w

h
en

th
er

e
is

a
po

in
t

to
be

m
ad

e
th

at
de

te
rm

in
es

th
e

fl
ow

of
ac

ti
vi

ty
.I

t
is

re
pr

es
en

te
d

ex
pl

ic
it

ly
by

a
di

am
on

d
fr

om
w

h
ic

h
tw

o
se

pa
ra

te
pa

th
s

pr
oc

ee
d,

or
m

or
e

si
m

pl
y

as
tw

o
se

pa
ra

te
pa

th
s

co
m

in
g

ou
t

of
an

ac
ti

vi
ty

.

Si
gn

al
s

E
ve

nt
/A

ct
io

n
Si

gn
al

s
ar

e
ob

je
ct

s
th

at
ar

e
se

n
t

by
on

e
ob

je
ct

an
d

re
ce

iv
ed

by
an

ot
h

er
.L

ik
e

cl
as

se
s,

si
gn

al
s

ca
n

h
av

e
in

st
an

ce
s,

ge
n

er
al

iz
at

io
n

re
la

ti
on

sh
ip

s,
op

er
at

io
n

s,
an

d
at

tr
ib

u
te

s.
T

h
e

at
tr

ib
u

te
s

of
a

si
gn

al
ar

e
th

e
pa

ra
m

et
er

s
pa

ss
ed

to
it

.
C

on
cu

rr
en

t
P

at
h

s,
F

or
ks

,
an

d
Jo

in
s

C
on

cu
rr

en
t

pa
th

s
oc

cu
r

w
h

en
a

tr
an

si
ti

on
fo

rk
s

in
to

se
pa

ra
te

pa
th

s
th

at
ru

n
co

n
cu

rr
en

tl
y.

T
h

is
is

m
od

el
ed

by
a

bo
ld

li
n

e
th

at
is

po
si

ti
on

ed
pe

rp
en

di
cu

la
r

to
th

e
tr

an
si

ti
on

,w
it

h
th

e
m

u
lt

ip
le

pa
th

s
ex

te
n

di
n

g
fr

om
it

.A
m

er
ge

is
re

pr
es

en
te

d
by

m
u

lt
ip

le
pa

th
s

te
rm

in
at

in
g

at
an

ot
h

er
pe

rp
en

di
cu

la
r

li
n

e.
F

u
rt

h
er

ex
ec

u
ti

on
oc

cu
rs

be
yo

n
d

th
at

po
in

t
u

n
ti

le
ac

h
of

th
e

co
n

cu
rr

en
t

pa
th

s
h

av
e

re
ac

h
ed

th
e

m
er

gi
n

g
po

in
t.

A
n

ac
ti

vi
ty

di
ag

ra
m

sh
ow

s
th

e
or

de
r

in
w

h
ic

h
th

in
gs

ar
e

do
n

e.
U

n
li

ke
a

fl
ow

ch
ar

t,
h

ow
ev

er
,i

t
ca

n
h

an
dl

e
pa

ra
ll

el
pr

oc
es

se
s.

T
h

es
e

pa
ra

ll
el

pr
oc

es
se

s
ar

e
sh

ow
n

by
fo

rk
s

an
d

jo
in

s.
A

fo
rk

(c
on

ti
nu

ed
)

215

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

TA
B

LE
4
.9

(c
on

ti
n

u
e

d
)

E
le

m
en

t
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

h
as

on
e

in
co

m
in

g
tr

an
si

ti
on

an
d

se
ve

ra
lo

u
tg

oi
n

g
tr

an
si

ti
on

s.
W

h
en

th
e

in
co

m
in

g
tr

an
si

ti
on

is
tr

ig
ge

re
d,

th
e

ou
tg

oi
n

g
tr

an
si

ti
on

s
ar

e
ta

ke
n

in
pa

ra
ll

el
.T

h
e

se
qu

en
ce

of
ex

ec
u

ti
on

s
am

on
g

th
e

pa
ra

ll
el

tr
an

si
ti

on
s

is
u

n
im

po
rt

an
t.

T
h

ey
m

ay
be

co
m

pl
et

ed
in

an
y

or
de

r,
or

in
su

bp
ar

ts
,

w
it

h
m

ix
ed

or
de

r.
A

jo
in

pr
ov

id
es

sy
n

ch
ro

n
iz

at
io

n
fo

r
pa

ra
ll

el
pr

oc
es

se
s;

th
er

ef
or

e
th

er
e

sh
ou

ld
be

a
jo

in
fo

r
ea

ch
fo

rk
.

F
or

ks
ca

n
th

em
se

lv
es

fo
rk

,b
u

t
th

ey
m

u
st

jo
in

be
fo

re
th

e
ro

ot
fo

rk
jo

in
s.

H
ow

ev
er

,i
f

a
fi

rs
t

jo
in

pr
oc

ee
ds

di
re

ct
ly

to
a

se
co

n
d

jo
in

,t
h

e
fi

rs
t

jo
in

in
th

at
se

qu
en

ce
ca

n
be

om
it

te
d

to
si

m
pl

if
y

th
e

di
ag

ra
m

.T
h

e
sa

m
e

co
n

ce
pt

ap
pl

ie
s

to
fo

rk
s.

T
h

er
e

is
an

ad
va

n
ce

d
co

n
st

ru
ct

ca
ll

ed
th

e
sy

n
c

st
at

e
th

at
al

lo
w

s
fo

r
sy

n
ch

ro
n

iz
at

io
n

w
h

er
e

th
e

1:
1

fo
rk

:jo
in

ra
ti

o
w

ou
ld

pr
ev

en
t

it
ot

h
er

w
is

e.
A

ll
in

co
m

in
g

st
at

es
on

a
jo

in
m

u
st

h
av

e
fi

n
is

h
ed

be
fo

re
a

jo
in

ca
n

be
ta

ke
n

,w
it

h
th

e
ex

ce
pt

io
n

be
in

g
th

at
yo

u
ca

n
ad

d
a

co
n

di
ti

on
to

a
th

re
ad

co
m

in
g

ou
t

of
a

fo
rk

.I
f

th
at

co
n

di
ti

on
is

fa
ls

e,
th

en
th

e
th

re
ad

is
co

n
si

de
re

d
to

be
co

m
pl

et
e

in
te

rm
s

of
th

e
jo

in
.F

or
ks

an
d

jo
in

s
ca

n
be

u
se

d
w

it
h

in
an

ac
ti

vi
ty

di
ag

ra
m

to
m

od
el

co
n

cu
rr

en
t

fl
ow

s
of

ac
ti

vi
ty

.A
sy

n
ch

ro
n

iz
at

io
n

ba
r,

w
h

ic
h

is
m

od
el

ed
as

a
th

ic
k

h
or

iz
on

ta
ll

in
e,

is
u

se
d

to
sp

ec
if

y
bo

th
fo

rk
s

an
d

jo
in

s.
A

fo
rk

—
w

h
en

a
si

n
gl

e
fl

ow
of

co
n

tr
ol

sp
li

ts
in

to
tw

o
or

m
or

e
co

n
cu

rr
en

t
fl

ow
s

of
co

n
tr

ol
—

is
sp

ec
ifi

ed
by

a
sy

n
ch

ro
n

iz
at

io
n

ba
r

w
it

h
a

si
n

gl
e

in
co

m
in

g
tr

an
si

ti
on

an
d

m
u

lt
ip

le
ou

tg
oi

n
g

tr
an

si
ti

on
s.

E
ac

h
ou

tg
oi

n
g

tr
an

si
ti

on
re

pr
es

en
ts

a
si

n
gl

e
fl

ow
of

co
n

tr
ol

.A
jo

in
,w

h
ic

h
re

pr
es

en
ts

th
e

sy
n

ch
ro

n
iz

at
io

n
of

tw
o

or
m

or
e

co
n

cu
rr

en
t

fl
ow

s
of

co
n

tr
ol

in
to

a
si

n
gl

e
fl

ow
of

co
n

tr
ol

,i
s

sp
ec

ifi
ed

by
a

sy
n

ch
ro

n
iz

at
io

n
ba

r
w

it
h

tw
o

or
m

or
e

in
co

m
in

g
tr

an
si

ti
on

s
an

d
a

si
n

gl
e

ou
tg

oi
n

g
tr

an
si

ti
on

.
B

ec
au

se
a

jo
in

is
th

e
sy

n
ch

ro
n

iz
at

io
n

po
in

t
fo

r
m

u
lt

ip
le

co
n

cu
rr

en
t

fl
ow

s
of

co
n

tr
ol

,e
xe

cu
ti

on
su

bs
eq

u
en

t
to

th
e

jo
in

do
es

n
ot

pr
oc

ee
d

u
n

ti
la

ll
in

co
m

in
g

fl
ow

s
of

co
n

tr
ol

re
ac

h
th

e
jo

in
.

E
ve

ry
fo

rk
re

qu
ir

es
a

co
rr

es
po

n
di

n
g

jo
in

,w
h

er
e

th
e

n
u

m
be

r
of

in
co

m
in

g
tr

an
si

ti
on

s
on

th
e

jo
in

m
at

ch
es

th
e

n
u

m
be

r
of

ou
tg

oi
n

g
tr

an
si

ti
on

s
on

th
e

fo
rk

.

216

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

A
ct

iv
it

ie
s

w
it

h
in

co
n

cu
rr

en
t

fl
ow

s
of

co
n

tr
ol

ar
e

pe
rm

it
te

d
to

co
m

m
u

n
ic

at
e

w
it

h
ac

ti
vi

ti
es

in
ot

h
er

si
m

u
lt

an
eo

u
s

fl
ow

s.
T

h
ey

do
th

is
by

se
n

di
n

g
si

gn
al

s
to

on
e

an
ot

h
er

.Y
ou

ca
n

al
te

rn
at

iv
el

y
m

od
el

th
e

pr
oc

es
s

of
se

n
di

n
g

an
d

re
ce

iv
in

g
th

es
e

si
gn

al
s

in
su

bm
ac

h
in

es
.

B
ra

n
ch

an
d

M
er

ge
A

br
an

ch
is

a
si

n
gl

e
in

co
m

in
g

tr
an

si
ti

on
w

it
h

se
ve

ra
lg

u
ar

de
d

ou
tg

oi
n

g
tr

an
si

ti
on

s.
B

ec
au

se
on

ly
on

e
ou

tg
oi

n
g

tr
an

si
ti

on
ca

n
be

ta
ke

n
,i

t
is

im
po

rt
an

t
th

at
th

e
gu

ar
ds

ar
e

m
u

tu
al

ly
ex

cl
u

si
ve

.T
h

e
de

fa
u

lt
tr

an
si

ti
on

,w
h

ic
h

is
ta

ke
n

if
th

e
ot

h
er

s
ar

e
fa

ls
e,

is
la

be
le

d
E

L
SE

.
A

m
er

ge
h

as
m

u
lt

ip
le

in
pu

t
tr

an
si

ti
on

s
an

d
a

si
n

gl
e

ou
tp

u
t.

A
di

am
on

d
sh

ow
s

a
m

er
ge

an
d

m
ar

ks
th

e
en

d
of

co
n

di
ti

on
al

be
h

av
io

r
st

ar
te

d
by

a
br

an
ch

.A
lt

h
ou

gh
th

e
di

am
on

d
sy

m
bo

li
s

op
ti

on
al

,i
t

h
el

ps
cl

ar
if

y
th

e
di

ag
ra

m
.

B
ra

n
ch

in
g

is
th

e
m

ea
n

s
of

re
pr

es
en

ti
n

g
an

if
st

at
em

en
t

in
an

ac
ti

vi
ty

di
ag

ra
m

.A
br

an
ch

is
sp

ec
ifi

ed
by

a
di

am
on

d
an

d
is

u
se

d
to

sp
ec

if
y

se
pa

ra
te

pa
th

s
th

at
ca

n
be

ta
ke

n
,d

ep
en

di
n

g
on

th
e

va
lu

e
of

a
B

oo
le

an
co

n
di

ti
on

sp
ec

ifi
ed

on
ea

ch
tr

an
si

ti
on

co
m

in
g

ou
t

of
th

e
br

an
ch

.
B

ec
au

se
on

ly
on

e
tr

an
si

ti
on

ca
n

be
ta

ke
n

ou
t

of
a

br
an

ch
,t

h
e

B
oo

le
an

co
n

di
ti

on
s

fo
r

ea
ch

tr
an

si
ti

on
pr

oc
ee

di
n

g
fr

om
th

e
br

an
ch

m
u

st
be

m
u

tu
al

ly
ex

cl
u

si
ve

.B
ra

n
ch

es
m

ay
h

av
e

on
ly

on
e

in
co

m
in

g
tr

an
si

ti
on

,a
n

d
th

ey
m

u
st

h
av

e
at

le
as

t
tw

o
ou

tg
oi

n
g

tr
an

si
ti

on
s.

T
h

e
ke

yw
or

d
el

se
ca

n
be

u
se

d
to

sp
ec

if
y

th
e

de
fa

u
lt

tr
an

si
ti

on
ou

t
of

a
br

an
ch

w
h

en
n

on
e

of
th

e
ot

h
er

co
n

di
ti

on
s

ar
e

tr
u

e.
To

cr
ea

te
an

it
er

at
io

n
fr

om
a

br
an

ch
,y

ou
w

ou
ld

be
gi

n
w

it
h

an
ac

ti
on

st
at

e
sp

ec
if

yi
n

g
a

va
lu

e
fo

r
an

it
er

at
or

,f
ol

lo
w

ed
by

an
ot

h
er

re
sp

on
si

bl
e

fo
r

in
cr

em
en

ti
n

g
th

at
it

er
at

or
,a

n
d

fi
n

al
ly

,a
br

an
ch

to
ev

al
u

at
e

w
h

en
th

at
pr

oc
es

s
is

co
m

pl
et

ed
.

Sw
im

la
n

e
(R

ep
re

se
n

te
d

by
tw

o
ve

rt
ic

al
li

n
es

th
at

ru
n

u
p

an
d

do
w

n
on

th
e

di
ag

ra
m

an
d

en
cl

os
e

a
se

t
of

ac
ti

vi
ti

es
)

Sw
im

la
n

es
ca

n
be

u
se

d
to

ex
pa

n
d

an
ac

ti
vi

ty
di

ag
ra

m
to

sh
ow

re
sp

on
si

bi
li

ty
fo

r
th

e
va

ri
ou

s
ac

ti
vi

ti
es

in
a

pr
oc

es
s.

T
h

e
n

am
e

of
th

e
ro

le
di

ag
ra

m
m

ed
in

ea
ch

sw
im

la
n

e
is

at
th

e
to

p
of

th
e

sw
im

la
n

e
an

d
w

it
h

in
th

e
sw

im
la

n
e

it
se

lf
ar

e
th

e
ac

ti
vi

ti
es

of
ea

ch
ro

le
.S

w
im

la
n

es
ar

e
so

li
d

ve
rt

ic
al

li
n

es
th

at
se

pa
ra

te
an

ac
ti

vi
ty

di
ag

ra
m

by
gr

ou
ps

of
re

sp
on

si
bi

li
ty

.E
ac

h
sw

im
la

n
e

h
as

a
re

sp
on

si
bl

e
gr

ou
p,

w
h

ic
h

ca
n

be
ei

th
er

an
ob

je
ct

or
a

gr
ou

p
of

ob
je

ct
s

th
at

sh
ar

e
re

sp
on

si
bi

li
ty

fo
r

it
s

co
m

pl
et

io
n

.A
sw

im
la

n
e

m
u

st
be

la
be

le
d

w
it

h
th

e
gr

ou
p

re
sp

on
si

bl
e

fo
r

it
.T

h
e

ac
ti

on
s

th
at

a
gr

ou
p

is
re

sp
on

si
bl

e
fo

r
co

m
pl

et
in

g
w

il
lb

e
pl

ac
ed

w
it

h
in

th
at

gr
ou

p’
s

sw
im

la
n

e.
T

h
e

or
de

ri
n

g
of

sw
im

la
n

es
fr

om
ri

gh
t

to
le

ft
is

u
n

im
po

rt
an

t.
Sw

im
la

n
es

m
ay

(c
on

ti
nu

ed
)

217

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

TA
B

LE
4
.9

(c
on

ti
n

u
e

d
)

E
le

m
en

t
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

in
cl

u
de

ei
th

er
ac

ti
vi

ti
es

or
ac

ti
on

st
at

es
an

d
oc

ca
si

on
al

ly
h

av
e

tr
an

si
ti

on
s

th
at

cr
os

s
la

n
es

to
ge

t
to

ac
ti

on
s

or
ta

rg
et

ac
ti

on
st

at
es

.S
w

im
la

n
es

ar
e

u
se

fu
lw

h
en

yo
u

n
ee

d
to

pa
rt

it
io

n
ac

ti
vi

ty
st

at
es

in
to

gr
ou

ps
by

th
e

en
ti

ty
re

sp
on

si
bl

e
fo

r
th

ei
r

co
m

pl
et

io
n

.
T

h
ey

ar
e

re
pr

es
en

te
d

by
so

li
d

ve
rt

ic
al

li
n

es
th

at
ar

e
u

n
iq

u
el

y
n

am
ed

ac
co

rd
in

g
to

th
ei

r
re

sp
on

si
bl

e
en

ti
ty

.T
h

e
re

sp
on

si
bl

e
en

ti
ty

fo
r

ea
ch

sw
im

la
n

e
m

ay
ev

en
tu

al
ly

be
im

pl
em

en
te

d
by

on
e

or
m

or
e

cl
as

se
s.

W
h

en
an

ac
ti

vi
ty

di
ag

ra
m

is
pa

rt
it

io
n

ed
in

to
m

u
lt

ip
le

sw
im

la
n

es
,

ea
ch

ac
ti

vi
ty

m
u

st
be

lo
n

g
to

on
e

sw
im

la
n

e
on

ly
,a

lt
h

ou
gh

tr
an

si
ti

on
s

ar
e

pe
rm

it
te

d
to

cr
os

s
sw

im
la

n
es

.S
w

im
la

n
es

m
ay

in
di

ca
te

co
n

cu
rr

en
t

fl
ow

s
of

co
n

tr
ol

,a
lt

h
ou

gh
th

is
is

n
ot

al
w

ay
s

th
e

ca
se

.B
ec

au
se

di
ff

er
en

t
en

ti
ti

es
ar

e
re

sp
on

si
bl

e
fo

r
th

em
,t

h
e

ac
ti

vi
ti

es
in

on
e

sw
im

la
n

e
ar

e
co

n
si

de
re

d
se

pa
ra

te
fr

om
th

e
ac

ti
vi

ti
es

in
ot

h
er

sw
im

la
n

es
.

Tr
an

si
ti

on
A

tr
an

si
ti

on
sp

ec
ifi

es
th

e
tr

an
sf

er
of

co
n

tr
ol

fr
om

on
e

ac
ti

on
or

ac
ti

vi
ty

st
at

e
to

an
ot

h
er

.
Tr

an
si

ti
on

s
ar

e
m

od
el

ed
as

di
re

ct
ed

,s
ol

id
li

n
es

w
it

h
op

en
ar

ro
w

h
ea

ds
.

Tr
ig

ge
rl

es
s

Tr
an

si
ti

on
Tr

an
si

ti
on

s
as

th
ey

ap
pe

ar
in

ac
ti

vi
ty

di
ag

ra
m

s
ar

e
of

te
n

ca
ll

ed
tr

ig
ge

rl
es

s
or

co
m

pl
et

io
n

tr
an

si
ti

on
s,

be
ca

u
se

th
ey

do
n

ot
re

qu
ir

e
an

ev
en

t
to

fi
re

fo
r

co
n

tr
ol

to
tr

an
sf

er
.R

at
h

er
,c

on
tr

ol
pa

ss
es

fr
om

on
e

ac
ti

on
or

ac
ti

vi
ty

to
th

e
n

ex
t

as
ea

ch
co

m
pl

et
es

.W
h

en
an

ac
ti

on
or

ac
ti

vi
ty

co
m

pl
et

es
,i

ts
ex

it
ac

ti
on

,o
f

pr
es

en
t,

fi
re

s
an

d
co

n
tr

ol
is

tr
an

sf
er

re
d.

A
t

th
at

po
in

t,
an

d
w

it
h

ou
t

pa
u

se
,c

on
tr

ol
is

tr
an

sf
er

re
d

to
th

e
su

bs
eq

u
en

t
st

at
e.

If
th

at
st

at
e

h
as

an
en

tr
y

ac
ti

on
,

th
at

is
ex

ec
u

te
d,

fo
ll

ow
ed

by
th

e
ac

ti
on

or
ac

ti
vi

ty
it

se
lf

.T
h

is
co

n
ti

n
u

es
u

n
ti

lt
h

e
fi

n
al

st
at

e
is

re
ac

h
ed

.T
h

e
in

it
ia

ls
ta

te
is

in
di

ca
te

d
on

an
ac

ti
vi

ty
di

ag
ra

m
by

a
so

li
d

ba
ll

;t
h

e
fi

n
al

st
at

e
is

m
od

el
ed

as
a

so
li

d
ba

ll
in

si
de

of
a

ci
rc

le
.

O
bj

ec
t

F
lo

w
A

n
ob

je
ct

fl
ow

is
th

e
as

so
ci

at
io

n
be

tw
ee

n
ob

je
ct

s
an

d
ac

ti
on

st
at

es
.O

bj
ec

t
fl

ow
s

m
od

el
h

ow
ac

ti
on

st
at

es
u

se
ob

je
ct

s
as

w
el

la
s

th
e

ef
fe

ct
s

of
ac

ti
on

st
at

es
on

ob
je

ct
s.

O
bj

ec
t

fl
ow

s
ar

e
w

ri
tt

en
as

da
sh

ed
li

n
es

be
tw

ee
n

ac
ti

on
st

at
es

an
d

ob
je

ct
s.

W
h

en
an

ob
je

ct
fl

ow
is

ou
tp

u
t

as
a

re
su

lt
of

an
ac

ti
on

,t
h

at
re

la
ti

on
sh

ip
is

m
od

el
ed

w
it

h
a

da
sh

ed
ar

ro
w

pr
oc

ee
di

n
g

fr
om

th
e

ac
ti

on
to

th
e

ob
je

ct
sy

m
bo

l.
A

lt
er

n
at

iv
el

y,
w

h
en

an
ob

je
ct

fl
ow

se
rv

es
as

in
pu

t
to

an
ac

ti
on

,
th

at
re

la
ti

on
sh

ip
is

de
pi

ct
ed

by
a

da
sh

ed
ar

ro
w

fr
om

th
e

ob
je

ct
to

th
e

ac
ti

on
.

218

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

O
bj

ec
t

fl
ow

s
m

ay
be

co
n

tr
ol

le
d

by
m

u
lt

ip
le

ac
ti

vi
ti

es
.

A
n

ac
ti

on
st

at
e’s

ou
tp

u
ta

ct
io

n
m

ay
se

rv
e

as
an

in
pu

ta
ct

io
n

to
an

y
n

u
m

be
r

of
ot

h
er

ac
ti

on
st

at
es

.
O

bj
ec

t
fl

ow
s

m
ay

ap
pe

ar
m

u
lt

ip
le

ti
m

es
on

th
e

sa
m

e
di

ag
ra

m
.E

ac
h

ap
pe

ar
an

ce
de

n
ot

es
a

di
ff

er
en

t
po

in
t

in
th

e
li

fe
of

th
e

ob
je

ct
.T

h
e

ob
je

ct
’s

st
at

e
m

ay
be

sp
ec

ifi
ed

an
d

pl
ac

ed
in

sq
u

ar
e

br
ac

ke
ts

ap
pe

n
de

d
to

th
e

n
am

e
of

th
e

ob
je

ct
.

A
ct

io
n

F
lo

w
s

T
h

e
as

so
ci

at
io

n
be

tw
ee

n
ac

ti
on

st
at

es
is

ca
ll

ed
an

ac
ti

on
fl

ow
.A

ct
io

n
fl

ow
s

ar
e

th
e

ac
ti

vi
ti

es
th

at
on

e
ob

je
ct

pe
rf

or
m

s
on

an
ot

h
er

an
d

ar
e

m
od

el
ed

as
so

li
d

li
n

es
.T

h
e

pu
rp

os
e

of
an

ac
ti

on
fl

ow
is

to
sp

ec
if

y
th

e
fl

ow
of

co
n

tr
ol

be
tw

ee
n

st
at

es
.A

gu
ar

d
co

n
di

ti
on

ca
n

be
sp

ec
ifi

ed
on

an
ac

ti
on

fl
ow

to
in

di
ca

te
a

B
oo

le
an

co
n

di
ti

on
to

ev
al

u
at

e
to

de
te

rm
in

e
w

h
et

h
er

or
n

ot
th

at
tr

an
si

ti
on

sh
ou

ld
ex

ec
u

te
.T

h
e

gu
ar

d
co

n
di

ti
on

w
il

lb
e

sp
ec

ifi
ed

in
sq

u
ar

e
br

ac
ke

ts
.

A
n

en
ti

ty
be

gi
n

s
in

on
e

ac
ti

on
st

at
e,

pe
rf

or
m

s
th

e
ac

ti
on

sp
ec

ifi
ed

,a
n

d
th

en
en

te
rs

an
ot

h
er

ac
ti

on
st

at
e

w
h

en
th

e
ac

ti
on

is
co

m
pl

et
ed

.A
ct

io
n

fl
ow

s
ar

e
re

al
ly

ju
st

st
at

e
ch

ar
t

di
ag

ra
m

tr
an

si
ti

on
s

w
it

h
ad

di
ti

on
al

co
n

st
ra

in
ts

.A
s

su
ch

,t
h

ey
ca

n
u

se
ad

di
ti

on
al

n
ot

at
io

n
sp

ec
ifi

c
to

st
at

e
ch

ar
t

tr
an

si
ti

on
s.

A
ct

io
n

fl
ow

s
ca

n
be

sp
ec

ifi
ed

by
a

fo
rw

ar
d

sl
as

h
fo

ll
ow

ed
by

an
ac

ti
on

ex
pr

es
si

on
th

at
sh

ow
s

th
e

ac
ti

on
s

th
at

re
su

lt
w

h
en

th
e

ac
ti

on
fi

re
s.

T
h

es
e

ar
e

th
e

sa
m

e
as

ac
ti

on
s

in
a

st
at

e
ch

ar
t

di
ag

ra
m

.
A

n
ac

ti
on

st
at

e
ca

n
be

im
pl

ie
d

w
h

en
an

ob
je

ct
fl

ow
ex

is
ts

be
tw

ee
n

st
at

es
.T

h
is

in
di

ca
te

s
th

at
th

e
ac

ti
on

pr
od

u
ce

s
so

m
e

ou
tp

u
t

an
d

th
at

th
e

ou
tp

u
t

is
u

se
d

in
tu

rn
as

th
e

in
pu

t
to

an
ac

ti
on

.I
n

th
is

ca
se

th
e

ob
je

ct
fl

ow
re

la
ti

on
sh

ip
im

pl
ie

s
th

e
ac

ti
on

fl
ow

.
A

ct
io

n
St

at
e

A
ct

io
nS

ta
te

N
am

e
A

ct
io

n
st

at
es

ar
e

st
at

es
th

at
re

pr
es

en
t

th
e

ex
ec

u
ti

on
of

an
at

om
ic

se
t

of
ac

ti
on

s
or

op
er

at
io

n
s.

A
ct

io
n

st
at

es
h

av
e

a
fl

at
to

p
an

d
bo

tt
om

w
it

h
cu

rv
ed

si
de

s.
A

ct
io

n
st

at
es

ar
e

ac
tu

al
ly

ju
st

re
gu

la
r

st
at

es
as

on
a

st
at

e
ch

ar
t

di
ag

ra
m

,w
it

h
ad

de
d

co
n

st
ra

in
ts

.B
ec

au
se

of
th

is
,t

h
ey

m
ay

u
se

ad
di

ti
on

al
n

ot
at

io
n

ap
pl

ic
ab

le
to

a
st

at
e.

A
ct

io
n

st
at

es
ar

e
st

at
es

w
it

h
an

in
te

rn
al

ac
ti

on
an

d
on

e
or

m
or

e
ou

tg
oi

n
g

tr
an

si
ti

on
s

in
di

ca
ti

n
g

th
at

th
ei

r
in

te
rn

al
ac

ti
on

h
as

co
m

pl
et

ed
.

A
ct

io
n

st
at

es
sp

ec
if

y
an

in
te

rn
al

ac
ti

on
ex

pr
es

si
on

th
at

de
sc

ri
be

s
th

e
ac

ti
on

of
th

e
st

at
e.

A
ct

io
n

st
at

es
m

u
st

be
lo

n
g

to
a

si
n

gl
e

sw
im

la
n

e.
T

h
e

gr
ou

p
re

sp
on

si
bl

e
fo

r
th

e
sw

im
la

n
e

w
il

l
ex

ec
u

te
th

e
ac

ti
on

st
at

e.

(c
on

ti
nu

ed
)

219

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

TA
B

LE
4
.9

(c
on

ti
n

u
e

d
)

E
le

m
en

t
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

A
ct

io
n

st
at

es
ar

e
n

ot
al

lo
w

ed
to

h
av

e
en

tr
y

ac
ti

on
s,

ex
it

ac
ti

on
s,

in
te

rn
al

tr
an

si
ti

on
s,

or
in

co
m

in
g

tr
an

si
ti

on
s.

A
n

ac
ti

on
st

at
e

ca
n

ap
pe

ar
m

u
lt

ip
le

ti
m

es
w

it
h

in
a

di
ag

ra
m

,e
ac

h
re

pr
es

en
ti

n
g

a
di

st
in

ct
st

at
e

in
th

e
sa

m
e

ac
ti

on
.A

n
ac

ti
on

st
at

e
ca

n
h

av
e

bo
th

re
le

va
n

t
an

d
n

on
re

le
va

n
t

ev
en

ts
.R

el
ev

an
t

ev
en

ts
ar

e
th

os
e

th
at

ap
pe

ar
on

th
e

st
at

e’s
ou

tg
oi

n
g

tr
an

si
ti

on
s;

th
os

e
th

at
do

n
ot

ap
pe

ar
on

th
e

st
at

e’s
ou

tg
oi

n
g

tr
an

si
ti

on
s

ar
e

n
on

re
le

va
n

t.
A

ll
ev

en
ts

th
at

ar
e

n
on

re
le

va
n

t
in

an
ac

ti
on

st
at

e
m

u
st

be
de

fe
rr

ed
u

n
ti

lt
h

ey
be

co
m

e
re

le
va

n
t.

E
xa

m
pl

es
of

ac
ti

on
st

at
es

in
cl

u
de

se
n

di
n

g
a

si
gn

al
to

an
ob

je
ct

,c
al

li
n

g
an

op
er

at
io

n
on

an
ob

je
ct

,a
n

d
cr

ea
ti

n
g

or
de

st
ro

yi
n

g
an

ob
je

ct
,a

ll
of

w
h

ic
h

ar
e

n
on

in
te

rr
u

pt
ib

le
op

er
at

io
n

s
th

at
ta

ke
a

m
in

u
sc

u
le

am
ou

n
t

of
ti

m
e.

A
n

ac
ti

on
st

at
e

is
dr

aw
n

as
a

ro
u

n
de

d
re

ct
an

gl
e,

th
e

in
si

de
of

w
h

ic
h

is
la

be
le

d
w

it
h

th
e

n
am

e
of

th
e

ac
ti

on
st

at
e.

A
n

ac
ti

on
st

at
e

ca
n

n
ot

be
br

ok
en

in
to

sm
al

le
r

se
gm

en
ts

.
A

ct
iv

it
y

St
at

e
A

ct
io

n
S

ta
te

A

ct
iv

it
y

st
at

es
,u

n
li

ke
ac

ti
on

st
at

es
,a

re
co

m
po

si
te

an
d

th
u

s
ca

n
be

br
ok

en
in

to
ac

ti
on

st
at

es
an

d
ot

h
er

ac
ti

vi
ty

st
at

es
,w

h
ic

h
m

ay
be

re
pr

es
en

te
d

by
ot

h
er

ac
ti

vi
ty

di
ag

ra
m

s
as

n
ec

es
sa

ry
.

A
ct

iv
it

y
st

at
es

ar
e

n
ot

at
om

ic
an

d,
as

su
ch

,c
an

be
in

te
rr

u
pt

ed
.T

h
ey

ar
e

co
n

si
de

re
d

to
re

qu
ir

e
an

am
ou

n
t

of
ti

m
e

to
co

m
pl

et
e,

u
n

li
ke

ac
ti

on
st

at
es

.A
lt

h
ou

gh
th

er
e

is
n

o
n

ot
at

io
n

al
di

st
in

ct
io

n
be

tw
ee

n
ac

ti
on

st
at

es
an

d
ac

ti
vi

ty
st

at
es

,a
ct

iv
it

y
st

at
es

m
ay

h
av

e
ad

di
ti

on
al

pa
rt

s
su

ch
as

en
tr

y
an

d
ex

it
ac

ti
on

s
an

d
su

bm
ac

h
in

e
sp

ec
ifi

ca
ti

on
s,

w
h

ic
h

ar
e

n
ot

ap
pl

ic
ab

le
to

ac
ti

on
st

at
es

.

220

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.4 The Behavioral View 221

Show Route Return Fastest Route

Request Fastest Route

Calculate Drive Times

Get Frequent Routes

Get Locations from User

Request Dispatcher

r : Route

Location
Services

Custom
Application
Devleoper

Mobile Client

Map Service

Map for Optimal Route

FIGURE 4.13 Activity Diagram Divided into Swimlanes.

Figure 4.13 shows an activity diagram that is divided into swimlanes, showing
role responsibilities for implementing the functionality listed in the diagram. The
flow of our activity diagram begins in its top left corner, with the solid circle with
the arrow protruding from it. The diagram ends at the bottom of the diagram, also
on the left-hand side, with the solid circle in a larger circle, with a line connecting
it to the diagram element prior to it. The diagram proceeds to its first activity,
which is that the mobile user requests the fastest route between his or her current
and target destinations. From there, the diagram moves to a synchronization bar
indicating the point of flow of control at which the control will be split into several
separate processes or threads, which will execute simultaneously.

The mobile user continues on at that point, transmitting information about his
or her current location (in a manner not specified by this diagram) and the target
destination. Simultaneously, the Request Dispatcher will take the request from the

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

222 INTRODUCTION TO UML

mobile user and integrate that with the location information that it subsequently
supplies to determine the best path for the user to follow. The point at which the
Request Dispatcher has acquired all of the information that it needs about the
user’s location is represented by another synchronization bar, which indicates
the point at which simultaneous execution ends and a single path of execution
begins again. At this point the diagram shows the creation of route and location
objects related to the mobile user’s path. From that point, the interactions begin
with the map and traffic services, which finally terminate with the fastest route
being returned to the mobile user.

As you may have noted, activity diagrams begin with the solid dot. Figure 4.14
shows a higher level of detail, for acquiring the fastest route from the map service,
than Figure 4.13. It’s important to note that we can use Activity diagrams in this
way to break down many states and activities into several different diagrams. In
Figure 4.14, for there is a precondition the current route that the user is on. The
diagram shows that we start out with acquiring the frequent routes for the current
location from the map service. Map service will return several common routes.
Then, our application creates a new variable called shortest route and assigns the
current route to that. It continues by checking all routes for their length/ time and
returns the shortest one. Finally, it proceeds to its first iteration, where the system
will check to see if there are additional routes to process. This process will continue
until all of the routes available are processed. For each route, a temporary variable
v1 will be set to the value of that route object. Another temporary variable, called
segments, will be created and its value set to all of the various travel segments that
make up that route. The diagram then enters its second iteration as it iterates
through all of the elements of that collection set by the segment’s value in a tem-
porary variable called s1. For each segment of the route, the time it will take to
travel that segment is calculated and added to any existing segment times that have
already been calculated, creating an elapsed time for the entire journey from the
various segments. If the elapsed time to complete the segment is shorter than the
current value for shortest Route (which could either be the user’s current route or a
previously calculated new route) then it becomes the new value for shortest Route.
At this point, the system determines again whether or not there are additional
routes remaining, and, while there are, this process is repeated. When all of the
routes have been processed the final value for shortestRoute variable is returned.

4.5 IMPLEMENTATION VIEW: COMPONENT DIAGRAMS

Component diagrams illustrate software components, such as source code, object
code, executable code, and libraries, and the dependencies among components.
Components can be distributed across nodes, which are computational resources.
Component diagrams model physical software components that compose a system
and represent its actual software implementation. Component diagrams are useful
in a number of ways. They assist software developers by clarifying the goals and
structure of the system and help technical writers understand how the system is
assembled so that they can better document it. Component diagrams are great

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

m
or

e
ro

ut
es

?

re
tu

rn
 s

ho
rt

es
tR

ou
te

sh
or

te
st

 R
ou

te
 =

 r
1

sh
or

te
st

R
ou

te
s

=
 c

ur
re

nt
R

ou
te

r1
 =

 r
ou

te
s.

ne
xt

R
ou

te
()

ge
tS

eg
m

en
ts

()
es

tim
at

ed
T

im
e

=
 0

m
or

e
se

gm
en

ts
?

s1
 =

 s
eg

m
en

ts
.n

ex
tS

eg
m

en
t(

)

el
ap

se
dT

im
e

+
=

 g
et

T
ra

ffi
cC

on
di

tio
ns

(s
1)

[n
o]

 :

[n
o]

 :

[n
o]

 :
[y

es
] :

[y
es

] :

[y
es

] :

M
ap

 S
er

vi
ce

ro
ut

es
 =

 g
et

F
re

qu
en

tR
ou

te
s(

cu
rr

en
tR

ou
te

)

el
ap

se
d

T
im

e
<

 s
ho

rt
es

t R
ou

te

FI
G

U
RE

4.
14

.
Ac

tiv
ity

Di
ag

ra
m

fo
rF

in
di

ng
th

e
Fa

st
es

tR
ou

te
.

223

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

224 INTRODUCTION TO UML

tools for encouraging software reuse as well, as they help to identify components
that are useful for a variety of purposes.

Component diagrams are driven by interfaces, which can be thought of as
faces that objects present to the outside world. Components can also make their
interfaces available for use by other components. To accomplish this, the provid-
ing component publishes what is known as an export interface. Components that
make use of the published interface use it as an import interface. Interfaces play an
important role in encouraging component reuse, because a component implement-
ing a given interface can be replaced by any other component that conforms to
the same interface. A well-designed and maintained interface allows components
to be used in a variety of systems. So, then, how do interfaces and component
diagrams relate? A component diagram can be thought of as a way to make a
component’s interface information readily available to software developers. Addi-
tionally, because components conform to a specific set of interfaces, they can easily
be replaced by other components conforming to the same set of interfaces. Design-
ing your interfaces allows concurrent development to proceed on each side of its
users.

A well-designed component structure makes it easy to replace outdated com-
ponents with newer components that function the same as the original interfaces.

There are three general components that are represented by the component
diagram: deployment components, work products, and execution components.

Deployment components are the final product of the development effort.
They can be deployed and run. These include executables, Dynamic Linked Li-
braries (DLLs), and JavaBeans. Work products include the components that are
used to create the deployment components. These include data files and source
code. Execution components are components that are created by the running
system.

Components are replaceable parts of a system that realize a set of interfaces.
They model physical software entities including executables, libraries, tables, files,
and documents and reside on nodes or computational resources. When we say that
components are physical things, that can be a bit confusing, because most people
tend to think of physical elements as being things like tables and other tangible
things. In terms of a software system physical things are constructed not of wood
or concrete, but of bits. An object, for example, is purely conceptual. It lives in
memory and is simply a way of conceptualizing a system. A DLL, in contrast, is
a relatively physical entity composed of bits and located, physically, on a storage
device. Physical parts of a software system can either be executed themselves or
participate in the system as it executes. These physical things are modeled as
components.

Interfaces serve as a bridge between physical and conceptual software elements.
They may, for example, by specified on a conceptual level and have realizing
classes that are similarly conceptual. Those same interfaces, however, can also be
realized by physical components. Most modern software languages and operating
systems have direct support for the notion of components. In addition to source
and executable code, other participants in an executing system, such as files and
documents, can also be represented as components.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

4.5 Implementation View: Component Diagrams 225

Image Scalar Image Filters

ImageLib.jar {version 2.1}

FIGURE 4.15. A Simple Component Diagram.

A component is required to be named so that it can be distinguished from other
components (see Figure 4.15). Component names are typically either nouns or
noun phrases and may provide file name extensions, such as .jar, or .dll. They
can either be a simple name or a pathname. Because a component’s name can
be specified as a pathname, the name itself should not include colons except
as required for the pathname to avoid confusion. Components can also provide
compartments providing additional information about them and they may also
specify tagged values, which are particularly useful for versioning information.

Often components will provide a compartment labeled “realizes,” specifying
the interfaces that particular component realizes. The similarities and differences
among components and classes help to illuminate the role of components. Com-
ponents and classes share many similarities. Both have names and are able to have
relationships, including association, dependency, and generalization relationships.
Additionally, they may be nested and may participate in interactions. Most impor-
tantly, both can realize interfaces.

Unlike classes, however, components typically specify only operations that are
accessible through their interfaces. Classes are abstract and conceptual, as well,
whereas components are physical and reside on physical nodes, as we described
earlier. Components can be seen as implementing classes, that is, for representing
them at a different, more concrete, level of abstraction. This can be modeled by a
dashed line with an open arrowhead extending from a class to the component that
implements it. When a component realizes an interface, that interface is an export
interface of the component, and the component provides that interface as a ser-
vice to other components that may use it. Components may have multiple export
interfaces. When a component uses an interface, it is referred to as an import inter-
face. Import interfaces are interfaces to which a component conforms and utilizes.
Components may have multiple import interfaces. Additionally, components may
have both multiple import interfaces and multiple export interfaces.

Component diagrams are most often used to model the software components
that will comprise the system’s deployment as well as the dependencies among
components that relate to the compilation process. Additionally, they are frequently
used to maintain version information about systems, both as they are developed
and as they are updated subsequent to their initial deployment, as well as to
visualize the impact of change on such systems. For large systems, component
diagrams provide a useful means of showing how components are distributed
across a system by showing on which nodes they are located.

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

226 INTRODUCTION TO UML

Components rarely rely on one another directly. Rather, their tendency is to
import interfaces that other components publish and to export interfaces that are
used by other interfaces.

Some characteristics of component diagrams are listed in Table 4.10.

4.5.1 Applicable Stereotypes
There are five stereotypes that are commonly used with components. The exe-
cutable stereotype specifies that the component is able to be executed. The library
stereotype specifies that it is an object library (static or dynamic). The file stereo-
type specifies that the component represents a file composed of source code or
data. The document stereotype indicates a file containing information other than
source code or application data. The table stereotype indicates that the compo-
nent represents a database table. Component-based systems have as one of their
core principles the concept that they are composed of binary, replaceable compo-
nents that, because they are each created to an interface-based specification, can
be replaced easily as they become outdated. Because components that fulfill the
same set of interfaces are easily interchanged, building systems in such a manner
increases system longevity and facilitates software upgrades.

4.5.2 Deployment Diagrams
Deployment diagrams model a system’s end points, or nodes. They typically model
the physical aspects of a system. Nodes are computational resources with memory
and a processor of some sort and are utilized by the system in some way while it is
running. Nodes are used to model the hardware that a system runs on or interacts
with, and they could indicate the type of operating system or database, a processor
family, or the physical location of the components. Because components are ac-
tually source and executable code, they require hardware to execute, and that
hardware is represented by its nodes.

When designing a system, it is important to consider not only how it fits to-
gether on a conceptual level but also how to model the physical aspects of a system
to ensure that the system can be properly built, deployed, and executed. A node
is modeled in the form of a cube, which has a name that can either be a sim-
ple name or a pathname. A node can contain stereotypes to qualify what type of
node it is, as well as tagged values and additional compartments to provide more
information as necessary. Additionally, nodes can be modeled as icons of the re-
source type they represent. For example, a node can be represented as a picture
of a computer. Nodes, like components, can have association, generalization and
dependency relationships, may be nested, can participate in interactions, and may
have instances. Whereas components participate in the system’s execution, nodes
are the entities responsible for executing those components. Components can be
deployed on any number of nodes. To indicate that a particular component is de-
ployed an a particular node, you can provide a dependency relationship between
them. A group of objects or components placed on a particular node for execution
is known as a distribution unit.

Nodes may also specify attributes and operations. Common component at-
tributes include the speed of its processor and the amount of memory that

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

TA
B

LE
4
.1

0
.

A
rt

if
ac

ts
o
f

C
o
m

po
ne

nt
D

ia
gr

am
s

E
le

m
en

t
R

ep
re

se
n

ta
ti

on
D

es
cr

ip
ti

on

C
om

po
n

en
t

C
o

m
p

o
n

en
t1

A
co

m
po

n
en

t
is

m
od

el
ed

as
a

re
ct

an
gl

e
th

at
h

as
tw

o
sm

al
le

r
re

ct
an

gl
es

pr
ot

ru
di

n
g

fr
om

it
s

le
ft

-h
an

d
si

de
.A

co
m

po
n

en
t

ca
n

re
pr

es
en

t
so

u
rc

e
co

de
or

bi
n

ar
y

co
de

,a
n

d
it

m
ay

h
av

e
in

st
an

ce
s.

In
st

an
ce

s
of

co
m

po
n

en
ts

ar
e

on
es

th
at

ex
is

t
at

ru
n

ti
m

e.
A

co
m

po
n

en
t

m
u

st
h

av
e

a
n

am
e,

w
h

ic
h

is
fo

ll
ow

ed
by

a
co

lo
n

(:
)

an
d

th
en

it
s

ty
pe

.C
om

po
n

en
ts

m
ay

h
av

e
ag

gr
eg

at
io

n
re

la
ti

on
sh

ip
s

w
it

h
ot

h
er

co
m

po
n

en
ts

,a
gg

re
ga

te
s,

an
d

pr
oc

es
se

s.
D

ep
en

de
n

cy
D

ep
en

de
n

cy
is

re
pr

es
en

te
d

by
a

da
sh

ed
li

n
e

be
tw

ee
n

tw
o

co
m

po
n

en
ts

,w
h

er
e

th
e

ar
ro

w
po

in
ts

fr
om

th
e

de
pe

n
de

n
t

co
m

po
n

en
t

to
th

e
co

m
po

n
en

t
it

is
de

pe
n

de
n

t
on

.D
ep

en
de

n
cy

re
la

ti
on

sh
ip

s
il

lu
st

ra
te

th
e

m
an

n
er

in
w

h
ic

h
ch

an
ge

s
to

a
pa

rt
ic

u
la

r
co

m
po

n
en

t
af

fe
ct

ch
an

ge
s

in
ot

h
er

co
m

po
n

en
ts

.T
h

er
e

ar
e

a
va

ri
et

y
of

de
pe

n
de

n
cy

re
la

ti
on

sh
ip

s
(e

.g
.,

co
m

m
u

n
ic

at
io

n
an

d
co

m
pi

la
ti

on
)

th
at

ap
pl

y
to

co
m

po
n

en
t

di
ag

ra
m

s.
In

te
rf

ac
es

In
te

rf
ac

eN
am

e
A

n
in

te
rf

ac
e

is
sp

ec
ifi

ed
on

a
co

m
po

n
en

t
di

ag
ra

m
as

a
sm

al
ll

ab
el

ed
ci

rc
le

at
ta

ch
ed

to
a

co
m

po
n

en
t

by
a

li
n

e.
D

ev
el

op
m

en
t

T
im

e
R

el
at

io
n

sh
ip

s
D

ev
el

op
m

en
t

ti
m

e
re

la
ti

on
sh

ip
s

ar
e

u
se

fu
li

n
ca

se
s

w
h

er
e

a
co

m
po

n
en

t
is

n
ee

de
d

at
de

ve
lo

pm
en

t
ti

m
e

bu
t

n
ot

at
ru

n
ti

m
e.

D
ev

el
op

m
en

t
ti

m
e

re
la

ti
on

sh
ip

s
ar

e
m

od
el

ed
as

a
de

pe
n

de
n

cy
re

la
ti

on
sh

ip
,w

it
h

da
sh

ed
ar

ro
w

s.
Yo

u
ca

n
u

se
st

er
eo

ty
pe

s
to

fu
rt

h
er

de
fi

n
e

th
e

re
la

ti
on

sh
ip

s.
C

al
ls

R
el

at
io

n
sh

ip
s

C
al

ls
re

la
ti

on
sh

ip
s

ar
e

u
se

d
to

m
od

el
ca

ll
in

g
de

pe
n

de
n

ci
es

am
on

g
co

m
po

n
en

ts
an

d
ar

e
il

lu
st

ra
te

d
as

da
sh

ed
ar

ro
w

s.
F

or
in

st
an

ce
,t

h
e

ca
ll

s
re

la
ti

on
sh

ip
is

an
ap

pr
op

ri
at

e
m

ea
n

s
of

ex
pr

es
si

n
g

a
ca

se
w

h
er

e
on

e
sh

ar
ed

li
br

ar
y

u
ti

li
ze

s
th

e
se

rv
ic

es
of

an
ot

h
er

.

227

P1: FCH

0521817331c04 CB752-B’Far-v3 May 4, 2005 18:59

228 INTRODUCTION TO UML

component has, whereas a node’s attributes generally include things such as restart
and shutdown. The most common relationship to a node is the association rela-
tionship, which, in the case of nodes, represents a communication link of some
sort, which can include a physical Ethernet connection or a nonphysical connec-
tion like an 802.11b wireless connection. As with all associations, associations
among nodes can include roles, multiplicity, and constraints. You will typically
model all of the significant components located on a particular node, although a
single component may have duplicate entries in multiple nodes.

4.6 SUMMARY

As we have seen in this chapter, UML gives us a complete tool for gathering
requirements and representing software artifacts including those needed for design
and implementation. Though, like any other tool, UML is not the perfect tool. The
reason we will use UML in this text extensively is largely that it is a complete tool.

Keep in mind that our explanation of UML in this text has been very minimal.
There are entire texts dedicated to discussing the basics of UML. Also, recall that
our perspective of UML analysis has been a practical one: There is much more to
UML, its semantics, and the mathematics-like mechanics that define it.

Today, mobile development is largely ad hoc with very little in the way of
discipline. This is particularly the case because the design and development of
a mobile application requires familiarity with a host of other areas addressed in
this book, including wireless networking, location-based systems, and distributed
application development. Because of this, UML offers us yet an added benefit: a
language that software developers with experience in various domains can use to
communicate.

In the remainder of this text, we will mostly focus on UML extensions that treat
particular needs of mobile applications. However, keep in mind that basic UML,
without any extensions, is still of primary importance. We simply will assume
that the readers of this text are roughly familiar with the use and application of
UML; therefore, when discussing UML without extensions, we will simply mention
which type of diagram is relevant where.

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331p02 CB752-B’Far-v3 April 29, 2005 12:18

SECTION 2

Device-Independent and
Multichannel User Interface

Development Using UML

229

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331p02 CB752-B’Far-v3 April 29, 2005 12:18

230

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

CHAPTER 5

Generic User Interface
Development

You can’t pick up two melons with one hand.
Persian proverb

5.1 INTRODUCTION

We have now seen the basic tools we will use for the development process in
creating mobile applications. The next step is to begin defining a methodology for
building real applications and to show the implementation of the methodology in
building these real applications.

Through the first four chapters, we discovered that, because of the condition
of the mobile user and nature of the mobile application, the mobile application
may interface with the user through a variety of devices and channels. In this
chapter, we will take a closer look at the fundamentals of user interfaces to software
applications, primarily mobile applications. We will focus on changing a paradigm
shift in the application developer’s thinking, moving him or her from thinking that
an application will be used using a mouse, keyboard, and a monitor to thinking
that an application may be used by a subset of any system input and output
channel through which the user may receive stimuli from a system and respond to
it. Finally, we will look at how to create user interfaces in layers so that we apply
the principal of separation of concerns to orthogonal aspects of user interfaces. For
demonstration purposes, we will use the XForms standard of W3C as an example
for an XML-based tool designed to create the proper abstractions in user interface
design.

There are a variety of standards and naming conventions for analyzing the
problems of the user interface. Also, many aspects of user interface development

231

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

232 GENERIC USER INTERFACE DEVELOPMENT

such as issues related to human factors are not well defined. In this text, we
will use terminologies outlined by ECMA (European Computer Manufacturer
Association), W3C (World Wide Web Consortium), or similar noncommercial
standards bodies. It is also important to note that user interface development for
mobile applications is a new field; therefore, there will be occasions when these
bodies have not decided on a standard way of addressing these problems. In such
cases, we will build some logical vocabulary as built on top of the existing standards
and as decided by the author of this book.

The first step in moving forward is to ask ourselves, “Why do we want to build
generic user interfaces?” First, mobile applications are typically used by a wider
array of operating environments and systems than a PC. Because there is such a
wide array of end clients for mobile applications, we need to be able to adapt the
application quickly, if not in real time, with very little or no additional development
effort. Another byproduct of building generic user interfaces is elongating the
effective life of the application. One of the biggest reasons that software has become
“throwaway” in recent years has been the rapid evolution and changes in user
interface technologies. It is obvious that the portion of the code concerned with
presenting the user interface and taking input from the user has to be modified or
rewritten whenever there are additional features in user interface devices or new
user interfaces altogether. However, it is not necessary to rewrite or throw away the
components that calculate the business logic or control the general interactions
with the user. Our goal in this chapter will be to create the proper layers of
abstraction in writing the user interface related code so that the commonalities of
the various user interfaces are grouped into reusable components and the specific
features of devices are encapsulated in isolated software components.

If you are familiar with some of the patterns used in user interface development,
such as PAC and MVC, you will be wondering why there is no mention of those in
this chapter. We will get there in Chapter 6 and look at these patterns while
tying in the concepts introduced in this chapter. Let us begin by looking at some
basic principles of user interfaces, what user interfaces are, their role in mobile
applications, and the various aspects of the problem of designing user interfaces
for mobile applications.

5.2 USER INTERFACE DEVELOPMENT

A software application is started by a person, another software application, a hard-
ware application, or a combination thereof. A demon program may invoke a server
application at a particular time; this is an example of a software application being
invoked by another software application. The operating system itself is an appli-
cation that may be started by a hardware/software driven application, turning the
computer on, providing power to the CPU, and allowing the initialization software
permanently stored on the hardware to invoke an operating system. Excluding ar-
tificially intelligent systems, all software applications, at some point and perhaps
through a long line of succession, are either started or scheduled to start by a
person—a user.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.2 User Interface Development 233

The mechanism through which users access a software application is referred
to as the user interface. Though today the user interface to a software application
brings to mind a mouse, a keyboard, and a monitor, this is only a small subset
of possible interfaces to computing systems. In fact, in the realm of mobile com-
puting, the mouse, the keyboard, and the stationary monitor often do not fulfill
the requirements. Yet, most of the software methodologies, techniques, and tools
that we use today are intended for software that runs or is used by a PC. More
importantly, the developers think and design with the PC framework embedded in
their minds as the end user. The first task at hand is to make a complete paradigm
shift away from this type of thinking and design methodology. Let us take a step
back and look at the important aspects of user interface development.

First, there are the human factors. The way it is used has a great impact on
the utilization of any computing system. Though defining human factors in one
sentence is a difficult task, it can be defined as the set of those concerns qualifying
the interaction of the user with the software system. Often, subsets of human factors
considerations such as usability are referred to individually; however, human fac-
tors remains an encompassing term that refers to all those concerns that describe
the quality of the interaction of a user with a system. Nearly all “touchy-feely”
considerations of user interface design fall within the purview of human factors.
We will take an in-depth look at human factors in mobile application design later
in this chapter.

Although human factors considerations are of utmost importance, to deliver
the most efficient mobile application, the application user interface must suit the
condition of the user. For example, a voice user interface is better suited for an
application designed for finding directions while driving than a graphical user
interface because drivers cannot safely read or view the directions while driving
though they can hear the directions safely. Therefore, mobile applications must be
designed with multiple channels in mind: We will not limit ourselves to just voice
or just graphical user interfaces. We will discuss mobile graphical user interfaces
in Chapter 6 and mobile voice user interfaces in Chapter 7. We will call this
multichannel user interface development and take a preliminary look at it later on
in this chapter but cover the topic comprehensively in Chapter 8. In this chapter,
we will lay down the taxonomy for decomposition of user interfaces so that we
can build on them in the next three chapters. This taxonomy will be critical in
understanding how to build generic interfaces that can be specialized to a wide
range of devices using multiple user interface channels.

Let us start with the human factors aspects of mobile development.

5.2.1 Human Factors
Dix et al. define human factors, often referred to as ergonomics, as the study of
the physical characteristics of the interaction: how the controls are designed, the
physical environment in which the interaction takes place, and the layout and
physical qualities of the screen [Dix et al. 1998]. This view is a bit biased toward
GUIs. Later in the same text, the authors discuss other types of user interfaces.
Regardless, their definition tells us that human factors is a very qualitative study.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

234 GENERIC USER INTERFACE DEVELOPMENT

For any typical application, we need to consider the following as the elements
of human factors consideration:

1. the look and feel of the application and how the users “like” the user interface,
2. the ease of learning the interface well and becoming efficient at using the user

interface, and
3. health issues in using the user interface.

This small list is a subset of many various issues to be considered for human factors
as a summary of a study done by the Federal Aviation Administration (FAA) and
the list of elements of human factors recognized by Dix et al. in the aforementioned
reference. This is not a comprehensive list; we are only discussing a subset that
applies to mobile application development later on.

You may ask yourself why is there an FAA study? The history of human factors
started with aviation. Scientists and engineers tried to design airplane controls in
a way that the pilots could navigate the airplane, using a large number and variety
of instruments, for a long period of time. Since then, the field of aviation has made
great contributions to user interface human factors design as innovation has been
required to improve safety and performance for air traffic control systems, air-
plane navigation systems, and a variety of other complex systems used in aviation.
In particular, an FAA study [FAA 1999] specifies the three keys to be technical
usability, domain usability, and user acceptance.

Let us take a close look at these three key aspects. We will have the most
focus on the first, the “user-friendliness” of the application in this text. This is
one of the keys to what makes or breaks any application, particularly a mobile
application. An application that is difficult to use is one that does not attract users.
For this, not only do we need to make the application easy and efficient to navigate,
but we need to consider things like color, noise, timing, esthetic quality, and a
variety of other qualitative factors that make the user “like” the look-and-feel
of the application. A user interface is well designed when the program behaves
exactly how the user thought it would [Spolsky 2001]. So, another factor is to
think of what a typical user considers desirable. Once again, this might include a
variety of esthetics, timing, color, etc.

It is also important to keep in mind that most user interfaces are typically used
many times, not just once. So, as the users interact with the user interface, there
is an important learning process that must be taken into account. A user interface
that may seem unintuitive or difficult to use the first time may prove to be an
excellent interface after being used a few hundred times. This shows us that there
is a cognitive element involved in interacting with user interfaces that not only is
important in the greater picture of human-to-computer interface (HCI) but also is
something that affects human factors. A background color that is very bright may
seem nice the first time the device is used, but over time it may seem less and less
desirable.

Finally, there is the health element. In fact, this is one of the prime areas of
focus in the study of human factors; ergonomics and human factors are associated
with things such as keyboard shape (so-called ergonomic keyboards), which help

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.2 User Interface Development 235

prevent the user from developing tendonitis. Health factors are very important
and even particularly crucial in the case of mobile application development where
the user’s physical location is constantly changing. A typical example of a safety
concern is using a mobile phone while driving, which, if not done with caution, can
increase the risk of being involved in automobile accidents. There are numerous
other health factors within the mobile domain; however, many of these issues are
still being debated and studied as mobile applications are young relative to their
stationary counterparts. We will mention these factors as appropriate throughout
this text.

Covering the entire field of human factors is not something that we should
attempt to do in this text, nor should we need to. But, before we understand the
human factors of mobile applications, we need to take a brief look at human factors
of stationary applications such as those designed for PCs.

5.2.2 Usability, Human Factors, and Other Considerations for
Developing Stationary PC-Based User Interfaces
Since the 1980s, when the personal computer began to become a prevalent device,
we have learned much about designing user interfaces for computing systems.
Though some of what we have learned is applicable only to stationary applications,
much of it can be applied to both stationary and mobile applications.

So, without attempting to go through a comprehensive study, let us list some
issues that the software engineering industry, as a whole, deems to be important:

1. Intuitiveness: User interfaces should be intuitive. The first time a user uses
an application, he or she should be able to navigate his or her way through
without too much trouble, assuming a reasonable amount of familiarity with
the application domain.

2. Consistency: A software application should present user interface components
that are consistent with each other and consistent with their operating envi-
ronments. For example, if one screen refers to the gender of a user by allowing
the user to select between man and woman, other screens should not refer to
gender in different terms such as male or female. Also, the user interface should
be consistent with the user’s operating environment. If the operating system is
Windows, use Microsoft’s conventions for the user interface of your application
to stay consistent with the operating environment.

3. Learnablility: The user should be able to learn how to use the user interface
within the first few times of using it and remember how to use it without
having to refer to manuals. This goes hand in hand with the user interface
being intuitive.

4. Nonintrusively Helpful: The user interface and the underlying application should
provide help and hints. There can never be too much in the way of help and
hints on a user interface. A key in implementing hints and help is to make them
so that they do not hinder efficient use of the application. The little helper that
pops up on the screen every few minutes without an explicit invocation of the
user can be annoying and cut down on the efficient use of the user interface.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

236 GENERIC USER INTERFACE DEVELOPMENT

5. Accommodating Expert Users: A good user interface provides shortcuts for the
expert users. Applications should be efficient and fast to use for expert users.
As a user learns how to use the system better, he or she should be able to access
the information and perform the tasks faster and faster.

6. Trustable: The user interface should be predictable, trustable, and easily under-
stood. There should be a simple set of rules that are used in building the user
interface that allow the user to be able to guess what the reaction of the user
interface may be.

7. Robustness [Dix et al. 1998]: A good user interface should gracefully recover
from user errors (e.g., display the proper dialogue boxes to guide the user when
an error happens), should convey the relation to the application logic easily to
the user (e.g., make sure that the user knows which data are changing, when
transactions are committed, etc.), and should be fast enough and let the user
know when there are long waits for responses.

Sometimes, as in many other engineering problems, satisfying these criteria
presents us with some inherent conflicts. For example, performance of a user
interface may have to do with the number of widgets and controls on it. By reduc-
ing the number of controls, we can improve performance, but the user interface
may become less and less intuitive to use.

Nevertheless, simply keeping these principles in mind helps us tremendously
in building a user interface. Also, remember that we are shooting to first build a
generic user interface and then specialize it to the particular devices that may be
used accessing it. So, we have an extra layer of indirection that will add complexity.
Nevertheless, every layer has to be able to accommodate all of these principles and
whatever other principles you have learned in designing good user interfaces for
the Web or PCs.

5.2.3 Additional Consideration for Mobile Applications
Though mobile applications and devices have been around for years, the current
and future generations of mobile applications and devices have some fundamental
differences from their more mature siblings of the years past. Most mobile appli-
cations in the past were based on embedded software technologies. The devices
were manufactured for mass use and the product manufacturing and delivery
of the mobile application and the device that it ran on resembled the produc-
tion of a refrigerator more than a typical stationary software application such
as those used on PCs, Web appliances, or even mainframes. With this said, we
know a bit more about human factors and usability aspects of developing mo-
bile applications than some of their other aspects. During the past fifty years, we
have seen how electronic calculators have been used, how mobile phones have
become popular, and what makes some devices easy to use and other ones dif-
ficult. Based on this, we have understood the mobile problem better and begun
to understand what human factor issues are particularly important for mobile
applications. Yet, in the same way that building today’s software applications is
quite different from building a refrigerator, building an embedded system with
custom devices is different from building a modern mobile application written in

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.2 User Interface Development 237

a variety of languages and deployable on a variety of devices. So, our knowledge
of the mobile applications that deliver value through custom devices may not
apply.

This is because mobile applications were really only a reality for those tasks
that presented large economic benefits for an even larger customer base for a well-
known problem domain. The devices used in grocery stores for keeping track of
inventory are a great example. The problem of tracking groceries is well known:
There are thousands of grocery stores, and there are clear ways of benefiting the
business with custom devices. For such problem realms, custom devices will re-
main a possibility. But custom devices, as we discussed in Chapter 1, also present
us with some problems. Custom devices require special training, are costly to
manufacture, are even more costly to maintain, lend themselves to obsolescence
easily if the business model changes even slightly, and require long development
and testing cycles.

Our goal is to design mobile applications that are easily deployable, decoupled
from the platforms to be deployed on, have short development cycles, cost less to
develop and deploy, do not require the users to go through long training cycles,
and are inexpensive to maintain and modify. These are the same reasons that have
pushed PCs into a world in which the hardware and software are loosely coupled.
The point is that when we introduce these new requirements, human factors and
usability issues become more difficult to solve. So, we cannot simply take what we
have learned from building customized inventory tracking devices used in grocery
stores and apply them to the building of robust mobile applications.

First, we need to remember all those issues mentioned in Section 5.2.2. All of
those principles that apply to developing a good interface for a stationary appli-
cation apply to developing a good interface for a mobile application. Then, we
need to consider additional considerations to take into account the “condition of
the mobile user.” The human factors we have to consider for mobile application
development will obviously have to take into account that the mobile user is in a
different environment than a stationary user. Let us enumerate again the require-
ments on the human factor aspects of mobile application design that are related
to the condition of the user:

1. Short Transaction Cycles: Mobile users typically do not perform tasks that involve
great amounts of data entry or long transaction cycles. Mobile users typically
use the devices at their disposal to perform a few quick tasks.

2. Expectations of Consumer Devices: Mobile users have much higher expectations
for consumer devices than for PCs. For example, users cannot handle waiting
for their MP3 player, PDA, or cell phone to spend several minutes to “boot-up.”
Users expect to turn a device on, wait for a maximum of several seconds, and
then begin to use the device.

3. Lack of Focus: Mobile users are not focused on the task of computing. Because the
mobile user is frequently using the mobile application while moving (driving,
walking, going from place to place, etc.), he or she has to do multiple things at
the same time. This becomes a big consideration in the human factor aspects
of the user interface design.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

238 GENERIC USER INTERFACE DEVELOPMENT

4. Intermittent Network Connectivity: Mobile devices have unreliable connections
to the network, so the device may be disconnected from the network at any
time.

5. Multichannel User Interfaces: As we will see later on in this chapter, mobile
applications use a large variety of user interfaces to communicate with the user.
This gives a mobile application more flexibility

From these requirements, we can conclude that the following are among the most
important aspects of usability and human factors for mobile applications:

1. System response time and system access time: System performance and response
time is a typical problem in computing, but long waits are absolutely unaccept-
able for mobile applications. Not only do long waits for system response detract
the user from using a given feature, they may detract him or her from using the
application or even the device altogether.

2. Clean and efficient user interfaces: Cluttered user interfaces are also unacceptable.
The user interface of a mobile system should have only the bare minimum
components to give the user the information he or she needs and no more. As
already mentioned, not only is the user typically in a rush, but he or she also
is not focused on the task of computing—not for long anyway. So, it is crucial
that the maximum amount of information be conveyed through the fewest user
interface components. An advertisement playing on the phone while you are
trying to find some crucial piece of information through a voice user interface
is unacceptable. Try to imagine the fury in a user who was just a few seconds
away from hearing a phone number being sought through a voice-driven search
system and was just disconnected because he or she passed through a tunnel
while listening to an advertisement! If there is a large cost in performance to
render colors to a PDA interface, color is best avoided. User interface designers
can think of many other occasions when the performance and efficiency of
the user interface is compromised in exchange for look-and-feel advantages in
developing desktop or Web applications. This is not acceptable when developing
mobile applications.

3. Maintaining consistency across multiple user interfaces and multiple device types
while accessing the system: It is critical that the users have the same experience
regardless of what type of user interface they use to access the system. This may
require intelligent mapping of various look-and-feel features from one type of a
user interface on a given device to another type of user interface on a different
device. For example, in an HTML-based application we can convey a look-and-
feel to the user by choosing a certain set of colors. The equivalent can be done
using the voice inflection in voice user interfaces. There are two ways to address
this issue of maintaining consistency: We can maintain consistency by outlining
look-and-feel guidelines per the domain problem and the subdivisions of the
domain problem or we can also create this consistency by creating guidelines
for the various components of the user interface. Example 5.1 shows how we
might have two such comparable guidelines for a loan origination application.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.2 User Interface Development 239

There is a really a bigger picture though. Consistency is maintained by various
aspects of user interface context. Later in this chapter we will discuss context as
an element of the taxonomy of user interfaces. Consistency should be informed
within the different types of context.

4. Accounting for the abilities and limitations of human sensory systems: While de-
signing single or multichannel user interfaces, it is critical to keep in mind the
limitations of the human sensory system and the limitations of humans to react
to given sensory. As the capabilities of devices improve and each device type is
able to accommodate more channels with higher user interface performance, it
will be crucial not to overload the user with information using any given user
interface or any combination of user interfaces. For example, if an application is
built to be used by a combination of voice and text user interfaces, hints should
be provided for messages that are played by the voice user interface and relate
to some counterpart on the GUI displaying the text. The user should not be ex-
pected to read and understand the text at the same time as he or she is listening
and trying to understand the hint relating to the text. Also remember that the
mobile user is typically not focused on the computing task. So, the mobile user
is already missing some processing cycles (to use a computing metaphor) to
process the data. Do not overburden the user with a user interface that expects
quick responses from the user or is cluttered with output and prompts.

5. Positional adaptability: User interfaces to mobile applications may need to be
modified depending on the location of the user and how the location of the
user changes. For example, the fonts on a given user interface may need to be
larger as the speed of the train increases (because speed and vibration are typi-
cally related in some directly proportional sense). As vibration increases, recog-
nizing text becomes more and more difficult. So, to make this easier, we can in-
crease the font size dynamically. Obviously, positional adaptability is something
that is prevalent through the entire process of building a mobile application as
the changing location of the mobile user, as we saw in Chapter 1, is one of
the main dimensions of mobility. The dependency of the user interface on this
positional change is not always obvious; therefore, sometimes, it is neglected.

6. The ability to prioritize user interface elements: The mobile application may be
running on a device that is running out of battery energy, may be having a
tough time connecting to the network or simply having an unusually low-
bandwidth connection to the network, or experiencing one of the factors dis-
cussed in Chapter 1 that puts extreme stress on the device. In such situations,
it is often helpful to know what elements of the user interface are absolutely
necessary, what elements can be done without, and what elements are preferred.
This issue should not be mixed with the issue of having a variety of user in-
terfaces supporting the same application. Even after we create a mechanism by
which the system can be accessed through multiple types of user interfaces,
it may still be necessary to dynamically change the user interface at run time.
For example, let us think about a WML application that may display maps. The
user is lost and is trying to find directions to his or her destination. Although an
advertisement may be acceptable at the bottom of the screen when the user has a

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

240 GENERIC USER INTERFACE DEVELOPMENT

good network connection and plenty of battery left on his or her mobile phone,
it is absolutely unacceptable if the mobile phone’s battery is nearly drained or the
network connection is unusually bad. Can you imagine how irate the user may
become if the advertisement prevents him or her from getting the directions?
Even if the user never finds this out, simply the fact that the advertisement may
reduce the robustness of the application is not acceptable. At the same time,
the advertisement provides the map service with some revenue. The solution
in this case is to serve the advertisement if it does not cause a reduced level of
delivered service to the user. But, if there is not much battery left or the network
connection is poor, the advertisement should be removed. Though such logic
really goes deeper into the application than just the user interface, the elements
of the user interface should be prioritized so that the rendering engine can de-
cide how to treat these elements. Also, the rendering engine should offer the
functionality required to understand such priorities and use them to render a
final user interface.

It is also possible that a combination of these guidelines be used. This is a more
complicated problem because there may be some conflict between what user in-
terface components may require as opposed to what the domain may require. In
these cases, use of common sense prevails! First, see what the user wants; if that is
still ambiguous, trust the domain before anything else. Remember that computing
applications are built to serve some purpose. This purpose overrides any strictly
technical preferences.

Example 5.1: User Interface Consistency Guidelines for a Mortgage Banking
Application.

A) Guidelines by Domain:
a. Color: Use white, black, scales of gray, and scales of blue only. These are

the branding colors associated with ACME Mortgage corporation.
b. VUI Prompts: All prompts relating to gathering information for the finan-

cial portions of the loan application should be recorded by a female voice
talent. All prompts relating to gathering information for the personal sec-
tions of the loan applications should be recorded by a young male voice
talent.

B) Guidelines by User Interface Components:
a. Color: Use blue for all of the buttons. Use white for all of the backgrounds.

Use black for all of the fonts. Use scales of gray for all other interface
components.

b. VUI prompts: All informative prompts must be recorded by a female
voice talent. All warnings must be recorded by a male voice talent. When
the user does not understand one prompt pronounced by a given voice
artist twice, the voice talent should be dynamically changed to allow the
user to understand the voice of another voice talent.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 241

These are not the only user interface related issues of mobile applications. But,
most of the other issues are tangled within the remainder of the application. For
example, because of the unreliable connection to the network, the user may be
disconnected at any time. So, it is important that the user interface always allow
the user to get back to where he or she was in using the application before the
disconnection occurred. If there is a multiple step process that the user is going
through to accomplish the computing task, the user interface should always allow
a way to get a quick summary of what has already been done. However, for the
user interface to support such functionality, the application needs to have very
advanced support for cross-device sessions. This, in and of itself, is a slice of
functionality that is needed outside of the scope of user interface design.

We will discuss these issues as we get to them throughout our discussions. The
list provided here can be used as a general guideline for things to remember when
thinking about the usability and human factors of the user interfaces of a mobile
application. Once again, all of those factors that apply to stationary applications
must be kept in mind too.

Now, let us get back to the reason we started looking at how user interfaces work
and look at the things we need to consider for building generic user interfaces.

5.3 BUILDING GENERIC USER INTERFACES

As we discussed in the introductory part of this chapter, the reason for building a
generic user interface for mobile systems is the wide variety of devices and user
interfaces that an application might need to support. The idea here is to layer
the different parts of the user interface, build a generic user interface, and then
specialize it to a given device or type of user interface using a mechanism such as
XSLT.

Before we go into this further, let us look at when we want to build generic
interfaces and when we do not. Let us consider applications that can benefit from
a layered user interface approach:

1. Applications that change frequently: Many applications change very frequently.
Such constant changing of state may be caused by the business model that
the application serves or a variety of other reasons. Some are of the school of
thought that an application should stabilize as it matures. This is not necessarily
true. The life of a software application is only meaningful as long as it is serv-
ing its economic or scientific reason for existence. Outside of this, a software
application is meaningless. So, if an application is changing frequently because
the customer requirements are constantly changing, we actually have a good
situation. During the past ten years, application developers have become very
good at separating concerns of business logic and presentation. We have also
learned much about how to layer different parts of business logic so that as one
part changes the other parts are not affected. However, whenever an application
changes, the user interface needs to be modified too. And this is a problem with
few good solutions.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

242 GENERIC USER INTERFACE DEVELOPMENT

2. Applications that support a wide variety of devices: We have talked about this
several times now, so the reader should well know that mobile applications
need to support a variety of device types. The advantage of building a generic
interface to a system, and then specializing it, is that it minimizes the amount
of code needed to perform the necessary tasks. And we all know that the less
code we have, the better off we are. This is probably the most popular reason
for building generic user interfaces.

3. Applications that must have many loosely coupled parts: One of the advantages
of building a generic user interface to a system is that it enables loose coupling
between the user interface components themselves and among the look-and-feel
components, interaction logic, and application flow logic. This loose coupling
is one of the principle features of various existing technologies such as XSL
templates and CCS. Loose coupling also offers the advantage of being able to
change one set of components without requiring changes to other components.
Although this has been somewhat akin to “nirvana” in software, theory has not
exactly delivered in practical implementations. Nevertheless, striving for loose
coupling promises to at least lessen the amount of change required for one
component when another component is changed.

4. Applications that offer multiple user interfaces with a range of complexity: A good
reason to justify building systems with generic user interfaces is the requirement
of supporting multiple user interfaces, each with some difference in the required
feature sets. For example, on a PC-based GUI-only system, we may represent
the directions to a destination with a map and some driving directions. We may
provide the user with controls such as zooming. On contrast, with a WAP user
interface that allows the reader to put in the information about the destination
and hear the directions, we may want to offer directions that are read back to the
user, through the telephony system, and have the functionality for the system
pause while the user is driving to the destination. There are some commonalities
between these two types of interfaces: They both offer a way for the user to give
the system a start and an end point and request directions and they both give
the user back some directions. However, one has to be able to display a map
whereas the other has to be able to represent the directions serially (through
an aural user interface) and wait for the user to be ready to hear each step. So,
when implementing the generic user interface, we provide all of the possible
functionality needed from the various user interfaces. In this way, we achieve
several goals:
a. We avoid building the logic for the user to interact with the system multiple

times.
b. We build a consistent way of accessing all functionality. Remember that

maintaining consistency across multiple user interfaces for our system
is a must. The first place to start to establish such consistency is with
the way the back end expects the user interactions to behave. The API to
the business logic is often biased toward one type of user interface over the
others. In designing the back end of mobile systems, it is crucial to attempt
to expose behavior of the system without any bias toward a user interface
type.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 243

Device/Platform Specific Specialization

Multimodal Specifications

Channel Specialization Modal Specialization

Application Logic

Generic User Interaction Logic

Generic Presentation Logic
(help, temporal ordering, spatial ordering, etc.)

FIGURE 5.1. Layering User Interfaces.

c. If we decide to make the system statefull (so that the system remembers the
things that the user does as he or she navigates through the system), we can
easily maintain the state across different user interfaces. (We will look at
exactly how to implement such functionality in Chapter 8.)

d. Changing the set of functionality supported by the various user interfaces
becomes significantly easier. To support a piece of functionality supported
by the generic user interface, all we need to do is to add the corresponding
specialization features to the components that specialize the generic user
interfaces.

It is also crucial to understand the antipattern [Brown et al. 1998]. You will be
reminded of this time and time again in this text and elsewhere. There is no one
solution to all problems or even all problems of the same type, in our case the mo-
bile application development problem. Assess the needs of the application user, the
available budget, and all other consideration before choosing an architectural solu-
tion to implement. It is very possible that your system may not require developing
a generic user interface. Unusual performance requirements, the static nature of
the application, the required implementation of a restricted set of devices, or a
variety of other factors may justify sticking with the model of developing a mono-
lithic user interface layer. Figure 5.1 shows one way of layering user interfaces on
the top of a generic user interface layer.

Now, let us look at some of the factors involved in implementing a system that
utilizes a generic user interface.

5.3.1 Binding and Specialization of Generic User Interfaces
It should be obvious that, at some point in the process of rendering a user interface,
the generic interface has to be specialized to the specific intended user interface.
The specialization process could include user settings, device settings, discovery
of available channels, QOS of the network, and many other factors. In any case,
a binding process has to take place between the components that produce the
generic user interfaces and the components that specialize in the generic interfaces.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

244 GENERIC USER INTERFACE DEVELOPMENT

This binding can be done at run time for all user interfaces; alternatively, what
binding is possible to do at compile time may be done then and the rest done at
run time.

Run-time binding, for example, can be done by taking an instance of a generic
user interface and then generalizing that instance, in its entirety, using the spe-
cialization components. This could be done through use of XSLT or similar
transformation technologies but is not limited to such. Run-time binding, as you
may guess, can be resource expensive.

There are a number of factors that must be considered when designing a system
this way:

1. Performance: As a rule of thumb, layering software and performance are inversely
proportional. The key here is to first evaluate the performance needs of the users
and then to see what the cost of each additional layer is. The extreme case is
when every microsecond counts. In these cases, a tightly coupled software
system that takes advantage of every time-saving trick in the book may be the
best choice. But, remember Moore’s Law and recognize that hardware is always
getting faster and cheaper. One or two percent performance improvement is
negligible almost all the time. Run-time binding is at the other end of the
spectrum. We can bind all the components and code together at run time. This
gives us the most flexibility and the most elegant software design. But then,
we always have to ask whether this prohibits proper performance when the
number of users is at its peak.

2. Development Process: So, who develops the generic user interface and who de-
velops the components that specialize it? The development processes for client–
server and Web applications have had a few years to mature. So, today, a typical
development team includes business analysts who gather the requirements,
graphic and voice user interface designers who design the look-and-feel of the
system, application developers who build the components that represent the
business logic to be performed by the system, and database engineers who de-
sign the persistence layer. Obviously, there are many others with crucial roles
in the delivery of a software product, but those roles lie outside of our current
concern. Obviously, this model does not work for a system that needs to render
multiple types of user interfaces. We will look at what sort of development team
and process works for mobile applications in Chapters 15–18. The key for now
is to understand the cost of changing the development process. For example,
building consistency across multiple user interfaces requires proper documen-
tation and communication among the developers who build the components
to specialize the generic user interfaces.

3. Where the Various Components Reside: Probably the most important aspect of the
design of a system that uses generic user interfaces is how the work is distributed
among the servers, clients, or peers. Regardless of the type of architecture se-
lected to implement distribution of the application, if the application is mobile,
the chances are that it is distributed. In traditional Web development the server
performed calculations, maintained state, stored data, and executed a variety of
other tasks. Then, the server produced some markup language such as HTML,

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 245

perhaps with some mixture of a client-side scripting language in there (such as
JavaScript), and shipped it to a client that basically just rendered this markup.
There are techniques (e.g., by using hidden fields) that allow the client to hold
pseudo-state.

An important factor to keep in mind while designing systems with generic
user interfaces is the location where the specialization is done. In our case,
do mobile devices specialize these generic interfaces themselves? Or does the
server specialize them and send them to the client? Does the server maintain all
states as the user navigates through the application (which is the model used
with most Web applications)? Or should the mobile client be smarter, because
network connectivity is not guaranteed, and hold some state in the container
that specializes the user interface? There are no cookie-cutter answers to any
of these questions. But, the questions must be asked and answered after careful
consideration of system requirements. For binding the specialization compo-
nents and the generic interface the question to answer is how the task is divided
among the various components of the system.

So, our goal is going to be to build a generic user interface on top of an application
and specialize it. We may render the final user interface centrally on some server
or allow the mobile devices themselves to render them. We will look at how to do
both of these later. To make some of these design decisions, we have to understand
mobile user interfaces a bit more. To do this, let us take a step back and look at
the components that make up a user interface.

To separate those elements of the user interface that can be made generic from
those that are specific to various user interface types, we first have to outline
what those elements are. So, let us look at the various things that make up a user
interface and the way we interact with them.

5.3.2 The Elements of the User Interface
For us to understand how to layer the user interfaces for mobile applications, we
need to understand some taxonomy (organized categorization and classification)
of the components that make up the user interface and all of those elements, that
we can qualify or quantify, and that describe the interactions of the user with the
user interface.

User interfaces can be defined from several perspectives, none of which is in-
herently superior to the others. Some analyze user interfaces from a look-and-feel
perspective, some look at them as a component in a communication system be-
tween humans and computers, and yet others look at the various functions that
they (user interfaces) and their components perform. We will try to take a mixture
of all of these approaches as applicable to developing mobile applications. First, let
us look at channels: the different ways that humans and computers can connect.

Channels
In the generic context of communication systems, a channel is the medium through
which the sender and the receiver of a message communicate. In this way, a user in-
terface that uses multiple media such as sound, text, and video are often referred

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

246 GENERIC USER INTERFACE DEVELOPMENT

Voice

Video

Tactile
(Data Glove, etc.)

Motion
(Tilt, etc.)

Pointing
(Mouse, Roller, etc.)

Text
(Keyboard, etc.)

FIGURE 5.2. Channels: Tunnels of Communication between Humans and Computers.

to as multichannel interfaces as each type of medium requires its own channel. In
the computing industry, this definition has also been extended to include present-
ing the same content, particularly text content, in multiple formats for multiple
devices. Because various devices may render the same textual content in different
ways, with a bit of a reach, we can say that each type of rendered text is part of
the channel that sends messages from the system to the user. For example, the
channel through which audio is communicated may be composed of a microphone
and speakers. The channel through which text is communicated may include a
keyboard, a mouse, and a monitor (see Figure 5.2). For our purposes, we will
use the term multichannel to include both channels used by different senses and
channels representing different types of interactions used by the same sense.

Though we will refer to channels as media that allow messages to be sent from
the user to the system and from the system to the user, we can also define input
channels and output channels. Input channels provide a mechanism for the user to
send messages to the system. Output channels provide a mechanism for the system
to send messages to the user. Once again, in the context of this book, we will refer
to channels as mechanisms that can deliver messages from the user to the system
and from the system to the user. Unless specifically specified, a channel, with our
definition, is composed of one or many input channels and one or many output
channels. ECMA defines input/output devices to be a physical mediator between
the user and the system [ECMA TR-61 1992]. Though this ECMA document was
intended to address visual user interfaces, this definition can also be applied to
other user interface types such as voice.

Application development paradigms utilize a single type of channel for com-
municating with the user. For example, a call center application is built around a
voice user interface and a voice channel. A Web application, in contrast, is built
with a GUI in mind with a text channel. Some Web applications also provide
other visual output channels, but most only support text for both input and out-
put channels to the user. As we discussed earlier, the optimal mobile application
uses the optimal user interface based on the condition of the user—location of the

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 247

GUI
Server

VUI
Server

HTTP

Voice

The Time is now 3:00
PM

Syncronization

FIGURE 5.3. Multichannel Interface Systems.

user, the device the user may be using, the other tasks the user may be performing,
and other mobile human factors with which we must concern ourselves. So, it is
fair to assume that when developing effective mobile applications, we are almost
always designing multichannel user interfaces (see Figure 5.3). We need to select
the appropriate user interface based on the mobile condition of the user; therefore,
selection and use of channels is a big part of designing a mobile application user
interface.

This complicates the design of mobile applications by a factor of n, with n being
the number of channels being used for a given application. Because the infra-
structure supporting the rendition of each channel is probably vastly different and
independent of all other channels—for example, a speaker is used to render voice
whereas a monitor is used to render HTML Web pages and a small display is
typically used to display WML pages—an entirely new set of concerns arises in
creating a suitable solution. Namely, those concerns are as follows:

1. Interchannel Synchronization: The temporal aspects of the content being ren-
dered by each channel, such as latency, will depend on the properties of the
channel itself. However, we need to add additional control mechanisms to make
sure that the content being rendered by each channel is synchronized with the
others. For example, if there is audio content accompanying some text and
video, a given sound clip must be played when the accompanying piece of text
and video are being shown. These control mechanisms must be supported by the
channel, the software protocols supporting the channels, and the applications
using the channels. We will discuss this problem in more detail in Chapter 8.
Meanwhile, for such synchronization to be possible, the generic user interface
must be designed so that these temporal concerns are taken into account. So,
whatever generic user interface we design either has to take into consideration
these requirements or needs to allow other layers of software and components
to implement such functionality without placing any restrictions on them.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

248 GENERIC USER INTERFACE DEVELOPMENT

2. Customized Distribution: The application must be able to distribute the content
to be presented to the user through any combination of the channels supported
by the devices required for the application. Treatment of the workflow is much
the same: Workflow must be dynamically adapted to the user interface channels
available and preferred by the user. For example, let us take an application
that must be supported both through a voice user interface and a text user
interface. If the user has set the device on mute, the application must have the
ability to provide text input and output channels. Access to data and content
may even be customized (or specialized) for each user’s profile and personal
preferences.

3. Decoupling Different Layers of Presentation Logic: There are many techniques
intended to separate presentation and business logic, such as implementing
the model-view-controller pattern [Gamma et al. 1995]. Even with frameworks
using tag libraries such as Struts for Java developers, layer upon layer is added,
causing exponential code base explosion as well as architecture complexity.
Much of what we see today in the way of separation of presentation and business
logic still leaves the separation of different types of presentation logic untreated.
For example, validation of the user input to the system is intermingled with the
logic for placement of elements on the screen in most user interfaces. Because of
this, multichannel development is nearly completely disregarded in developing
the user interface for typical software applications. Once again, because most
applications are designed and developed with one particular user interface in
mind, the design and implementation includes no decoupling between the var-
ious layers of the user interface that are inherently different and orthogonal in
functionality. In this chapter we will look at some techniques that allow us to
render generic user interfaces that can be handled, in a loosely coupled manner,
by another layer of software that handles the decoupling of various layers of
presentation logic.

All of these three fundamental differences between multichannel and single-
channel user interface development must be implemented with the proper dis-
tributed computing model in mind for a particular application. Distribution of
this added functionality among the various components of the systems, clients,
servers, peers, etc. is a big part of designing multichannel user interfaces. We will
look at synchronization issues with great detail in Chapter 11 and customized
distribution of content and workflow spread throughout the next three chapters.
Our focus in this chapter is on designing user interfaces that have abstracted var-
ious parts of presentation logic into highly decoupled layers. Now, let us look at
different types of channels to get a better insight into what is possible so that we
can factor commonalities between channels into layers of abstraction.

Channel Types
It is not possible to outline a comprehensive list of channel types, and devices
that support them, that enable communication between machines and human
beings. After all, there are new ones popping up every day, there are old ones that

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 249

lend themselves to obsolescence, and there are channels that lend themselves only
to a particular domain (for example, joysticks are typically only used for video
games, simulation programs, or systems involving directing some sort of physical
motion). These domain-specific channels are typically not used for a broad set of
applications. Here we will only try to outline a subset of the most popular device
types, each supporting a unique type of channel, being used in mobile systems
today.

1. Keyboards and Monitors (Text Entry and GUI Display): Keyboards and monitors
are perhaps the two most popular user interface mechanisms to any computing
system. Keyboards are basically used to enter text that may be behavioral in
nature (commands such as save, print, etc.) or data (such as typing in your user
name and password). Keyboards remain the most popular mechanism to send
messages to computing systems because they let us use a language, the primary
form of communication between human beings, in its textual written form, to
communicate with the system. Monitors provide a text channel. Monitors can
also serve as an output channel for other visuals such as images and video.
Though keyboards can be used to create images (e.g., by drawing widgets using
the arrow keys), they are not very useful in creating visuals other than pure
text. So a combination of keyboard and monitor makes an effective text-based
channel. Typically the monitor’s ability to provide other visual output channels
are taken advantage of as well.

2. Touch-Screens (Touch Entry and GUI Display): Touch-screens have been around
for a long time. In many environments such as manufacturing environments
or mobile applications, a keyboard, a mouse, and other extraneous devices
may not be suitable. They may be too cumbersome to use or be damaged too
frequently because of dust, motion, or other environmental conditions. Touch-
screens allow the user to touch pressure-sensitive screens to send messages to
the system. They are particularly popular with kiosks. Touch-screens allow the
monitor to be used as both an input and an output channel. However, they lend
themselves more to command-type interactions (to be discussed in the next
section) than text entry. Text entry is possible but fairly difficult.

3. Stylus (Handwriting Recognition and Touch Entry): The stylus is a penlike device
used to write on a screen or press buttons on a screen. The stylus effectively
functions as a keyboard and a mouse combined into one. Some devices such as
the Palm even support some way of scribing text onto the screen of the device,
thereby providing an arguably more user friendly input mechanism than the
keyboard (but whether or not typing or writing is more efficient may be subjec-
tive to the user). The stylus is a very effective device for mobile environments.
The stylus is light and enables multiple input channels to the same device. The
stylus provides only an input channel. The output channel accompanying the
stylus, once again, is typically some sort of a visual screen. The stylus can also be
categorized as one of the many tools used to perform handwriting recognition.
Other devices such as scanners can be used to allow handwriting as the input
to the system.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

250 GENERIC USER INTERFACE DEVELOPMENT

4. Telephone (Voice Recognition): The telephone is the most pervasive electronic
communication device. Voice channels take advantage of our ability to be able
to understand speech and hear sounds. Most of today’s computer systems are
driven either through a voice user interface or a GUI. The majority of voice user
interfaces are call centers designed for some command and control interface for
the telephone. The telephone provides a symmetric channel: input channel of
voice and output channel of voice. The telephone provides one of the most
ideal, if not the most ideal, user interface for the mobile user. Even if the user
does not have his or her own device (mobile phone), it is almost always possible
to find a pay phone somewhere nearby.

5. Device Motion (Entry by Positioning): The position and orientation of the device
itself can be used as an input mechanism. For example, to scroll down a page
on the display of a device, the user can tilt the device slightly. The speed of
scrolling may be dependent on the angle of the device and the speed at which it
is rotated. The Itsy, a prototype device by Compaq Computer Co., is one of the
first devices to take advantage of the motion and placement of the device itself as
a user interface. Reading user input based on the physical condition of the device
can be both a problem and a problem solver for mobile applications. While the
mobile user is moving around, this motion can be used as an interface without
user intervention; this provides for the ultimate convenience. At the same time,
the user’s motion may have a considerable amount of noise (movements that
create errors and should not be taken into account by the device). Today, device
motion and condition is more a research area than one used in commercial
development. However, it holds promise as a user interface channel of choice
by the mobile developers. Device motion is typically also only an input channel;
ways to communicate messages to the user using the motion of the device itself
have yet to be conceived.

6. Dataglove (Entry through Touch) [Dix et al. 1998]: As the name suggests, this is
a glove that, when worn, can be used as a data entry device. This device is now
used mostly in research environments, but it has made advances in performance
and reliability during the past few years, making it more and more viable com-
mercially. Typical use of this device is in virtual reality environments. Such
environments try to use all the possible channels of input that are second nature
to humans, thereby invoking the word “immersive” to describe the desired user
interfaces.

7. Printed Paper and Other Materials (Output Text and Graphics): In the early days of
computing, paper was the main method of interfacing with computing systems.
If I had a penny for every time I heard stories about how people carried stacks
of cards to mainframes, I would be a millionaire! When scanners became com-
mercially viable, many predicted the demise of paper. But, paper prevailed and
its consumption has multiplied since the popularization of PCs and personal
printers. Paper is easier on the eyes than a computer screen and provides us
with a comforting way of reading data. Today, paper is used for both input and
output: input in the form of scanning data into computers and output in the
form of printing data for later use. Companies such as Xerox are also working
on “electronic paper.” Such devices may prove to be a breakthrough for mobile

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 251

computing as they will make it feasible for you to write things on the same
device that stores the contents of several reference books that you may need.
Imagine if you could get rid of all the sticky pads in your office, all of the
books on your bookshelf, and all of the notebooks you write in. However,
this “electronic paper” will probably never replace regular paper. Rather, it will
become yet another complementary mechanism to paper.

As mentioned earlier, channels convey messages both ways from the user to the
user interface and from the user interface to the user. Although a keyboard is used
to enter data into a system, the keyboard itself is not used to send messages back
to the user. The monitor is the device used to send messages back to the user.
But, we defined channels as media that allow two-way communication: messages
from a user to the system and messages from a system to the user. Therefore, the
keyboard and monitor combine to make a channel. We call these types of channels
asymmetric channels. Most user interface channels are asymmetric: Messages from
the user are sent to the system using a different mechanism than the one that
enables the system to receive messages from a user. Our eyes give us the largest
amount of bandwidth, so the output of most systems—the way we receive messages
from computing systems—are typically directed toward our visual senses using
some sort of a screen.

Symmetric channels are seldom used in computing today. Symmetric channels
allow the user to send messages into the system through the same mechanism
as it receives messages from the system. An example of a symmetric channel is a
system that moves the cursor on the screen to the place where the user’s eyes are
focused on. Voice-based systems typically offer the most popular form of symmetric
channels, whether using PSTN (Publicly Switched Telephony Network) or packet
switch networks. The same device is typically used for speaking and hearing.

The temporal and spatial properties of the channel are also very crucial. The
temporal properties of channels are those that define the limitations of the channel,
on the messages being exchanged between the user and the system, with respect to
time. For example, a voice user interface that does not allow barge-in limits the
messages to be sequential in time: The system sends a message to the user and the
user has to wait for that message to arrive and finish playing before responding.
Another spatial property of a voice channel may be the maximum number of
words per minute per message. Temporal properties also apply to GUIs as the
order, in time, in which various components appear and messages can be sent to
the system determines much of the user interface functionality. Some channels
allow free flow of information back and forth between the user and the system.
For example, a PSTN channel established using a phone allows a user to talk with
the system. While the system is reading some information back to the user, the
user may “barge-in” and talk right over the information that is being put out by
the system. All such factors are defined by the constraining factors of the user
interface channel.

Spatial properties of channels are determined by the set of limitations that the chan-
nel places on the way different components are physically arranged on the user inter-
face. For example, a particular GUI channel may allow overlay and transparency

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

252 GENERIC USER INTERFACE DEVELOPMENT

SIDE D ISCUSSION 5 .1

Designing a GUI without Being Influenced by
Back-end Implementations

One of the typical mistakes made today in designing software with GUIs or VUIs
(Voice User Interfaces) is that user interfaces are designed with a high dependency on
back-end transaction boundaries and data models. It is important to keep in mind,
while designing any computing system, that if a system has a user interface, it is
perhaps the single most important part of the system. Also, it is crucial to keep in
mind that user interfaces should be more behavioral than data-oriented. Although
data entry and retrieval are very important parts of the interactions between the user
and the system, the bulk of the interactions between a user and a system are behavioral
or “procedural.” It is also typical that, as one moves from the front end of a system
(the user interface) to the back end of a system (the database), one moves from a
behavioral-driven perspective to a data-driven perspective. Though the two need to
be married at some point, it is crucial that the user interface design not be tainted
by the data-model design and the data-model not be tainted by the user interface.

of several different windows. In the case of mobile applications, the layout of the
components on the user interface is highly dependent on the type of user interface
channel as small devices typically have smaller user interfaces with less capabili-
ties. A theoretical discussion of temporal and spatial properties of interactive user
interfaces is not one that we can tackle in this text as our focus is on develop-
ing mobile applications. However, Shipman, Marshal, and Moran offer a brief and
comprehensive look at spatial properties of user interfaces [Shipman, Marshal, and
Moran 1995] and Kutar, Nehaniv, and Britton do the same for temporal properties
of user interfaces [Kutar, Nehaniv, and Britton 2001]. As we introduce various
concepts relating to building user interfaces for mobile applications, if you find
yourself questioning some of the materials presented as facts in this text, you may
want to refer to these two papers as well as other references listed.

Although the temporal and spatial properties of the channel itself are typically
not a central consideration of the user interface or user interaction design, the
limitations of the channel creates the constraining boundaries that determine the
temporal and spatial properties of interactions, components, and other elements
of user interfaces of computing systems. A key in developing mobile applications
is to design them so that the functionality they offer is not tightly coupled to
any particular user interface channel. This enables us to not only adapt to new
user interface technologies as they become possible but also to easily build mul-
tichannel user interfaces that may take advantage of multiple types of channels
simultaneously.

In the future, we will probably discover how to take advantage of some of our
other senses in communicating with computers. For example, user interfaces that
effectively take advantage of our sense of smell have not been designed yet. Neither
do we use our sense of taste to communicate with computers. We may never have
systems that use our taste or smell senses to communicate with computers. But,

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 253

one thing is for certain: We will have user interfaces that we have yet to even
think of and they will change computing, mobile or not, in a major way. So, once
again, the reader should be reminded that the concepts that we emphasize in this
chapter and the rest of this book are just that: concepts. Applying the concepts to
new tools should prove to be trivial.

Interactions
We have looked at channels as the medium that deliver messages between the user
and the computing system. These messages create dialogues [ECMA TR-61 1992],
or interactions, between the user and the system. In this text, we will refer to a
group of messages exchanged between the user and the system as interactions or
dialogues. There are a large variety of interaction types. Once again, to understand
the types of interactions between the system and the user, we need to decompose
what an interaction is and understand the types of elements that make up the
interactions.

Interactions, as mentioned, are composed of messages being passed back and
forth between the user and the system. The messages being sent can take atomic
or composite forms. Although these terms are typically used to describe data types
in computing, the same concept may be applied to messages being exchanged
between the user and the system. An atomic message is one that cannot be de-
composed into parts that have meaning on their own. A composite message is a
message made of two or more atomic messages, each having a complete meaning
by themselves; yet, the meaning of a composite message may be greater than the
sum of its parts. We interchangeably, when better suited for the context, refer to
messages as interaction elements as they are the parts that make up interactions.

In the same way, interactions can be composite or atomic. An atomic interaction
is made up of one message being sent from the user to the system, or from the sys-
tem to the user, possibly accompanied by a response message from the respective
counterpart. Also, atomic interactions may not be decomposed to other interac-
tions that have meaning on their own. In a GUI environment, you can think of an
atomic interaction as typing in “February 30” for the date field, thereby causing the
system to pop up a window that says “This is an invalid date. Please enter another
one.” The single action done by the user—typing in the date—causes a single re-
sponse from the system. Atomic interactions do not require that a response exists.
For example, if the date is typed in as “February 28”, and the system validates
this date to be valid, the user may simply be allowed to continue on. Composite
interactions are those interactions that may be made up of two or more interactions
that are meaningful on their own. Let us look at an example.

Using a voice user interface, a user is prompted for his or her name by a prompt
of “Please state your first name.” The user’s response is “Phillip.” The prompt and
the response to the prompt, together, comprise an atomic interaction. Neither the
prompt nor the response to the prompt is meaningful on its own. However, if a user
is prompted for his or her first name and last name by a prompt of “Please state
your first and last name, for example Dave Seleno” and the response is “Phillip
Lindsay,” a composite interaction has taken place. This is because both the prompt

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

254 GENERIC USER INTERFACE DEVELOPMENT

«metaclass»

«metaclass»

«metaclass»

«metaclass»

«metaclass»«metaclass»«metaclass»

«metaclass»

«metaclass»

Element

AtomicElement

Response Prompt

Channel

Interaction

Context

ControlMessage

1

1

Composite Element

0..1

*

FIGURE 5.4. Atomic and Composite Interactions.

and the response to the prompt may be decomposed into other atomic or composite
transactions. In this particular case, there could be two distinct interactions, one
asking the user for his or her first name and the other asking the user for his or
her last name.

In the context of this book, we will refer to interactions, or dialogues, as com-
munication between the user and the system that involves one or more messages
from both participants. In those cases where there is an interaction composed of
only one atomic message, we will simply refer to the message. The UML class
diagram in Figure 5.4 shows one possible meta-model to represent these relation-
ships, mentioned here, among some of the elementary particles that make up user
interfaces.

It is important to note that user interface interactions are not the same thing as
back-end business logic transactions. A back-end process with transaction bound-
aries may specify that a user may not purchase an item without a valid credit card
number. Transactions may be started, committed, rolled back, and ended. None
of these concepts apply to interactions. Interactions merely define how the user
communicates with the user interface of the computing system.

Although ECMA’s taxonomy does not address the composite or atomic nature
of messages and interactions, it has an orthogonal taxonomy of different types of
dialogues by separating them into menus, languages, direct manipulation, and form
filling. We will use this categorization as well. Higher level organization of the
atomic messages can also help us in distinguishing the building blocks of user
interface interactions. Let us look at these first.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 255

Interaction Elements
The messages being exchanged between a user and the system during an interac-
tion can be categorized by the type of task invoked by the recipient, the system or
the person, when the recipient receives the message. In this text, we will recognize
three types of interaction elements: control elements, prompts, and responses. Let
us start with control elements.

Control Messages
Control messages control the flow of the application or cause the application to
begin some process that has no user interface. Do not mistake these with so-called
form controls. Control messages are messages sent from one actor to another
(user to system in this case) whereas form controls are widgets on a given form.
An example of a control message is clicking to close a window in a window-based
GUI such as Microsoft Windows or X-Windows and causing the application to
terminate. Another example of a control message is clicking the submit button
on an HTML form to send all of the fields filled out by a user to an HTTP server.
Both of these are examples of control of the application flow, the first terminating
the application and the second moving the application to the next dialogue or
interaction. Control messages can also cause a process that has no user interface
byproducts, for example, pressing a button that starts a back-end batch job to
process some data.

Control messages are often the starting point and ending point of an applica-
tion user interface. Workflow is the automation of a business process, in whole
or part, during which documents, information, or tasks are passed from one par-
ticipant to another for action, according to a set of procedural rules [WFMC and
Fisher 2000]. There is typically a direct linear relationship between the workflow
of an application and control messages in an application: The control messages
of the user interface typically are the markers between the different stages in
the workflow. Workflow is typically extremely important to designing user inter-
faces, and although our focus in this text is not on workflow, it is important to
know the close tie between user interfaces and workflow. Automation of busi-
ness processes, managing documents, information, or tasks, as the WFMC guide
specifies, is typically done through a user interface that dynamically adapts to
the user’s actions. Though all of the messages that the user sends to the appli-
cation affect the workflow to some degree, control messages have the biggest
effect.

Therefore, one of our challenges becomes creating efficient programmatic struc-
tures and algorithms that decrease the dependency of workflow on the specific type
of device on which the application user interface is rendered. Because the lynch-
pins in the workflow are the control messages, the most important thing we need
to keep in mind to design and implement generic user interfaces is to keep the
flow of the application, controlled by these messages, independent of the specific
user interfaces.

Control messages can also be thought of as markers between different states
of the user interface. For example, the user may click on a button when finished

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

256 GENERIC USER INTERFACE DEVELOPMENT

filling out a block of widgets that allow data entry of the user’s address. This may
cause navigation to the next page (the next stage of workflow), jumping to another
section of the page, or some other response by the system. Regardless of which
happens, the control message sent by the user to indicate that he or she is finished
filling out his or her address indicates the end of the address filling state and the
beginning of whatever state follows.

Besides controlling the flow of an application, the users typically input some
raw data for processing into the application. Prompts are the way the application
tells the user when it is ready to receive this input and in what form it needs the
data.

Prompts
Prompts are system requests for input by the user. We can also refer to the actual
system query from the user as a prompt. Regardless of the input channel used
to interact with the computing system, the computing system uses prompts to
give the user some information about a piece of information it is looking for. In
the last section, we mentioned an example of a simple prompt “What is your first
name.” Note that this prompt is valid regardless of the channel that it is being used
through. Whether the system prompts a user who is on the phone to say his or
her first name or a user who is using a PC monitor to interact with an application
is prompted for a first name, the prompt asks for the same piece of information to
continue the flow of the application: the user’s first name.

Prompts, as with other pieces of information, may be designed generically and
then transformed to the specific user interface channel. There may also be a depen-
dency on the context of use of the prompt. We will introduce the concept of contexts
later in this chapter. The context of a prompt is always known: The application
developer always knows why the prompt is being presented to the user. Therefore,
there is no such thing as an invalid prompt in the absence of programmatic bugs.
However, prompts can be ambiguous depending on the context in which they are
being used and the condition of the user. We will discuss ambiguity along with
contexts.

A prompt is typically presented to look for a response from the user. Let us
look at responses, another element in user interface interactions between users
and computing systems.

Responses
There are two types of responses: system responses and user responses. The mean-
ing of a response is simple to infer from the word used: It is the user input given to
the system to satisfy what the prompt requests by the system. Whereas prompts
are more deterministic by nature—we program them so we know how they are
going to act, what they will look like, what they will sound like, etc.—responses
are much less deterministic. For example, the user may not speak English at all
and respond with simple silence to the “What is your name” prompt. The user
may misunderstand the meaning of a given prompt or not understand it at all,
causing a response that is not only incorrect but also irrelevant to whatever con-
text within which the prompt may have been posed.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 257

Interaction Types
We have already defined atomic and composite interactions. This categorization
is based on the makeup of the interaction. But, we can categorize interactions in
other ways too. We do this so that we may come up with some qualitative rules
for the interactions allowed by the user interface of an application. Different types
of interactions may be suitable for different applications. Although deciding what
types of interactions best fit a particular user interface depends on the customer
specifications and the user interface designers, our main goal here is to outline the
different interaction types.

Commands
The simplest form of interacting with a system is through a predefined list of com-
mands. The DOS or UNIX command lines are such examples. Though most sys-
tems provide some sort of help, the user must know what are possible commands
and how they are used. Commands are applicable to various types of interfaces. A
command can be specified by the number of times you press a button on a game
pad, the way you move the gaming joystick, the text you type at a system prompt, or
a “keyword” voice command given to a system. Command-based interactions are
typically straightforward to implement. User interfaces that use command-based
interactions normally perform well. Unfortunately, although command-based user
interfaces work well for expert users, they are less ideal for novice or intermediate
users. The user has to remember the commands and their use (in what sequence
they can be used, what arguments they may take, etc.).

Command-based interactions are used less and less with stationary applica-
tions because sophisticated GUIs provide advanced features that obviate the need
for users to know a list of commands. However, surprisingly, command-based in-
terfaces are relatively useful for mobile applications. Advanced mobile users are
trying to achieve their computing tasks fairly quickly without listening or looking
at a list of options. Commands can also be abbreviated so that limited interfaces
such as the number pad on a telephone can be used more efficiently. For the novice
mobile user, though, command-based interactions are not very desirable. An ideal
mobile user interface may give the user the option of selecting which to use:
a user interface that uses command-based interactions heavily or one that does
not.

Menus
Menus allow selection of one or more options presented by the user interface.
Menus are similar to commands in that they allow a predefined and limited list
of actions to be taken, but they are different in that they always present the user
with possible choices. Menus are commonplace in GUIs, particularly in WIMP
(Windows, Icons, Menus, and Pointers) environments, which rely on them as the
basic way of interacting with the user. Menus are also popular with VUIs where
the user is presented with a set of options to select from.

Menus are an advancement on command-only interactions, but they have their
own set of limitations. Menus do not work well when there are many options to

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

258 GENERIC USER INTERFACE DEVELOPMENT

select from. The user typically does not want to deal with a menu that has 200
items under each main item or hear a list of 200 choices on the voice user interface.
Of course, the way most developers try to alleviate this problem is by creating
submenus that represent some treelike categorization of items. However, this gives
rise to another set of problems. First, there may not be an obvious categorization
of the options. In fact, most of the time, there are actually too many different ways
of categorizing the same information. For example, if we want to present a menu-
driven method of presenting all the operating system commands, we can divide
them by whether they have I/O functionality or not (and then subcategorize from
there) or by whether they perform local operations or network-based operations.
The way the application may organize the menus and submenus could be obvious
to one user whereas it could boggle the mind of another. Finally, if the menu/
submenu nesting is too deep, the navigation sequence becomes very long. We have
all had the nightmarish experience of dealing with VUIs that require listening to
several different menus and punching in a dual tone multifrequencey (DTMF)
number after each menu is presented only to find out that we end up at the wrong
place and, frustrated, have to “zero-out” to an operator by pressing 0.

Menus are very useful in navigating through the application. Creating good
menus and submenus requires a thorough understanding of the application do-
main. Also, it is crucial that menus across different user interfaces follow the same
categorization scheme in presenting the user with the various options. Menus are
particularly tricky when one is developing generic user interfaces. This is because,
although specialization of a list of items to a particular user interface may render
a good interface, specialization to another particular user interface may render
an unusable interface. For example, a menu, several levels deep, that allows you
to select a particular bank account in HTML may be too long with a voice user
interface and too cumbersome through a WAP device. So, when we create user
interface generic menus, we need to apply the following principles:

1. Provide several ways of categorizing the menu trees and allow the components
that specialize the interface to select which one they need (at run time or compile
time).

2. Make the menus as shallow as possible. Though too many submenus are not
desirable, the alternative of having a long list may be worse for some user
interfaces such as voice or small text displays on handheld devices. The users
typically cannot remember a list longer than a few choices and the device may
not have enough space or memory to render a long list of choices. However, if a
component that specializes the generic interface wants to combine two different
menus, it can do so. So, when it comes to mobile applications, break down the
menus to submenus of a handful of items (five or less is always a good rule of
thumb).

3. Do not overuse or abuse menus! Menus are not good tools for data entry. Provide
the users with shortcuts to bypass menus. Tuck the seldom-used options in the
menus in some submenu that is out of the way and does not hinder the efficient
use of the user interface.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 259

Forms
Forms are a popular medium of communication, not just in computing, but in all
aspects of communication. When you apply for a job, you typically have to fill out
a form. When applying for a visa to travel to a different country, you have to fill
out a form. Forms are everywhere. They are perhaps the most popular method of
gathering information from a user. And this is the concept that has given rise to
forms on user interfaces.

Though the metaphor of form is most closely associated with a visual form,
aural forms are possible as well. Forms simply consist of a group of prompts
with required or optional responses. Other than navigation, the system does not
do much with the elements of a form until the user is finished filling out the
necessary information and then “submits” the form. Submission could be clicking
on a button that says “submit” on a Web-based HTML form, pressing the # key
on the mobile phone dial pad, or simply terminating the application. Forms are
often made of prompt–response pairs. These prompt–response pairs are typically
referred to as form controls.

Forms present the same complications as menus for mobile applications. Build-
ing forms generically, without any look-and-feel information, is a task that XForms
standard by W3C tries to tackle. We will look at XForms later in this chapter.
XForms specifies a standard way of representing forms in XML without bias to a
particular user interface types, but it is the designer’s task to figure out what form
controls should be put on a particular form and how this form may be rendered
with different user interfaces. Once again, for mobile applications, we should try
to follow some guidelines:

1. Do not put too many controls on a given form. This makes the form confusing
and unusable by some devices or channels.

2. Group the form controls together and identify the groups to the user. For ex-
ample, when collecting the user information, a group of controls may collect fi-
nancial information whereas others may collect educational information. Group
each together.

3. Provide lots of help and hints if the user is ever confused.

Whereas menus are mostly used for navigation, forms are typically used for data
collection. We can achieve both through natural language, which allows a mixture
of commands and data in the same interaction message.

Natural Language
Natural language is a term most often used in dialogue design of VUIs. However, it
applies equally across all different types of channels and modes of user interfaces
to computing systems. A natural language-based interaction simply means that you
tell the computer what you want it to do as if you were telling a live person. Imagine
if you could just type “I want you to open my e-mail tool and delete all of the e-
mails from Jos Bergmans” or say “I want to find what restaurant Jos recommended
in Amsterdam. Could you search my e-mail and tell me what it was?” These are

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

260 GENERIC USER INTERFACE DEVELOPMENT

examples of natural language interactions with computing systems. As you may
imagine, natural language-based interactions are extremely attractive, if we can
implement them. However, implementing natural language-based user interfaces
proves to be extremely difficult because of “ambiguity.”

Ambiguity refers to lack of enough “context” (discussed later in this chapter)
or information that helps the system understand the user or vice versa. Imagine,
for example, that you are trying to design an application that provides the user
with a natural language user interface for finding driving directions. The following
could be a prompt and response sequence:

Prompt: Welcome. This system provides you with driving directions. Tell me what
directions you want.

Response: I want to go home.

The response, obviously, is meaningful, but the system has no way of knowing
where “home” is. If the application is designed to parse the text input by the user
and match whatever comes after “to go” with some valid address, it would not be
able to find an address that matches home. Now, let us assume that the user knows
more about what he/she needs to provide the system:

Prompt: Welcome. This system provides you with driving directions. Please say
the address of the destination.

Response: 2652 McGaw Avenue.

Once again, we have not provided the system with enough information because
there is no information about the city, the zip code, or the country. Let us keep
improving the prompt:

Prompt: Welcome. This system provides you with driving directions. Please say
the address of the destination starting with the street address, then the city, and
then the zip code.

Response: 2652 McGaw Avenue, Irvine, 92660.

Now, we are getting closer. If the system is well designed, it can actually accurately
guess the location based on this response. The prompt can still be improved,
but you get the point. Natural language responses are used more often in VUI-
based systems because it is easier to separate the elements of the prompt and the
response than in a GUI and it is no more difficult for the user to interact with
such an interface. With a VUI, though, tremendous speed and efficiency is gained
if we can implement natural language interactions with good accuracy and speed.
We will look at these issues further in Chapter 7, where we look at VUIs in more
depth.

Let us take a quick look at what we did to get a more accurate response from the
user. First, we made sure that the user gives us an address and not some randomly
named location. Then, we made sure that the user included the city and the zip

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 261

code. We probably should have even asked for the country so that our application
may be internationalized easily. Finally, we specified the temporal context (basi-
cally the order that the user should say things) of the expected response. Each
step reduced “ambiguity” for the user: We narrowed down the things that the user
could send to the system as a reasonable and acceptable response. We will discuss
various ways of reducing ambiguity, but keep in mind that a good user interface
minimizes the amount of ambiguity. This can be done through the use of various
types of context, specific prompts, or other methods.

Reducing ambiguity is particularly important for mobile applications where the
users’ patience and attention span are less than for users of stationary applications.
It is also important to reduce ambiguity in a way that can apply to a variety of user
interfaces. Each specializing component can add its own set of clarifying content
and behavior to the user interface to reduce ambiguity specific to that particular
type of user interface.

For now, the important thing is that any user interface can use natural language
interactions. Therefore, to build a generic user interface to the system, our imple-
mentation of a generic user interface needs to take into account natural language
interactions. In cases that a given natural language-based interaction may be suit-
able for one user interface and not the others, the alternative must be provided so
that the specialization components can select the most optimal choice.

Mixed Initiative
Mixed initiative, as in the case of natural language, is a terminology typically used
in the design of voice user interfaces. However, it too is equally applicable to a
variety of user interfaces. Natural language stipulates communication interfaces
between humans and computers, and therefore user interface interactions, to be
in a way most friendly to humans. Commands, menus, and forms, in contrast, are
examples of discrete information units and messages that are more suitable for
the way machines work. Mixed initiative is a marriage, or perhaps a compromise,
between the two different models.

Whereas humans typically prefer natural language interfaces as they offer the
“most natural” way of communicating, machines like commands and menus better.
In fact, the most efficient approach is probably a mixture of both. There are many
times when the user must be “directed” (thereby the term directed dialogue or
directed interactions) in what response may be suitable. Look at our example of
driving directions in the previous section. If one person tells another person “I
want to go home,” the response of the second person is probably going to be
“where is home?” Eventually, an address will be required. So, the user interface
is better designed if the user is directed to give the right answer to begin with.
Menus and commands can help the user navigate to a point that a natural language
response to a prompt can be limited by the machine and yet allows the user to
efficiently communicate with the system.

We will look at mixed-initiative dialogues more carefully in Chapters 7 and 8.
Now that we have gone over the basic channels and interactions, lets see how
we can model them using UML. Just remember that UML is not a programming

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

262 GENERIC USER INTERFACE DEVELOPMENT

Context

InteractionSimpleInteraction

CompositeChannel (MultiChannel)

CompoundInteraction

Channel

AudioChannel

VideoChannel

TextChannel

1

1

«metaclass»

«metaclass»

«metaclass»

«metaclass» «metaclass» «metaclass»

«metaclass»

«metaclass»

«metaclass»

* *

FIGURE 5.5. Metamodel of Interaction Taxonomy.

language. It is a modeling language designed to communicate designs and imple-
mentations and to help improve the design and implementation process.

Representing Interactions with UML
Because we will be using UML to communicate the design and functionality of
the user interface, we need to know how interactions between the user and the
system can be modeled in UML. In Chapter 4, we reviewed the basics of UML.
Now we need to put those basics to work. First, let us use class diagrams to model
everything that we have said about the things that make up interactions, the re-
lationship between channels and interactions, and contexts. Note that the classes
in our diagram are all metaclasses. This is because these are not actual classes that
a developer would use in creating an application. Rather, they describe the model
for the classes in an application. Such metamodels, as previously discussed in
Chapter 4, can be used to determine the semantics of a framework that will allow
us to implement the functionality that we need or to simply recognize whether
a given framework can accommodate the functionality represented by this meta-
model. Figure 5.5 shows the metamodel of some of the user interface components
discussed to this point.

Class diagrams, though probably the most popular part of UML, do not really
give us the functionality that we need to represent user interfaces. Class diagrams
are perfect for representing metamodels as shown in Figure 5.5, the metamodels
that are the classes for our objects, or class instances.

Use case diagrams can communicate the general use of the system, but they
do not have the detail level needed to represent an interaction between the user
and the system. Obviously, use case diagrams are still very much needed as any
detailed requirement gathering process that utilizes UML involves creation of use
case diagrams that map out the general functionality of the system. All of the other

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 263

types of UML diagrams can be used for user interface development in one way or
another. We will touch upon each one of them when appropriate in this chapter.
But, the diagrams that seem to be perfect for representing interactions between
the user and the system are, befittingly, the interaction diagrams.

An interaction diagram is a temporal representation of user interactions with
the system: Individual interactions are represented sequentially in time. There are
two forms of interaction diagrams as seen in Chapter 4: collaboration diagrams
and sequence diagrams.

State and activity diagrams can also be used to represent generic user interfaces,
but as they are largely State Machines, they apply to user interfaces that are state
driven. We will consider their use later in this chapter. For now, let us stick with
the interaction diagrams and start by looking at how to sequence diagrams to
represent user interface dialogues.

Using Sequence Diagrams to Model User Interactions
Perhaps the most important thing to remember in using sequence diagrams to
represent user interface dialogues is keeping the messages and stimuli to the most
granular possible form so that they correspond to the atomic elements of dialogues.
Let us look at our driving directions example once again.

The requirements are listed in Example 5.2.

Example 5.2: Requirements for Driving Directions Mutlichannel System.

1. To allow the user to get driving directions from the system using a PSTN
phone call, browser-based HTML interface, and WAP interface.

2. To provide expedient ways of accessing driving directions, regardless of the
user interface, for the expert user.

3. To provide help and hints for the novice user.

First, we need to decide what the objects of our sequence diagrams are. We will
use an actor to represent the user and a generic object called “system” to represent
the user interface of the system. Now, this is an overly simplified generalization of
the system.

Next, we can derive some use cases from this. In a real project, we would do
this with the potential customers. Example 5.3 gives one possible use case for the
Example 5.2 requirements. (We will keep the use case very brief as it is not our
focus for this example.)

Example 5.3: Driving Directions Use Cases.

Use Case 1: User calls into the system using a touch-tone phone. The system
should present the user with a prompt that allows the user to specify the origin
and then the destination. The system then reads the directions back to the user,
allowing the user to pause the play back process intermittently.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

264 GENERIC USER INTERFACE DEVELOPMENT

«process»
Driving Directions System : Voice User Interface

User In Need of Driving Directs : ?

1: CallSystem

2: Specify Destination Immediately

2.1.1: Prompt the User For Destination

2.1.1.1: Specify Destination

2.1.1.1.1.1: Prompt the User for Origin

2.1.1.1.1.1.1: Specify the Origin

2.1.1.1.1.1.1.1: Read Directions

1.1: Welcome User And Listen For User To Bypass Menu

2.1 : validateDestination()

2.1.1.1.1: validateOrigin()

FIGURE 5.6. Sequence Diagram of Basic Interactions for Finding Driving Directions.

It is obvious that at some point we would have to further delve into the details
of what “system” is; however, for now, our focus is to document and model the
interactions between the user and the system.

Now, let us model the voice interactions in this use case with a sequence diagram.
Figure 5.6 shows the sequence diagram of the basic interactions that happen

between the user and the system. You should note that this is a “starter” diagram.
This diagram does not implement all the features offered by sequence diagrams to
represent interactions, but it is a good point to start. Note the following about the
diagram:

1. Sequence diagrams are typically used to indicate the interactions among the
components or objects in an object-oriented system. The way we have used the
sequence diagram here is perhaps a bit unorthodox. But, remember that UML
is a tool and that we can use it in any way we want to improve our development
process, provided we abide by the specifications of the standard. So, in this case,
we have chosen an actor to represent the user of the system and a classifier to
represent the system.

2. We have specified the system to be of the “type” voice user interface. Again, a
type as we have used it does not particularly make much sense when thinking in
terms of traditional uses of UML. However, we can communicate the semantics
of what we want to get across without violating the specifications of the standard.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 265

We could have similar sequence diagrams that represent the interactions of the
user with the HTML user interface, Windows-based user interface, or others.

3. Sequence numbers label the interactions going back and forth between the user
and the system. These can be of particular importance as they can represent the
time sequence in which the interactions happen (temporal arrangement of the
interactions).

4. Message 2 terminates with a half arrow. This means that the user can respond
to the system asynchronously. The definition of an asynchronous message sent
to a user interface varies depending on the type of user interface. In the case of
a voice user interface, for example, we can say that asynchronous implies either
“barge-in” capability or “universals” or both of them.

5. The destination and the origin are both validated. If either is not valid, the system
goes back to the state of prompting the user for the appropriate information.

6. Not all of the messages displayed on the sequence diagram are atomic in nature.
For example, interaction message 1.1 can be decomposed into other steps. It
is possible to create another sequence diagram that further breaks down the
interactions. In the case of 1.1 (Welcome User and Listen for User to Bypass
Menu), the system may present the user the welcome message and continue on
with an interruptible voice advertisement.

7. We could add notes to the diagram to represent the prompts that the user is
presented with for more documentation.

8. Constraints, not shown graphically, could be placed on the user responses to
specify the grammars used for recognizing user responses.

This example shows us that the sequence diagram is an effective tool for commu-
nicating requirements of a user interface at a high level. We will go further into
specific use of sequence diagrams for VUIs in Chapter 7. The sequence diagram
in Figure 5.6 specifically addressed VUIs. But, as we have been discussing, we
want to build a generic user interface to the system and then specialize it. So, it is
only logical to conclude that we want a sequence diagram that represents the user
interactions with the system without bias to a particular user interface and then
a set of diagrams that build on the generic sequence diagram to specialize this
generic user interface. We will discuss the latter, diagrams that are used to specify
specialization of the generic user interface, in Chapters 6–8 as we learn how to
build graphical, voice, and multichannel mobile user interfaces. Now, let us focus
on using UML to represent user interactions with the system in a generic manner
without any bias to any particular user interface.

To build a generic interface that allows a user to retrieve driving directions, we
recognize three types of dialogues that could take place:

1. Form-Based Dialogue: The user may fill out some prompts, presented through
some user interface, that specify an origin and a destination. The system then
presents the user with the driving directions using the addresses specified by
the user (or a good guess that may be appropriate). This is how an HTML
Web-based system that renders driving directions works.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

266 GENERIC USER INTERFACE DEVELOPMENT

2. Natural Language Dialogue: The user may give all of the information to the
system in one or more natural language interactions. For example, the user
may say or write “I need driving directions from home. I’ll be going to Orange
County Airport.”

3. Mixed-Initiative Dialogue: The user may interact with the system using a mix-
ture of natural language and form-based interactions. The interactions may be
initiated by the user or the system (hence the name mixed initiative as discussed
in this chapter). Such a dialogue could be:
System: Welcome. Where is your destination?
Response: Orange County Airport, Santa Ana, California.
System: Where are you coming from?
Response: Home.
System: Ok, here are your directions. Please say “pause” if you want me to stop

reading you the directions and wait. Say “continue” to start off where you
said “pause.”

Let us assume that the system understands “Home” by the virtue of the user’s
registration process where a home address is provided. Based on this, the system
can parse through the two messages sent to provide the user with the proper
driving directions.

So, the generic user interface that we design may need to be based on either one
of the three possible dialogues outlined here. For simplicity sake, let us take the
form-based case. Regardless of the type of user interface, two things must be done
in the case of the form-based user interface:

1. A set of prompts must be answered to provide the system with the proper
information.

2. The system returns a response based on the prompts and allows the user to
pause the response at different stages depending on the viewing mechanism.

Possible fields for item 1 are a destination address and an origin address. To main-
tain consistency throughout our system, we should probably communicate an
address with the user the same way every time. So, it would make sense that we
use the same sequence diagram to represent the interactions with an address user
interface component as in Figure 5.7.

The diagram in Figure 5.7 can help us accomplish several different things:

1. Maintaining Consistency: Because we have outlined how a user will be interacting
with the system to enter address information, in a form-based manner, we have
created a mechanism to maintain consistency between various user interface
implementations of an “address user interface component.” For example, if a
VUI component is built based on the sequence diagram in Figure 5.7, it will be
consistent with an HTML frame that accomplishes the same thing.

2. Encouraging Components: By the virtue of representing the user interactions
with the system in a generic way, we encourage stitching user interfaces to-
gether with components and reusing components. This has two benefits: First,

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 267

Address User Interface Component : Generic User Interface

Form Based User Interface User : ?

1.1: Prompt for Country

1.1.1: Respond with a Valid Country

1.1.1.1: Prompt for State Or Province

1.1.1.1.1: Respond with a Valid State or Province

1.1.1.1.1.1: Prompt for Street Address

1.1.1.1.1.1.1: Respond with a Valid Street Address

1.1.1.1.1.1.1.1: Prompt for Postal Code

1.1.1.1.1.1.1.1.1: Return a Valid Postal Code

1: isInvalidAddress()

FIGURE 5.7. Representing User Interface Interactions in a User Interface Generic Manner with
Sequence Diagrams.

we maintain consistency (as previously mentioned) throughout each type of
user interface and across multiple types of interfaces. Second, we are able to
reuse the components that specialize the generic user interface components.
Figure 5.8 illustrates this. Let us say that we have another generic component
that allows the user to fill in personal information such as name, age, etc. We
will call this the user information component. Both the address component and
the user information component can have accompanying specialization com-
ponents that allow us to specialize each to a particular type of an interface (such
as a voice or Web user interface as shown in 5.8). When we combine these two
components to make a registration component, we will need to build more code
to specialize this new composite component. But, we can leverage the compo-
nents that allow us to specialize the elements of the composite components.
Using a sequence diagram to represent the interactions with the components
allows us to maintain component definitions consistently so that specialization
of the generic interface components does not become prohibitively costly.

3. Designing Documentation: One of the biggest reasons to use UML is to maintain
good documentation to communicate requirements among the managers, the
user interface developers, and the application developers. A key purpose of a
sequence diagram representing user interface interactions in a generic manner

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

268 GENERIC USER INTERFACE DEVELOPMENT

Address : Mixed Initiative User Interface

Mixed Initiative User Interface : ?

1.1: Prompt for Entering an Address Location

1.1.1: Respond with a Complete Address
1: validateAddress()

Address Grammar:

string.concat(
string.concat(country,state),
string.concat(city,street_address))

FIGURE 5.8. Using OCL to Model Grammars for Natural Language–Based Grammars.

is to dictate how the components that allow generic interface access to the
system should be built and how they are to be used by the components that
specialize them.

4. Specifying Spatial and Temporal Behavior of Components: Sequence diagrams can
be used, as we have here, to specify where and when the user interface elements
should be presented to the user. In our example, we have specified that querying
the user for the country should come first. If order is implied by temporal (time-
dependent) behavior of the component, such as in the voice user interface, this
means that the user is prompted for country before being prompted for city. If
order is implied by spatial (placement in three-dimensional space) behavior of
the component, such as the case of an HTML user interface, this means that
the form field asking the user for country appears before (to the left and higher
up—in case of English) the form field for city.

In this way, with form-based user interface interactions and components, we can
break down every interface to components and subcomponents and then represent
the process of filling them out with sequence diagrams.

Although we can use sequence diagrams for natural language and mixed-
initiative dialogues too, the problem becomes more complicated because we need
to specify patterns of expected responses (grammars and constraints being two of
the popular names used for these) from the user.

Natural Language Dialogues, Mixed-Initiative Dialogues, and
Sequence Diagrams
Form-based dialogues lend themselves to a very straightforward implementation
with UML sequence diagrams. Using the sequence diagrams for natural language
and mixed-initiative interactions is a bit tricky. Not only are natural language and
mixed-initiative interactions tough to handle inherently, but representing them in
diagrams is difficult because there are too many different permutations of possible
responses by the user.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 269

To treat this, we can map grammars that define possible user responses to
constraints and tagged values. As discussed in Chapter 4, constraints are treated
as text in enclosed brackets ({}). OCL gives us a good way of representing con-
straints for objects. However, using constraints for specifying grammars is a differ-
ent problem than representing grammars. It is also important to keep in mind that
neither OCL nor grammars are designed to be used as programming languages
that have features such as control flow.

Let us say that the system simply queries the user for a postal address. In this
case, the system may expect a response that is similar to one of the following:

� 16825 Pacific Coast Highway, Huntington Beach, California
� 16825 Pacific Coast Highway
� 16825 Pacific Coast Highway, Huntington Beach
� Huntington Beach, California, 92626

There are obviously even more permutations that could include extraneous charac-
ters or words as well as different ordering of placement. Because both the ordering
and composition of the elements of the grammar change the definition of the
grammar, a grammar made of n elements has an n complexity level.

The user interface components, therefore, may have a difficult time interpreting
the user’s response as n increases. To keep n to a reasonable number so that a
message can be interpreted within a reasonable amount of time, we need to specify
two variables in our diagram: the constraints on the response that the user may
give the system and the time that it may take to interpret the user’s response. Keep
in mind, also, that although purely natural language dialogues can be used for
small atomic interactions such as obtaining a user’s city and country, the number
of permutations of the possible user responses prohibits us from building user
interface systems that are purely based on natural languages. The problem with
a pure natural language interface is not just the excessive processing time that it
takes to interpret the message; it is also that the certainty of a correct interpretation
decreases as the number of elements in the message increases. In other words, the
more words that are in a sentence or phrase, the more complicated it is to under-
stand that sentence or phrase and the more difficult it is to accurately interpret it.

So, practically speaking, although we can have small interactions that are fully
based on natural language, complex interactions will have to be mixed initiative
(a mixture of directed dialogue—interactions directed by the system—and natural
language where the user sends a response back to the system in whatever format
he or she wants).

Figure 5.8. shows the equivalent of our address example in a mixed-initiative
dialogue using OCL. We have used the UML comments notation to represent the
OCL graphically. The tool we are using (Object Domain), as well as most other
UML tools, provides a mechanism for OCL entry.

Though we can map grammars to OCL and then use OCL in our UML diagrams,
OCL was not designed for this purpose; therefore, it is not the best tool for this
purpose. In general, the current UML specifications do not deal with natural
language modeling issues.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

270 GENERIC USER INTERFACE DEVELOPMENT

There are other choices outside the UML specifications that can enhance our
diagrams. There are an entire slew of proprietary specifications from a variety of
voice system vendors for grammars. Most often, such proprietary standards are
not interoperable and therefore tie the design model to a particular vender if used.
However, W3C has defined its own set of standards for grammars. We will look
at these in further detail in Chapter 8. We recommend using these standards,
although, they too have a downfall: They are biased to VUIs. It is important
to note that natural language and mixed-initiative interactions are not specific
to VUIs. For example, a user could type “Find me a flight to go from Orange
County, California, to Moses Lake, Washington, on Christmas Day” as well as say
it. Unfortunately, most work currently being done on natural language and mixed-
initiative interfaces focuses on VUIs as opposed to treating all interfaces in a generic
manner.

W3C, too, does not seem to be immune from this. However, not only is W3C a
vendor-neutral organization, but its bias is less toward VUIs than other alternatives.
W3C’s speech grammar specification, found at http://www.w3c.org/TR/speech-
grammar, includes an XML-based standard with which to specify grammars. Fig-
ure 5.9 shows our sequence diagram using this standard to specify the grammar
instead of OCL. We will discuss this further in Chapter 8.

In the Figure 5.9 example, we have only specified the grammar for an interaction
that expects the city and state, but you get the idea. Even in our simple example,
it becomes obvious that there is a significant amount of code in the UML diagram.
As previously discussed, this is not a good idea. So, an optimal solution could be
storing the grammars in text files accessible through URIs and referring to them
in the sequence diagrams through the URIs.

This completes our look at representing user interactions with the system by
using sequence diagrams. Sequence diagrams give us the most obvious alternative
for modeling user interactions with a user interface. Particularly, we need to model
these interactions first in a generic way (independent of the user interface type)
as we have done in this chapter, and then specialize them to specific user interface
types as we will see in the next three chapters.

To build user interfaces for mobile applications, we build generic interfaces and
model them using UML, then we specialize them to specific interface types. Now,
let us look at the glue that holds the user interface components together and tells
the user what they mean: the context.

5.3.3 Context
The Webster dictionary defines context as 1) the parts of a discourse that surround
a word or passage and can throw light on its meaning or 2) the interrelated condi-
tions in which something exists or occurs. The word “context” is simply a loaded
word. Any element of interactions between the computing system and the user has
a meaning by itself, but possibly a bigger meaning by existing in a dialogue with
other elements. As the definition of the word context implies, this bigger meaning
comes from the relationship that exists between the different elements. So, within
the realm of user interfaces, we can define context as the sum of the relationships
between the user interface components, the condition of the user, the primary intent of

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

A
dd

re
ss

 :
M

ix
ed

 In
iti

at
iv

e
U

se
r

In
te

rf
ac

e

M
ix

ed
 In

iti
at

iv
e

U
se

r
In

te
rf

ac
e

U
se

r
: ?

1:
 P

ro
m

pt
 fo

r
E

nt
er

in
g

a
C

ity
 a

nd
 S

ta
te

1.
1:

 R
es

po
nd

 w
ith

 a
 V

al
id

 C
ity

 a
nd

 S
ta

te

<
?x

m
l v

er
si

on
=

"1
.0

"?
>

<
gr

am
m

ar
 x

m
ln

s=
"h

ttp
://

w
w

w
.w

3.
or

g/
20

01
/0

6/
gr

am
m

ar
"

xm
l:l

an
g=

"e
n"

 v
er

si
on

=
"1

.0
"

ro
ot

=
"c

ity
_s

ta
te

">

<
ru

le
 id

=
"c

ity
"

sc
op

e=
"p

ub
lic

">

<
ru

le
 id

=
"s

ta
te

"
sc

op
e=

"p
ub

lic
">

<
ru

le
 id

=
"c

ity
_s

ta
te

"
sc

op
e=

"p
ub

lic
">

<
ru

le
re

f u
ri=

"#
ci

ty
"/

>
<
ru

le
re

f u
ri=

"#
st

at
e"

/>

<
on

e-
of

>

<
on

e-
of

>

<
ite

m
>
M

os
es

 L
ak

e<
/it

em
>

<
ite

m
>
S

an
ta

 A
na

<
/it

em
>

<
ite

m
>
Ir

vi
ne

<
/it

em
>

<
ite

m
>
C

os
ta

 M
es

a<
/it

em
>

<
ite

m
>
C

al
ifo

rn
ia

<
/it

em
>

<
ite

m
>
W

as
hi

ng
to

n<
/it

em
>

<
ite

m
>
Lo

s
A

ng
el

es
<
/it

em
>

<
ite

m
>
P

or
tla

nd
<
/it

em
>

<
/o

ne
-o

f>

<
/o

ne
-o

f>

<
/r

ul
e>

<
/r

ul
e>

<
ite

m
>
O

re
go

n<
/it

em
>

<
/r

ul
e>

<
/g

ra
m

m
ar

>

FI
G

U
RE

5.
9.

U
si

ng
W

3C
’s

G
ra

m
m

ar
s

in
U

M
L

to
Sp

ec
ify

Na
tu

ra
lL

an
gu

ag
e

an
d

M
ix

ed
-In

iti
at

iv
e

In
te

ra
ct

io
ns

.

271

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

272 GENERIC USER INTERFACE DEVELOPMENT

the system, and all of the other elements that allow users and computing systems to
communicate.

A prompt, a response, or any other piece of information being communicated
between the computing system may have a meaning on its own. However, the sum
of the meanings of all such information is greater than the linear addition of such
information. There is information hidden in relationships between these elements
such as their placement and temporal appearance.

Contexts help the user understand what the system expects in response to vari-
ous prompts more clearly. Contexts lessen ambiguity and the possibility of making
errors. Without contexts, user interfaces would have to be extremely verbose and
error handling and validation would be monumental tasks. Contexts complete the
meaning of individual user interface elements and add meaning to groupings of
such elements.

Contexts, as with previously discussed topics, have their own taxonomy. It is
not in the scope of this text to comprehensively analyze context; such a study
would protrude into the fields of artificial intelligence, linguistics, ergonomics,
and others. Nevertheless, we will look at a few different axes for categorization
of contexts. We will need to do this so that we know which types of contexts are
specific to exact user interfaces and which are not. This will help us in abstracting
context into different layers as we build generic user interfaces that are specialized
to devices at run time.

Finally, though we will focus on the context of the more rudimentary elements
of user interfaces such as the prompts, keep in mind that there may be relationships
among the various groupings of elements. For example, a prompt, as part of one
interaction, may have a relationship with an interaction preceding it. Contexts
give us information, based on the relationships among the various elements of
the user interface, that completes the picture and meaning of the user interface;
there exist contexts among various parts of the user interface at different levels of
granularity.

Taxonomy of Contexts by Domain
Both interactions and elements have contexts. Contexts can be domain specific
or domain independent. We will simply define domain as a grouping of problems
or a problem area. For example, we can discuss domains dealing with finances,
engineering, or medicine, or the domains could be more fine-grained such as
banking, electrical engineering, dermatology, or others. Applications are typically
used by users who know of the domain of the problem being addressed by the
application. For example, if the user opens a word processing application, the
system already knows one thing about the type of interactions that will take place
between the user and the system: They will all be within the context of word
processing. Users open a word processor to type some text in it and not to create
a three-dimensional image. Domain-specific contexts refer to the domain-based
purpose fulfilled by an element within the application. For example, when a user
goes to a Web-based business-to-business application, the definition of “buyer” and
“seller” are meaningful within the context of business-to-business applications.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 273

The overall context of the application as a unit, and therefore its user interface, is
almost always domain dependent. There are very few computer applications that
are not designed to solve very specific problems (these are either applications in
the research areas surrounding artificial intelligence or applications being written
by programmers of minimal intelligence). However, a grouping of the user interface
components of an application can have its own context. For example, a grouping of
five input fields of address, city, state, zip, and country has an address context.
Although the input field of city (one type of GUI prompt) has a much broader
meaning on its own, the context of filling address information eliminates much of
the ambiguity of a prompt that just says city and expects a response from the user.
Outside of the context, asking the user for a city would allow the user to enter the
name of any valid city.

Any relationship between various elements of the user interface that is not implic-
itly or explicitly derived from the domain problem has a domain-independent context.
Domain-independent contexts can be implied from the temporal, structural, func-
tional, and artistic organization of the elements in the user interface. Whereas word
processing tasks are the best known, they may be applied in any domain. Word
processing task contexts such as spell-checking, deleting, and the many other tasks
we know well can be used to create a legal document, an engineering document,
or an essay. Regardless of the domain for which the application, or the specific
functionality of the application, is being used, there is always some functional con-
text associated with the task being performed that is independent of the domain-
dependent tasks at hand. Database application, spreadsheets, word processors, and
even computer-aided drawing programs can have spell-check functionality.

A topic we will not discuss much in this text book, but which is important
to mobile computing, is the field of context-aware computing. In context-aware
computing, the conditions under which the application is being used takes cen-
ter stage. Though orthogonal to mobile computing, because of the great role that
environmental conditions play in mobile computing, context-aware computing
is of paramount important to us. There are also patterns and techniques that
have evolved for context-aware computing uses in the mobile arena. Alatalo and
Peraaho, for example, have suggested an approach for using contexts in specializ-
ing user interfaces [Alatalo and Peraaho 2001]. Before we proceed to look at some
specific taxonomies of context, let us note some characteristics that Henricksen
and colleagues point out when it comes to mobile systems [Henricksen et al.
2002]:

1. Context information exhibits a range of temporal characteristics.
2. Context information is imperfect.
3. Context has many alternative representations.
4. Context information is highly interrelated.

Before you think about using context-related information in your software ap-
plication, you may want to think about creating a domain-dependent taxonomy
of the various “context representations” or “elements of context.” For example,

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

274 GENERIC USER INTERFACE DEVELOPMENT

Munoz and colleagues do this for building a context-aware mobile communication
system in a hospital and recognize the following elements [Munoz et al. 2003]:

1. Location: By our definition, this is really a dimension of mobility so this is not
something that we would typically include in our context element list, but this
is how Munoz and colleagues have taken into account location—as an element
of context.

2. Delivery timing: This is an added time sensitivity to things happening in a
hospital.

3. Role reliance: Individuals working in a hospital communicate and perform tasks
based on roles (doctors, nurses, etc.).

4. Artifact location and state: This refers to the state, location, and availability of
things that are used in a hospital. For example, if there are ten EKG machines
and eleven people are under cardiac arrest, then the last one has to wait to get
the first EKG machine that frees up.

In building software systems, it is important to separate all domain problems from
those problems that are independent of the domain. So, while building generic
user interfaces, it is important to be aware of this problem. Whatever mechanism
is used to produce a generic user interface must enable the developer to encapsulate
most of, or all, the domain-dependent context of the application into the generic
user interface. After all, the domain of the application does not change regardless
of how the user interface to the system is being rendered.

Extrinsic and Intrinsic Contexts
Contexts may be implied: We may understand the relationship between the elements of
a user interface without the relationship being specified outside of the existence of the
elements themselves; this is intrinsic context. Such contexts are very subjective to
the perspective of the user. Intrinsic contexts are also often referred to as implicit
contexts. Intrinsic contexts exist as a result of the existence of the elements whose
relationship is explained by these contexts. Nothing in the user interface mentions
them explicitly.

Contexts may need to be specified to convey the necessary information re-
garding the relationship between the elements. This may be done to remove the
subjectivity in the interpretation of the relationship between the different ele-
ments of the user interface. It is also possible that a context cannot be inferred
from the user interface. Andrew Page [Page 2000], a clinical neuropsychologist
at University of Western Australia, defines extrinsic context to be synonymous
with independent context, comprising both background (e.g., time/place where
the word is read) and format (e.g., size/text font of the word) context; the defining
feature is that extrinsic context is “not supposed to affect meaningful interpreta-
tion of target information.” Likewise, he defines an intrinsic context as a kind of
context that affects interpretation of target information. For example, seeing bank
in the context of river will affect the semantic interpretation of bank.

Let us go back to our address example (see Figure 5.10). Note that the label
stating “Billing Address” conveys an extrinsic context to the user: The user would

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 275

Extrinsic Context Intrinsic Context

Credit Card:

Billing Address:

Street:

City:

Postal Code:

Postal Code:

Address:
Street:

City:

Exp. Date:

Total Due:

FIGURE 5.10. Extrinsic and Intrinsic Contexts.

not know what address to type into the fields otherwise. The name of the fields,
how they are placed, and their order imply that the system is looking for a postal
address; furthermore, the user knows, based on the implied context, that the city
and country are the city and country of the address.

Taxonomy of Contexts by Structural Positioning
We have now seen that we can divide all contexts into domain-dependent and
domain-independent contexts by whether or not they relate to the context of the
application. Another way of categorizing the relationships among the various com-
ponents of a user interface is by the relative physical positioning of the component,
in other words “where” the component is placed in the application user interface.

Structural context is almost always information conveyed by relative placement
rather than absolute placement. Structural positioning of user interface elements is
closely tied to localization and internationalization. Some languages are written from
left to right whereas others from right to left or top to bottom. This affects how
the elements are positioned on a visual user interface. Also, some locales dictate
a particular placement of a set of elements. Going back to our address example,
in some countries, the address is written with the city and state first whereas in
others the street address comes before the city and the state. The mere fact that
an address is international may imply that the country, state or province, and city
must come before the street address. The grouping of a street address with a city,
state or province, and country name may imply an international mailing address
context whereas the city name by itself does not have any particular meaning.

Maintaining consistency between the structural positioning of elements on var-
ious user interfaces used by a system is particularly important as it is a great part
of the user experience and understanding of the system.

The physical positioning of user interface elements does not carry much mean-
ing in nonvisual user interfaces. In VUIs, the placement of the element and its
associated context is carried by its temporal position: when it appears with re-
spect to the other elements as opposed to where.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

276 GENERIC USER INTERFACE DEVELOPMENT

Taxonomy of Contexts by Temporal Positioning
Interactions between a user interface and a person happen in some sort of a time
sequence. Therefore, there is a relationship in relative positioning of interactions
and their elements in time: when and in what order they take place. We call this
time-dependent relationship between user interface components their temporal
context.

It is extremely important that a generic user interface have complete and de-
tailed information on the ordering of all of the elements of the user interface at
the most granular level possible. This is because certain user interfaces, such as
command-based VUIs, allow only one message to be passed from the system to
the user or from the user to the system. Other user interfaces may use form-based
strategies with which the user can send several messages to the system at the same
time, but the size of the forms may vary depending on the specific type of user in-
terface. Therefore, the implementation of any framework or design strategy must
include some way of specifying the temporal positioning of every user interface
component.

Temporal contexts are particularly important in removing ambiguity in nonvi-
sual user interfaces. Depending on where a sentence, word, or phrase is said or
heard, its definition is different. For example, if the user is prompted for a city after
being asked for his or her current location, the user will probably assume that the
city is the city of his or her current location. Conversely, if the user is prompted for
a city after he or she was asked for billing address, the user will probably assume
that it is the city of the billing address that the system is looking for.

Temporal context of a group of interface components can be intrinsic or ex-
trinsic. If the order of every element (components, messages, interactions, etc.)
is specified, and this is necessary for some types of user interfaces such as a VUI,
the context is extrinsic. In other cases, particularly user interfaces that support vi-
sual forms, the temporal context of the components is implied from the structural
order in which the components appear on the form.

Temporal and structural contexts of VUIs are often not orthogonal: They depend
on one another, are inferred from each other, or are simply related. This is not quite
the case with nonvisual user interfaces. The amount of information understandable
by our visual senses (i.e., the bandwidth of incoming information) is exponentially
higher than what our other senses can provide.

5.3.4 User Interface Components
Anyone who has developed a GUI for just about any personal computing platform,
or any other platform for that matter, either uses a modern Integrated Develop-
ment Environment (IDE) for development or has tried to use one. Most modern
IDEs, regardless of the languages or platforms that they support, try to enable
the GUI designer to “drag-and-drop” some widgets onto the screen and to wire
them together to facilitate building a GUI. A big selling point for Microsoft’s Ac-
tiveX components and JavaBeans, at least at their conception, was just this; they
promised to allow you to not only program more intuitively with graphical tools
but also to build the GUI much quicker using standard components that you could
drag and drop.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 277

The basic premise of most of these tools was to design some reusable compo-
nents that modeled most typical user interactions with the system fairly accurately.
These widgets could range from very simple to very complex. For example, some
tools offer widgets that allow the user to draw forms, input fields, buttons, and
other basic user interface tools, and bind them together, through mapping events
or other methods, to create the skeleton of an interface component that facilitates
one or more interactions with the user. Other tools allow yet more sophisticated
and complex widgets such as calendar widgets, scrollable tables, and spreadsheets.

Both graphical and voice user interfaces, through such IDEs and other devel-
opment tools, have developed some canonical ways of defining what components
are. And though different vendors may use different terminologies for product
differentiation purposes, within the GUI design world or the VUI design world,
these components exhibit very similar behaviors and uses. These components have
evolved to be generic templates for graphical or voice user interfaces that allow the
developers to fill in some attributes and tie some things together to render a user
interface. However, nearly all of these types of components and their supporting
tools aimed to stencil templates for particular types of user interfaces and became
very tightly coupled to the type of user interface they support. For example, a
given tool may allow the developer to place an input field on the form, set its size
and color, set its borders, set some constraints on what can be entered into the
field, and then give the user another widget or keystroke to indicate when he or
she is finished filling out the data.

Although these tools offered widgets tightly coupled to the type of user interface
that they supported, one could say that whatever attributes and behaviors common
between the different types of widgets for the different types of user interfaces
can probably be abstracted out and related to generic user interfaces. And this is
precisely what we shall do.

First, let us define what a generic user interface component may be. A generic
user interface component may be defined as a user interface independent template
for one or more interactions with the user. We have seen the elements of interac-
tions. Components are the tools that provide the mechanism to allow the user to
interact with the system. A component would obviously be useless if we cannot
put it together with another component to make a more complex component. Af-
ter all, that is why we break things into components: so that we can put the pieces
together in different ways and make them useful again. But, we cannot simply put
disparate components together and expect them to work. To put user interface
components together, we need to provide “washers” that allow the components to
fit together. These washers for our fittings are called transitions (see Figure 5.11).

We can define transitions as the border or the thing that fills the boundaries be-
tween the components. Transitions are meaningful whether they are talked about
in the context of a VUI, a GUI, or any other type of user interface. When the
eye scans a given area, it recognizes the boundaries between different objects
and shapes. If there is no transition between two very distinct sounds (no transi-
tion between different aural components), the user’s reaction is typically negative,
causing any effective aural output to have smooth transitions between sounds and
words.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

278 GENERIC USER INTERFACE DEVELOPMENT

Transition

Component
Address:

City:

Zip:

State:

Component
First Name:

Last Name:

Age:

Gender:

FIGURE 5.11. Components and Transitions.

When we talk about user interface components, we typically think about build-
ing components that are user interface specific such as user interface windows for
visual components or voice dialogues for VUIs. However, to build mobile systems
that can have any type of user interface, we need to build components that can
interact with the user the same way regardless of the specific type of user interface.
We can then specialize these components.

Generic User Interface Components
Now that we have introduced the generic components, how do we build them?

Note that building generic components is more of a design mentality than
an application of some programming language. In fact, you can build generic
user interface components with a variety of frameworks, tools, and programming
languages. The simple key in building a series of generic components is to follow
a few simple rules:

1. Model only data exchanged between the user and the system that does not depend
on the specific type of user interface. For example, modeling an interaction that
allows the user to change the color scheme of an application is a blatant violation
of this: Color does not apply directly to VUIs. Leave any such interactions to
the components that will specialize the generic interface components.

2. Model everything at the most granular level possible. Although you can group
things naturally in one type of user interface, the grouping may not make any
sense in another interface. So, leave it up to the specialization layer to decide
how to group components together unless you lose some context by breaking
apart the component. For example, if a component is used for registering a
user into the system and it collects ten pieces of information, six of those may
be superfluous to a VUI whereas a GUI will allow all of them to be rendered.
Likewise, entering data on a small device with a constricted input device such
as a cell phone is not practical, so only two of the ten fields may be required for
registration when a cell phone is being used.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 279

3. Do not assume that everything is based on forms and menus. Forms and menus
work great for many applications, but mixed-initiative interactions are much
better suited for many mobile applications. Understand the application domain
and the user requirements before anything else (as in any other software en-
deavor). Then, build the right mixture of directed-dialogue and mixed-initiative
interactions into the generic user interface components.

4. Avoid making the transitions between smaller components that make up bigger
ones specific to a type of user interface. Often times, the way to build the smaller
components in a generic way is obvious, but putting them together with the
proper transitions is not. Transitions between components are typically specific
to the particular type of user interface, so, if you see yourself implementing lots
of transitions between generic components, you are probably doing something
you should not be!

XML is an obvious base technology for the generic components, but it is not the
only possible choice. It is possible, and even desirable, in some cases to design and
implement generic components that expose non-XML textual or binary interfaces.
But, in general, XML is a good choice for generic interfaces as it gives us a standard
and structured mechanism to expose the interface to an otherwise non-human-
readable system. Later in this chapter, we will look at W3C’s XForms as the leading
standard for building generic components to date.

Once we have these generic components, we need to specialize them.

Specializing Generic Components
Most developers who have worked with mobile applications think of specializing
generic components in terms of using XML Style Sheets (XSL). However, this is a
very narrow slice of specialization techniques. So, if you are thinking of generic
components in terms of XML and specialization in terms of XSL, take a step back
and look at the bigger picture. Specialization is not just transforming content.
Specializing a generic interface may include modifications in the behavior of the
interface and the workflow, adding device- or interface-specific features, removing
features not supported by the intended user interface or device, synchronizing
the interactions between the user and the computing system through different
channels (such as simultaneous voice and text entry), and taking all of the other
mobile dimensions into consideration. For example, the specialization component
that creates the final interface for a mobile phone user should have the proper
functionality to avoid display advertisements when the batteries on the user’s
device are running low, it should be able to synchronize the text and voice content
being displayed to a user’s mobile device on a packet switched network, etc.

Specializing generic components is not something that should be done from
scratch every time a new component is developed. It is a complex problem that
will be detailed during the next three chapters. As this book is being written, mo-
bile UIMS (User Interface Management Systems) are evolving. To date, there is no
proven predominant technology for creating generic components or specializing
them. There are several standards, such as XForms, with reference implementa-
tions. Before looking at mobile UIMS, let us look at the typical classifications of

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

280 GENERIC USER INTERFACE DEVELOPMENT

UIMS. This will help us better understand what they are all about. Then, we can
see how mobile UIMS differ from their stationary counterparts.

5.3.5 Managing User Interface Components
As already mentioned, seldom do application developers write the entire applica-
tion from scratch. In fact, the primary reason for writing frameworks and tools
is to factor out the common functionalities that are needed across applications.
There are probably more occasions to write things from scratch in mobile appli-
cations because of the resource-starved nature of these devices and the necessity
of performance. Still, most of the time, it makes no sense to build everything
from scratch, and frameworks and tools are handy. UIMS are used to manage user
interface components. The primary goal of UIMS has always been to reduce the
amount of effort required to create a new user interface [Olsen 1992]. X-Windows
and other windowing systems are examples of UIMS where the developer, rather
than developing everything from scratch, develops components that abide by the
UIMS’ APIs.

UIMS comprise a field of study in and of themselves, but it is useful for us
to take a quick look at families of UIMS for conventional stationary applications
and then mobile applications so that we understand how to build and deploy user
interface components.

Conventional User Interface Management
There are three basic types of UIMS [Olsen 1992]:

1. State Machine UIMS: This is perhaps the most popular of all UIMS. State Ma-
chine UIMS are component management systems that manage the full life cycle
of a user interface component. Components written for these UIMS specify
their own possible states and events that may be emitted as they enter and exit
these states. State Machine UIMSs also allow the developer to code a state chart
that functions as the map for the UIMS’ workflow engine that moves the compo-
nents between the different states. State Machine UIMS start the user interface
at some initial state and use the state chart to navigate the user through the
various steps of interacting with the interface until an exit or final state is
reached.

2. Grammar UIMS: These systems are designed for natural language interactions.
Grammar UIMS rely on parsing the user input to understand the commands and
the data sent by the user. Grammar UIMS are similar to State Machine UIMS in
that they navigate the user through a set of interface interactions sequentially.
Whereas the state chart (also referred to as the state table) is used to navigate the
user in State Machine UIMS, the message and the commands that are interpreted
from it are used to navigate the user in grammar UIMS.

3. Event-based UIMS: Event-based UIMS are typically used for GUIs. They allow
every component to have some events that can be tied to other events handled
by other components. In this way, messages are propagated through the user
interface. The UIM starts with presenting the user with some initial interface;

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.3 Building Generic User Interfaces 281

every user interaction with the interface results in one or more events. Many
GUIs today use event-based UIMS to handle user interactions.

Nearly all UIMS used for development of user interfaces for stationary systems
today use one of these three different techniques. All UIMS use the ever-important
inversion of control principle, which points out that while the user interface ap-
plication is executing, it is the UIMS that is in control and not the authored user
interface component. This is an important concept to remember as it carries an
entire set of advantages and disadvantages with it. Although inversion of control
makes for a more reliable code base, it prevents the developer from adding large
features that are not supported by UIMS.

As you may guess, typical UIMS are designed for specific user interfaces. Inter-
active voice recognition (IVR) systems, for example, provide State Machine UIMS
to render a voice user interface with VUI components. Because typical UIMS han-
dle states, grammars, and events of specific types of user interfaces, they must be
altered or enhanced to handle generic user interface components.

Managing Generic Components
Managing user interface components for a system that renders multiple types of
user interfaces, particularly mobile systems, is a bit more complicated. Remember
that the reason we want to build generic components first and specialize them is so
that we can have a user interface that adapts itself to the user’s condition: the device
being used, the location of the user, the urgency of use, etc. Consequently, the
system that manages our user interface components must have some additional
features.

It is also crucial to understand that the UIMS can be the limiting factor in the
interface architecture. Selection of the UIMS is a direct result of the user interface
architecture. For a UIMS to be able to handle generic user interface components,
it should allow the components to be written in a generic way with no bias to a
particular type of user interface.

UIMS used in developing user interfaces for mobile systems must allow handling
of generic user interface components. They, therefore, must have the following
characteristics:

1. They must allow the developers to specify some “importance” for the different in-
teractions being exposed by each generic user interface component. Not all of the
interactions in a given user interface component are necessary to communi-
cate with the user. Some are superfluous. For example, a generic user interface
component designed to obtain user information for registration into the system
may have an advertisement, some information to be obtained from the user
essential to completion of the registration process such as the user’s name, and
some information that are not essential but can help in profiling the user such
as the user’s age. The UIMS must allow the component to specify some “im-
portance” or “priority” level for every interaction so that specialization of the
components can be done without explicit knowledge of implementation of the
generic components themselves.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

282 GENERIC USER INTERFACE DEVELOPMENT

2. They must allow the components to take advantage of context information shared
among the various components. This is often referred to as “context-aware com-
puting.” Though context-aware techniques are somewhat orthogonal to mobile
computing and user interfaces, awareness of the context shared by several com-
ponents can help in better specialization of the individual components as well
as groups of components (composite components). Let us take, for example, a
user interface for a loan origination system. Some possible user interface compo-
nents could be the applicant’s personal information, bank account information,
or employment information. Each component may have an address subcompo-
nent. Some user interface devices, such as PDAs, may not have enough room
to display all of the components simultaneously. So, as the UIMS allows spe-
cialization of each component, and the composite of all of these components,
it may need to display more verbose labels by reminding the user what each
address refers to. The UIMS can do this through a predefined context that tells
the UIMS how to modify the labels as it displays interactions belonging to the
same generic user interface component in different sections.

3. They should be able to specialize generic components to the types of user interface
required with no additional necessary components. Mobile UIMS must provide the
facilities for adding specialization components and the facilities for determining,
at run time or compile time, which specialization component should be applied
for which channel and when.

4. They need to support synchronization of interactions through multiple channels. If a
particular application has a multichannel interface, for example text and voice,
the messages from the user interface to the user must be synchronized so that
messages of one channel are not rendered before their matching messages on
the other channel are. For example, we do not want the text to scroll by the
eyes of a user while there is still audio playing about the text that has already
gone by.

In addition, there is another set of desirable, although not required, features of
mobile UIMS:

1. They should allow the generic user interface components as well as the specializa-
tion components to provide features specific to mobile applications (dimensions of
mobility). Mobile UIMS should support components that may need to behave
differently based on location, available resources on the device, available power
on the device, etc. Whereas hooks to some of these dimensions, such as loca-
tion sensitivity, should be provided at the generic user interface layer, others,
such as device screen size or availability of an aural interface, may be best fit
for specialization components.

2. They should allow for specialization of content in a distributed manner as may
fit the particular application and as specified by the specialization components.
Sometimes specialization of the user interface should be done in a centralized
manner; other times specialization at the node is best. Let us take our driving

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.4 Using UML for Modeling Generic User Interface Components 283

directions example once more. A PDA may have enough processing power
and memory to convert a generic component in XML to the desired interface
format, say a Clipper application for the Palm. However, a mobile phone most
likely does not have such resources. The UIMS, desirably a distributed UIMS,
should provide the facilities for the specialization components, such as those
that specialize the generic interface for a mobile phone and a PDA, to execute
at the receiving node (on the PDA for this example) or at the sending node (on
the server for this example).

3. They should allow for internationalization and localization to be supported in a
manner decoupled from the other specialization performed to render the final user
interface. Internationalization and localization are problems that can be well
addressed by deploying the strategy of creating generic user interfaces. How-
ever, they should be done separate from specialization to channels and user
interface types. This allows us to leverage internationalization and localization
components across multiple user interface specialization components. It also
has other obvious benefits such as maintaining consistency and reducing cost by
not having to internationalize the same user interface components repeatedly.

There is currently no single user interface management system that supports all
of the features that we have outlined here, but the standards that outline how
the future mobile UIMS should support these features are either completed or
on their way to completion. Later in this chapter, we will look at W3C’s XForms,
which is perhaps the most important standard for developing generic user interface
components. During the remainder of this text, we will look at other standards
such as SMIL for synchronization and VXML for specialization to VUIs. Because
of the immaturity of mobile application development tools, we are focused on
understanding the problem and the possible solution types rather than specific
solutions. Nonetheless, UML promises to be the one tool likely to be supported by
all development tools to facilitate the process of developing mobile applications.
We looked at using UML to model interactions previously. Now, let us look at
using UML to model the components themselves.

5.4 USING UML FOR MODELING GENERIC USER
INTERFACE COMPONENTS

We have already seen how to model interactions with UML. Now, we need to
look at modeling the components themselves. Before doing this, remember that,
although UML can be used for code generation, we do not advise building a
software implementation strategy based on code generation with UML. As repeated
throughout this text, UML is a modeling tool used for design and communicating
designs. First-draft code generation is a possibility, but maintaining the application
code through UML is ludicrous.

Let us start with showing a metamodel for contexts, components, and other
elements that we have discussed so far.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

284 GENERIC USER INTERFACE DEVELOPMENT

«metaclass»

«metaclass»

«metaclass»

«metaclass»

«metaclass»«metaclass»«metaclass»

«metaclass»

«metaclass»

Element

AtomicElement

Response Prompt

Channel

Interaction

Context

ControlMessage

1

1

Composite Element

0..1

*

FIGURE 5.12. Basic Taxonomy of Elements of User Interface Components.

5.4.1 Modeling the Domain of Generic User Interface
Since the most pervasive use of UML is in modeling logical domains, it is only apt
that we model the domain of generic user interfaces using UML. This will help us
understand the problem of designing generic user interfaces better.

We looked at the metamodel class diagram representing interactions and sub-
sequent diagrams that represent the actual interactions. Figure 5.12 shows the
metamodel for user interface components (made up of elements such as prompts).

Next, we look at Figure 5.13. The GenericInterfaceComponent represents the
type that our UIMS needs to be able to handle to render a user interface.

«metaclass»

GenericInterfaceComponent

«metaclass»

MixedInitiativeComponent

«metaclass»

«metaclass» «metaclass»

NaturalLanguageComponent

«metaclass»

CommandBasedComponentElement

FormBasedComponent

*

1

FIGURE 5.13. Types of Generic Components Modeled in UML.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.4 Using UML for Modeling Generic User Interface Components 285

GetCountry GetState

GetStreetAddress GetCity

receivedResponse validCountry

responseReceived

responseReceived

responseReceived

invalidCountry

invalidStreetAddress

validAddress
validCity

validState

invalidState

invalidCity

FIGURE 5.14. Representing the State of a Generic User Interface Component with UML State
Diagrams.

For State Machine UIMS, state diagrams can represent the life cycle of the user
interface component perfectly. This works particularly well for generic interface
components as there is no need for interface-specific events such as button pushes.
Figure 5.14 shows how we can model the life cycle of an address component.
Obviously, this is a trivial example, but it shows how a user interface component
can be handled by a State Machine UIMS.

Grammar UIMS rely on interpreting grammars. As discussed previously, UML
does not deal with natural language issues such as grammar very well. So, the
best we can do with grammar UIMS is to use sequence diagrams and refer to the
grammars externally using W3C or other grammar standards.

Event-based UIMS are best modeled using the heart of UML: class diagrams.
Class diagrams allow us to model classes and specify their behavior in terms of
method calls. We can model events themselves, event sources, and event listeners
with class classifiers (boxes with sharp corners) and the relationships they form.

Forms are another entity that can be easily modeled with class diagrams. Forms
are essentially a collection of prompts to be filled with user responses. If the
prompts are static (labels on forms typically do not change regardless of the in-
stance of the form), we can use static variables with the proper stereotype (most
probably a string type). If the prompts are dynamic, the dynamic nature of the
prompt is somehow tied to either business logic or presentation logic, both of
which can be modeled by other class classifiers. The instance data filled in by the
user can be modeled using object diagrams. The type of such instance data can be
specified in class diagrams. It is important not to mix the instance data filled in by
a particular user with the data types or fields that can be filled in.

To specify spatial and temporal placement of various components, we can add
attributes supported by the UIMS used to manage the generic components. The
class diagram in Figure 5.15 shows how a loan origination form may be modeled
by using address, user information, and loan form subforms. (Obviously, we have
oversimplified the domain problem to demonstrate a solution briefly.)

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

286 GENERIC USER INTERFACE DEVELOPMENT

«interface»
Interface

+getSpatialOrderId()

+getTemporalOrderId()
+getSpatialTransitionType()

+getTemporalTransitionType()

+getImportanceLevel()

LoanOriginationForm

UserInformationForm

LoanForm

+mDownPayment: double

+mTotalPrice: double

+mTerm: double

+mFirstName: String
+mMiddleName: String

+mLastName: String
+mDateOfBirth: Date

+mMailingAddress: AddressForm
+mResidenceAddress:AddressForm

AddressForm

+mStreetAddress: String
+mCity: String

+mState: String

+mCountry: String

FIGURE 5.15. Using Class Diagrams to Represent Form-Based User Interfaces.

Now, let us say that our UIMS supports specialization of the components and
that the method calls necessary to take advantage of specialization to a voice user
interface and an HTML user interface are a spatial order ID (the visual order in
which the various components are to appear), temporal order ID (the order in
time in which the components are to appear), and transitions between the compo-
nents (both in time and in positioning). The UIMS may require implementation
of the behavior of each one of these behaviors or may leave them optional. Im-
plementation of the behavior must be provided for the UIMS to be able to put the
components together and make compound components.

As you can imagine, if our form components are being handled by a State
Machine UIMS, we would have a full representation of the data and behavior of
our forms with state diagrams of every class shown in Figure 5.15.

In this way, we can model the user interface components that model user in-
teractions generically, without any bias toward a particular user interface type,
in UML. This will allow us to maintain consistency and to communicate design
across multiple user interface code bases. In the next few chapters, we will focus
on using UML specifically for particular types of interfaces such as VUIs.

Now, let us look at XForms, one of the few standards available today that allows
us to implement user interfaces generically and then specialize them.

5.5 XFORMS

XForms is a W3C standard designed to offer a Web-oriented solution set for
creating generic user interfaces. We will use XForms as an example of a standard
that attempts to separate concerns at the user interface layer the way we have talked
about here. XForms attempts to separate the various user interface concerns in its
component model. Before we begin deciphering the explanation of what XForms
is, it is important to note that XForms is not the antipattern [Brown et al. 1998]

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.5 XForms 287

(and, as mentioned earlier in this chapter, nothing is!). Neither is XForms the
perfect solution. XForms is a standard created by W3C for the Web; keep in mind
that not all systems are HTTP based and the Web is not the right solution for
all systems. Increasingly, the distributed computing model is moving toward a
peer-to-peer model. XForms was designed with a bias toward the world of HTTP
and thin clients. XForms also does not address all of the concerns that we have
focused on in this chapter.

Nevertheless, as previously discussed, the Web is the most pervasive network
today. Therefore, it makes sense to discuss a framework that lends itself to the
Web. Moreover, it is useful to select a standard that exists today and with tools
available for development.

One can infer from the name that XForms is a technology that is based on the no-
tion of forms—in particular Web forms. XForms is composed of four main loosely
coupled sections: XForms Model, XForms Processing Model, XForms Submit-
Protocol, and XForms User Interface. XForms ties into HTTP through its Submit
Protocol, but each of its sections can be used independently. Therefore, we could
use the XForms Model independently and with any protocol that we want. How-
ever, the ideas that have given birth to XForms initiated from the Web, thereby
establishing it as a child of HTTP and HTML.

Also, at the time this book is being written, XForms standard is yet to be finalized
or pervasive. However, it is already picking up considerable steam with major
software vendors looking at supporting XForms processors in the next versions
of their software.

Finally, it is important to keep in mind that we are only using XForms as an
example of a technology that separates the concerns of the user interface. There
are other technologies and more are sure to be created as an evolutionary part of
computing. Nonetheless, the concepts discussed using XForms will apply equally
to other technologies. Depending on the type of application needed, it is possible
that a different standard is suitable. It is also possible to design your own context
sensitive (domain specific or otherwise) application.

5.5.1 What Is It?
We will discuss HTTP and protocols in some detail in later chapters of this book.
To understand XForms, however, we must take a quick look at HTTP, and the
Web, as they are the parents to the ideas giving birth to XForms. The pervasiveness
and success of HTTP can be largely attributed to its elegant simplicity: a single
request initiated by a client to a server that is synchronically responded to, by
the server, with a single response. When a client has to send several pieces of
information to the server, the pieces of information can be collected by a FORM
and submitted using the GET or POST commands. Therefore, the fundamental
structure for the user to enter data into the system on the Web is the FORM.
The FORM, however, was designed specifically for a system that uses HTML and
HTML browsers. Though POST and GET are not dependent on HTML, there is
tight coupling between the semantics of the HTML FORM itself and rendering
of HTML content. As we mentioned in the beginning of this section, XForms

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

288 GENERIC USER INTERFACE DEVELOPMENT

achieves decoupling of presentation logic, protocol, and server-side information
by dividing forms into four sections:

1. XForms User Interfaces: XForms User Interface defines a set of user interface
elements for visual user interfaces, particularly for a browser environment as an
HTTP client. It is important to note, however, that HTTP is not required for using
XForms or any component thereof. HTTP is simply the most pervasive protocol
and its companion of HTML was the first markup language to gain popularity.
Therefore, HTTP is a natural default choice to be used with XForms or any of
its components. Other markup types such as XHTML, WML, and VXML are
produced through the binding process of XForms. With our earlier taxonomy
of the user interface, XForms User Interfaces allows for structural typing of the
interaction elements without creating dependencies on any particular type of
user interface.

2. XForms Model: The XForms Model defines a form without any visual, or for that
matter look-and-feel properties. Bound together with the XML User Interface
or some other user interface model, it will allow a complete user interface.
The binding process will be described later. Within the taxonomy that we laid
out earlier, XForms Model defines the domain dependence of the interaction
components. The XForms Model has several parts, which we will look at in
further detail later. Two of them, XForms Instance Data and XForms Schema,
are particularly prominent. XForms Instance Data is an instance of the data to
be input to a form by a user. The XForms Schema, otherwise referred to as the
XForms Model Schema to avoid confusion, is the schema for the instance data.
An XForms Instance Data is to XForms Schema what an object is to a class in
object-oriented programming. XForms Instance Data is important during state-
full interactions between the user and the system. XForms Instance Data holds
the temporal contexts of the application as the user navigates through it.

3. XForms Processing Model: To bring all of the separate parts of XForms together
to make a sensible user interface, the XForms browser, or the application that
uses the XForms output, needs to be able to bind these various parts together
in a meaningful way. The instructions on how to bind the various parts to-
gether are called the XForms Processing Model. Processing of the various XML
components in XForms is event based.

4. XForms Submit Protocol: XForms Submit Protocol is the mechanism provided to
submit data from the clients to the server in much the same way as the HTTP-
based submit works. It is not clear, at this time, whether the XForms Submit
Protocol will be its own entity or if the W3C will simply use the XML Protocol
standard currently being worked on to replace this. We will not deal much with
the XForms Submit Protocol as understanding it is more pertinent to those who
are writing the frameworks to support XForms functionality, whether as clients,
servers, or peers.

In addition to these four main parts, there are some basic concepts necessary to
understand XForms. First, XForms are form based. This means that it is assumed
that every interaction with the user is composed of the user being presented with
a form that conveys some messages to the user, responding to that form, and

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.5 XForms 289

submitting the form to the system to continue. Though in most applications this
paradigm will suffice, it may not be suitable for some applications. For example,
some of what XForms offers is not very useful for an application whose primary
purpose is browsing documents. However, when it comes to mobile application
development, XForms Model and XForms User Interface are almost always perti-
nent because adapting to various user interfaces is one of the biggest challenges
in mobile development.

To understand XForms and how to use it to build systems, the first step is to
gain an understanding of how an XForms document can be handled and how it
fits into the big picture of developing generic user interfaces. So, let us look at the
XForms Processing Model, which specifies how the XForms browser (or XForms
client) works.

5.5.2 XForms Processing Model
At its heart, XForms tries its best to be complementary and supplementary to the
other XML technologies and specifications by W3C. The XForms committee has
done a great job of avoiding the duplication of functionality offered by other XML-
related specifications. The XForms Processing Model is really the specification that
defines how a container should handle XForms documents. The “container” refers
to the principle of inversion of control often discussed in this text. As we men-
tioned previously, the gist of this principle is that some container controls software
components and their life cycle. Also note that the XForms container is a UIMS. It
manages the XForms documents in a hybrid mode as both a State Machine UIMS
and an event-based UIMS. In the case of the XForms container, often referred
to as the XForms browser because of the evolutionary birth of XForms from the
Web, the XForms documents are the components and the XForms container is the
controller. Also, because instance data are separated from the template that de-
scribes them, one can think of the XForms container to be a type of State Machine
or at least to have a State Machine internally. This helps in understanding how the
different components of a document are processed. Figure 5.16 is a state diagram
that shows how the container handles a given document.

One of the keys to understanding the XForms processing model described
by Figure 5.16 is that all data, whether coming from the server or input to the
system by the client, are treated the same. The initialization process can include
information that comes from a previous XForm document, information stored by
a server (permanently or temporarily), or information that is filled in based on
some control action taken by the user (for example pressing a button or saying a
keyword). Regardless, the initialization process produces the first version of the
instance data for a given XForms document.

Once the document is initialized, the container allows the user to begin to
interact with it. During these interactions, the state of the document may be
changed. The state of the document is encapsulated in the instance data; therefore,
the instance data change as the user interacts with the system. This is where it gets
tricky. So, what happens if we have to intervene in the middle of the interactions
and go back to the application server to get some data or perform some business
logic?

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

290 GENERIC USER INTERFACE DEVELOPMENT

Initialize

Interact with Container Client

Submit

An Event or Action,
Invoked by User
Interaction, Causes
a Submission of
Instance Data to the
Server

Continue Interacting with
the Instance Data
through User Interactions

FIGURE 5.16. High-Level State Diagram of XForms Processing Model by an XForms Container.

Interacting with the server is not part of the XForm container job and is not
taken into account when we talk about the XForms Processing Model. Indeed,
this is one of the successes of the XForms technology. To go to the server, the
container has to perform a submit. This is where the state of a given document
ends. So, the XForms container initialized the document, collects information,
and then submits the information.

XPath, XML Schema, and XML Events are prominent in the XForms specifica-
tion. XPath is used, wherever possible, for connecting the various parts of XForms.
XPath was covered in some detail in Chapter 3, but in case you do not recall, the
primary task of XPath is to point to a segment of an XML document. Thus, the
XForms Processing Model specifies that XPath is the way to point to the various
elements in the same document. So, the instance data are bound to the other parts
through XPath expressions, the binding expressions are bound to the other parts
through XPath expressions, and so on.

As the user instance data are changed by user interactions or initialization,
events can be produced. Events are also used to allow user interactions to indicate
desired navigation through the user interface controls.

So, let us summarize how XForms container works:

1. XForms container initializes the XForms document by initializing the instance
data.

2. The XForms container allows the client to interact with the form, thereby ma-
nipulating the instance data. The client could be a user if the XForms container
is a browser viewable by the user or a client that serves its content to another
client, which, in turn, interacts with the user. While these interactions are being
done, the XForms container is responsible for monitoring various events that

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.5 XForms 291

happen based on the client input to the XForms container and modifying the
instance data accordingly.

3. The XForms instance data are then submitted to the server once the user is
finished interacting with the document and wants to send the data to some
back-end process.

Now that we have looked at what the XForms container is supposed to do, let us
jump forward to the XForms User Interface. This is probably the best way to see
what the effect of using XForms is. And this effect is the most important thing about
using XForms as far as mobile application development is concerned. Remember
that the original reason we embarked on looking at XForms was that we can use
it as a means to produce generic user interfaces consumable by another thin layer
that can specialize this generic user interface to the specific needed user interfaces
at run time.

5.5.3 XForms User Interface
The XForms User Interface outlines a set of interaction elements, called form
controls, along with some processing instructions. The XForms User Interface
defines various types of interaction elements (messages) from the user to the
system as independent from specific user interfaces as possible. We will look at
small code snippets on how to specify each of these controls to specific user
interfaces at run time. Now, let us look at these controls.

XForm User Interfaces
XForms form controls are user interface prompt and control messages that ask
the user for data input. These data, the response interaction elements, are later
used to fill the instance data. Although each one of the form controls has its own
set of optional and required attributes, every XForm control can have one of the
following optional attributes:

Example 5.4: Usage of xml:lang Attribute.

Context Relevance:

<input ref="president" xml:lang="en">

<caption>Managed Health Care</caption>

</input>

Translation:

<input xml:lang="en">

<caption>First Name</caption>

</input>

<input xml:lang="fr">

<caption>Prenom</caption>

</input>

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

292 GENERIC USER INTERFACE DEVELOPMENT

1. xml:lang: This attribute allows the user interface to be internationalized. Inter-
nationalization using this attribute can be done by using the attribute to indicate
the relevance of the control in the context of an interface dialogue within a par-
ticular language or to indicate what language the control is in. Let us go back to
our address example for this. Example 5.4 shows two XForm code snippets that
use a set of input controls. The first snippet shows a case where the user needs
to be prompted for the insurance company that provides them with health care.
This field may be applicable only to users speaking certain languages, for exam-
ple English; countries other than the United States may have a social health care
system. The second snippet shows translations of the same prompt: Namely,
the user is being asked for their first name in two different languages.

2. class: This attribute refers to the style sheet class that may be applied to the
XForm before intermediate or final rendition to the user. This class may be a
textual CSS or an Aural Cascading Style Sheet (ACSS). Most developers familiar
with Web development have seen CSS files, which can be used both on the client
and the server, used with HTML. CSS is used to bundle look-and-feel properties
such as font size so that changing such properties in a document is facilitated
by simply changing the CSS. ACSS serves a similar task for VUIs. We will look
into ACSS further in Chapter 7.

3. navIndex: This attribute allows us to specify the sequence in which the control
may appear and can be any integer number from 0 to 32767. The explicit
temporal and structural context of the interaction elements can be specified
using this attribute. In other words, by specifying this attribute, we can tell the
XForms client in what order the controls need to appear on a screen for a GUI
or in what sequence they need to be conversed for a VUI. If this attribute is not
specified, the XForms Processing Model outlines a default sequence in which
the controls are rendered. We will discuss this later in detail.

4. accessKey: This attribute allows a shortcut key to be implemented to jump to
a particular control. This attribute is equivalent to the Alt key pressed with
some other key, such as the function keys, on a PC keyboard. This attribute
lends itself to a platform-specific implementation, but it can be specified so that
the XForms client provides the functionality to the user. For example, whereas
the browser may translate a particular setting for this attribute to the F4 key
on the keyboard for a user interface that uses the keyboard for input, it may
allow the user to press the # button for a VUI that allows data entry through a
phone pad or a so-called universal command spoken through a natural language
command.

Example 5.5: Using XLink Expressions.

Translation:

<input xml:lang="en">

<caption xlink:href="http://localhost/languagebundle.xml>

First Name</caption>

</input>

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.5 XForms 293

In addition to these four attributes, which every control form element may have,
other optional metadata may be provided for each form control through some
optional XML elements. Let us go through these common elements.

1. <caption>: Caption can be thought of as the label for the control. This element
can have all of the common attributes outlined previously (xml:lang, class,
navIndex, and accessKey). Caption is typically used to give enough information
to the user so that he or she knows how to fill the control with the proper
response. When rendered, in a GUI, the caption may be the label for a text box
and, in a VUI, it is the phrase uttered as a prompt before a user is expected to
give a response. A quick reference to the W3C Schema [W3C XForms] tells us
that there can only be one caption for every form control. If other text should be
associated with the control, this has to be done through other optional elements,
some of which can be repeated. Captions, as with most other features of XForms,
can use XLink. This usage of XLink allows us to properly abstract out variations
on a given form control. For example, we can simplify our previous code in
Example 5.4 to the code snippet in Example 5.5.

2. <hint>: Like the <caption> element, the <hint> element serves to convey in-
formation useful for filling out the form control by the user. <hint> along with
<help>, <extension>, and <alert> are the other elements that every form con-
trol can have and are grouped as the schema group optional UI Children (refer
to the XForms Schema in [W3C XForms]). A form control can have none, one,
or more groupings of these optional groups. Therefore, a given control can have
no hint, just one hint, or several hints. The same apply to <help>, <extension>,
and <alter>. Hints are particularly useful in directing the user further if the
caption is not enough to disambiguate the expected response type. Hint, help,
and alert all accommodate XLink expressions to refer to externally stored
data. Again, this can be helpful for tasks such as internationalization, where
there are several variations of the metadata or data associated with these ele-
ments, but the variations can be grouped in a sensible manner using content or
context.

3. <alert>: Alerts are designed to notify the user of some error during the interac-
tions with the forms. These errors may be related to the data entered by the user
or the manner in which the user is trying to navigate through the application.
Alerts may be interpreted into popup boxes by a GUI or an audio message in a
VUI.

4. <extension>: The extension element allows us to extend controls with domain-
dependent controls if need be. Whereas form controls, their attributes, and their
elements are focused on creating a generic user interface independent of the
domain model, it is possible to create user interface components that serve a
particular domain. For example, if there is a particular XML format (defined
by some XML Schema or DTD) that defines a governmental structure, it can
be used for a user interface specific for displaying governmental structures.
<extension> is particularly useful for RDF. RDF namespaces can be included
within extensions.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

294 GENERIC USER INTERFACE DEVELOPMENT

Example 5.6: Using the Optional Attributes and Elements.

<input xml:lang="en" navIndex=1 accessKey="#" >

<caption xlink:href="http://localhost/languagebundle.xml>

Enter the name of your country's head of state

</caption>

<hint navIndex=1 xml:lang="en">

Please enter the name of the head of the executive branch in

your government. This may be a king, prime minister,

president, or others.

</hint>

<hint navIndex=2 xml:lang="en">

For example, this could be George Bush for US.

</hint>

<alert xlink:href="http://localhost/

InCorrectHeadOfState.xml">

IncorrectHeadOfState

</alert>

</input>

<input ref="model_binding" id="device-tilt-measurement">

<my_domain_model_name_space:government>

<my_domain_model_name_space:president>

President

</my_domain_mode_name_space:president>

</my_domain_mode_name_space:government>

</input>

One method to use resource bundles for these attributes and elements using XLink
is to use the value of the element as the key in the XLink resource. A variety of
mechanisms offered by W3C, such as XSL and RDF, can be used to bind this key
to the XLink expression to retrieve the proper data at run time. This functionality
could also be built into the XForms Processing Model implementation (the XForms
clients). In Example 5.6, to lessen the amount of code, we have only used an
external document for internationalization for the alert element. In the case of a
real implementation, XLink expressions, and corresponding resources, would be
used for all of the elements that may be rendered to the user at some point.

Now that we have looked at the common attributes and elements of form
controls, let us see what the actual form controls are and how they are used.

User Interface Form Controls
The designers of XForms User Interface were admirably diligent in creating a
standard that places very little bias, if any, on the end-user interface. The XForms
User Interface currently comes closest to a neutral modeling of the user interface.
The XForms specification says “form controls encapsulate high-level semantics
without sacrificing the ability to deliver real implementations” [W3C XForms].

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.5 XForms 295

However, these form controls accomplish even more than that as their attributes
and children elements allow some extensibility without violating the true form
of their semantics. The prime example of this is the optional child element of
<extension> mentioned in the previous section. These form controls are thought
out based on the generic sense of some different ways a user can send messages to
the system: a generic form of representing the responses to the prompts that the
system sends to the user. The first of these form controls is the most basic one, the
<input> control.

Example 5.7: Transforming the Input Element.

XForms:

<input ref="PresidentName" xml:lang="en" navIndex=1

accessKey="#">

<caption xlink:href="http://localhost/languagebundle.xml>

Enter the name of your country's head of state

</caption>

<hint navIndex=1 xml:lang="en">

Please enter the name of the head of the executive branch in

your government.

This may be a king, prime minister, president, or others.

</hint>

</input>

VXML:

<field name="PresidentName">

<prompt>

Enter the name of your country's head of state

<audio src="http://localhost/audio/headOfStatePrompt.

wav"/>

</prompt>

<grammar src=http://localhost/grammars/PossibleHeadsOfState#

PresidentName/>

<block>

1. <input>: The input tag allows us to get the most basic form of input from the
user in the form of a simple unstructured response limited to atomic data types
as defined per the Schema Data Types document of W3C [W3C Schema—2]
except for the hex binary and base-64 encoded types. This means that the input
from the user can take the form of a string, a number (integer, float, double,
etc.), a Boolean, any date, or any URI. See Example 5.7. In this example, we
show how the XForms input control is easily transformed into a VXML block.
Obviously, transforming complex XForms pages is not this straightforward as
there are interdependencies and complex contexts among the various form
elements. Nevertheless, our example here shows that an XForms form control

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

296 GENERIC USER INTERFACE DEVELOPMENT

is flexible regardless of the type of interface using it. However, the requirement
of being able to put in just about any valid XML Schema data type can limit the
type of user interfaces that can accommodate the <input> tag.

The data type of the <input> is specified through the inputMode attribute.
Proper extensions have to be available, in the system rendering the final user
interface, to provide for the proper input masks or formatting necessary to
force the user to enter only the valid data type. For example, if the inputMode
attribute is set to xsd:dateTime, then the final user interface, whatever it is,
must provide the proper facilities to the user for input of a date and time.

2. <secret>: The <secret> form control is typically used for password or other
information that should not be exposed to anyone seeing or hearing the user
responding to the system. Though it is always possible for someone else to see
the keystrokes of a user while the user is entering a password, or to hear the
personal ID number as the user says it into a VUI, this tag specifies that the
system should never echo back the user input, thereby providing some amount
of security. This control can also imply use of other security measures such as
voiceprint verification, fingerprint verification, or whatever security mechanism
may be available for a given user interface. All the other issues we mentioned
about the input element apply to the secret element. The principle difference
is that <secret> implies requirement of some security. The implementation of
such security is context dependent and may be specified by other parts of
the XForms document such as actions, or by the extensions that are domain
dependent.

3. <selectOne>: Besides entering simple input, another basic operation that is pos-
sible in nearly all user interfaces is to select one thing out of a list of things.
An example is a simple menu. Menus can be used regardless of the interface
channels: They can be read as a list for an aural interface or displayed as a select
list, menu bar, or select box in a graphical interface. The <selectOne> form
control can have some children elements, in addition to the common elements
that we discussed earlier. See Example 5.8. Let us go through these elements.
a. <item>: This is the simplest element that defines a selection in selectOne.

Items are the menu items to be listed, one of which is to be selected. Each
<item> in turn can have a caption element (<caption>), which is how it is
labeled to be presented at the final user interface, and a value (<value>),
which is the value stored in the instance data pointed to by the ref attribute
of <selectOne>.

b. <itemset>: The specification distinguishes <itemset> by its dynamic use. This
can be deceiving: The specification is referred to dynamically in the sense
that <itemset> allows the selection to be constructed, at run time, based on
the instance data available in the XForms. This does not mean that we cannot
produce dynamic results with <item> and <choices>. This could be done by
holding the instance data in the object model that generates the XForms (for
example, in Java, this would be the Servlet/JSP infrastructure when building
Web applications). However, <itemset> offers a clear advantage over the other
options for creation of a dynamic set of choices because we can separate
the dynamic content by creating the instance data dynamically and letting

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.5 XForms 297

the XForms form controls remain static. The other advantage that this offers
is that we can transform the XForms User Interface through one pass of XSL
transforms instead of multiple passes. This improves the system by reducing
code, reducing complexity, and improving performance.

To point to the particular instance data, the attribute nodeset is used. See
Example 5.9 for how to use the itemset element to link to the instance data.

c. <choices>: This tag allows grouping of other choices, items, and itemsets. This
tag is used when there are many choices and some logical grouping of these
choices makes sense. In these cases, it is easier to group the items, itemsets,
or choices (subchoices) together before presenting them to the user.

There are also additional attributes that can further define a <selectOne> element.
Let us look at those quickly:

d. selection: The selection attribute of the <selectOne> tag specifies whether
or not the user’s selection is limited to the list of <item> elements. If this
attribute is set to open, the user can enter whatever data, including the list
of items. In real applications, this typically is transformed to the “other”
selection at the final user interface upon which “other” may result in the
system prompting the user for free-flow input. If the selection attribute is
set to other, the processing model treats others as an <input>. The selection
attribute can be either open or closed. By default, the selection attribute is set
to closed. This implies that the user’s selection is limited to the list of items.

e. selectUI: This attribute allows for five possible values (radio, checkbox, menu,
listbox, or combo). This attribute is one of the rare instances where XForms
specification seems to have gone astray in keeping user interface specific
information out. We recommend against using this attribute because the
possible value set for this attribute is biased toward a GUI controlled by a
mouse and/or keyboard. For example, checkbox does not have any meaning
in a VUI.

f. ref: This attribute points to the instance data that will hold whatever value the
user chooses. As in other controls, ref is typically used as the “variable” that
holds the value that the user chooses. (The term variable, though imprecise,
helps in visualizing the functional mechanism.)

Now, let us look at an example of how we can use selectOne. Example 5.8 shows
an example of how to create a generic interface that allows the user to select the
name of a head of state.

Example 5.8: Using the <selectOne> Element.

<selectOne ref="domain:country">

<item navIndex="1" accessKey="1">

<caption>United States</caption>

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

298 GENERIC USER INTERFACE DEVELOPMENT

<value>US</value>

</item>

<item navIndex="2" accessKey="2">

<caption>United Kingdom</caption>

<value>UK</value>

</item>

</selectOne>

<selectOne ref="domain:head-of-state">

<choices navIndex="1">

<caption>United States</caption>

<item navIndex="1">

<caption>Bill Clinton</caption>

<value>Bill_Clinton</value>

</item>

<item navIndex="2">

<caption>George Bush</caption>

<value>George_Bush</value>

</item>

</choices>

<choices navIndex="2">

<caption>United Kingdom</caption>

<item navIndex="1">

<caption>Tony Blair</caption>

<value>Tony_Blair</value>

</item>

<item navIndex="2">

<caption>Margaret Thacher</caption>

<value>Margaret_Thacher</value>

</item>

</choices>

</selectOne>

The document in Example 5.8 could have been generated dynamically or stat-
ically. If this content is to be generated dynamically, the entire document would
have to be produced by some programmatic means of producing the document.
Whether this is Java servlets, CGI, Microsoft ASP pages, PHP, or another mecha-
nism does not matter. The entire document is produced dynamically.

Example 5.9: Using the <itemset> for Dynamic Data.

<xforms:model id="government">

<instance>

<domain:government>

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.5 XForms 299

<domain:executive/>

<domain:legislative/>

<domain:judiciary/>

</domain>

</instance>

</xforms:model>

<xforms:model id="executive">

<instance>

<domain:executive>

<domain:head-of-state country="US">

<domain:name>George Bush</domain:name>

<domain:value>George_Bush</domain:name>

</domain:head-of-state>

<domain:head-of-state country="UK">

<domain:name>Tony Blair</domain:name>

<domain:value>Tony_Blair</domain:value>

</domain:head-of-state>

</domain:executive>

</instance>

</xforms>

<!-->

<xforms:selectOne model="government" ref="domain:executive/

domain:head-of-state">

<caption>Head Of State</caption>

<itemset model="executive" nodeset="domain:executive/domain:

head-of-state">

</caption ref="domain:name"/>

<value ref="@value"/>

</itemset>

</xforms>

To avoid this, we can use the <itemset> tag instead as in Example 5.9. In this
example, the XML segment above the comment line can be generated statically
whereas the XML segment below the line can remain the same. The obvious
advantage to this is separation of presentation logic that focuses on the method of
presentation (the form control that is used to get the input from the user) from the
dynamic generation of data. This gives us a huge advantage over the typical Web
development model for dynamic generation of data. Whereas these models use
tightly coupled patterns such as Model-View-Controller (MVC) design pattern to
separate the concerns of presentation, data, and business logic, XForms gives us
much better facilities than what is available today and this example obviates this.

In practice, the bottom part of Example 5.9 could be static, in its own XML file.
The top part of the example, which holds the instance data, needs to be generated

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

300 GENERIC USER INTERFACE DEVELOPMENT

at run time. The implementing mechanism of the XForm processor, whether on
the server side or on the client side, can first initialize the instance data, depending
on the entry state of the application, then use XSLs (or some other mechanism)
to put together the code in its entirety as shown, and finally provide the binding
between the instance data and the user interface form controls. Further styling
can then be done through CSS, ACSS, or XSL.

Though we have mentioned this in the past, once again it is important to
remember that the modularity of XForms allows us to distribute various parts of
this process to the client or the server side, depending on the requirements of the
application and the available infrastructure.

Let us continue with our list of form controls.

4. <output>: This form control allows us to access instance data without pro-
viding any control or input mechanisms for the user. This element is most
useful in producing instance data for returning some data to a user’s request
or in providing a way to create composites of the instance data for labels
and other displayed portions of XForms. This element is typically used to
describe text; therefore, if an aural user interface is to be used, it infers re-
quiring a text-to-speech engine. This element, unfortunately, does not provide
proper facilities to create a user interface–neutral method of putting together
“resource-based” output interface elements. For example, you cannot create
an output element that supports reading back to the user content comprising
utterances of audio files as opposed to text to speech (at least this is what
the current XForms Schema indicates). This may change in future versions of
XForms.

5. <range>: The range form control gives us a way to specify an analog range
between two different numbers. Although this control is typically translated
to a range button for the GUIs, it can be used to specify limits around a given
input to the user in both aural and GUIs. Example 5.10 shows the XML
for a range control that allows the user to enter the points scored in a
game. Range buttons can be specified to the particular user interface in three
ways:
a. Server-side validation: The user input may be validated on the server side.

So, if the user puts in some information that does not fall within the mini-
mum and maximum range specified, a trip to the server is necessary. This
is probably not what the designers of XForms had in mind, though it does
not mean that the XForms client cannot come back all the way to the server
that serves up the XForm for the validation. In the case of a mobile appli-
cation, it is very possible that this is necessary as most of the clients are
resource-starved and cannot run scripting languages necessary to perform
the validation. If the validation is done on the server side, the attributes do
not impose any limitations. On the client side, in contrast, this validation
may be difficult because, as the interval size gets smaller or the length
between the start and end attribute becomes larger, more advanced math-
ematical computations are needed.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.5 XForms 301

Example 5.10: Using the <range> to Limit User Input.

<xforms:range ref="team_one/score" start="0" end="7"

stepSize="1">

<caption>Please enter the first team's score</caption>

</xforms:range>

</xforms:range ref="team_two/score" start="0" end="7"

stepSize="1">

<caption>Please enter the second team's score</caption>

</xforms:range>

After a transformation and binding to the instance data, the equivalent VXML
snippet could be:

<field name="team_one_score">

<prompt>Please enter the first team's score</prompt>

<grammar mode="voice" xml:lang="en"

<rule id="scores" scope="public">

<one-of>

<item>one</item>

<item>two</item>

<item>three</item>

<item>four</item>

<item>five</item>

<item>six</item>

<item>seven</item>

</one-of>

</rule>

</grammar>

</field>

b. Client-side validation: If the final user interface is rendered by a client that
has the ability to run a scripting language such as ECMAScript (JavaScript),
the validation can be done after the final user interface has been rendered.
This means that the XForms form control maps into two different elements
at the final destination: 1. the control that collects the information from
the user and 2. the script that validates that information. Let us look at
Example 5.10. In this case, our client is a VXML browser. The VXML can
specify a new grammar for the possible scores, as shown in the example.
The alternative is that, if there is a common grammar for numbers, we
could use that grammar and then validate the user input after the number
has been obtained from the user using ECMAScript along with our VXML.
Client-side validation using a scripting language is less applicable to GUIs
because the range control typically maps to a slider bar or a similar con-
trol that does not physically allow the user to input an incorrect piece of
data.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

302 GENERIC USER INTERFACE DEVELOPMENT

c. Validation through the control grammar: Grammars are typically a term used
in VUIs and seldom in GUIs. However, this terminology can be used on
the client side as well because we can call the set of possible values allowed
by a control its grammar. Therefore, in a list box that allows the user to
select only from the values on the list, the grammar is the set of the list items.
We can use the range and the interval to create a grammar for the control
at the final user interface. Example 5.10 deploys this method. As you note,
the transformation of the XForm range control generated a prompt with a
custom grammar using the range and the interval specified by the range.

6. <button>: The button control allows the user to trigger an event without any
textual input into a GUI. The button control is most applicable to GUIs. This
control can be translated to a command in a VUI, but this transformation is
not natural (as you will find out if you try to transform the button to one
of the available commands in VXML). The XForms specifications says “the
user agent must provide a means to generate an xforms:activate on the form
control” [W3C XForms]. Because this button does not provide any bindings,
the implementation of the XForms processor must allow an event to be created
(specifically xforms:activate) when this button is “pushed.”

7. <textarea>: The <input> form control typically places some limitations on the
length of data to be entered by the user regardless of the user interface used.
For example, in an aural user interface, this may be enforced by allowing the
user to input a maximum of ten seconds of voice. In an HTML interface, this
may be the number of characters allowed in the control. The <textarea> form
control allows the user to input an unlimited amount of data (or at least not
particularly limited because there may be limitations imposed by the support-
ing infrastructure such as possible amount of storage or maximum length of
a maintainable open connection channel between the user and the system).

8. <upload>: The use of this element, at first, may seem very specific to the thin-
client Web applications using HTML or similar markup languages. However,
a closer look shows that this control could apply to a variety of user interfaces,
supported by thin or thick clients. The upload element can be used to indicate
the need to upload any type of media to the server. This element may be
particularly useful for mobile applications. Imagine a mobile device that has
a poor, an intermittent, or no connection to the network but has a reasonable
amount of storage. Now, let us say the user needs to send an audio message
to another user. The application can store the message, locally on the client
or wherever the XForms processor is running. The entire concept of “upload”
infers that some data were collected on the batch basis or that a data file
simply exists: This is what is to be uploaded. Therefore, this form control can
effectively only be used through user interfaces that support a data channel.
Graphical user interfaces nearly always do. However, the same is not true of
VUIs. Voice user interfaces that connect to the system with a PSTN do not
support transfer of data and voice at the same time. So, for the user to upload
a file, voice or otherwise, the mobile device must be able to provide a modem
or a modem-like connection to upload the information. This works for most
cell phones. But, the upload tag is not applicable to VUIs being accessed by a

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.5 XForms 303

regular telephone for there is no way for the end user to upload information.
Now, there are those who argue that the XForm client can really be yet another
server being connected to by a “dumb terminal” such as a regular phone.

It is true that in this case we could use the <upload> tag by the XForm
client (which is really on the server side) to gather the information and then
upload it to the server of the XForm client. This model, however, is not very
interesting and does not seem to be in the spirit of what the <upload> tag
was intended as. Developers should always keep in mind the cost of layers
of indirection versus the benefits. If the final user interface generated by the
XForms browser, or whatever the XForms client and the subsequent transfor-
mation process may involve, produces content that is served up to a “dumb
terminal” type of client (one that cannot do much of anything but provide
a simple display), a large part of the XForms value proposition is rendered
useless. This is not to say that such use should be ruled out. Quite the con-
trary, as we mentioned previously, XForms has a very modular design and its
various components can offer us great benefits individually. However, certain
components or subcomponents (for example the upload tag and the accompa-
nying functionality) may not lend themselves to appropriate use in particular
systems and application architectures.

9. <selectMany>: This tag is much like its counterpart of <selectOne> previ-
ously discussed in this section. The final rendition of what is represented by
this tag should allow the user to select multiple things, as its name implies,
of a list of things. When using this form control, it is recommended that the
<choices> tag be used to group families of options to simplify selecting mul-
tiple options, all of which may need to be selected, and all of which fall within
that family of selections.

10. <submit>: This form control tells the user interface that the user is done
filling out the form. A look at the XML Schema defining XForms shows that
there may be multiple submissions in one XForms document. This allows
better support for dynamic workflows that allow the user to use one “page”
or section of the user interface to easily navigate to several other places while
entering only the data required by the particular workflow the user wants.
The <submit> control simply calls a submitInfo control pointed to by its
submitInfo attribute.

Now that we have extensively looked at the various form controls provided by
XForms, let us look at how these form controls are bound to the instance data on
the form.

Binding the User Interface Elements to Instance Data

Example 5.11: Binding User Interface Components to Instance Data.

<xforms:model id="government">

<xforms:instance xmlns=http://www.mysite.com/myModel.xml>

<executiveBranch>

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

304 GENERIC USER INTERFACE DEVELOPMENT

<head-of-state>

George Bush

</head-of-state>

</executiveBranch>

<legislativeBranch>

</legislativeBranch>

<judicalBranch>

</judicialBranch>

</xforms:instance>

<xforms:bind ref="government/executiveBranch/head-of-state"

id="president"/>

</xforms:model>

Binding with the ref attribute:

<xforms:input ref="government/executiveBranch/head-of-state">

<caption>Please enter the name of your country's head of

state here.</caption>

</xforms:input>

Binding with the bind attribute:

<xforms:input bind="president">

<caption>Please enter the name of your country's head of

state here.</caption>

</xforms:input>

Explicit binding:

<xforms:input model="government" ref="government/

executiveBranch/head-of-state">

<caption>Please enter the name of your country's head of

state here.</caption>

</xforms:input>

As we saw in the examples in the previous sections, the form controls allow us to
define the “static” portion of the user interface in a generic manner: They let us put
some interaction elements on the user interface without any bias to a particular
type of user interface (such as X-Windows or VUIs), without any bias toward a
particular domain (such as financial industry, customer relationship management,
etc.), and without any dependence on whether the data themselves are static or are
being generated dynamically. This makes the process of binding these elements
with the instance data, which holds the domain-dependent information, crucial.
After all, it is this information that needs to be collected from the user.

All binding in XForms is really part of the XForms Model. However, here we
will discuss it outside of the model because it is the user interface controls with
which we are primarily concerned. The user interface controls can be bound to
two types of nodes: model elements that exist on the same document accessed by

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.5 XForms 305

referring to a single node ID (single node binding) and nodesets referred to by an
XPath expression (Nodeset Binding). The type of binding is determined by which
attribute is used.

To understand this, we need to look at some examples. First, let us take some
instance data such as those in Example 5.11. Here, we use three distinct methods
to bind the form controls to the instance data. Note that the <xforms:bind> tag
allows us to create an “alias,” namely “president,” with which the desired instance
data element can be bound at run time. This alias can later be dereferenced by
using the bind attribute. We can also point explicitly to the instance model and
then work our way down to the instance data element to be bound to the control
using an XPath expression. Finally, we can use the ref attribute for dereferencing
the instance element. We could also use the nodeset attribute for binding if there
is a need to access the instance data element through an XPath expression and
using the ref attribute does not suffice. This could be the case if the instance data
are not all in one section of the document or in one document.

Hidden Form Controls
Hidden controls have been somewhat of a debated topic in XForms and other
markup languages aimed at creating generic user interfaces. XForms treats hidden
controls, or fields, as they are known in the HTML development world, very
elegantly. Indeed, it is the instance data model that eliminates the need for hidden
fields altogether.

Hidden controls in HTML, WML, and other similar markup languages are used
to keep state around without having to maintain server-side state or to keep values
that should not be seen by the user. The reason “hidden” fields are used is that
there is typically no other mechanism to keep this information. In the case of
XForms, however, because presentation and the data are separated, we do not
need to worry about hidden fields. Remember that the form controls point to
instance data. So, if there are instance data that are not used by form controls, we
have the ability to keep whatever information is needed in those data.

We have now covered the basics of the form controls. The form controls are
the touch points of the user or the client that might sit in front of the XForms
container. To bring it all together, we will look at the events, constraints, and the
other parts of XForms later. Let us now look at how XForms handles events.

5.5.4 Events in XForms
So far we have seen that the interactions are done through the form controls and
that the form controls bind to the instance data. But how does the client to the
XForms container tell the container to switch control to a particular control, that
the client is done filling the form control, etc.? This is where the XForms events
come in. The XForms event model is built based on the XML events, another W3C
standard that we have looked at in Chapter 3.

Events are spoken of in many different contexts within XML; it is important to
note that we are not talking about parsing events such as those that are created by
SAX parsers. Our events are of two types: events caused by user interactions and
events caused by the nature of the State Machine that is the XForms container.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

306 GENERIC USER INTERFACE DEVELOPMENT

The first group of events should be intuitive to the reader: Events are a typical
method of handling user interactions with the user interface. Interaction events,
as the W3C XForms specification document calls them, are those events that
model the interaction of the user with the form controls. (The user actions may
be going through an intermediate layer; nonetheless, as long as they cause one
or more events to occur at the XForms container, they are considered interaction
events.) Before we can understand XForms events, we need to quickly review what
event-based messaging is.

Event-based messaging systems always have three basic components: the event
listener, the event producer, and the event itself. (This is an object-oriented way
of looking at messages, but then this is a text on developing mobile applications
using UML so a certain amount of bias toward object-oriented systems should be
implied.) Event producers are the components that create the events. In the GUI
development world, a button can be an event producer. The event is the message
that gets generated by the event producer. The event listener is the component that
receives the produced event. An event producer can producer more than one type
of event and there may be many different listeners for each event that is produced.
“Event”-driven systems typically refer to synchronous operations whereas messag-
ing typically refers to asynchronous operations. So, unless otherwise mentioned,
when we say events, we mean synchronous events.

XForms form controls or the user interface components are not the only type
of components that can use events. In fact, XForms Processing Model uses events
to propagate notification of changes among the various components of XForms.
For example, there are events that may cause changes in instance data or be
produced as a result of changes in the instance data. In this way, events allow
synchronous binding of the mutations that occur among the various parts of an
XForms document at run time.

Let us start with the interaction events. We will keep the taxonomy identified
by the W3C specification, which organizes events depending on the state of the
XForms document during which they occur. However, we will also point out that
the listener and producer of the event are critical to how we group various events.

Navigational Interaction Events
As in the case of form controls, the W3C XForms team has done their very best
to keep the events generic and with no bias toward any particular type of user
interface. But this has proved to be challenging as event models outside of GUI-
based systems have not had many years to mature.

In traditional GUI programs, events that are used by GUI controls are prevalent.
So, this is probably the most intuitive starting point. Let us start by going through
the events associated with the form controls. Keep in mind that these events all
take place during the interaction stage of the state diagram that represents the
XForms processing model. The events we need to consider are as follows:

1. <xforms:next>: Do not confuse this with the NEXT button of your browser. The
container provides the facilities for all form controls to have the ability to listen
to this type of event. As we mentioned previously, one of the common attributes

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.5 XForms 307

in form controls is the navIndex. Regardless of what type of final user interface
is being rendered, the user needs a way to move through choices, through a list,
or through any other type of grouping of form controls. For example, in a GUI,
the Tab key may be used to move through controls. Because the final user inter-
face is not known, the only requirement in XForms is that the <xforms:next>
event be issued. This event, in turn, tells the XForms container to move to the
next form control.

2. <xforms:previous>: This event is the opposite of the <xforms:next> event—it
tells the container to move the focus to the element that has the immediately
lower navIndex. It is also important to notice that, in both previous and next
events, if the navIndex is not supplied, the order of appearance of elements
in the document is used to determine an implied navIndex. In other words,
if element a appears before element b, and we assume that element a has a
navIndex of n, element b has a navIndex of n + 1 (if navIndex is not specified
explicitly). If none of the controls have explicitly specified their navIndex, the
first control will implicitly have a navIndex of 0; the nth element will have a
navIndex of n − 1. The effect of a navIndex of 0 is the same as no navIndex. In
GUI environments, the previous and next events can be produced by a shortcut
key whereas in VUI environments so-called universal commands can be used
to produce such events. The listener of both previous and next is the container,
which in turn shifts the focus from the current element to the previous or next
element depending on which event is produced.

3. <xforms:activate>: The activate event is typically used for a button in a GUI
or a navigational command in a VUI (and so the event producer of an activate
event is typically a button or an analogous element in non-GUI environments).
The event is used to put the focus on a particular form control after the event
has been produced.

4. <xforms:help>: This event is produced by the XForms container client (which
could be the user itself or another user agent that specializes the XForms User
Interface to a particular type of user interface). The listener to this event is a
form control whose help is to be displayed by the container or the client to the
container (if the client is not the user).

5. <xforms:hint>: This control’s behavior is identical to the <xforms:help> be-
havior except that the hint element of the form control is invoked instead of
the help element.

6. <xforms:focus>: This event is typically produced by the XForms container client
(which could be the user itself or another user agent that specializes the XForms
User Interface to a particular type of user interface). The listener to this event
is the container itself. When this event is issued, the container moves focus to
the specified form control. In a GUI environment, for example, such an event
could be issued by mouse movement and clicking. In a VUI environment, this
could be done by a “universal” command or DTMF input. Another example
may be the use of a hot key on a client such as a WAP client to gain the focus
of a particular client.

7. <xforms:blur>: The behavior of this event is the opposite of that of the focus
but its producer and listener are the same.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

308 GENERIC USER INTERFACE DEVELOPMENT

8. <xforms:valueChanged>: Form controls are bound to instance data. So, if the
value being entered into the form control changes, then the instance data must
be updated. However, this must be done only when the user is finished with
updating the particular form control. This event is produced by the container
when the user creates or changes the data in a form control and then indicates
being finished by moving focus or clicking on submit.

9. <xforms:valueChanging>: This event is designed to notify the listener that a
particular input to a particular form control is currently being modified. For ex-
ample, if a user begins typing into an input box, this event is emitted. The event
producer is the XForms container while, as in the case of valueChanged element,
any control could be a listener.

These are all of the events that allow navigation through the form controls of a user
interface. All of these are applicable across multiple types of user interfaces. There
are yet more events. The remainder of events allow interactions with instance data,
the XForms model, and other XForms User Interface elements. Are there other
elements? Thus far, we only talked about the atomic element of XForms. Although
we can make a generic user interface of only these elements, XForms provides us
with some composite elements to give us more functionality. Let us look at these
composite elements before we discuss the events that use them.

Composite XForms User Interface Elements
As we discussed previously in this chapter, composite elements of a user interface
exist because a grouping of atomic elements can have its own behavior, additional
attributes, and a contextual relationship with other composite and atomic com-
ponents of a user interface. Having recognized this, the XForms standards group
created a set of composite controls. Once again, this has been done in a manner
that applies to a variety of user interfaces, keeping XForms a good option for
creating generic user interfaces. Here are the composite elements as defined by
XForms:

Example 5.12: Grouping Atomic Elements to Create Composite Elements in
XForms.

<group ref="name">

<caption>Full Name</caption>

<input ref="firstName">

<caption>First Name</caption>

</input>

<input ref="middleName">

<caption>Middle Name</caption>

</input>

<input ref="lastName">

<caption>Last Name</caption>

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.5 XForms 309

</input>

<selectOne ref="title">

<choices>

<item><caption>Dr.</caption><value>DR</value></item>

<item><caption>Mr.</caption><value>MR</value></item>

<item><caption>Mrs.</caption><value>MRS</value></item>

<item><caption>Miss</caption><value>MISS</value></item>

</choices>

</selectOne>

</group>

1. <group>: The group element has a simple task implied by its name: It groups
other group elements and/or atomic elements of XForms User Interface, the
form controls that we reviewed in Section 5.5.3 (subsection on XForm User
Interfaces). By allowing for the common attributes, this element allows us to
creating large-grained components. The primary purpose of creating such user
interface components may be to tell the final user interface to keep the integrity
of the component together when specializing to a particular user interface (for
example, not putting two given form controls on different pages if they belong to
the same group, etc.), encapsulating some context that the contained elements
may have when grouped, and putting the relationship between the contained
elements inside the sandbox of the group element. Example 5.12 shows how
the group element can be used. This element can also be used to bind a group
of user interface controls to a structure of instance data.

Example 5.13: Using the Repeat Element for Collections.

<repeat nodeset="/invoice/item">

<output ref="."/>

</repeat>

2. <repeat>: The repeat element gives us the ability to create lists of items for
display purposes. Do not mistake this list with <selectOne> or <selectMany>.
In the case of those elements, the user is selecting one or more items, depending
on which control is used. This input then gets bound to some instance data. The
repeat element displays all of the items on the list and each item may require
some user input. It is provided as an iterating mechanism. For example, when
creating a list of charges for an invoice, the size of the collection of the instance
data may be variable. The other reason to use the repeat element is to avoid
hard-coding enumerations. Example 5.13 shows how to display a collection
of invoice items. Another advantage of using the repeat element is to take ad-
vantage of the separation of presentation and data for dynamic data. Although
instance data might continue to change during the life of the XForms document
in the XForms container (through user interactions), this form control can

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

310 GENERIC USER INTERFACE DEVELOPMENT

SIDE D ISCUSSION 5 .2

P3P (Platform for Privacy Preferences) Project

P3P is another W3C standard. This standard specifies a mechanism for allowing
Web pages or an XML document to contain information about the privacy implica-
tions of viewing them (whether the document is viewed by a user or a program).

update the rendering of the generic user interface to keep what appears to the
container client updated with the instance data. There are two special events
for the repeat element, <scrollFirst> and <scrollLast>. These two events are
produced by a user interface action, such as pressing a button, and in turn
causing the container to move to the beginning or end of the list, depending on
which event is issued.

3. <switch>: The switch element allows limited logic based on the state of the
instance data. The switch element allows the XForms user interface to represent
a different user interface depending on the user’s actions. The reader must be
warned that this element can easily be misused and can easily introduce bugs
into the application as, most of the time, not every state of the system is tested
thoroughly during quality assurance. The switch element, just like the switch
statement in programming languages such as Java, has cases. Each of these cases
are specified using a <case> element. The case element, in turn, can have any
of the atomic elements (form controls). It also has an attribute called selected,
which can be set to true or false. This attribute is used by the XForms container
to determine which case to display. The case with the selected attribute set to
true is displayed. If there are multiple cases with the selected attribute set to
true, the first is displayed and the container sets the selected attribute of the
other cases to false. When the select attribute of a case is changed, an event is
generated. This event is an <xforms:select> if the attribute is changed to true
and is an <xforms:deselected> if the attribute is changed to false from true.

These three elements are the basic composite elements introduced by XForms.
However, it is possible to create custom composite elements through adding de-
sired context and relationship information to the transformation process while the
XForms User Interface is being specialized to the user interface that the user is
actually interacting with. All of the navigational interaction events that we looked
at can be used with these composite elements just as we used them with the atomic
elements. Because the composite elements are a grouping of other elements, the
element with the lowest navIndex gets focus when the composite element has
focus. When navigating through the composite elements, next, previous, and the
other events are within the scope of the composite element.

Now, let us look at the remainder of the events. These events are related to the
instance data or the state of the processing model.

Processing Model Events and Instance Events
Take, for example, a page that might request some information from your sys-
tem stored in a cookie. Depending on your inclination on allowing others to see

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.5 XForms 311

information stored in the cookies of your system, and depending on what the
page is itself and who the owner of the page may be, you may or may not want to
allow the page to retrieve some information. You can specify such settings in your
viewing client permanently or put the settings in every time you view a page. P3P
specifies a standard method by which resources and resource consumers on the In-
ternet can tell each other what private information is allowed to be exchanged and
what private information is needed or expected to be exchanged for a transaction.
For more detail, refer to the W3C site (http://www.w3c.org/TR/P3P).

Let us return to Figure 5.16, which represents the state diagram of a document
in the container. We went through some of the events that take place while the
XForms document, living in the document container, is in the “Interact with
Container Client” state. Now, let us take a look at the remainder of the events,
starting with those that take place while the document is in the initialization stage.

The initialization state is focused mainly on the instance data. At this state, the
instance data must be initialized. Initialization events are internal to the container,
but we can use them to customize the initialization sequence of a given document
(for example, what values are in the document and a chain of events that may be
triggered based on the initial events that set up those values). So, let us start with
the very first event:

1. <xforms:modelConstruct>: When this event happens, the container initializes
the data based on some external source. If there is no external source, the
initial data are simply left empty. The processing order of this event allows us to
have some default values on the XForms document for the initial values and to
override those default values using an external document. This event is internal
to the XForms container.

2. <xforms:modelInitialize>: After the <xforms:modelConstruct> event starts
the initialization state by finding the initial values, external or internal to the
document, this event tells the container to check the validity of the data, to
check some privacy rules using P3P (see Side Discussion 5.2), and to call the
next event, <xforms:initializeDone>.

3. <xforms:initializeDone>, <xforms:UIInitialize>, and <xforms:form
ControlInitialize>: The <xforms:initializeDone> element simply specifies that
initialization of the instance data is finished and the UI can be initialized.
<xforms:UIInitialize> tells the container to go through all of the form controls
and issue an <xforms:formControlInitialize> for each one of them. This
event basically forces an initial binding among the model, the instance data,
and the form controls by the container. Although <xforms:modelConstruct>
and <xforms:modelInitialize> initialize the model and the instance data, for
these initial values to actually appear in controls, the controls have to be
bound to the instance data and the model. This binding is done when the
<xforms:formControlInitialize> event is issued.

That wraps up the events for the initialization state of the document. Keep in
mind that if you are an XForms document author, you may never use some of the
events, the features, or the functionality that we talked about in this chapter. For

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

312 GENERIC USER INTERFACE DEVELOPMENT

example, the <xforms:initializeDone> event would rarely be used by a developer
who simply wants to use XForms as a means to develop a generic user interface for
a mobile application. Many of the various features and functionalities of XForms
that we discussed here are really just targeted for implementation by the developers
of the XForms container (or the XForms browsers). Nonetheless, there are two
benefits in a thorough examination of these features. The first is that we see the
guts of how the container works. This helps us greatly in understanding why a
particular bug happens and gives us a good intuition for how the document is
processed by the container. Second, it is very possible that we want to implement
an XForms container, a subset of an XForms container, or a client to an XForms
container for a particular mobile platform. For example, we may want to create
a system with user interfaces on PDAs, PCs, and WAP phones. Although we may
use a set of XSLs to convert the XForms User Interface to WML for the WAP
phones because writing an XForms container for a WAP phone is probably a bit
too much, we may want to write an XForms container for the PDA and the PC. The
container for the PDA may be a lighter version with fewer pieces of functionality
implemented.

So, in this way, what we discussed in this chapter regarding XForms may apply
to a particular application in bits and pieces. As we mention repeatedly throughout
this text, this is the art and science of software engineering!

Now, let us move on the remainder of the events that affect the instance data and
the model. Once the XForms document is initialized, it moves into the interaction
state. In this state, the user interactions cause changes to the document, directly
through interacting with the container or indirectly through interacting with a
client to the container. So, instance data have to be manipulated. This is done by
the following events:

1. <xforms:insert>: This event simply notifies the container that some data were
inserted into the instance data from one of the form controls.

2. <xforms:delete>: This event notifies the container that an event from some form
control caused some data to be deleted from the instance data.

And that is all there is to it! Instance data are really manipulated by the form
controls and their events during the interaction state. That leaves us with a few
events that handle the processing model and submission of the XForms document
parameters:

1. <xforms:refresh>: This event causes the binding among the model, user inter-
face controls, and instance data to be forced and, thereby, “refresh” what is on
the user interface. Practically speaking, this event is useful when a control is in
some strange state or if a form control was disabled and the user interface has
not been updated. As in most cases, the idea of a “refresh” in a user interface is
to obviate the need for the user interface developers to have to worry about all
of the possible states of the container.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.5 XForms 313

2. <xforms:recalculate>: This event allows a calculation of all of the XPath ex-
pressions in the XForms document. This event is particularly important if the
value of an XPath expression is dynamically calculated based on some instance
data. As the instance data change, for the value of the XPath expression to be
correct, the expressions must be “recalculated.”

3. <xforms:reset>: This event causes the container to return all of the instance
data to its state immediately after the document initialization state. This event
works much like the reset event does in HTML.

4. <xforms:submit>: This event indicates a user interaction with the system to
show that he or she is finished interacting and wants to submit the data. The
container then submits all of the instance data to some POST target. Though
the XForms specification typically specifies things in terms of HTTP, remember
that we can use other application layer protocols to interface with the XForms
container (XForms document browser).

This wraps up our look at the XForms event model. The only remaining piece
in processing a document is the container’s treatment of constraints that may be
placed upon the user’s responses. These constraints can be used as validation.

The XForms Processing Model uses XML Schemas, which are discussed in
Chapter 3 extensively. In fact, XForms uses the XML Schemas’ data types. Although
XML Schema data types are used, there are additional properties defining the
metadata and behavior presented by an XForms Model document. These properties
are called model item properties. Model item properties are either static or XPath
expressions (also referred to as computed). We will refer to the collection of these
properties, namely the XML Schema’s data types and model item properties, as
simply properties. Every item in an XForms Model document can have any of
these properties.

There are eight model item properties:

1. type: XForms Model uses XML Schema data types to specify the type of the data
element. The type of the data is important for both validation and binding. For
example, if the type of data is a numeric type, characters outside of 0–9 and the
decimal point must not be allowed.

2. readOnly: If true, this property indicates that the XForms control is not to be
changed. By default the value of this property is false.

3. relevant: The instance data associated with some form controls may not need to
be sent when a submit action takes place. If relevant is set to false, the instance
data associated with the particular form control are not sent during submission.

4. calculate: This attribute can be any valid XPath expression that allows the value
of the form control (instance data) to be computed dynamically based on some
valid XPath expression.

5. isValid: This attribute allows us to put in custom validation logic for instance
data filled into form controls. If isValid evaluates to false, the container does
not allow the form to be submitted.

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

314 GENERIC USER INTERFACE DEVELOPMENT

6. maxOccurs: For those elements that can be nested (e.g., selectOne), this attribute
specifies the upper bound for how many times the elements may be repeated.
By default, nesting is unbound.

7. minOccurs: For those elements that can be nested, this attribute specifies the
minimum number of nestings that make the element meaningful. By default,
this is zero.

8. required: A submit action cannot be taken until all of those form controls with
this attribute set to true have instance data or an XPath expression pointing to
valid data.

The XForms processing model also gives us binding for specializing the generic
components that we build with XForms. However, the implementation of such
binding is left to the implementer of the container. In other words, any mechanism
can be used to convert XForms to VXML, XHTML, or whatever interface is desired.

This concludes our discussion of XForms. To understand XForms better, you
may want to review the specification available at the W3C site. XForms is a very
new standard, so it is sure to have minimal syntactical changes.

Let us look back at this chapter and see what we have learned about building
user interfaces to mobile systems.

5.6 PUTTING IT ALL TO WORK

In this chapter, we looked at the “how to” of designing and building a generic
layer into the user interface components of a mobile application.

To date, UIMS that enable all the functionality we have mentioned here are few.
Apache’s Cocoon is one that implements such functionality using the centralized
Web model. There are no released UIMS that implement such functionality in a
distributed manner, over many peers and nodes; however, several are being fi-
nalized. The latest releases of J2ME and Qualcomm’s BREW give the developers
much of the aforementioned functionality needed to build generic user interfaces
on the client, whereas IBM, HP, and Apache have software products that comple-
ment them on the server side.

We started the chapter by understanding what we need out of a mobile user
interface and then followed by taking a step back and looking at what user inter-
faces are. Then, we looked at the atoms that make up user interfaces and saw how
to model them, and groupings of them, by using UML. We did this so that we can
provide consistency throughout the user interfaces and can design documentation
that enforces good design practices as well as keeping the design decoupled from
platform-specific implementations.

Finally, we selected XForms as an example of a standard technology to use to
implement generic user interfaces. XForms is just about the only nonproprietary
standard today, with widespread acceptance in the industry, that implements fea-
tures needed by a generic user interface. The authors of XForms had much more
in mind than just creating a standard that allows creation of generic user inter-
faces. If this was all they had in mind, the form controls and binding would have

P1: KPD

0521817331c05 CB752-B’Far-v3 May 4, 2005 20:14

5.6 Putting It All to Work 315

sufficed. Rather, they have created a framework where presentation logic can be
distributed. The readings on W3C’s Web site and other work considering various
implementations of XForms and the use of XForms often refer to the concept of
an “XForms browser.”

In fact, a great deal of the beauty of XForms lies in the other W3C standards
that give us the pieces we need to specialize XForms. W3C has engineered XForms
and the other standards (XSLT, XPIPE, VXML, CC-XML, etc.) so that, together,
a picture of the standards for implementation of a mobile UIMS is complete and
coherent. We will look at these other standards and the other design concepts
that will let us build mobile applications with multiple types of user interfaces for
mobile systems during the next three chapters.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

CHAPTER 6

Developing Mobile GUIs

The rose and the thorn, and sorrow and gladness are linked together.
Saadi

6.1 INTRODUCTION

In Chapter 5, we saw why and how to build generic user interfaces. The two types
of interfaces that dominate computing today are Graphical User Interfaces (GUIs)
and Voice User Interfaces (VUIs). So, when we specialize a generic user interface,
we are typically specializing it to either a GUI (of which we will consider text-only
user interfaces to be a subset) or a VUI. In this chapter, we will look at GUIs,
in Chapter 7 we will look at VUIs, and in Chapter 8 we will see how to build
multimodal user interfaces that use multiple channels to reach the user.

Let us remember our final goal: building mobile user interfaces. Mobile user in-
terfaces inherently have different requirements than their stationary counterparts
because of the dimensions of mobility and the mobile condition of the user. The
dimensions of mobility affect design and implementation of user interfaces in two
fundamental ways. The first is that the user interface has to accommodate func-
tionality that relates to the dimensions of mobility. For example, user interfaces
must be available on all of those devices through which the user of an application
may access a system. Second, the dimensions of mobility create various concerns
that require further separation of concerns when building user interfaces. Today’s
state-of-the-art techniques in model-view-controller (MVC) and presentation-
abstraction-control are incomplete in treating these concerns so we will first ex-
amine them and then examine enhancements and alternatives to the existing
techniques that allow us to design and implement with the proper separation of
concerns for the new concerns introduced by the dimensions of mobility. We have
already begun this process by looking at building generic user interfaces. Generic

316

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

6.1 Introduction 317

user interfaces simply model a user’s interaction with the system (independent of
the modality and the communication channels).

Because the process of building user interfaces for mobile applications is consid-
erably more complex than their stationary counterparts, we will subsequently use
UML as the tool that documents and drives the process of developing our user inter-
faces. We will note again that there are no specific methodologies recommended by
OMG (the organization that maintains the UML standard) in regarding the use of
UML to build user interfaces. Because there are no standards, we have selected
some suggested techniques that fit our needs, namely development of user inter-
faces for mobile applications.

We will start by looking at the state-of-the-art in separation of concerns (user
interface logic, business logic, publishing to multiple interfaces, delivery through
multiple channels, etc.) when building user interfaces today.

6.1.1 Today’s State of the Art: PAC, MVC, and Others
Before we lay out some options in building mobile user interfaces, let us look at
our goal and the assumptions we make to narrow the solution set for the goal:

Our goal is to design and implement the user interfaces of our mobile applica-
tions so as to minimize the development effort and maximize the robustness of
the user interfaces.

As you recall, we face multiple challenges in developing user interfaces for
mobile applications. There are a multitude of devices and platforms used by the
consumers (device proliferation), the user interface must be robust enough to allow
the modalities that fit the condition of the mobile user at the time of using the
system (support for a wide variety of user interfaces), and the user interface of one
application may need to adapt itself to be used under a number of system conditions
(low battery, poor QOS, and low device user interface capabilities). Because of the
relative short lifetime of the mobile device acceptance in the marketplace and
the large permutations of possible platforms (mobile operating system, hardware,
network, deployment, etc.) we have to do our best to construct the device so
that code is maintainable, extensible, and flexible. Whatever problems you may
have faced in maintainability, extensibility, and flexibility of software for stationary
applications are permutated by the dimensions of mobility.

Let us take a step back now. As we all know, software is somewhat like radioactive
materials: It is always decaying. This decay is caused by the changing needs of the
users of the system and the ever-evolving tools that serve those users. Given
this decay, another genetic trait of software development is that there are always
additional requirements and modifications during this decay process. So, once we
have the first version of a piece of software, we must maintain it. Obviously, many
of these additions and modifications are going to be additions and modifications
to user interfaces or cause additions and modifications to user interfaces of the
system. This problem is not unique to mobile applications. It is shared by all
software applications. Although developing user interfaces for mobile applications
is a problem compounded by the dimensions of mobility, developing the user
interface to any software application is a fairly complex task. This complexity has
given rise to several techniques that aim at easing the task of development of

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

318 DEVELOPING MOBILE GUIs

the user interface. Now, remember that by development we do not just mean the
initial creation of the user interface, but the creation and maintenance of the user
interface over the entire life cycle of the application.

The choice of the technique we use in developing the user interface depends
on the core technologies used and the architecture of the system. For example,
there are a series of techniques developed for building PC-based applications and
other techniques developed for building Web-based applications. In the case of
mobile applications, we face two general types of user interfaces: those that use
the mobile device for rendering some or all of the user interface and those that
use the end device merely as a communication channel to the user. An example of
the first is a networked PDA application; an example of the second is a telephone
used to communicate with a VUI at the other end of the phone call. All of the
techniques that we will discuss in this text for building mobile user interfaces are
primarily concerned with one aspect of software development: separation of con-
cerns. These concerns include whatever we have experienced with developing user
interfaces for stationary applications (separating business logic from presentation
logic, separating validation from presentation logic, etc.) and are permutated by
the dimensions of mobility. In this way, our goal will be to point out techniques
that allow for separation of concerns, be it the typical concerns of developing any
user interface or the concerns of mobile applications, to reduce the development
effort in building user interfaces and creating the best experience for the end user.
Unless you are building an embedded software application for only one type of
device, you will find these techniques useful. But, be forewarned that none of
these techniques are the antipattern (sometimes referred to as the silver-bullet or
golden-hammer antipattern). The technique that you use must fit the problem
that you are trying to solve and the needs of the problem are something that you
as the engineer must assess.

There are a variety of software development techniques for developing the
user interface to stationary applications, but we will focus on those techniques
that have evolved from the study of object-oriented programming and design
patterns. If your chosen language for building your mobile application is C++,
Java, or another object-oriented programming language, these techniques will
apply directly. However, even if you are using a language such as C (and the
relevant tool sets), the concepts will still apply. You may need to apply some
creativity (or read up on writing object-oriented applications with C) in adapting
these techniques to the language of your choice.

Let us start with what is probably today’s most popular technique for separation
of concerns when it comes to building object-oriented user interfaces: the model-
view-controller technique.

Model-View-Controller
Model-View-Controller (MVC) is an object-oriented design pattern for separation
of concerns of applications with user input (see Figure 6.1). MVC is best defined by
Buschmann, Meunier, Rohnert, Sommerlad, and Stal (also known as the “Gang of
Five”) in one of the staple texts of software application development called Pattern
Oriented Software Architecture: A System of Patterns. MVC divides an interactive

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

6.1 Introduction 319

Model

View Controller

FIGURE 6.1. MVC Pattern.

application into three areas: processing, output, and input [Buschmann et al.
1996].

The model is the internal implementation of the application and does not en-
capsulate any data or have any behavior related to interactions with the user or
the presentation of data to the user. The view encapsulates any output through the
user interface to the user. What you can view on the screen or hear on the phone
is rendered by the view. The controller processes the input of the user into the
system. The text typed into the system, the mouse events, and the voice recorded
by the system all come through the controller. The system may have one or more
views and controllers. The controller allows the user to enter input. It then can
modify the model. These modifications are reflected in the user interface through
the view(s). MVC allows separation of three different concerns: receiving input
from the user (controller), implementing components that model business logic
and operations that build the core functionality of the application (model), and
presenting information to the user (view).

MVC is widely implemented in stationary client applications and server-based
(thin-client) Web-based applications. In such systems, there is typically only one
type of view (HTML) and one type of controller (PCs and the relevant peripheries).
Minor differences in things such as browser versions and monitor sizes are typi-
cally taken care of by work-arounds rather than by creating multiple views. When
it comes to mobile application development, MVC has a couple of disadvantages.
First, proliferation of views and controllers becomes unmanageable and very dif-
ficult to maintain as mobile applications have multiple user interfaces rendered
through multiple channels and can receive input from numerous controllers. Sec-
ond, the inherent asymmetry in treating the input and the output from the user
to the model compounds the effect of this proliferation problem. For example, a
system that offers a VUI and an HTML user interface for its users would need at
least two separate controllers, one that can receives user input through a voice
channel and another that receives input from the user through HTTP. Likewise,
two different views would be needed, one that renders a GUI in HTML and an-
other that renders an aural user interface through playback of audio. If we wanted
access to the aural user interface through the PC as well as the telephony system,
we would end up with two controllers and two views for the VUI. It is easy to
see that the user interfaces and channels to be supported for a mobile application
can become unmanageable. The maintenance of the controllers and views can
become particularly unwieldy. The separateness of the views and controllers has

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

320 DEVELOPING MOBILE GUIs

Abstraction

Control

Presentation

FIGURE 6.2. Presentation-Abstraction-Control.

another negative side effect: Maintaining consistency among the different views
and controllers becomes cumbersome. For example, if a field has to be added to
the HTML GUI, we must make sure that it is added in the same analogous point
in the VUI, based on mapping the GUI interactions to the VUI interactions.

In addition to these problems, MVC does nothing to take into account the
other dimensions of mobility. Namely, there is nothing that accommodates the
adaptability of the controllers and views based on the dimensions of mobility such
as location, QOS, device power supply, or device capabilities.

MVC still gives us some value in separating the three major concerns, but its
tightly coupled and asymmetric nature, as well as its inability to treat multiple
views and controller types elegantly, makes it less than ideal for user interfaces in
mobile applications. Let us continue our search through existing techniques by
looking at a similar design pattern, also exposed by the “Gang of Five” called PAC.

Presentation-Abstraction-Control
Presentation-Abstraction-Control (PAC) is an object-oriented design pattern that
separates the concerns of a system by breaking it down into loosely coupled agents,
each responsible for one task (see Figure 6.2). The Presentation-PAC architectural
pattern defines a structure for interactive software systems in the form of a hier-
archy of cooperating agents [Buschmann et al. 1996]. Every agent internally has
components that serve one of three tasks: those components that abstract away the
core functionality and data used by the agent (abstraction), those components that
provide access to the agent (presentation), and those components that control the
interactions between the abstraction and presentation layers (control). Note that
the PAC pattern is similar to the MVC pattern in that it hides the internal imple-
mentation of the logical functions of the system from the user interface (i.e., the
abstraction layer hides the business logic).

In PAC, the separation between the user interface and the functionality of the
internals of the application is made by using the control component to pass mes-
sages back and forth between the two layers. Let us look at an example of how we
can apply PAC in Figure 6.3.

Let us say we need to build a reusable user interface component that collects
billing information from a user when he or she is purchasing something online
using an HTML-based browser. This component is probably a panel that has some
buttons, labels, and text fields. Internal to the system, this information may be

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A
d

d
re

ss

#m
C

ity
:

#m
Z

ip
:

#m
S

ta
te

:

#m
S

tr
ee

t:

P
er

so
n

#m
T

itl
e:

#m
N

am
e:

#m
S

S
N

:

#m
C

on
ta

ct
In

fo
:

S
h

ip
p

in
g

In
fo

C
re

d
it

C
ar

d
In

fo

S
av

eB
u

tt
o

n

U
p

d
at

eB
u

tt
o

n
N

am
eT

ex
tF

ie
ld

N
am

eL
ab

el

«i
nt

er
fa

ce
»

B
ill

in
g

P
an

el
P

re
se

n
ta

ti
o

n
B

ill
in

g
C

o
n

tr
o

l

B
ill

in
g

D
o

m
ai

n
A

b
st

ra
ct

io
n

+
up

da
te

()
+

cl
ea

r(
)

+
de

fa
ul

t(
)

+
di

sp
la

y(
)

+
se

nd
M

es
sa

ge
()

+
re

ce
iv

eM
es

sa
ge

()

+
ge

tD
at

a(
)

+
ge

tD
at

a(
)

+
se

tD
at

a(
)

B
ill

in
gP

an
el

P
re

se
nt

at
io

n

N
ot

 a
ll

of
 th

e
co

m
po

ne
nt

s
th

at
 m

ak
e

up
 th

e

im
pl

em
en

ta
tio

n
ha

ve
 b

ee
n

sh
ow

n.

«i
nt

er
fa

ce
»

B
ill

in
g

P
an

el
P

re
se

n
ta

ti
o

n

FI
G

U
RE

6.
3.

U
M

L
Cl

as
s

Di
ag

ra
m

of
a

Sa
m

pl
e

PA
C

Im
pl

em
en

ta
tio

n.

321

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

322 DEVELOPING MOBILE GUIs

encapsulated in several different objects. We create an abstraction (whose interface
is seen in the UML class diagram) to get the appropriate data out of the domain.
The implementation of this abstraction may exist in the domain model or we
may need to implement it (depending on whether the existence of the relevant
information grouped as billing information is necessary or not). The abstraction
provides the necessary behavior to exchange data with the BillingControl class. The
implementation of the interface between these two components (the abstraction
and control parts of PAC) is determined by what the controller needs from the
abstraction. The presentation is the panel itself, probably dynamically generated
using a scripting language such as JSP or ASP.

One key thing to note here is that the components of PAC are very decoupled.
Although the example that we have shown is a low-level one, PAC scales very well.
Various components can be tied together in a very decoupled way as it is very legal
for controllers to communicate and collaborate with one another. Consequently,
making complicated user interfaces based on simple components is more natural
to PAC than it is to MVC because composition of the agents can be done without
violating encapsulation. In fact, as defined by Buschmann et al. earlier, it is this
treelike hierarchy of agents that define the PAC pattern.

In this way, we can imagine that because of its flexibility to composition and
delegation and because of its decoupled nature, it is even possible to scale up PAC
so that the various parts of PAC are completely separate processes. These properties
are precisely what make PAC a good fit for mobile application development.

The PAC pattern fits the problem of mobile user interfaces much better than
MVC. First, it provides us a well-defined place to hook in the various infrastructure
pieces that take care of the dimensions of mobility and affect the user interface
without exposing this functionality to the core logic of the application: the control
component. This means that the control component can communicate with the
location sensitivity system, the voice recognition engine, the speech synthesis
engine, and all the other subsystems that we need to use to control and produce our
user interface without violating the separation of concerns among the abstraction,
shielding the business logic, and presentation.

PAC also provides one single layer for presentation, allowing us to encapsulate
the channels and modalities of the presentation in the same layer. PAC gets us
closer to what we need than MVC, but it still does not directly address all of
our needs. We need to embellish on it to get an approach that will fit mobile
applications well.

Transformation-Based Techniques for Mobile Applications
As we reviewed in Chapter 1, the first versions of mobile applications were essen-
tially either custom embedded applications with custom architectures and designs
or fully centralized applications with proprietary devices and networks as the end
nodes. The first attempts at building mobile user interfaces has been to transfer to-
day’s HTML-driven Web model to handheld mobile devices. WAP’s WML (which
we will review in detail later in this chapter) and NTT Dococo I-Mode’s cHTML are
examples of subsets of HTML functionality. The goal of such markup languages is
to take a subset of functionality of HTML. This has two benefits: 1. Only a subset

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

6.1 Introduction 323

is needed for devices with limited capabilities, bandwidth, power supply, etc. and
2. having a subset enables us to have a simpler and smaller browser that uses less
of these scarce resources.

Because Web content is mostly in HTML, this means that HTML has to be
transformed to the markup language supported by the target device. But because
there are a variety of devices and slightly different implementations and variations
of the markup languages, developers were left with a significant problem: how to
automate the task of publishing to these various user interfaces. As we mentioned
previously, one way is to continue using MVC and create multiple controllers and
views. This is really not practical because as the number of controllers and views
grows, maintenance becomes unmanageable. The PAC pattern gives us a better
approach because there is only one presentation component that interacts with
the user.

Developers began using two techniques to complement both PAC and MVC:

1. Transcoding: If the content is initially in HTML, we are dealing with a “view” of
the existing system. Transcoding techniques focus on extracting the information
out of this view to create an intermediate format that can in turn be used to
produce other views. The process of creating this intermediate format is referred
to as “transcoding.” Prior to use in the moble context, the term transcoding
typically meant conversion of one compressed format to another. And, as in
the case of conversion of one compressed format to another, there is almost
always some loss of data in conversion of HTML (or another markup language)
into the intermediate format. The intermediate format is used like a generic
user interface and then transformed to the various views using XSL or a similar
technology.

2. Transforming: Although we can start with HTML (or some other presentational
view of the system) and convert to other views of the system, this is a solution
that should be done only as a last measure. The preferred situation is that all
content is initially produced in XML that gives a presentation-neutral view of
the system. This content can then be transformed to the appropriate views using
XSL or similar technologies.

There are two main differences between transcoding and transforming. First, in
transcoding, we are starting out with some final (specialized) content, not raw
(generic) content. Second, transcoding is typically lossy and needs special instruc-
tions whereas transforming is not lossy and should not need special instructions
(other than the transformation). Both transcoding and transforming are comple-
mentary to MVC and PAC. Figure 6.4 shows how the content produced by a system
using PAC is transcoded and transformed to other forms of content for access by
multiple user interfaces.

Note that transcoding and transforming the output of the system only solves the
problem of publishing multiple types of output to the user. It does not deal with the
fact that the input from the user may be coming from a variety of disparate channels
such as HTTP, WAP, VoIP, or POTS. This problem has typically been solved by
using a proxy that resides, on the server side, between the Web-based system that

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

324 DEVELOPING MOBILE GUIs

Abstraction

Control

Presentation (HTML, HTTP)

Transcode/Transform

HTML cHTML VXML WML
 Protocol Gateways

FIGURE 6.4. Using Transcoding/Transforming Techniques to Complement PAC in Producing User
Interfaces for Mobile Applications.

supports HTTP and the infrastructure and communication protocol native to each
type of mobile device. For example, in the case of WAP, WAP gateways act as a
proxy and a protocol converter to convert all of the user input sent from the device
to the WAP gateway in the native WAP protocol implementation to HTTP.

Figure 6.5 shows how generic XML content can be produced by the presentation
layer and transformed using XSL (or any equivalent transformation technology can
be used) to the final markup language to be used by the device. Once transcoding
and transforming solutions were deployed, it became obvious that there needed
to be a solution for an intermediate user interface format, one that treats the
interactions of the user with the system in a generic way and independent of
the properties of the specific devices. This, in turn has given rise to the genesis
of several efforts including XForms, which we looked at in Chapter 5, and User
Interface Markup Language (UIML).

We will look at UIML later in this chapter. At this point we should take a step
back and note that UIML and XForms take fundamentally different approaches
in allowing developers to create a generic user interface. As we saw in Chapter 5,
XForms defines distinct and discrete controls and elements that define a language
for building a generic user interface; XForms is an XML application. In contrast,

Abstraction

Control

Presentation (XML, HTTP)

HTML cHTML VXML WML
 Protocol Gateways

XSL

FIGURE 6.5. Using Transcoding/Transforming Techniques to Complement PAC in Producing User
Interfaces for Mobile Applications.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

6.1 Introduction 325

Abstraction

Control

Presentation

Transformation

Generic Presentation

FIGURE 6.6. PAC-TG: A Variation on PAC for Mobile User Interfaces.

UIML is an XML-based vocabulary intended to define other XML-based applica-
tions that describe user interface interactions; UIML is not an XML application;
rather, it is an XML vocabulary similar to XML Schema. UIML, in a way, is a meta-
language intended to create other languages that are used to build user interfaces.
Whereas UIML itself can be used to define XML applications to generate generic
user interfaces such as XForms, it can also be used as a “metageneric” user inter-
face in that it can be used by developers to define XML applications suitable for
various types of user interfaces.

Note that all of the techniques discussed so far focus on selecting the right high-
level approach in building our user interfaces. To build mobile user interfaces, we
will combine the best of what these techniques have to offer.

6.1.2 PAC-TG
In this text, we will recognize PAC-TG, short for Transformation of Generic
Presentation-Abstraction-Control, as a high-level design pattern for creating user
interfaces to mobile applications. This pattern is not a new pattern (because pat-
terns, by definition, are not invented but rather are recognized by prevalence of use
and benefits). It is merely a specialization of the existing PAC pattern as recognized
by Buschmann et al. Figure 6.6 shows how PAC-TG builds on PAC.

When we looked at the PAC pattern, we saw that it breaks down the task of
creating a system or subsystem, in our case the user interface, into a series of
agents. Each agent has three different components of abstraction which gave us
an interface to the data and behavior model of the system; the presentation, which
gave us the final mechanism to render the interface; and the controller, which
controlled the interactions between the presentation and the abstraction.

We are going to specialize this pattern by making a restriction and an addition.
First, we are going to restrict the presentation components to encapsulate infor-
mation and behavior about interactions with the user that are independent of the
final user interface viewed by the user. We discussed generic user interfaces in
Chapter 5. Then, we are going to add transformation components that specialize
the generic presentations. The generic presentation and transformation may be
implemented in several different ways. We have already discussed some aspects
of generic user interfaces and will discuss them further. We will also look at some
implementation examples for the transformation.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

326 DEVELOPING MOBILE GUIs

Now, as we would with any other recognized software pattern, let us define the
intent, motivation, known uses, business domains, problem forces, benefits, and
liabilities. Then, we will delve into some sample implementations of PAC-TG.

Intent
The intent of PAC-TG is to combine PAC agents and transformation techniques to
structure the production of multiple user interface types to a common application
for various devices. Such subdivision separates the concerns of functional imple-
mentation of the application, interactions with the user through the user interface,
and the variations in the user interface types presented to the user.

Motivation
PAC-TG is a modification on PAC that uses the treelike hierarchy of PAC, inversion
of control, and the concept of specialization of generic user interfaces to various
specialized user interfaces. Every PAC-TG agent is composed of at least five com-
ponents, one component that provides an abstraction to the core functionality of
the application (abstraction), one component that provides a generic user inter-
face to be used by other components or systems (generic presentation), one or
more components that transform the generic presentation to a specific presenta-
tion or presentations, one or more components that produce final user interfaces
with which the users interact (presentation), and one component that facilitates
messaging among all of the other components (control).

Known Uses
Commercial publishing frameworks and transcoding products include IBM’s
Transcoding Publisher, IBM VXML Portlets, and open-source projects such as
Apache’s Cocoon. (Cocoon components can be arranged both as an implementa-
tion of MVC or as an implementation of PAC depending on the usage as Cocoon
as a component framework.) MATIS also uses a roughly equivalent pattern called
PAC-Amodeus (see the last subsection in Section 6.1.2). Nunes’ Wisdom architec-
ture and methodology [Nunes 2001] also outlines use of this pattern without
specific recognition of it.

Related Patterns
As we have mentioned, this is a variant on the PAC pattern. Various other low-
level patterns such as the Visitor and Façade patterns can be used in the internal
implementation of individual components of a given agent.

Business Domain
Development of applications that require more than one rendition of the same
user interface or multiple types of user interfaces fall into the business domain.

Problem Forces
One of the problems to consider while implementing this pattern is that this is a
high-level design pattern. The internal implementation of this design pattern can
vary greatly. As we mentioned in the case of PAC, because of the loosely coupled

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

6.1 Introduction 327

nature of PAC-TG, agents and/or components can be run within separate processes.
The method by which they communicate (protocol, etc.) is not restricted (i.e., they
could be native protocols such as RMI and COM or open system protocols such
as HTTP and CORBA).

Also, note that every agent (package of presentation, abstraction, control, and
transformation components) maintains its own state. Because the user may give
the system input while state information is being exchanged within the different
agents, transactional integrity must be provided to make sure that illegal states are
not possible.

Lastly, PAC-TG treats the concern of creating multiple user interfaces but does
not treat the fact that these multiple user interfaces may be using multiple channels
to reach the user (at the end device—for example, a VoIP voice channel as opposed
to a regular POTS-based voice channel).

Benefits
We can outline the following benefits in using the PAC-TG pattern:

1. Separation of concerns between the internal implementation of the business appli-
cation and the implementation of the user interface. This separation of concerns
allows for possible reuse of components (though reuse takes more thought than
merely utilizing design patterns), better scalability by distribution of the model
and the interface concerns over different processes, and easier code maintenance
during the application life cycle. This benefit is inherited from PAC.

2. Separation of concerns between the device and interface-specific interactions of
the user with the system and the different generic methods by which the user can
affect the state and behavior of the system. This separation allows us to develop
reusable transformation components that transform a particular set of generic
interactions to one or more specialized user interfaces. It also provides us with a
tool to avoid very fast growth of the development effort to build n user interfaces
for m types of device accessing a single application with which the interactions
of various devices are fairly alike.

Liabilities
The first and biggest liability of PAC-TG is possible performance degradation
because of the additional layers of abstraction (of course, this depends on the
implementation). This is due to the higher number of objects instantiated and
managed if implementation is object oriented. So creating each user interface in
a custom way will invariably yield a user interface that requires less computing
resources. This performance problem is more visible when all of the components
of PAC-TG are being executed on the same process and the same physical device.
To alleviate performance bottlenecks, distribution of the different components is
recommended because the loosely coupled nature of PAC-TG allows this.

The second liability is that, as in the case of PAC, PAC-TG is a complex pattern
to implement. Because of the various ways that it can be implemented, it typi-
cally requires considerable experience in recognizing the appropriate behavior

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

328 DEVELOPING MOBILE GUIs

of the interfaces and boundaries between the agents and between the components
within the individual agents.

Examples
We can implement PAC-TG in three ways. In the first type, the control compo-
nent may facilitate communication among all of the other layers. This is seen in
Figure 6.7, where we have shown a Type 1 PAC-TG implementation for the billing
panel that we discussed in the previous section.

This is the simplest implementation of PAC-TG. Note that we have shown the
specific presentations in the model as multiple classes whose code is generated by
the framework and not written by the developer. This is not the best implementa-
tion of PAC-TG as it creates a high level of coupling between the control component
(called PACTGBillingControl in our example) and the specialized presentations
of the user interface. The single control component in this implementation is
responsible for communication among all of the other components.

Alternatively, we can break the control components into two separate control
components: one that facilitates control and communication between the generic
user interface and the abstraction of the system and the other that facilitates con-
trol and communication among the generic user interface, the transformation
components, and the final user interfaces produced. Figure 6.8 shows how our
Type 1 implementation shown in Figure 6.7 can be modified to do this.

The advantage in using Type 2 PAC-TG is that the type of behavior required
to facilitate control and communication between the generic user interface and
abstraction and those required to facilitate control and communication among
the transformers, the generic user interface, and the specialized user interfaces are
fundamentally different. So, by separating these tasks, we achieve a good separation
of concerns.

We can make this yet more efficient by using Type 3 PAC-TG (Figure 6.9),
where the control component is broken into two separate components as in Type
2, except that it communicates with the generic presentation layer instead of the
control component that allows for communication between the abstraction and
generic user interface. Once again, this provides us with a couple of significant
improvements. First, there is less indirect communication. In Type 2, data go-
ing from the generic presentation to the specialized presentation layer have to go
through at least two layers. In this model, we reduce that to one layer. This im-
proves efficiency. Second, this setup is more in keeping with the spirit of the design
pattern in enabling a high degree of decoupling so that each set of agents, con-
taining abstraction, control, generic presentation, transformation, and specialized
presentation components, can be run in a very decoupled manner (separate thread,
separate process, or even possibly a separate operating environment altogether).

This brings us to the end of our discussions about separating the concern of
creating a generic user interface and a specialized one. Our next task is to see this
applied in building GUIs for mobile applications.

As we noted before, this pattern does not do anything to take into account the
concerns of dimensions of mobility. Particularly, multichannel communication,
location sensitivity, resource constraints of the device, and QOS conditions are

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

«i
nt

er
fa

ce
»

B
ill

in
g

D
o

m
ai

n
A

b
st

ra
ct

io
n

PA
C

T
G

B
ill

in
g

C
o

n
tr

o
l

«G
en

er
at

ed
 C

od
e»

«G
en

er
at

ed
 C

od
e»

«G
en

er
at

ed
 C

od
e»

W
M

L
_P

re
se

n
ta

ti
o

n
H

T
M

L
_P

re
se

n
ta

ti
o

n
JF

C
_P

re
se

n
ta

ti
o

n

B
ill

in
g

P
an

el
X

F
o

rm
sP

re
se

n
ta

ti
o

n

+
ge

td
at

a(
)

+
re

fr
es

hI
ns

ta
nc

eD
at

a(
)

+
ge

tIn
st

an
ce

D
at

a(
)

+
se

tIn
st

an
ce

D
at

a(
)

+
re

fr
es

hM
od

el
()

+
su

bm
it(

)

+
re

se
t(

)

+
ne

xt
C

ar
d(

)

+
cl

ea
r(

)

+
su

bm
it(

)

+
re

se
t(

)

+
po

pu
la

te
()

+
va

lid
at

e(
)

+
up

da
te

P
an

el
()

+
de

fa
ul

tP
an

el
V

al
ue

s(
)

+
re

fr
es

hP
an

el
()

+
cl

ea
rP

an
el

()

+
ge

tD
at

a(
)

+
ge

tM
es

sa
ge

()

+
se

nd
M

es
sa

ge
()

+
se

td
at

a(
)

X
F

o
rm

st
o

W
M

L
_T

ra
n

sf
o

rm
er

X
F

o
rm

st
o

H
T

M
L

_T
ra

n
sf

o
rm

er

X
F

o
rm

st
o

W
M

L
_T

ra
n

sf
o

rm
er

PA
C

-T
G

 T
yp

e
1

Im
pl

em
en

ta
tio

n

FI
G

U
RE

6.
7.

PA
C-

TG
Im

pl
em

en
ta

tio
n

Ty
pe

1.

329

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

«i
nt

er
fa

ce
»

B
ill

in
gD

om
ai

nA
bs

tr
ac

tio
n

B
ill

in
gC

on
tr

ol

«G
en

er
at

ed
 C

od
e»

«G
en

er
at

ed
 C

od
e»

«G
en

er
at

ed
 C

od
e»

W
M

L_
P

re
se

nt
at

io
n

H
T

M
L_

P
re

se
nt

at
io

n

JF
C

_P
re

se
nt

at
io

n

B
ill

in
gP

an
el

X
F

or
m

sP
re

se
nt

at
io

n

+
ge

tD
at

a(
)

+
re

fr
es

hI
ns

ta
nc

eD
at

a(
)

+
ge

tIn
st

an
ce

D
at

a(
)

+
se

tIn
st

an
ce

D
at

a(
)

+
re

fr
es

hM
od

el
()

+
su

bm
it(

)

+
re

se
t(

)

+
ne

xt
C

ar
d(

)

+
cl

ea
r(

)

+
su

bm
it(

)

+
re

se
t(

)

+
po

pu
la

te
()

+
va

lid
at

e(
)

+
up

da
te

P
an

el
()

+
de

fa
ul

tP
an

el
V

al
ue

s(
)

+
re

fr
es

hP
an

el
()

+
cl

ea
rP

an
el

()

+
ge

tD
at

a(
)

+
re

ce
iv

eM
es

sa
ge

()

+
se

nd
M

es
sa

ge
()

+
se

tD
at

a(
)

X
F

or
m

st
oW

M
L_

Tr
an

sf
or

m
er

X
F

or
m

st
oH

T
M

L_
Tr

an
sf

or
m

er

X
F

or
m

st
oJ

F
C

_T
ra

ns
fo

rm
er

PA
C

-T
G

 T
yp

e
2

Im
pl

em
en

ta
tio

n

B
ill

in
gT

ra
ns

fo
rm

er
C

on
tr

ol

FI
G

U
RE

6.
8.

Ty
pe

2
PA

C-
TG

Im
pl

em
en

ta
tio

n.

330

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

«i
nt

er
fa

ce
»

B
ill

in
gD

om
ai

nA
bs

tr
ac

tio
n

B
ill

in
gC

on
tr

ol

«G
en

er
at

ed
 C

od
e»

«G
en

er
at

ed
 C

od
e»

«G
en

er
at

ed
 C

od
e»

W
M

L_
P

re
se

nt
at

io
n

H
T

M
L_

P
re

se
nt

at
io

n
JF

C
_P

re
se

nt
at

io
n

B
ill

in
gP

an
el

X
F

or
m

sP
re

se
nt

at
io

n

+
ge

tD
at

a(
)

+
re

fr
es

hI
ns

ta
nc

eD
at

a(
)

+
ge

tIn
st

an
ce

D
at

a(
)

+
se

tIn
st

an
ce

D
at

a(
)

+
re

fr
es

hM
od

el
()

+
su

bm
it(

)

+
re

se
t(

)

+
ne

xt
C

ar
d(

)

+
cl

ea
r(

)

+
su

bm
it(

)

+
re

se
t(

)

+
po

pu
la

te
()

+
va

lid
at

e(
)

+
up

da
te

P
an

el
()

+
de

fa
ul

tP
an

el
V

al
ue

s(
)

+
re

fr
es

hP
an

el
()

+
cl

ea
rP

an
el

()

+
ge

tD
at

a(
)

+
re

ce
iv

eM
es

sa
ge

()

+
se

nd
M

es
sa

ge
()

+
se

tD
at

a(
)

X
F

or
m

st
oH

T
M

L_
Tr

an
sf

or
m

er

X
F

or
m

st
oJ

F
C

_T
ra

ns
fo

rm
er

X
F

or
m

st
oW

M
L_

Tr
an

sf
or

m
er

PA
C

-T
G

 T
yp

e
3

Im
pl

em
en

ta
tio

n

B
ill

in
gT

ra
ns

fo
rm

er
C

on
tr

ol

FI
G

U
RE

6.
9.

PA
C-

TG
Ty

pe
3

Im
pl

em
en

ta
tio

n.

331

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

332 DEVELOPING MOBILE GUIs

Dialogue Component

A P
C

Domain Objects

Domain Objects

Functional Core
Adapter

Functional Core
(Domain Dependent)

Logical Presentation

Logical Presentation
Objects

Component
(Language Independent)

Interaction Objects

Interaction Toolkit
(Device Independent)

 Device Lists

FIGURE 6.10. The PAC-Amodeus Functional Components [Coutaz 2002].

not taken into account. Remember that for a design pattern to be recognized, it
must be applied and discovered rather than invented. Because mobile application
development is a less mature software development field, there are no current
patterns used among software developers to treat the dimensions of mobility.

It is, however, intuitive that we could extend PAC-TG to treat dimensions of
mobility through creating additional types of control components that connect
to tertiary components treating the various dimensions of mobility. We will leave
this implementation to the reader of this text and hope that such patterns become
recognized by the industry and are ripe for introduction in the next edition of this
text.

Now, let us look at building some simple single-channel GUI applications for
mobile applications.

PAC-Amodeus
Introduced by Coutaz [Coutaz 2002], PAC-Amodeus is very similar to PAC-TG,
but it attacks the problem differently. The functional components of PAC-Amodeus
are shown in Figure 6.10.

Of particular interest to us is the Interaction Toolkit Component, which pro-
vides device independence. This component represents a set of agents that provide
functionality such as transformation needed for specialization of a generic user in-
terface to the final user interface to be rendered for each particular device, modality,
etc. The Dialogue Component encapsulates the functionality previously modeled
by the PAC pattern and the Logical Presentation Component presents us with the

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

6.1 Introduction 333

Device

Processing

Network

Processing

MetaTransformation

Technique

Any Particular
PAC-TG
Implementation

Any Particular
PAC-TG
Implementation

Applied

Transformation

Technique

FIGURE 6.11. Division of PAC-TG Implementation Techniques.

generic user interface layer that provides a layer where the interactions of the user
with the system are modeled in a user-interface-generic manner.

Essentially, PAC-Amodeus introduced by Coutaz covers PAC-TG at a high level
and adds abstraction layers for the business logic (Functional Core Adaptor and
Functional Core) that separate the access the Dialogue Component needs to the
engine that models the logic from the access interface itself.

Coutaz than introduces MATIS (Multimodal Airline Travel Information Sys-
tem), which allows a user to retrieve information about flight schedules using
speech, direct manipulation, keyboard, and mouse, or a combination of these
techniques [Coutaz 2002]. MATIS is then used as an example of a PAC-Amodeus-
based system. The referenced work by Coutaz is recommended reading to become
more familiar with the details of this pattern.

6.1.3 Single Channel Specialization of Generic User Interfaces
to Graphical User Interfaces
In this chapter, our focus is in understanding the implementation of GUIs for
mobile applications. When dealing with GUI applications, we typically have a
single channel of communication between the device and the network. We will
consider multichannel user interfaces in Chapter 8. In the previous section we
discussed PAC-TG as a design pattern that can help us produce multiple GUI-
based user interfaces for a single functional core application. In this section, we will
focus on the various implementation methods for the PAC-TG design pattern. The
techniques used for such implementations fall somewhere on the plane graphed
in Figure 6.11.

As shown in the picture, any PAC-TG implementation technique can distribute
the processing between the end device used by the user as the interface to the
system and the other processing units on the network (peers, servers, etc.). Also,
every implementation technique may use a well-defined language and tool set for
defining the generic user interfaces and transforming them (such as XForms for

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

334 DEVELOPING MOBILE GUIs

implementing a generically defined interface and XSL for transforming the XForms
documents to specific markup languages). Alternatively, it may use a metalanguage
and relevant tools such as UIML, which we will look at in this chapter as a tool to
define metarules that can be used, at run time or batch time, to generate generic
user interfaces and the relevant transformations.

We have already implemented XForms as a well-defined application of XML that
allows us to create user interfaces whose interactions with users are independent
of the device type. Using XSL is also a very popular method of transforming
XML content to other markup languages such as WML, VXML, and HTML. Using
XForms and XSL as the implementation tools for PAC-TG would put us on the
top half of the plane of Figure 6.11.

If the core of the application (exposed to PAC-TG through the abstraction)
resides on the network, then it only makes sense that the generic user interface
is produced by the network (servers, peers, etc.). (Once again we refer to any
processing being done on anything but the client as processing being done on the
network because we are trying to treat the problem in an architecturally inde-
pendent way.) If the core of the application (exposed to PAC-TG through the
abstraction) resides on the end user device, then the production of the generic
user interface and its transformation are both performed on the device itself. It
is crucial that whatever tool is selected to create the generic user interface and
perform the transformations is flexible enough to be used on the end device as
well as on the servers and peers on the network. XForms and XSLT technologies,
respectively for the production of the generic user interfaces and the transforma-
tions, provide us with such flexibility. We can have XForms browsers that reside
on the device itself and transform the XForms controls and interactions to the ap-
propriate user interface for the end device or we can have the transformation of the
XForms document happen somewhere on the network and send simple markup
languages such as WML, XHTML, HTML, or VXML to the browser. Note that
this is as if PAC-TG is fully implemented outside of the end-user device (servers
or other peers), we are practically looking at a model where either the device is
a “dumb” client (such as a regular old telephone) or it has a browser such as a
WML or HTML browser that simply converts the final markup language to the
look-and-feel made available on the device.

Techniques that define the infrastructure for defining generic user interfaces
and transformations thereof (metatransformation techniques) are only slightly
different from their applied counterparts. This is because, by definition, generic
user interfaces are about defining the metainteractions of the user with the system
as opposed to the exact interactions. So, XForms and similar tools are in a way
metatools. However, UIML and similar techniques can be used to also define tools
such as XForms. There is a benefit and a loss in this case. Obviously, the meta-
tool, something like UIML, is more flexible, but it is also more ambiguous and
requires more decisions to be made by the designers of a particular application,
more custom code, and, therefore, more complexity and less reliability in the fi-
nal system. However, there is one very big advantage that a tool such as AUIML
(Abstract User Interface Markup Language) provides that we have not mentioned:

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

6.1 Introduction 335

SIDE D ISCUSSION 6 .1

The Common Thread in Generic User Interfaces

In a document aptly titled “Towards Convergence of WML, XHTML, and other W3C
Technologies” by Dave Ragget and Ted Wugofski, they mention the common threads
among the various tools to facilitate the creation of generic user interfaces and provide
a transform mechanism [Ragett and Wugofski 2000]:

� extensible event handling mechanism,
� a means of providing default event handlers (templates) and overrides,
� a means of navigating to another dialogue or document in response to any event,

and
� a means of managing state information in response to an event.

Keep these in mind when you look at the various tools that we introduce through-
out this text. Note that the decoupled nature of PAC-TG allows for a particularly
natural implementation of the last two (dialogue navigation and state management).

Metatools map well to UML. And because of this, they offer us the only possibil-
ity of defining a fully automated user interface generation system from UML to
date.

We will look at UIML later in this chapter and subsequently see how it differs
from XForms as a tool for generation of generic user interfaces.

Let us look next at how we can build a GUI for mobile applications.

6.1.4 GUI Specialization on the Server
To display a GUI to the user, we need to specialize the generic user interface to
what the user eventually sees. The simplest way of doing this is to specialize the
user interface on some server:

1. Thin-Client Markup Language–Based Applications: These are the run-of-the-
mill WML, VXML, XHTML, HTML, or other types of markup languages that
can be used in creating static documents or produced dynamically and then
browsed on the client. WML is the most pervasive of these solutions for mo-
bile environments to date. The generic user interface content may be trans-
formed to the desired markup language using XSL or some other transformation
mechanism.

2. Mobile Agents: We will take a closer look at mobile agents in Chapter 9. Although
weak and strong mobility allow us to build applications that migrate to the
device and do their work there (rendering of the user interface and interacting
with the user), we can either use servers to select the right type of agent to
be delivered to a device or we can have the server produce an agent and send
it to the server in an automated fashion. An example of the first is a server
that provides a provisioning system for J2ME midlets and BREW applications
at the same time. The second is a bit far-fetched with the technologies that are
available today; nevertheless, it is a possibility.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

336 DEVELOPING MOBILE GUIs

To specialize the content on the server, we can always build a custom application.
Sometimes, this is needed because of special requirements of the application.
However, when possible, it is typically “more economic to buy than to build.”
Using off-the-shelf applications for transcoding and transformation have the added
benefit of providing tools as well as being used and tested by a large number of
users, making them more resilient than custom software. Having said this, in this
text we will look at two main tools for specialization of user interfaces on the
server side: IBM’s Transcoding Publisher and Apache’s Cocoon. We will look at
Cocoon in Chapter 8.

In this next section, we will look at some transcoding techniques and then look
at how the IBM Transcoding Publisher allows us to specialize content on the server
for various devices and user interfaces.

Transcoding Techniques
Transcoding is used when we do not have the raw content needed to transform
(specialize) to the exact content that we need. So, we take some other content
that has already been specialized (like HTML) and we transform it into the type of
content desired (like WML). We can do this by directly turning the HTML to WML
or by first turning the HTML into a raw format and then producing WML from
that raw format. There are also binary formats such as images. In the case of binary
formats, transcoding becomes a bit more difficult. There may not be a suitable raw
format as there is in textual information. So, we can divide transcoding to three
categories:

1. Direct Transcoding of Textual Content: This is when we convert one type of textual
content to another type of textual content. Direct transcoding gives us good
performance and as little loss of information as possible because the conversion
is a custom conversion. However, because there are additional resulting formats
needed, we may have to repeat the development process, thereby ending up with
a lot of custom code and inconsistencies in how the content is transcoded from
one type of content to several other types of content.

2. Indirect Transcoding of Textual Content: Often, we want to produce multiple
types of content from one starting content set. If this is the case, this is best
done with indirect transcoding: conversion to a raw intermediate format and
subsequent transformation to the specialized formats. Because of the additional
layer of abstraction, performance is less than that for direct transcoding and
there is a higher possibility of loss of information. However, this method can
drastically reduce development efforts. It may also be desired because it is easier
to maintain consistency among the different user interfaces as a good portion of
the transcoding process is the same for all interfaces (conversion of the content
we start with to the raw content).

3. Transcoding of Binary Content: Conversion of binary information such as audio
clips and images is almost always a custom conversion task. Very few formats
provide us with enough information to map them to other formats and when
they do, the mapping typically does not lend itself to conversion of the binary
content to some intermediate format.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

6.1 Introduction 337

We can use the IBM Transcoding Publisher with all three of these transcod-
ing methods. The IBM Transcoding Publisher ships with the following standard
features:

1. Request Viewer: This is an administrative tool that allows the developer to set up
the rules for selection and application of transcoding modules based on HTTP
request headers and other properties.

2. Snoop Tool: This tool looks at the request headers, and as the request arrives,
the transcoder is selected and then applied to the resource that was initially
requested to produce the final content.

3. XSL Trace: This is an extremely useful tool if you use XSLT as the method of
transforming your content. There are very few tools that allow you to step
through XSL scripts: This one does. Furthermore, it is integrated with the
rest of the IBM Transcoding Publisher, so it makes the development process
simpler.

4. Visual XML Transformation Tool: This tool is another very useful one that allows
creation of XSLs to convert one DTD to another DTD in a visual manner.
The catch here is that there is always more than one XSL that maps one DTD
to another DTD. This tool does not always produce the most canonical XSL
depending on the usage. Also, so far, XML Schemas are not supported as an
XML application definition language.

The IBM Transcoding Publisher is a very good tool if you are going to transcode
content. There are two different types of transcoding modules that you can
produce: XSL-based transcoding modules and Java-based modules called MEGlets.
Here are some hints on how and when to use each type of transcoding module:

1. There are a series of XSLs and MEGlets that come with the IBM Transcoding
Publisher. For example, WML and HDML are supported out of the box. Look
at what is supported before you try to build your own transcoding module. If
there is something that supports most of what you need, you can always extend
the provided classes (because IBM Transcoding Publisher is based on Java and
the interface is somewhat flexible for extensions).

2. Currently, there is no out-of-the-box support for XForms, UIML, or any other
mechanism that allows us to build a generic user interface and then transform it.
The Transcoding Publisher’s out-of-the-box modules are really geared toward
direct transcoding of the content. So, if you want to build your system with
indirect transcoding, you will need to create your own transcoding module.
You can do this by implementing interfaces provided in the SDK.

3. If you want to optimize performance, use MEGlets. You have much more free-
dom with the implementation of the parsing as all you need to do is to imple-
ment the interface that allows the Transcoding Publisher to discover the services
required to serve as a MEGlet.

4. There are some binary transformations shipped with the Transcoding Publisher
such as the one that converts some standard format images to WBMP for WAP.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

338 DEVELOPING MOBILE GUIs

If you want to transcode binary data not supported out of the box, you will
need to build some MEGlets.

5. If the XSL transformation is beginning to become too complex, consider mi-
grating to MEGlets. XSLs provide a higher degree of portability than Java as
they can be processed by parsers of any language. However, they can get quite
cryptic and unduly long if they are required to perform very complex tasks.

Now, let us take a step back and see what these so-called MEGlets are. Their
components are as follows:

1. Request Editors: These classes are implemented to look at the incoming HTTP
request and make some selection of where the request should go to get the
content necessary for generating a response. Request editors can also modify
the response itself and add additional information that can be used by the other
components in the process.

2. Monitors: These components are rather passive, at least per the WBI documen-
tation. (You can find the WBI documentation on IBM’s developer Web site. The
WBI framework is used in building the IBM Transcoder similar to the way
Apache’s Avalon is used in building Cocoon.) Monitors record information
about the request and response for purposes such as logging and caching.

3. Generators: These components do what their name suggests. They generate data
based on the request they receive from request editors. The produced documents
may be static or dynamic.

4. Document Editors: These components allow us to modify the request content
and the outgoing response content. For example, if some content is being posted
through the HTTP POST method and we need to modify the content, this is the
place to do it. Likewise, if we need to transform the outgoing document right
before it goes out on its way to the browser, this is the place to do it.

The architecture supported by MEGlets is somewhere between PAC-TG and MVC
implementation. The document editor essentially provides us with the imple-
mentation of a mechanism for transforming content. The generator provides a
mechanism to produce the basic content. In this way, we have the tools we need
that can be used to build generic presentation and transformation components.
However, the initial request goes into a class that is different than the one from
which the final response comes out. This asymmetry resembles MVC more than
PAC-TG.

If you dig deep enough into the IBM Transcoding Publisher SDK, you will find a
way to implement PAC-TG with Java, but this is really not how the tool is designed
to be used. We will look at Cocoon in Chapter 8. It implements PAC-TG much
closer to what we have described here. As we mentioned in Chapter 2, IBM’s
Transcoding Publisher is a suitable tool for developing thin-client interfaces for
mobile applications because of its modularity, the tool set provided, and the tight
integration with other products that we need for mobile application development
in the IBM Everyplace Suite of products.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

6.1 Introduction 339

6.1.5 GUI Specialization on the Mobile Device
Despite the fact that most of the tools available today for mobile development
push a thin-client architecture, a critical thing to keep in mind is that thin-client
solutions are not the only solution for mobile applications. In fact, many have
argued that thin clients are not suitable solutions for mobile applications at all
because there are too many different types of clients, requiring too many browser
implementations. The pervasiveness of the thin-client architecture has more to do
with the pervasiveness of HTML and the wired Web as well as the familiarity of
developers with producing applications for a thin-client environment.

As we mentioned previously, one of the advantages of the PAC-TG pattern is
the very decoupled nature of the various components and the agent-based nature
of the pattern. This means that we can implement the pattern so that abstraction,
control, and generic presentations exist on the server and transformation and final
presentation are done at the client.

Likewise, the advantage of XForms is the clear separation of concerns among
the user interface model, specialization model, interaction model with the user
interface, and the instance data that populates an instance of an XForms document.

At the time of authoring this text, the first XForms browsers that can oper-
ate on mobile devices are being released. One such product, produced by Hand-
wise, a Finnish company, is called the Handwise XForms User Interface (Hand-
wise XFUI). Handwise XFUI provides binding for two data channels, SMS and
HTTP. Handwise XForms browser provides a GUI specialization of XForms for
Symbian and Windows CE platforms. HTTP binding allows mobile devices on
high-bandwidth connections (mobile wired devices or high-bandwidth wireless
devices) to connect to the network through a persistent data channel. SMS binding
is a particularly useful feature as most wireless mobile devices today do not provide
high-bandwidth wireless connections but do provide SMS-based connectivity.

6.1.6 Distributed GUI Specialization
A third scenario to specializing the user interface on the client or on the server is
to distribute the specialization. This distribution could be done in two ways:

1. Distribution of Specialization by Tasks: We define user interface tasks as does
Nunes in his Wisdom architecture [Nunes 2001], which we will look at later in
this chapter: A user interface task is a series of interactions with the user interface
that accomplish a meaningful task. This may be answering a simple question
in a text field, clicking a button, filling out all of the fields on one screen, or
filling out multiple screenfuls worth of information. Depending on the available
resources on the device, the type of information that needs to be displayed, and
other application-dependent variables, we may decide to specialize one task
or set of tasks on the server while specializing another task or set of tasks on
the client. This, of course, requires a slightly more sophisticated client than
just an XForms browser or anything like it because the browser would have to
know when it is receiving XForms and when it is receiving some other markup
language such as WML.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

340 DEVELOPING MOBILE GUIs

2. Distribution of Generic Interface, Transformation, and Specialized Interface: An
alternative way of distributing rendition of the user interface is to produce
a generic user interface with one process (possibly residing on one system),
transform that interface with another process (possibly residing on another
system), and present the final user interface for user interactions in yet another
system.

Currently, XForms browsers offer the only way of distributing specialization of
the user interface through distribution of the generic user interface, transforma-
tion, and specialization. This is possible when the server application produces an
XForms document as the interface to the system (a generic user interface) and
serves it to the XForms client, which then transforms XForms to the appropriate
user interface and displays it to the user.

Otherwise, distributing the user interface is something that you have to imple-
ment on a custom basis today. If we wanted to achieve this through distribution
of tasks, we may have a scenario where a thin client and a thick client are inte-
grated on the device (something like a Java midlet and a WAP browser working
together) or alternatively we might build our own client that functions as both a
thick client-side application when it receives generic user interface content and a
browser when it receives appropriate specialized content.

To build such custom applications that distribute the task of displaying a user
interface, we would need to use some of the tools that we introduced in Chapter 2
such as WAP, XForms, and J2ME. Let us take a closer look at the capabilities
of some of these tools and start building some simple GUI applications by using
them.

6.2 A DEEPER LOOK AT WAP, J2ME, BREW, AND MICROSOFT
PLATFORMS FOR MOBILE GUIS

Currently, WAP, J2ME, BREW, and Windows CE each present a different approach
to mobile application development as we reviewed in Chapter 2. Let us take a closer
look at each one of these tools and how to build GUIs with them.

6.2.1 Wireless Application Protocol
Figure 6.12 shows the WAP stack. We gave an overview of WAP 2.0 in Chapter
2 when we reviewed various types of tools for developing mobile applications. In
this section, we will take a closer look at the user interface—related issues of WAP
1.x and WAP 2.x and provide a bit more detail on the communication protocol
and the markup language syntax.

There are many who think WAP was a first-generation technology and that it
will fade in time, particularly given its initial flop in the marketplace. And there
are those who think WAP will eventually thrive as it evolves and begins to fit
the needs of the market place. We are not going to speculate on the fate of WAP,
but one thing is clear: As a developer of mobile applications, you will need to
know WAP. This is not only because most mobile applications deployed to date

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 341

HTML

HTTP

TLS/SSL

TCP/UDP

IP IP GSM USSD CDMA CDMA-WCDMA TDMABluetooth 2000

 Transport Layer - WDP

 Transaction Layer - WTP

Security Layer - WTLS

Session Layer- WSP

Application Environment - WAE

FIGURE 6.12. Wireless Access Protocol Stack.

(besides those deployed on proprietary infrastructures, embedded systems, and
other specialized type applications) have been written in WAP. Specifically, most
of these applications are WML applications deployed by Web developers. For this
reason, we are going to take a survey of WAP 1.x and WAP 2.x. These two versions
of WAP are significantly different, with WAP 1.x making up the majority of the
deployments, and WAP 2.x just now beginning to be deployed.

WAP 1.x
The first version of WAP, namely WAP 1.0, 1.1, 1.2, and 1.3, introduced a series
of innovations in creating a framework to produce thin client–based mobile appli-
cations. Perhaps the biggest feat of WAP 1.x was that it created an application layer
communication protocol (the Wireless Application Protocol and hence the name
WAP) on top of the large variety of lower layer wireless network protocols such
as CDMA, TDMA, and GSM that was adopted by nearly all of the carriers inter-
nationally. WAP 1.x is the first application layer protocol that achieved this in the
wireless arena. But, there is more to the WAP 1.x standard than the communication
protocol. The WAP 1.x modules are as follows:

1. Wireless Datagram Protocol (WDP): This protocol layer is analogous (not equiv-
alent) to TCP/IP on the wired Internet and is the lowest layer in the WAP
protocol. WDP is constructed directly on top of the bearer protocol, which may
be CDPD, CDMA, GSM, TDMA, SMS, or others. Both the WAP gateway and the
WAP browser implement WDP the same way as Web servers and Web browsers,
respectively, implement HTTP on the server and the client. WDP mostly pro-
vides an interface that should be implemented. The internal implementation of
WDP may be UDP/IP, TCP/IP, or some other method.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

342 DEVELOPING MOBILE GUIs

2. Wireless Transport Layer Security (WTLS): This layer is often referred to as WSSL
since SSL is the new name for the TLS, the security mechanism most popular for
HTTP. WTLS is mapped to TLS at the WAP gateway. Use of WTLS is optional.
WTLS is implemented between the WAP gateway and the WAP browser and is
mapped to SSL when passing information to a TCP/IP-HTTP-based network.

3. Wireless Transaction Layer (WTP): Because wireless connectivity introduces a
variety of intermittent connectivity problems, WTP specifies a set of transac-
tion semantics to be implemented to provide so-called reliable and unreliable
messaging between the client and the WAP gateway.

4. Wireless Session Layer (WSP): WAP positions WDP to be to the wireless world
what TCP/IP is to the wired world; WSP is positioned to be a binary application
layer protocol analogous to HTTP in the wired world.

5. Wireless Markup Language (WML): WML is the markup language designed to
serve the special needs of mobile applications. WML takes into account the
possible poor QOS and lack of resources on the device in its design. Therefore,
it provides a better markup language for mobile devices than HTML. WML is
part of the Wireless Application Environment (WAE). This is the application
layer of WAP focused on providing the computer language–based tools to
develop thin-client wireless applications.

6. Wireless Markup Language Scripting (WMLScript): WMLScript is based on
ECMAScript, the standard created by ECMA and subsequently used to develop
JavaScript and some other JavaScript-like scripting languages. WMLScript is
designed to write client-side scripts that access WTA (Wireless Telephony Ap-
plication) functionality, variable manipulation on the client side, and custom
client-side functions such as dialogue boxes specified by the gateway. There
are two important things to note about WMLScript: 1. The actual scripts to be
called are stored in files separate from WML documents and 2. the definition
of the calls made in the WMLScript must be present and authenticated on the
WAP gateway. Once again, in the United States, developers have little access to
WMLScript functions, whereas there is more openness in European networks.

7. Wireless Telephony Application Interface (WTAI): The first version of WAP was de-
signed primarily for mobile phones. The WTAI provides access to the telephony
features of the handset. It is a shame that there is very limited functionality in
WTAI to implement interesting and useful features that use both the telephony
and the data channels (voice and text user interfaces). Because telephony ap-
plications are by nature controlled by the network carriers, WTA servers can
only run in a carrier’s environment.

Note that one of the biggest differences between HTTP and WAP is the layer at
which security is implemented. This gives rise to some complications though it is
necessary because of the nature of wireless networks and wireless data.

Overall, you only need to know about WDP, WSP, WTP, and WTLS if you
plan to implement your own WAP gateway or modify an existing open-source
gateway. Currently, in the United States, operation of WAP is exclusively owned
by the carriers and is not open to developers. Consequently, WAP development
typically means developing WML pages whereas in Europe WAP deployment is

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 343

somewhat more open. Because of this and the fact that our focus in this chapter
is user interface development, we will focus on WML alone.

Basic WML 1.x
Perhaps the most important notion to understand about WML is the idea of cards.
This is not something that exists in HTML and so is foreign to most first-time WAP
developers who are used to developing Web applications using HTML. WML pages
are divided into one or more cards. Because most WAP-enabled devices have small
screens, displaying information requires multiple screens.

Using HTML, this is done through multiple round trips to the server to re-
trieve the subsequent pages one by one, or through URIs embedded within the
same HTML (with all of the information shown on the same page and the URI
mechanism used to reference anchors within the same page), or through the use
of scripting languages such as JavaScript, which allow us to download all of the
information to the HTML browser and dynamically change the user interface on
the client side. None of these methods are appropriate for today’s wireless envi-
ronments. First of all, network traffic is precious because QOS is unreliable so we
should do our best not to make round trips to the server for every user interaction.
Second, there is not much CPU or memory on most devices targeted by WAP (cell
phones, PDAs, etc.) which precludes the use of things like JavaScript on the client
side (though as we will see, there is WMLScript). Finally, we cannot download the
entire user interface in one shot and use the URI mechanism to navigate to an-
chors within the document because of the memory and CPU restrictions. (Loading
a large document into a WML browser not only produces a poor user interface but
is not even possible once the maximum size of the WML document for the WML
browser is exceeded.)

WML cards allow us to load multiple user interfaces into the WAP device,
interact with the user, collect some information from the user, and go back to the
server in a single round trip. The concept of cards also allows us to render one
card at a time, which helps in efficient use of resources on the device.

Let us turn now to WML 1.x syntax and follow that up with an example WML
document. As we have mentioned, WML is an application of XML. Table 6.1
presents a list of the most important tags and their functionality in WML.

In addition to these tags used in WML, there is also WTAI-based URI references.
Because, as we previously mentioned, WMLScript access and implementation is
not pervasive, we can do a couple of simple things in WML to access the telephony
agent. One of those is to dial a number. That is done by pointing an <anchor> or
<go> to a WTAI-based URI (for example, wtai://wp/mc;7144546537).

Now, let us look at a sample WML document in Figure 6.13. Our example
simply shows a page that overrides one of the event buttons (accept) and gets an
input from the user. Note that this example shows a WML document that is either
static or generated by some dynamic code. If we had utilized the PAC-TG pattern,
we would have first created an equivalent XForms (or other equivalent generic
user interface) document.

WML 1.x is being phased out in the future releases of WAP and replaced by
XHTML. XHTML’s modularization offers more flexibility in creating transformable

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

TA
B

LE
6
.1

.
W

M
L

1
.x

Ta
g

D
e
sc

ri
pt

io
n

Ta
g

A
tt

ri
bu

te
s

D
es

cr
ip

ti
on

<
ca

rd
>

id
,t

it
le

C
ar

d
is

th
e

co
n

ta
in

er
u

n
it

fo
r

on
e

sc
re

en
re

n
de

re
d

on
a

W
M

L
br

ow
se

r.
T

h
e

id
of

a
ca

rd
w

it
h

in
a

W
M

L
do

cu
m

en
t

m
u

st
be

u
n

iq
u

e.
A

ca
rd

is
ad

dr
es

se
d

th
ro

u
gh

it
s

id
at

tr
ib

u
te

.T
h

e
ti

tl
e

of
th

e
ca

rd
is

of
te

n
re

n
de

re
d

on
to

p
of

th
e

sc
re

en
of

th
e

W
M

L
br

ow
se

r.
<

p>
al

ig
n

,m
od

e
A

ll
te

xt
u

al
an

d
gr

ap
h

ic
al

it
em

s
to

be
di

sp
la

ye
d

on
th

e
W

M
L

br
ow

se
r

sc
re

en
m

u
st

be
en

cl
os

ed
w

it
h

in
<

p>
an

d
<

/p
>

.T
h

e
al

ig
n

at
tr

ib
u

te
is

u
se

d
to

sp
ec

if
y

th
e

al
ig

n
m

en
t

of
th

e
di

sp
la

ya
bl

e
it

em
s.

It
ca

n
be

se
t

to
ri

gh
t,

le
ft

,o
r

ce
n

te
r.

T
h

e
m

od
e

at
tr

ib
u

te
is

u
se

d
to

sp
ec

if
y

w
h

et
h

er
w

or
d

w
ra

pp
in

g
is

u
se

d
to

w
ra

p
te

xt
th

at
is

lo
n

ge
r

th
an

th
e

w
id

th
of

th
e

di
sp

la
y.

If
th

is
at

tr
ib

u
te

is
se

t
to

“n
ow

ra
p”

an
d

th
e

br
ow

se
r

su
pp

or
ts

sc
ro

ll
in

g,
th

e
te

xt
is

sc
ro

ll
ed

h
or

iz
on

ta
ll

y
fo

r
vi

ew
in

g.
<

b>
T

h
e

te
xt

en
cl

os
ed

w
it

h
in

th
e
<

b>
<

/b
>

ta
gs

ar
e

di
sp

la
ye

d
bo

ld
ed

.
<

i>
T

h
e

te
xt

en
cl

os
ed

w
it

h
in

th
e
<

i>
<

/i
>

ta
gs

ar
e

di
sp

la
ye

d
it

al
ic

iz
ed

.
<

u
>

T
h

e
te

xt
en

cl
os

ed
w

it
h

in
th

e
<

u
>
<

/u
>

ta
gs

ar
e

u
n

de
rl

in
ed

.
<

em
>

T
h

e
te

xt
en

cl
os

ed
w

it
h

in
th

e
<

em
>
<

/e
m
>

ta
gs

ar
e

so
m

eh
ow

(b
as

ed
on

th
e

br
ow

se
r

im
pl

em
en

ta
ti

on
)

em
ph

as
iz

ed
.

<
st

ro
n

g>
T

h
e

te
xt

en
cl

os
ed

w
it

h
in

th
e
<

st
ro

n
g>

<
/s

tr
on

g>
ta

gs
ar

e
m

ad
e

m
or

e
n

ot
ab

le
in

so
m

e
br

ow
se

r-
sp

ec
ifi

c
m

an
n

er
.

<
bi

g>
T

h
e

te
xt

en
cl

os
ed

w
it

h
in

th
e
<

bi
g>

<
/b

ig
>

ta
gs

is
pr

es
en

te
d

la
rg

er
th

an
ot

h
er

te
xt

.I
m

pl
em

en
ta

ti
on

is
br

ow
se

r
sp

ec
ifi

c.
<

sm
al

l>
T

h
e

te
xt

en
cl

os
ed

w
it

h
in

th
e
<

sm
al

l>
<

/s
m

al
l>

ta
gs

is
di

sp
la

ye
d

w
it

h
te

xt
sm

al
le

r
th

an
th

e
n

or
m

al
te

xt
.

Im
pl

em
en

ta
ti

on
is

br
ow

se
r

sp
ec

ifi
c.

<
a>

h
re

f
T

h
is

ta
g

en
ab

le
s

cr
ea

ti
on

of
an

ch
or

s
on

th
e

W
M

L
pa

ge
.A

n
ch

or
s

ar
e

re
n

de
re

d
in

a
br

ow
se

r-
sp

ec
ifi

c
m

an
n

er
.S

om
et

im
es

,t
h

ey
ar

e
re

n
de

re
d

w
it

h
th

e
te

xt
en

cl
os

ed
in

<
a>

an
d
<

/a
>

as
u

n
de

rl
in

ed
an

d
th

e
le

ft
so

ft
bu

tt
on

re
ad

in
g

“G
O

.”
O

th
er

ti
m

es
,i

t
is

tr
an

sl
at

ed
by

th
e

br
ow

se
r

to
th

e
a

so
ft

ke
y

or
a

m
en

u
op

ti
on

.(
So

ft
ke

ys
ar

e
th

os
e

ke
ys

th
at

h
av

e
va

ri
ab

le
m

ea
n

in
gs

de
pe

n
di

n
g

on
th

e
sc

re
en

be
in

g
n

av
ig

at
ed

.
F

or
ex

am
pl

e,
m

os
t

m
ob

il
e

ph
on

es
h

av
e

tw
o

bu
tt

on
s

im
m

ed
ia

te
ly

u
n

de
r

th
e

di
sp

la
y,

on
e

to
th

e
le

ft
an

d

344

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

th
e

ot
h

er
to

th
e

ri
gh

t.
T

h
es

e
bu

tt
on

s
ar

e
as

si
gn

ed
va

ri
ab

le
s

va
lu

es
su

ch
as

“o
pt

io
n

s,
”

“o
k,

”
“c

an
ce

l,”
et

c.
on

th
e

bo
tt

om
of

th
e

di
sp

la
y

at
th

e
ti

m
e

of
u

si
n

g
th

e
de

vi
ce

.H
ar

d
ke

ys
,o

n
th

e
ot

h
er

h
an

d,
ar

e
ke

ys
th

at
h

av
e

at
le

as
t

1
st

at
ic

va
lu

e
as

so
ci

at
ed

w
it

h
th

em
at

al
lt

im
es

.F
or

ex
am

pl
e,

th
e

n
u

m
be

r
ke

ys
on

th
e

m
ob

il
e

ph
on

e
ar

e
h

ar
d

ke
ys

.)
E

it
h

er
w

ay
,i

t
al

lo
w

s
th

e
u

se
r

to
u

se
th

e
ke

yp
ad

on
th

e
ce

ll
ph

on
e

or
P

D
A

to
n

av
ig

at
e.

A
n

ch
or

s
ar

e
u

se
d

to
n

av
ig

at
e

to
n

ew
ca

rd
s

in
W

M
L

.I
ft

h
e

n
ew

ca
rd

is
in

a
W

M
L

do
cu

m
en

t
di

ff
er

en
t

fr
om

th
e

on
e

cu
rr

en
tl

y
lo

ad
ed

,t
h

en
th

e
n

ew
W

M
L

do
cu

m
en

t
is

lo
ad

ed
;o

th
er

w
is

e,
th

e
cu

rr
en

t
W

M
L

do
cu

m
en

t
is

ke
pt

an
d

th
e

ca
rd

po
in

te
d

to
is

di
sp

la
ye

d.
<

an
ch

or
>

T
h

is
ta

g
is

id
en

ti
ca

li
n

fu
n

ct
io

n
al

it
y

to
th

e
<

a>
ta

g
in

pu
rp

os
e.

H
ow

ev
er

,t
h

e
im

pl
em

en
ta

ti
on

va
ri

es
.T

h
e

<
an

ch
or
>

ta
g

m
u

st
in

cl
u

de
th

e
<

go
>

ta
g

to
im

pl
em

en
t

th
e

ac
tu

al
ac

ti
on

w
h

en
th

e
so

ft
ke

y
or

h
ar

d
ke

y
ar

e
pu

sh
ed

.
<

go
>

h
re

f,
m

et
h

od
T

h
is

ta
g

pr
ov

id
es

m
u

ch
th

e
sa

m
e

fu
n

ct
io

n
al

it
y

th
at

th
e
<

a>
ta

g
do

es
.H

ow
ev

er
,t

h
is

m
et

h
od

ca
n

be
u

se
d

to
se

n
d

da
ta

ba
ck

to
th

e
se

rv
er

u
si

n
g

th
e

P
O

ST
or

G
E

T
m

et
h

od
s.

If
th

e
m

et
h

od
is

se
t

to
“P

O
ST

,”
th

en
th

e
<

po
st

fi
el

d>
el

em
en

ts
en

ca
ps

u
la

te
d

in
si

de
th

e
<

go
>
<

/g
o>

el
em

en
t

ar
e

se
n

t
to

th
e

W
A

P
ga

te
w

ay
w

h
er

e
th

ey
ar

e
co

n
ve

rt
ed

to
th

e
H

T
T

P
fo

rm
at

an
d

se
n

t
to

th
e

W
eb

se
rv

er
.I

f
th

e
G

E
T

m
et

h
od

is
u

se
d,

th
en

C
G

I-
li

ke
n

am
e–

va
lu

e
pa

ir
pa

ra
m

et
er

s
ar

e
in

cl
u

de
d

in
th

e
U

R
I.

<
br

/>
T

h
is

ta
g

cr
ea

te
s

a
ca

rr
ia

ge
re

tu
rn

or
li

n
e

fe
ed

(e
m

pt
y

li
n

e)
.

<
do

>
ty

pe
,l

ab
el

T
h

is
ta

g
pr

ov
id

es
a

w
ay

to
ca

tc
h

ev
en

ts
an

d
pe

rf
or

m
so

m
e

ac
ti

on
.I

n
ot

h
er

w
or

ds
,i

t
al

lo
w

s
u

s
to

ov
er

ri
de

th
e

fu
n

ct
io

n
al

it
y

of
fe

re
d

by
va

ri
ou

s
ev

en
ts

th
ro

w
n

by
th

e
de

vi
ce

an
d

tr
an

sf
er

re
d

to
th

e
br

ow
se

r.
T

h
e

ac
ti

on
is

en
cl

os
ed

w
it

h
in

th
e
<

do
>
<

/d
o>

ta
gs

.
T

h
e

ty
pe

at
tr

ib
u

te
sp

ec
ifi

es
w

h
at

ki
n

d
of

ev
en

t
is

cr
ea

te
d.

T
h

e
ty

pe
s

of
ev

en
ts

ar
e

as
fo

ll
ow

s:
�

ac
ce

pt
:T

h
is

ev
en

t
is

em
it

te
d

w
h

en
th

e
O

K
bu

tt
on

,o
r

th
e

so
ft

ke
y

eq
u

iv
al

en
t

th
er

eo
f,

is
pr

es
se

d.
�

pr
ev

:T
h

is
ev

en
t

is
em

it
te

d
w

h
en

th
e

u
se

r
n

av
ig

at
es

to
th

e
pr

ev
io

u
s

pa
ge

.T
h

is
m

ay
be

do
n

e
th

ro
u

gh
th

e
B

A
C

K
bu

tt
on

,i
f

it
ex

is
ts

,o
r

th
ro

u
gh

a
so

ft
ke

y.
�

he
lp

:T
h

is
ev

en
t

is
em

it
te

d
w

h
en

th
e

u
se

r
pr

es
se

s
th

e
h

el
p

bu
tt

on
or

th
e

so
ft

ke
y

eq
u

iv
al

en
t

th
er

eo
f.

�
re

se
t:

T
h

is
ev

en
t

is
em

it
te

d
w

h
en

th
e

re
se

t
bu

tt
on

,i
f

on
e

ex
is

ts
on

th
e

ke
yp

ad
,i

s
pr

es
se

d.
N

ot
al

l
W

A
P

br
ow

se
rs

im
pl

em
en

t
th

is
u

n
if

or
m

ly
.O

ft
en

,t
h

is
ev

en
t

is
n

ot
ca

u
gh

t
as

th
e

re
se

t
bu

tt
on

ca
u

se
s

th
e

br
ow

se
r

to
ex

it
al

to
ge

th
er

.

(c
on

ti
nu

ed
)

345

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

TA
B

LE
6
.1

(c
on

ti
n

u
e

d
)

Ta
g

A
tt

ri
bu

te
s

D
es

cr
ip

ti
on

�
op

ti
on

s:
T

h
is

ev
en

t
is

em
it

te
d

w
h

en
th

e
op

ti
on

s
h

ar
d

or
so

ft
bu

tt
on

is
pr

es
se

d.
T

h
e

op
ti

on
s

so
ft

ke
y

is
of

te
n

pr
es

en
te

d
by

th
e

br
ow

se
r

w
h

en
m

or
e

ch
oi

ce
s

ar
e

of
fe

re
d

th
an

th
e

pa
rt

ic
u

la
r

ph
on

e
is

al
lo

w
ed

to
ac

ce
ss

(b
ec

au
se

so
m

e
ph

on
es

h
av

e
m

or
e

h
ar

d
ke

ys
th

an
ot

h
er

s)
.

�
un

kn
ow

n:
T

h
is

ev
en

t
h

as
cu

st
om

im
pl

em
en

ta
ti

on
de

pe
n

di
n

g
on

th
e

br
ow

se
r

ty
pe

.C
on

su
lt

th
e

sp
ec

ifi
c

br
ow

se
r

to
se

e
th

e
im

pl
em

en
ta

ti
on

fo
r

th
e

in
st

al
le

d
de

vi
ce

.
T

h
e

ac
ti

on
w

it
h

in
th

e
<

do
>

ta
g

is
th

e
<

go
>

ta
g,

en
ab

li
n

g
n

av
ig

at
io

n
to

a
pa

rt
ic

u
la

r
ca

rd
(w

it
h

in
th

e
sa

m
e

W
M

L
do

cu
m

en
t

or
in

a
n

ew
do

cu
m

en
t)

.
<

se
le

ct
>

ti
tl

e
O

n
e

of
th

e
m

os
t

ba
si

c
th

in
gs

to
do

in
a

G
U

I
is

to
se

le
ct

on
e

ch
oi

ce
fr

om
se

ve
ra

lo
pt

io
n

s.
T

h
e
<

se
le

ct
>

ta
g

en
ab

le
s

su
ch

se
le

ct
io

n
.T

h
e

ti
tl

e
at

tr
ib

u
te

sh
ou

ld
be

se
t

to
th

e
st

ri
n

g
th

at
ap

pe
ar

s
on

th
e

to
p

of
th

e
br

ow
se

r.
T

h
e

se
le

ct
ta

g
m

u
st

be
en

cl
os

ed
w

it
h

in
th

e
<

p>
ta

g.
T

h
ou

gh
yo

u
ca

n
in

cl
u

de
ot

h
er

te
xt

w
it

h
in

th
e

sa
m

e
<

p>
ta

g,
m

os
t

br
ow

se
rs

ig
n

or
e

an
y

ot
h

er
te

xt
ou

ts
id

e
of

th
e

se
le

ct
ta

g
or

al
te

rn
at

iv
el

y
di

sp
la

y
an

er
ro

r.
<

op
ti

on
>

on
pi

ck
T

h
e

te
xt

to
be

di
sp

la
ye

d
fo

r
th

e
in

di
vi

du
al

op
ti

on
s

fo
r

a
se

le
ct

io
n

li
st

m
u

st
be

en
cl

os
ed

in
th

e
<

op
ti

on
>

an
d
<

/o
pt

io
n
>

ta
gs

.T
h

e
on

pi
ck

at
tr

ib
u

te
sp

ec
ifi

es
th

e
ca

rd
th

at
is

n
av

ig
at

ed
to

if
th

e
pa

rt
ic

u
la

r
op

ti
on

is
se

le
ct

ed
.T

h
e

on
pi

ck
at

tr
ib

u
te

is
n

ot
re

qu
ir

ed
by

m
os

t
br

ow
se

rs
,t

h
ou

gh
it

s
ab

se
n

ce
ef

fe
ct

iv
el

y
re

n
de

rs
th

is
co

n
tr

ol
u

se
le

ss
.

<
on

ev
en

t>
ty

pe
T

h
e
<

on
ev

en
t>

ta
g

al
lo

w
s

u
s

to
ca

tc
h

ev
en

t
sm

u
ch

li
ke

th
e
<

do
>

ta
g.

H
ow

ev
er

,
w

h
er

e
th

e
ev

en
ts

of
th

e
<

do
>

ta
g

ar
e

as
so

ci
at

ed
w

it
h

th
e

de
vi

ce
an

d
pr

op
ag

at
ed

to
th

e
br

ow
se

r,
th

e
ev

en
ts

ca
u

gh
t

by
th

e
<

on
ev

en
t>

ta
g

ar
e

sp
ec

ifi
c

to
W

M
L

br
ow

se
rs

an
d

ar
e

n
ot

in
it

ia
te

d
by

th
e

de
vi

ce
.T

h
e

ty
pe

at
tr

ib
u

te
ca

n
be

se
t

to
th

e
fo

ll
ow

in
g:

�
on

ev
en

tf
or

w
ar

d:
T

h
is

ev
en

t
is

em
it

te
d

w
h

en
a

ca
rd

is
en

te
re

d.
So

,i
f

yo
u

w
an

t
to

ex
ec

u
te

so
m

et
h

in
g

on
th

e
en

tr
y

to
th

e
ca

rd
(b

as
ic

al
ly

bo
u

n
d

to
n

av
ig

at
io

n
to

an
ot

h
er

ca
rd

,c
re

at
in

g
a

ti
m

er
ta

sk
,d

oi
n

g
a

re
fr

es
h

,o
r

ex
ec

u
ti

n
g

W
M

L
Sc

ri
pt

if
it

is
su

pp
or

te
d

on
th

e
de

vi
ce

)
th

is
is

th
e

ev
en

t
to

ca
tc

h
.

346

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

�
on

ev
en

tb
ac

kw
ar

d:
If

a
ca

rd
is

n
av

ig
at

ed
to

th
ro

u
gh

th
e

ba
ck

bu
tt

on
or

th
e
<

pr
ev

/>
ev

en
t,

th
is

ev
en

tb
ac

kw
ar

d
is

th
ro

w
n

u
po

n
en

tr
y

to
th

e
ca

rd
an

d
ca

n
be

ca
u

gh
t

th
ro

u
gh

th
is

ta
g.

�
on

pi
ck

:T
h

is
ev

en
t

is
th

ro
w

n
w

h
en

an
op

ti
on

in
a

se
le

ct
li

st
is

se
le

ct
ed

or
de

se
le

ct
ed

.A
s

w
e

m
en

ti
on

ed
,

th
is

is
n

ot
a

ta
g;

it
is

an
at

tr
ib

u
te

of
th

e
op

ti
on

ta
g.

�
on

ti
m

er
:T

h
is

ev
en

t
is

th
ro

w
n

w
h

en
a

ti
m

er
ex

pi
re

s.
T

im
er

s
ar

e
sp

ec
ifi

ed
th

ro
u

gh
th

e
<

ti
m

er
>

ta
g.

T
h

e
<

on
ev

en
t>

ta
g

m
u

st
be

u
se

d
ou

ts
id

e
of

th
e
<

p>
<

/p
>

ta
gs

si
n

ce
it

is
n

ot
so

m
et

h
in

g
th

at
is

re
n

de
re

d
or

re
la

te
s

to
th

e
re

n
de

ri
n

g
of

th
e

ca
rd

.
<

ti
m

er
>

va
lu

e
T

h
is

ta
g

sp
ec

ifi
es

th
at

a
ti

m
er

sh
ou

ld
st

ar
t

w
h

en
th

e
ca

rd
is

n
av

ig
at

ed
to

.T
h

e
va

lu
e

at
tr

ib
u

te
is

se
t

to
th

e
am

ou
n

t
of

ti
m

e
th

at
pa

ss
es

fr
om

th
e

m
om

en
t

yo
u

n
av

ig
at

e
to

th
e

ca
rd

to
th

e
m

om
en

t
w

h
en

th
e

ti
m

er
ex

pi
re

s.
T

h
e

va
lu

e
at

tr
ib

u
te

is
sp

ec
ifi

ed
in

te
n

th
s

of
se

co
n

ds
.

<
se

tv
ar
>

n
am

e,
va

lu
e

T
h

is
ta

g
is

u
se

d
to

sp
ec

if
y

a
va

ri
ab

le
an

d
as

si
gn

a
va

lu
e

to
it

.V
ar

ia
bl

es
in

W
M

L
ar

e
w

ea
kl

y
ty

pe
d

(i
.e

.,
th

er
e

ar
e

n
o

ty
pe

as
so

ci
at

io
n

s
li

ke
in

te
ge

r,
do

u
bl

e,
st

ri
n

g,
et

c.
).

B
as

ic
al

ly
,y

ou
ca

n
th

in
k

of
ev

er
yt

h
in

g
as

st
ri

n
gs

.T
h

e
n

am
e

at
tr

ib
u

te
is

th
e

n
am

e
by

w
h

ic
h

th
e

va
ri

ab
le

ca
n

be
re

fe
rr

ed
to

w
it

h
in

th
e

W
M

L
do

cu
m

en
t

by
pu

tt
in

g
a

$
in

fr
on

t
of

it
.F

or
ex

am
pl

e,
a

va
ri

ab
le

n
am

ed
X

is
de

fi
n

ed
by

th
e

se
tv

ar
ta

g
w

h
os

e
n

am
e

at
tr

ib
u

te
is

se
t

to
X

an
d

is
th

en
re

fe
rr

ed
to

as
$X

.Y
ou

ca
n

th
in

k
of

W
M

L
va

ri
ab

le
s

be
in

g
re

fe
re

n
ce

d
by

va
lu

e
(w

it
h

th
e

br
ow

se
r

si
m

pl
y

re
pl

ac
in

g
al

lo
cc

u
rr

en
ce

s
of

$X
w

it
h

th
e

va
lu

e
st

or
ed

in
X

w
h

en
a

pa
ss

th
ro

u
gh

th
e

ca
rd

is
m

ad
e)

.T
h

e
va

lu
e

at
tr

ib
u

te
se

ts
th

e
va

lu
e

of
th

e
va

ri
ab

le
.

T
h

e
n

am
es

of
th

e
va

ri
ab

le
s

in
a

W
M

L
do

cu
m

en
t

m
u

st
be

u
n

iq
u

e.
If

yo
u

w
an

t
to

u
pd

at
e

th
e

va
lu

e
of

th
e

va
ri

ab
le

re
fe

re
n

ce
d

in
th

e
do

cu
m

en
t,

yo
u

w
il

ln
ee

d
to

en
cl

os
e

al
lo

cc
u

rr
en

ce
s

of
it

s
re

fe
re

n
ce

s
(i

n
ou

r
ex

am
pl

e
$X

)
w

it
h

in
th

e
re

fr
es

h
ta

gs
or

si
m

pl
y

re
lo

ad
th

e
do

cu
m

en
t.

<
re

fr
es

h
>

T
h

is
ta

g
ca

u
se

s
th

e
br

ow
se

r
to

in
te

rp
re

t
th

e
se

gm
en

t
of

co
de

en
cl

os
ed

w
it

h
in

th
e
<

re
fr

es
h
>
<

/r
ef

re
sh
>

ta
gs

.
<

op
tg

ro
u

p>
T

h
is

ta
g

is
u

se
d

to
gr

ou
p

a
se

t
of

re
la

te
d

op
ti

on
s.

M
an

y
W

M
L

br
ow

se
rs

do
n

ot
su

pp
or

t
th

is
ta

g,
so

w
e

di
sc

ou
ra

ge
it

s
u

se
.

(c
on

ti
nu

ed
)

347

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

TA
B

LE
6
.1

(c
on

ti
n

u
e

d
)

Ta
g

A
tt

ri
bu

te
s

D
es

cr
ip

ti
on

<
in

pu
t>

n
am

e,
fo

rm
at

T
h

is
ta

g
pr

ov
id

es
a

te
xt

in
pu

t
pr

om
pt

fo
r

th
e

u
se

r
to

en
te

r
te

xt
-b

as
ed

in
fo

rm
at

io
n

u
si

n
g

th
e

de
vi

ce
(c

el
l

ph
on

e
ke

yp
ad

,P
D

A
,e

tc
.)

.M
u

lt
ip

le
oc

cu
rr

en
ce

s
of

th
is

ta
g

ca
n

be
u

se
d

w
it

h
in

on
e

se
t

of
<

p>
<

/p
>

ta
gs

;h
ow

ev
er

,m
os

t
br

ow
se

rs
re

n
de

r
th

e
re

su
lt

in
g

te
xt

bo
x

by
it

se
lf

.T
o

cr
ea

te
a

la
be

lf
or

th
e

in
pu

t
ta

g,
si

m
pl

y
pu

t
th

e
la

be
lt

ex
t

be
fo

re
th

e
oc

cu
rr

en
ce

of
th

e
<

in
pu

t>
ta

g
to

be
la

be
le

d.
T

h
e

va
lu

e
en

te
re

d
by

th
e

u
se

r
is

st
or

ed
in

th
e

va
ri

ab
le

n
am

ed
by

w
h

at
ev

er
th

e
n

am
e

at
tr

ib
u

te
is

se
t

to
an

d
ca

n
be

re
fe

re
n

ce
d

as
ot

h
er

va
ri

ab
le

s
(b

y
pu

tt
in

g
a

$
be

fo
re

it
s

n
am

e)
li

ke
th

os
e

de
fi

n
ed

by
se

tv
ar

.
T

h
e

n
am

e
of

th
e

in
pu

t
ta

gs
in

th
e

sa
m

e
W

M
L

do
cu

m
en

t
m

u
st

be
u

n
iq

u
e

an
d

ca
n

n
ot

co
n

fl
ic

t
w

it
h

ot
h

er
va

ri
ab

le
s

de
fi

n
ed

by
th

e
se

tv
ar

ta
g.

T
h

e
fo

rm
at

at
tr

ib
u

te
al

lo
w

s
u

s
to

sp
ec

if
y

an
in

pu
t

m
as

k
(a

fo
rm

at
en

fo
rc

ed
by

th
e

in
pu

t
bo

x)
fo

r
th

e
da

ta
en

tr
y.

F
or

ex
am

pl
e,

an
ei

gh
t-

di
gi

t
da

te
se

pa
ra

te
d

by
da

sh
es

ca
n

be
sp

ec
ifi

ed
by

fo
rm

at
=

“N
N

-N
N

-
N

N
N

N
.”

<
po

st
fi

el
d>

n
am

e,
va

lu
e

T
h

is
ta

g
is

u
se

d
to

se
n

d
n

am
e–

va
lu

e
pa

ir
s

to
th

e
se

rv
er

th
at

re
se

m
bl

es
th

e
H

T
T

P
P

O
ST

m
et

h
od

.K
ee

p
in

m
in

d
th

at
W

M
L

is
th

e
cl

ie
n

t
to

W
A

P
an

d
n

ot
H

T
T

P
.H

ow
ev

er
,b

ec
au

se
th

e
vi

si
bi

li
ty

of
W

A
P

is
be

tw
ee

n
th

e
ga

te
w

ay
of

th
e

de
vi

ce
,a

n
d

m
os

t
W

M
L

co
n

te
n

t
is

cr
ea

te
d

by
W

eb
se

rv
er

s
th

at
se

n
d

th
e

co
n

te
n

t
to

th
e

W
A

P
ga

te
w

ay
,u

si
n

g
an

H
T

T
P

-l
ik

e
m

et
h

od
se

em
s

n
at

u
ra

l.
T

h
es

e
n

am
e–

va
lu

e
pa

ir
s

ar
e

tr
an

sp
or

te
d

by
W

A
P

to
th

e
ga

te
w

ay
w

h
er

e
th

ey
ar

e
ch

an
ge

d
to

th
e

fo
rm

at
sp

ec
ifi

ed
by

H
T

T
P

in
th

e
H

T
T

P
P

O
ST

m
et

h
od

.
<

fi
el

ds
et
>

ti
tl

e
T

h
is

el
em

en
t

is
u

se
d

to
pa

ir
in

pu
t

fi
el

ds
an

d
se

le
ct

li
st

s
to

ge
th

er
,t

h
e

pr
im

ar
y

pu
rp

os
e

be
in

g
cl

ar
it

y
an

d
go

od
or

ga
n

iz
at

io
n

of
th

e
in

fo
rm

at
io

n
on

th
e

in
te

rf
ac

e.
W

e
do

n
ot

re
co

m
m

en
d

u
se

of
th

is
ta

g
as

it
is

ra
re

ly
im

pl
em

en
te

d
in

th
e

ga
te

w
ay

s
an

d/
or

th
e

br
ow

se
rs

.
<

ta
bl

e>
C

ol
u

m
n

s
T

h
is

ta
g

le
ts

yo
u

cr
ea

te
ta

bl
es

.H
ow

ev
er

,c
re

at
in

g
ta

bl
es

in
a

m
ar

ku
p

la
n

gu
ag

e
th

at
h

as
be

en
sh

ru
n

k
to

pr
ov

id
e

a
sm

al
ls

et
of

fu
n

ct
io

n
al

it
y

do
es

n
ot

m
ak

e
m

u
ch

se
n

se
.T

h
is

is
pr

ob
ab

ly
w

h
y

m
os

t
W

A
P

br
ow

se
rs

do
n

ot
im

pl
em

en
t

th
is

ta
g

an
d

th
er

ef
or

e
w

e
di

sc
ou

ra
ge

it
s

u
se

.
<

tr
>

T
h

is
ta

g
al

lo
w

s
yo

u
to

de
fi

n
e

a
ro

w
in

a
ta

bl
e

<
td
>

T
h

is
ta

g
al

lo
w

s
yo

u
to

de
fi

n
e

a
ce

ll
in

a
ta

bl
e

ro
w

348

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 349

<?xml version="1.0">

<!DOCTYPE wml PUBLIC "-//WAPFORUM/DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml1.1.xml">

<wml>

<head>

<meta forua="true" http-equiv="Cache"Control"

content="max-age=0"/>

</head>

<card id ="Hello">

<do type="accept" label="NextPage">

<go href="#World"/>

</do>

<p>

This card is displayed first. Cards are navigated to

in the order that they appear in the WML document

unless otherwise specified by the URI.

</p>

</card>

<card id = "World">

<p>

This is the second page. What is your name?

<input name="username"/>

</p>

</card>

</wml>

FIGURE 6.13. Sample WML Document.

content. This is an example where building WML interfaces on top of XForms in-
terfaces (or some other generic user interface language) would benefit you greatly:
Simply add the new transformations, and your system is ready for quality control
(although you still need to go through the entire usability testing process as each
type of user interface has its own usability requirements).

WMLScript
WMLScript is the ECMAScript implementation for WAP 1.x. The first important
thing to know about WMLScript is that, like WML, it is compiled by the WAP
gateway before it is sent to the device. Whereas the compiled WML format is
WMLC, the compiled .wmls files are .wmlsc files. The problem with WMLScript
is that a great number of operators do not offer any support for it and those that
do, implement WMLScript with a considerable amount of inconsistency.

There are two types of WMLScript functions: standard functions and custom
functions. Standard functions are those defined with the WAP specification. These
should be provided in the WAP gateways that support them and you do not need

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

350 DEVELOPING MOBILE GUIs

extern function helloWorld(fName, lName) {
var fullName;

fullName = fName + "" + lName;

WMLBrowser.setVar("username", fullName);

WMLBrowser.refresh();

}

WML file may be:

<?xml version ="1.0" ?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">

<wml>

<card id="main" title="WMLScript Hello World">

<setvar name="username" value="Susan Boettger"/>

<p>Hello $(username). Click here to see your future

name:

<a href="calling.wmls#helloWorld("Susan",

"B'Far")">

</p>

</card>

</wml>

FIGURE 6.14. A Sample WMLScript Function.

to provide the source code. The custom functions are those that the developer
authors.

For your WMLScript file to be compiled by the gateway and then provisioned to
the device, it has to be authorized by the telecommunications carrier, and this is yet
another barrier to real usage of WMLScript. At the time of authoring this text, this
is possible in Europe and not the United States. In the United States, the operators’
networks remain fairly closed to the developers. Nonetheless, let us take a look at
a simple WMLScript so that you can get a feel for what it looks like. Figure 6.14
shows a sample WMLScript function. You can find a better specification of
WMLScript through the Open Mobile Alliance (previously known as the WAP
Forum).

It is important to note that perhaps the biggest feature of WMLScript is that
it allows interactions with the WTAI agent on the handset, thereby making it a
possible mechanism for creating a multichannel user interface (voice through the
telephony channel and data through WAP). However, this is difficult to do because
of the inconsistent support of WMLScript functionality among the carriers.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 351

There is one interesting problem that we have not looked at: How does
WMLScript map to a generic user interface? Let us note the following:

1. WMLScript, and for that matter all scripting languages for specialized user
interfaces, can be excluded from the generic user interface altogether. There
is an argument to be made that client-side behavior is specific to the type of
interface used. This means that either we have custom scripts for every user
interface or we must transform some generic user interface script to specialized
user interface script. We leave this decision up to the implementer. However,
you should know that mapping code from one scripting language to another
scripting language is much more complex than mapping user interface widgets,
structure, and instance data. Throughout the research that we did for this text,
we did not find any research or development that presented a viable solution
for mapping a generic user interface scripting language to a specialized one.

2. There is the matter of XForms events. Because WML does not have anything
equivalent to XForms events, to support XForms events, we would have to
translate them to WMLScript for WML or to transform the XForms so that
those events are taken care of on the server side. If we decide to produce WML
from XForms, and if there is a considerable amount of behavior in the XForms,
we are better off translating XForms to server-side behavior such as Java Server
Pages (JSP) or Microsoft’s Active Server Pages (ASP). This is because such
mapping is more reusable.

Regardless of how you decide to solve this problem, it is only relevant when dealing
with a scripting language for a browser. We simply recommend that you do not
abuse scripting languages provided along with markup languages (JavaScript,
VBScript, ECMAScript derivatives, etc.). If you need a rich client, your solution
is probably not one based on a browser and markup language. J2ME, BREW,
Windows CE, and Symbian offer the capability to build applications that have
rich user interfaces with complex behaviors.

WAP 2.x
WAP 2.x is a significantly different framework for developing wireless applications.
We reviewed the basics of WAP 2.x in Chapter 2 along with the tools. Here, we
will dig a little deeper into the GUI aspects of WAP 2.x. Namely, we will look at
XHTML, which replaces WML in WAP 2.x, and MMS, which provides multimedia
messaging.

XHTML
We have previously looked at various XML-based markup languages. Let us re-
member that XML itself is a subset of SGML and that HTML was designed based
on SGML and not XML. So, HTML is not an application of XML because it is
defined by SGML and some of what is used to define HTML falls outside of the
subset of the SGML used to build XML. The design of XML as a markup language
has brought about a set of tools and an industry-wide understanding of structur-
ing content. Because HTML is not an XML application, the tools that are used

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

352 DEVELOPING MOBILE GUIs

to manipulate XML (such as parsers and development tools) cannot be used for
HTML. This renders much of GUI content provided by the Web unusable in an
automated fashion. At its core, XHTML aims at solving this problem. XHTML
redefines the functionality and syntax of HTML so that it is an application of
XML, thereby allowing us to use all of the tools and techniques that come with
XML-based development.

One crucial feature of XHTML is its modularization. XHTML is broken into
several different distinct modules. XHTML Basic can be augmented with any of
the XHTML modules to add functionality. So, what XHTML Basic gives us is
a subset of XHTML as the starting point for developing thin-client mobile user
interfaces. Because, by its virtue of being an XML application, XHTML is extensible,
we can add functionality to it by adding XHTML modules or by making custom
extensions (though custom extensions are strongly discouraged for the reasons of
portability). Let us present an overview of the syntax of XHTML and then we will
look at XHTML Basic. XHTML 2.0 has the following modules:

1. Text Module: This module defines the tags that structure text in XHTML.
Most of these tags allow for things like creating line breaks, defining headers,
making divisions, and making other structural definitions for text as in HTML.
However, there are some new tags such as the <cite> tag and the <acronym>

tag (respectively marking a piece of text as a citation or an acronym) that try
to define the semantic definition of text within a document (somewhat RDF-
like).

2. Hypertext Module: This module has a single element of <a> inherited from
HTML. This is the anchor element that allows navigation through the HTTP
protocol and its URI mechanism.

3. List Module: This module defines tag elements that allow usage of various
types of list constructs. List elements, ordered lists, unordered lists, and lists
used for building navigational menus are defined in this module.

4. Bidirectional Text Module: This module has a single element, <bdo>. The
purpose of this module, and its only element, is to specify the direction in
which text must be displayed. Because some textual formats favor display of
text in one direction or another, this element provides a way to specify the
direction in which text, possibly of any language using UNICODE or other
character sets, should be displayed.

5. Client-Side Image Map Module: This module is designed to specify image maps,
a very popular technique in HTML for displaying complex or multisectioned
images.

6. Edit Module: This module provides two elements, <ins> and , respec-
tively allowing for displaying modifications made to the document through
insertion or deletion of portions of the XHTML document. This module’s pri-
mary purpose is in providing a mechanism for viewing versioned edits in a
single document.

7. Link Module: This module defines only one element, <link>, which is used to
specify links to external documents. The difference between this element and
the <a> element is that it is only used within the header (wrapped within the

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 353

<head> element) and that it is intended to be implicitly used by the XHTML
browser instead of creating a user-driven navigation method like the anchor
tag does. This element can be used for specifying things like style sheets that
provide the formatting for a page.

8. Metainformation Module: This module defines only one element, <meta>,
which like the <link> element can only be used within the header of the
document.

9. Object Module: This module provides a mechanism for including external
objects such as ActiveX objects or Java applets. This module provides two
elements, <object> and <param>, the first of which is used to specify the
object, its source, and other things that allow the XHTML browser to use the
object and the second of which allows us to pass parameters to the object to
initialize it.

10. Presentation Module: At version 2.0 of XHTML, this module has only three
tags. <sup> and <sub> tags are used to specify superscripts and subscripts,
respectively. The <hr> tag is used to specify insertion of a horizontal line.
These tags are used inline with the content created based on the tags of the
Text Module when the Presentation Module is included.

11. Scripting Module: This module specifies whether a piece of XHTML content
has or does not have some script that is to be executed by the XHTML browser.
The tags to specify this are <script> and <noscript>. The first tag is used
much in the same way as it is used to specify scripts in HTML. The second tag
is used to section off parts of XHTML that the XHTML browser should ignore
for finding and executing any script.

12. Server-Side Image Map Module: Although images can be put together on the
client side with the Client-Side Image Map, the same thing can be done on
the server before serving the XHTML content up to the browser. This module
provides the ability to specify how image maps are composed on the server
side.

13. Style-Sheet Module: This module has one tag, <style>, that allows you to
specify internal style sheets (used by the XHTML browser to add formatting to
the XHTML document). This element must be used within the header content.

14. Table Module: This module provides tags that specify properties of tables within
an XHTML document. An example of such a tag is <caption>, which specifies
the caption that describes the table.

15. Target Module: The target of a link, an anchor, or a form can be an externally
defined target specified by the attributes of this element.

16. Structure Module: This module defines the <header>, <body>, <html>,
and <title> tags that allow us to specify, respectively, the following: headers,
where the body of the XHTML document starts and where it ends, one or more
chunks of one or more types of XHTML enclosed within the same document,
and a title for the XHTML document.

17. Forms Modules: There are two forms modules. The first is the Basic Forms
Module, which allows basic GET and POST methods of HTTP to be called
from an XHTML document. The second is the Forms Module, which adds
some cosmetic features such as buttons, options, and option groups within a
form.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

354 DEVELOPING MOBILE GUIs

<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-

transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Hello World XHTML 2.0 Document</title>

<meta name="author" content="Abdy B'Far"/>

<meta name="keywords" content="semantic, mobile,

webservices, XHTML 2.0 example"/>

<meta name="description" content="Example of a

basic XHTML document"/>

<link rel='top' href='http://www.cienecs.com/'

title='Home'/>

</head>

<body>

<h id="documentTitle">w3future.com</h>

<section id="pageHeader">

<h href="http://www.w3.org/TR/xhtml-basic/">

XHTML Basic</h>

<blockquote cite='http://www.w3.org/TR/xhtml-

basic/'>

<p>Abstract</p>

<p>

The XHTML Basic document type includes the

minimal set of modules required to be an

XHTML host language document type, and

in addition it includes images, forms,

basic tables, and object support. It is

designed for Web clients that do not

support the full set of XHTML features:

for example, Web clients such as mobile

phones, PDAs, pagers, and settop boxes.

The document type is rich enough for

content authoring.

</p>

</blockquote>

</section>

<section id="mainSection">

<h>This is a page in XHTML 2.0 format</h>

<p>

FIGURE 6.15. Hello World XHTML 2.0 Document.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 355

Authoring GUI interfaces for mobile

applications is somewhat more

complicated than typical GUI development

for stationary applications. Should this

example have the words "Hello World"

since it is a so-called Hello World

example?

</p>

</section>

<section id="pageFooter">

<h>Current Time</h>

<p>10/17/2002 </p>

<p><a href="http://www.cienecs.com/examples/

XHTML/">XHTML Tutorial</p>

</section>

</body>

</html>

FIGURE 6.15 (continued)

There are a few other modules that are inherited from XHTML 1.1. As in the case
of other tools and languages in this text, we introduced the bulk of what is relevant
to mobile applications. An example of a simple XHTML 2.0 document can be seen
in Figure 6.15. Note that the modularization of XHTML allows us to remove the
parts that may not be applicable to some devices. For example, image maps on
the client are an impractical proposition when it comes to WAP-based cellular
phones.

XHTML has another very big advantage over HTML: Because it is an application
of XML, and therefore well formed, it can be transcoded and transformed without
any loss of information using existing technologies such as XSLs.

This brings us to developing user interfaces for mobile applications with
XHTML. As we previously mentioned, XHTML is the user interface markup lan-
guage for WAP 2.0. Let us see how the XHTML Basic and XHTML Mobile Profile
are related to WML and how they enable us to develop thin-client mobile ap-
plications. Figure 6.16 shows a high-level organization of features for some of
the markup languages that we’re most concerned with, including XHTML and its
mobile profile.

XHTML Mobile Profile
XHTML was still far too unwieldy for most small devices. Consequently, a subset
of XHTML called XHTML Basic was selected by W3C to create a path as the
markup language for resource-starved devices such as PDAs and mobile phones
or those devices that simply do not have a full-blown XHTML browser running
on a typical operating system designed for stationary PCs (such as electronic
tablets, televisions, and Web appliances such as Web kiosks). At the same time

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

356 DEVELOPING MOBILE GUIs

XHTML
Basic

XHTML Mobile
Profile

XHTML

WML 2.x
WML 1.x

XML

SGML Applications

HTML

FIGURE 6.16. Taxonomy of Various Standard Markup Languages for Mobile Application Develop-
ment.

that XHTML Basic was being put together, the WAP Forum was evolving WML
2.0 specifications. In an effort to consolidate these efforts, XHTML Mobile Profile
extends the XHTML Basic to add some needed features.

Let us first see what is included in XHTML Basic and why:

1. The Scripting Module is not supported. There is no guarantee that the XHTML
browser is running on a device capable of executing scripts.

2. The Basic Forms Module is supported to all the XHTML browsers to POST/GET
content to the server.

3. The Basic Tables Module is supported.
4. The Frames and Client-Side Style-Sheet Modules are not supported. These op-

erations tend to be too complicated for simple devices.

The Bidirectional Text Module is not supported because client-side rendering of
complex output (such as multilingual content) is not necessarily possible on all
devices.

XHTML Basic gives us the basic ability of rendering text on the client and send-
ing parameters back to the server. As we mentioned, more advanced functionality
can be included, if appropriate for the application and the devices for which the
application is intended, by extending XHTML through including additional mod-
ules. Now let us look at the XHTML Mobile Profile syntax. Table 6.2 gives a subset
of the XHTML tags used in the XHTML Mobile Profile.

Now, let us look at a simple XHTML page in Figure 6.17. In our example, we
have used only modules that fall within XHTML Basic. This means that this page

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

TA
B

LE
6
.2

.
X

H
TM

L
M

o
bi

le
P

ro
fi

le
S

yn
ta

x

Ta
g

A
pp

li
ca

ti
on

<
a>

T
h

e
an

ch
or

ta
g

is
u

se
d

to
al

lo
w

th
e

u
se

r
to

n
av

ig
at

e
to

ot
h

er
re

so
u

rc
es

.
<

ab
br

>
T

h
is

ta
g

sp
ec

ifi
es

th
at

th
e

en
cl

os
ed

te
xt

is
an

ab
br

ev
ia

ti
on

.
<

ac
ro

n
ym

>
T

h
is

ta
g

sp
ec

ifi
es

th
at

th
e

en
cl

os
ed

te
xt

is
an

ac
ro

n
ym

.
<

ad
dr

es
s>

T
h

is
ta

g
m

ay
be

u
se

d
by

th
e

au
th

or
of

th
e

do
cu

m
en

t
to

pr
ov

id
e

co
n

ta
ct

in
fo

rm
at

io
n

.
<

bi
g>

T
h

is
ta

g
sp

ec
ifi

es
th

at
th

e
en

cl
os

ed
te

xt
sh

ou
ld

be
di

sp
la

ye
d

in
a

“b
ig

”
fo

n
t.

<
ba

se
/>

T
h

is
ta

g
sp

ec
ifi

es
a

ba
se

U
R

I
fo

r
th

e
re

la
ti

ve
U

R
Is

in
th

e
X

H
T

M
L

do
cu

m
en

t
an

d
ca

n
on

ly
be

u
se

d
w

it
h

in
th

e
h

ea
de

r.
<

bl
oc

kq
u

ot
e>

T
h

is
ta

g
sp

ec
ifi

es
te

xt
th

at
is

en
cl

os
ed

w
it

h
in

th
e

qu
ot

at
io

n
m

ar
ks

.
<

bo
dy

>
T

h
e

bo
dy

of
th

e
X

H
T

M
L

do
cu

m
en

t
m

u
st

be
en

cl
os

ed
w

it
h

in
th

e
<

bo
dy

>
an

d
<

/b
od

y>
ta

gs
.

<
br

/>
T

h
is

ta
g

fo
rc

es
a

ca
rr

ia
ge

re
tu

rn
(l

in
e

fe
ed

).
Im

pl
em

en
ta

ti
on

is
de

pe
n

de
n

t
on

th
e

sp
ec

ifi
c

u
se

r
in

te
rf

ac
e

re
n

de
ri

n
g

th
e

X
H

T
M

L
do

cu
m

en
t.

<
ca

pt
io

n
>

T
h

is
ta

g
is

u
se

d
in

co
n

ju
n

ct
io

n
w

it
h

a
ta

bl
e

an
d

se
rv

es
as

a
de

sc
ri

pt
io

n
fo

r
th

e
ta

bl
e.

<
ci

te
>

T
h

is
ta

g
sp

ec
ifi

es
if

th
e

te
xt

en
cl

os
ed

is
a

ci
ta

ti
on

.
<

co
de

>
T

h
is

ta
g

sp
ec

ifi
es

if
th

e
te

xt
en

cl
os

ed
is

co
m

pu
te

r
co

de
.

<
dl

>
T

h
is

ta
g

de
fi

n
es

de
fi

n
it

io
n

li
st

s.
D

efi
n

it
io

n
li

st
s

ar
e

a
li

st
of

n
am

e–
va

lu
e

pa
ir

s
of

a
te

rm
an

d
th

e
de

sc
ri

pt
io

n
of

th
at

te
rm

.
<

dd
>

T
h

is
ta

g
de

fi
n

es
th

e
de

sc
ri

pt
io

n
of

th
e

te
rm

w
it

h
in

th
e

de
fi

n
it

io
n

li
st

<
dl

>
ta

g.
<

dt
>

T
h

is
ta

g
de

fi
n

es
th

e
n

am
e

of
th

e
te

rm
w

it
h

in
th

e
de

fi
n

it
io

n
li

st
<

dl
>

ta
g.

<
df

n
>

T
h

is
ta

g
al

lo
w

s
yo

u
to

de
fi

n
e

a
te

rm
an

d
a

de
sc

ri
pt

io
n

(n
ot

pa
rt

of
a

li
st

,j
u

st
an

in
di

vi
du

al
te

rm
an

d
ac

co
m

pa
n

yi
n

g
de

fi
n

it
io

n
).

<
di

v>
A

s
in

H
T

M
L

,t
h

e
<

di
v>

ta
g

is
u

se
d

to
pr

ov
id

e
an

ad
di

ti
on

al
m

ec
h

an
is

m
to

ad
d

st
ru

ct
u

re
to

th
e

X
H

T
M

L
do

cu
m

en
t

by
di

vi
di

n
g

it
in

to
se

ct
io

n
s.

<
em

>
T

h
is

ta
g

al
lo

w
s

u
s

to
sp

ec
if

y
te

xt
th

at
sh

ou
ld

be
em

ph
as

iz
ed

by
th

e
X

H
T

M
L

br
ow

se
r.

(c
on

ti
nu

ed
)

357

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

TA
B

LE
6
.2

(c
on

ti
n

u
e

d
)

Ta
g

A
pp

li
ca

ti
on

<
fi

el
ds

et
>

T
h

is
ta

g
al

lo
w

s
fo

r
gr

ou
pi

n
g

of
co

n
tr

ol
s

w
it

h
in

a
fo

rm
.

<
fo

rm
>

T
h

is
ta

g
de

fi
n

es
th

e
bo

u
n

da
ri

es
of

a
fo

rm
in

X
H

T
M

L
.

<
h

1>
,<

h
2>

,
<

h
3>

,<
h

4>
,

<
h

5>
,<

h
6>

T
h

es
e

ta
gs

al
lo

w
yo

u
to

sp
ec

if
y

th
e

te
xt

en
cl

os
ed

w
it

h
in

th
em

to
be

of
a

pa
rt

ic
u

la
r

h
ie

ra
rc

h
y

w
it

h
in

th
e

X
H

T
M

L
do

cu
m

en
t.

E
ac

h
st

an
ds

fo
r

a
h

ea
de

r
le

ve
lw

it
h

<
h

1>
be

in
g

th
e

h
ig

h
es

t
le

ve
lh

ea
de

r
an

d
<

h
6>

th
e

lo
w

es
t

le
ve

lh
ea

de
r

de
fi

n
ed

by
X

H
T

M
L

.
<

h
ea

d>
T

h
e

h
ea

de
r

of
th

e
do

cu
m

en
t,

in
cl

u
di

n
g

th
e

<
li

n
k>

,<
m

et
a>

,<
ba

se
/>

,a
n

d
<

st
yl

e>
ta

gs
is

en
cl

os
ed

w
it

h
in

th
is

ta
g.

<
h

r>
T

h
is

ta
g

re
su

lt
s

a
h

or
iz

on
ta

ll
in

e
in

th
e

X
H

T
M

L
do

cu
m

en
t

re
n

de
ri

n
g.

<
h

tm
l>

T
h

e
X

H
T

M
L

co
n

te
n

t
of

th
e

do
cu

m
en

t
is

en
cl

os
ed

w
it

h
in

th
is

ta
g.

It
is

ve
ry

im
po

rt
an

t
th

at
th

e
at

tr
ib

u
te

s
of

th
is

ta
g

sp
ec

if
y

th
e

co
rr

ec
t

n
am

es
pa

ce
an

d
ve

rs
io

n
of

X
H

T
M

L
.

<
i>

Te
xt

en
cl

os
ed

w
it

h
in

th
is

ta
g

is
it

al
ic

iz
ed

.
<

im
g/

>
T

h
is

ta
g

an
d

it
s

at
tr

ib
u

te
s

ar
e

u
se

d
to

sp
ec

if
y

an
im

ag
e

an
d

th
e

so
u

rc
e

fr
om

w
h

ic
h

it
is

lo
ad

ed
.

<
in

pu
t/
>

T
h

is
ta

g
is

u
se

d
to

sp
ec

if
y

an
in

pu
t

fi
el

d.
<

kb
d>

If
so

m
e

te
xt

is
to

be
en

te
re

d
in

to
th

e
in

te
rf

ac
e

by
th

e
u

se
r,

it
is

en
cl

os
ed

w
it

h
in

th
is

ta
g

(f
or

ex
am

pl
e,

“p
le

as
e

ty
pe

<
kb

d>
5<

kb
d/

>
fo

r
ev

er
y

ch
oi

ce
”)

.
<

la
be

l>
T

h
is

ta
g

al
lo

w
s

yo
u

to
sp

ec
if

y
a

la
be

lf
or

a
co

n
tr

ol
su

ch
as

th
e

in
pu

t
or

a
fo

rm
co

n
tr

ol
.

<
li
>

T
h

is
ta

g
is

u
se

d
to

sp
ec

if
y

a
li

st
it

em
(a

s
is

in
H

T
M

L
).

<
u

l>
T

h
is

ta
g

is
u

se
d

to
sp

ec
if

y
an

u
n

or
de

re
d

li
st

(w
h

os
e

it
em

s
ar

e
sp

ec
ifi

ed
by

u
si

n
g

th
e

<
li
>

ta
g)

.
<

ol
>

T
h

is
ta

g
is

u
se

d
to

sp
ec

if
y

an
or

de
re

d
li

st
(w

h
os

e
it

em
s

ar
e

sp
ec

ifi
ed

by
u

si
n

g
th

e
<

li
>

ta
g)

.
<

li
n

k/
>

T
h

is
ta

g
is

u
se

d
w

it
h

in
th

e
h

ea
de

r
to

sp
ec

if
y

li
n

ks
to

ot
h

er
re

so
u

rc
es

.
<

m
et

a/
>

T
h

is
ta

g
is

u
se

d
to

sp
ec

if
y

m
et

ai
n

fo
rm

at
io

n
w

it
h

in
th

e
h

ea
de

r.
<

ob
je

ct
>

T
h

is
ta

g
is

u
se

d
to

in
cl

u
de

ex
te

rn
al

ob
je

ct
s

su
ch

as
Ja

va
ap

pl
et

s
an

d
A

ct
iv

eX
ob

je
ct

s
w

it
h

in
th

e
X

H
T

M
L

do
cu

m
en

t.

358

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

<
pa

ra
m

>
To

pa
ss

pa
ra

m
et

er
s

to
th

e
ob

je
ct

sp
ec

ifi
ed

by
th

e
<

ob
je

ct
>

ta
g

w
h

en
it

is
in

st
an

ti
at

ed
an

d
be

fo
re

it
be

gi
n

s
to

ex
ec

u
te

,w
e

ca
n

en
cl

os
e

th
e

pa
ra

m
et

er
s

in
th

e
<

pa
ra

m
>

ta
g.

<
op

gr
ou

p>
T

h
is

ta
g

is
u

se
d

to
sp

ec
if

y
a

gr
ou

p
of

op
ti

on
s.

T
h

e
op

ti
on

s
ar

e
sp

ec
ifi

ed
u

si
n

g
th

e
<

op
ti

on
>

ta
g

w
it

h
in

th
is

ta
g.

<
op

ti
on

>
T

h
is

ta
g

sp
ec

ifi
es

th
e

op
ti

on
s

w
it

h
in

an
<

op
gr

ou
p>

.
<

p>
T

h
is

ta
g

is
u

se
d

to
sp

ec
if

y
a

pa
ra

gr
ap

h
of

te
xt

.D
is

pl
ay

of
sp

ac
in

g
is

u
p

to
th

e
X

H
T

M
L

br
ow

se
r

im
pl

em
en

ta
ti

on
on

th
e

de
vi

ce
.

<
pr

e>
W

h
it

e
sp

ac
es

ar
e

ty
pi

ca
ll

y
n

ot
pr

es
er

ve
d

by
th

e
va

ri
ou

s
X

H
T

M
L

ta
gs

.T
h

is
el

em
en

t
sp

ec
ifi

es
th

at
th

e
w

h
it

e
sp

ac
es

en
cl

os
ed

w
it

h
in

<
pr

e>
an

d
<

/p
re

>
be

pr
es

er
ve

d
as

th
ey

m
ay

h
av

e
se

m
an

ti
c

m
ea

n
in

g.
<

sa
m

p>
Te

xt
en

cl
os

ed
w

it
h

in
th

is
ta

g
sp

ec
ifi

es
sa

m
pl

e
co

de
.

<
se

le
ct

>
A

s
in

th
e

ca
se

of
H

T
M

L
,t

h
is

ta
g

su
rr

ou
n

ds
op

ti
on

s
fr

om
w

h
ic

h
th

e
u

se
r

m
u

st
ch

oo
se

.
<

sm
al

l>
T

h
is

el
em

en
t

sp
ec

ifi
es

th
at

th
e

te
xt

en
cl

os
ed

w
it

h
in

it
m

u
st

be
sm

al
l(

re
n

de
ri

n
g

is
u

p
to

th
e

X
H

T
M

L
br

ow
se

r)
.

<
st

ro
n

g>
T

h
is

el
em

en
t

sp
ec

ifi
es

th
at

th
e

te
xt

en
cl

os
ed

w
it

h
in

it
m

u
st

be
di

sp
la

ye
d

st
ro

n
g

(r
en

de
ri

n
g

is
u

p
to

th
e

X
H

T
M

L
br

ow
se

r)
.

<
sp

an
>

A
s

in
H

T
M

L
,t

h
is

ta
g

is
u

se
d

to
u

n
bl

oc
k

se
ct

io
n

s
of

th
e

do
cu

m
en

t.
It

is
ty

pi
ca

ll
y

u
se

d
fo

r
st

yl
in

g
pu

rp
os

es
.

<
st

yl
e>

T
h

is
ta

g
is

u
se

d
w

it
h

in
th

e
h

ea
de

r
an

d
sp

ec
ifi

es
st

yl
e-

sh
ee

t
se

tt
in

gs
fo

r
th

e
fo

rm
at

ti
n

g
of

th
e

X
H

T
M

L
do

cu
m

en
t.

<
ta

bl
e>

A
s

in
H

T
M

L
,t

h
is

ta
g

is
u

se
d

to
de

fi
n

e
a

ta
bl

e.
<

tr
>

T
h

is
ta

g
is

u
se

d
to

de
fi

n
e

a
ro

w
w

it
h

in
a

ta
bl

e.
<

td
>

T
h

is
ta

g
is

u
se

d
to

de
fi

n
e

a
ce

ll
w

it
h

in
a

ro
w

.
<

te
xt

ar
ea

>
T

h
is

ta
g

is
u

se
d

to
de

fi
n

e
an

ar
ea

fo
r

en
tr

y
of

a
la

rg
e

am
ou

n
t

of
te

xt
(a

s
op

po
se

d
to

a
si

n
gl

e
li

n
e

of
te

xt
or

le
ss

ty
pi

ca
ll

y
en

te
re

d
th

ro
u

gh
th

e
in

pu
t

ta
g)

.
<

th
>

T
h

is
is

a
sp

ec
ia

lc
el

lw
it

h
in

a
ta

bl
e.

It
is

bo
ld

ed
an

d
ce

n
te

re
d.

<
va

r>
To

sp
ec

if
y

a
va

ri
ab

le
n

am
e

in
co

m
pu

te
r

co
de

,t
h

is
ta

g
is

ty
pi

ca
ll

y
u

se
d

w
it

h
in

th
e

<
co

de
>

ta
g.

359

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

360 DEVELOPING MOBILE GUIs

<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-//W3C/DTD XHTML Basic 1.0//EN"

"xhtml-basic10.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<p>Welcome to Natasha's Home Page</p>

<p>Natasha's Schedule This Week</p>

Monday − Dance − 6 PM

Tuesday − Pick On Nikoo − All Night

Wednesday − Soccer − 3 PM

Thursday − Gymnastics − 6 PM

Friday − Piano − 4 PM

</html>

FIGURE 6.17. Simple XHTML Document.

will render without error in browsers that support XHTML Basic and XHTML
Mobile Profile.

As you can see, XHTML Basic (and Mobile Profile) share more similarities with
HTML than with WML (WAP 1.x). Gone is the concept of cards, mostly to simplify
the language, and therefore the implementation of the browser. As in the case of
WML, conversion of XForms to XHTML is probably a matter of authoring some
XSLTs. Once again, you will have your choice of how to map XForms events over
to XHTML.

MMS
MMS was introduced in Chapter 2 as part of WAP 2.x. MMS gives us a very unique
mechanism to render graphics on the device. MMS does not really provide us with
a framework to build a GUI. MMS is just about sending a message from one point
to another. But because the message is a multimedia message, this makes it much
richer than any other messaging technique. MMS requires an MMS client on the
handset for sending and receiving MMS messages.

In this chapter, we are not concerned with addressing and delivery of MMS,
although the presentation is of interest to us. The presentation of MMS provides
us with a very rich method of presenting information to the user within the MMS
client.

MMS message structure follows the MIME format used everywhere on the Inter-
net. The specific MIME type is application/vnd.wap.mms-message. Every message
is broken into headers and a body. In turn, the body is broken into the following
parts:

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 361

1. Presentation: This is basically the metadata on how to render the remainder of
the content in the body. Timing of audio playback and order of image rendering
are examples of such instructions.

2. Images: This part encapsulates the single image, multiple images, or frames of
a moving video.

3. Text: This part has basic text.
4. Audio: This part encapsulates any audio to be played back.

By default, the presentation part of the message content should use SMIL, which
we will look at in Chapter 8. Building an MMS client involves writing a client that
can communicate through the WAP protocol (WSP).

Finally, if you are planning to build a mobile client that supports full multimedia
capabilities, there is probably great benefit in using the MMS presentation model
(the content format) as it is well thought out and exchangeable with other devices
that support MMS.

Mobile SVG
Scalable Vector Graphics (SVG), a standard by W3C, is an XML-based language de-
signed to represent two-dimensional graphics using a vector-based representation.
SVG documents can be written to represent static or dynamic graphics.

Of particular interest to us is the Mobile SVG Profile, SVG Basic, and SVG Tiny,
each specifying a grammar for representing two-dimensional graphics on mobile
(or other resource-starved) devices. Because SVG provides a way to specify shapes
rather than draw out a graphic pixel by pixel, it provides for a more efficient way
of specifying graphics. The drawback is that creating DOM objects in memory is
expensive.

As in the case of other markup languages, we can produce SVG on the server
and send it to the mobile device where it is to be rendered. So, SVG is typically used
in a thin-client environment when dealing with networked mobile applications.
The think client is either a dedicated SVG viewer or a browser that is SVG-enabled
(e.g., Microsoft’s Internet Explorer). So, when you are building your mobile appli-
cation, you need to SVG-enable it using some component, build the SVG-enabling
components yourself, or use a preexisting browser on the mobile device that is
SVG-enabled as the application environment.

SVG is currently at its version 1.1. SVG, like XHTML and some of the other W3C
standards that we have discussed, is modularized. The two profiles (collections
of modules) that we are most interested in are SVGT (SVG Tiny Profile) and
SVGB (SVG Basic Profile). SVGT is intended for those devices that are extremely
resource-constrained such as cell phones whereas SVGB offers more functionality
and is more intended for slightly more powerful devices such as PDAs. More
advanced graphics features such as opacity, gradient color ranges, and patterns are
not included in SVGT. Both are complementary to XHTML Mobile Profile though
their use means that the client (thick client or browser running on the mobile
device) must support the features.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

362 DEVELOPING MOBILE GUIs

Various subsets of SVG have a lot going for them: SVG is XML based, can be
used along with other standards such as XSLT and SMIL, and is compatible with
legacy technologies such as HTML.

Building GUI Palm Applications
The Palm OS is currently one of the most popular operating systems for handheld
devices. At this time, Palm OS only supports an IP-based data channel for network
connectivity and a GUI. Though some Palm-based PDAs can function as mobile
phones as well, the operating system does not expose much, at this time, in the
way of controlling the telephony channel for customized purposes.

There are two ways to build a GUI Palm:

1. You can write a client-side application for the Palm. There are several different
choices here. You will get the best performance out of a C-based application
using the Palm SDK. To do this, you need to download the Palm SDK and use a
C/C++ development environment. You can always use free tools such as Gnu’s
compilers, but you will find it much easier to develop with a more advanced
tool such as MetroWerk Code Warrior. You can also write Java programs that
run with acceptable performance on the Palm platform. There are various Java
Virtual Machines (JVMs) for the Palm like IBM’s J9. At the time of authoring
this text, the J2ME PDA Profile is being worked on with Palm as the reference
implementation platform. There are also some variations for the Basic program-
ming language. Devices that have Palm OS typically have enough resources to
support a fair amount of functionality on the client side, but you will still need
to be very conscious of the device’s limited resources.

2. You can write a Palm Query Application (PQA). PQAs are written using HTML
and reside on the Palm device. There is another piece to this puzzle called Web
Clippings. Web Clippings are also written in HTML. The idea is to put static
HTML into the PQAs so that the content is not downloaded every time the page
is requested. Web Clippings provide the Web content that changes. PQAs are
compiled using PQA Builder, a tool downloadable from the Palm. Figure 6.18
shows a trivial sample of a PQA application before we compile it. Compilation
instructions are included within the meta tags in the header. There are only
three meta tags: PalmComputingPlatform, which indicates whether the page
was designed for the Palm platform or not, HistoryListText, which specifies what
should be displayed in the Palm history list, and PalmLauncherRevision, which
specifies the version of the PQA but is strictly for documentation purposes (i.e.,
there is no provisioning functionality built into the Palm OS based on this tag).
If you want to build a PQA, look further into the allowed tags and the subset
of HTML supported on the Palm GUI platform.

Building GUI Symbian Applications
Symbian is perhaps the most popular operating system for PDA and mobile cellular
devices in Europe. Like Palm, it provides an open-platform C/C++-based API.
There is also a high degree of support for Java on Symbian as well as some Basic
and Visual Basic applications. (Once again, we discourage the user from writing

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 363

<html>

<head>

<title>Hello World!</title>

<meta name="PalmComputingPlatform" content=

"true">

</head>

<body>

Hello World!

</body>

</html>

FIGURE 6.18. Sample PQA Application Before It Is Built.

serious mobile applications with Visual Basic or like tools as they do not provide
for enough optimization capabilities for most resource-starved devices.)

The big advantage that Symbian offers over Palm and Windows CE is its su-
perior support of communication protocols. The Symbian APIs provide seamless
integration with SMS and IP-based communications as well as RS-232 communi-
cations for testing (serial port). Let us take a quick look at building a Hello World
program for Symbian so that we can get a feel for what it would be like to program
in Symbian. We will use the C++ API, though there is a both a full-blown JVM
and a Personal Java implementation available for Symbian. Every application for
Symbian has at least four components:

1. View: This is basically the layout of the user interface. The buttons, input boxes,
text, etc. are all put onto this component.

2. Application UI: This class handles all of the events emitted by the various com-
ponents of the interface and what happens when those events are emitted.
Whereas the View defines the layout, the Application UI defines the behavior
of the user interface. The Application UI must extend the class CEikAppUI,
which delivers some standard behaviors.

3. Application Shell: This is what wraps around the entire application. This class
must extend CEikApplication.

4. Document: Though this component is not used in all applications, one must exist
for all applications. The Document is applicable only to those applications that
have some persistence or have the concept of a real document (such as word
processing, spread sheets, etc.). To create a Document, the developer must
extend the CEikDocument class.

As you can see, authoring even a simple C++ application for Symbian takes quite an
effort. But then, this is typical of any C/C++ application development environment.
Java presents us with the option of a simple development path in exchange for
loss of performance. As we mentioned earlier, Java on Symbian means Personal

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

364 DEVELOPING MOBILE GUIs

package com.symbian.devnet.quartz.qjava;

import com.symbian.devnet.quartz.awt.*;

import java.awt.*;

import java.awt.event.*;

public class QJava extends QFrame implements

ActionListener

{
static MenuItem mHelloWorld = new MenuItem("Hello

World");

public QJava(int i)

{
// Default constructor takes in an integer to

// create a number of "cards." Similar to WML card

// concept.

super(i);

Panel pt = getCardAt(0);

pt.setLayout(new BorderLayout());

appMenu.add(mHelloWorld);

mnuExit.addActionListener(this);

setVisible(true);

}

public void actionPerformed(ActionEvent anEvent)

{
if (anEvent.getSource().equals(mHelloWorld))

{shutDown();}
}
// Test Method

public static void main(String[] args) {
// Delay for the emulator to start before starting

// the application

if (args.length > 0) {
String s = args[args.length-1];

if (s.equals("sleep")) {
try

{Thread.sleep(50000);}
catch (InterruptedException e)

{}
}

}

FIGURE 6.19. Rudimentary Symbian Application with Java.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 365

QJava myQuartz = new QJava(2);

GridPanel myPanel = new GridPanel();

Checkbox myCheck = new Checkbox("Test!");

TextArea myTextArea = new TextArea(6,24);

Choice myChoice = new Choice();

myPanel.add(myTextArea,0,1);

myPanel.add(myCheck,0,2);

myChoice.addItem("Good Bye");

myChoice.addItem("Hello World");

myPanel.add(myChoice,0,2);

qTest.setCardAt(myPanel,0);

myQuartz.displayCardAt(0);

}
}

FIGURE 6.19 (continued)

Java: This is a custom virtual machine for the platform with the APIs that make
sense for the platform.

When writing applications for Symbian, we typically deal with a DRFD (Device
Family Reference Design). There is a DFRD for every device type, because what
Symbian does on a very small device is much different than what it does on a
powerful PDA. Symbian’s approach is much like J2ME. In other words, DRFDs are
similar to the J2ME profiles.

A simple class written for the Crysal DFRD is shown in Figure 6.19. You can
see that programming a user interface with Java on Symbian is very similar to pro-
gramming Java on any other platform. This is the benefit you gain in programming
mobile applications in Java for the price of performance and a bit less flexibility.
We have now discussed the basics of the most popular tools in building GUI in-
terfaces for mobile applications. As promised, let us go back and look at UIML as
an alternative to XForms for building generic user interfaces.

Building Mobile GUIs with Microsoft Platforms
Like Palm and Symbian operating systems, we can either produce markup lan-
guages to be displayed at the device using a browser or produce a custom applica-
tion to run on the device to display a custom GUI. There are currently a variety of
versions of Microsoft Windows CE that run on a variety of devices. It is important
to note that all of these versions are very different operating systems as they have
been tuned to run on different devices.

Most of the upper end devices offering Windows CE operating system, such as
the Compaq IPQA, offer either a full-blown HTML browser or a WML browser.
Sometimes, a subset of HTML is used. In essence, building thin-client mobile
applications for Windows CE is no different than building the same thing for
Palm, WAP browsers, or Symbian. Microsoft offers ASP as the server-side language
(which can be a little different depending on which version of Microsoft platform

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

366 DEVELOPING MOBILE GUIs

you are using—.NET or older versions) and C#, C++, and Visual Basic to build
components used by ASP pages.

When it comes to building applications for the Windows CE platform, devel-
opment is done in C/C++/C#, compilation is done on a PC, and the application is
uploaded to the device. So far, the Microsoft platform does not offer a provisioning
system (some way of deploying and distributing the application to the intended
targets, remotely or locally) for mobile applications such as that of BREW and the
forthcoming versions of J2ME.

The one unique thing that the .NET platform offers is the better ability of the
more powerful Windows CE devices to integrate the use of Web services. Process
of creation and deployment of Web service–based applications on Windows CE
devices is simplified greatly with the Microsoft development tools. Also, there are
numerous commercial user interface components optimized for each Windows
CE version available for developers.

6.2.1 J2ME GUIs
We mentioned in Chapter 2 that functionality such as GUI specifications are part of
the J2ME profile specifications and not the core J2ME implementation. Currently,
the MIDP 2.0 profile has yet to be implemented by any device manufacturers.
MIDP 2.0 offers more in the way of GUI functionality than does MIDP 1.0. There
are also other profiles such as the PDA Profile that provide different APIs to build
GUIs on various J2ME platforms and implementations. Nevertheless, because the
idea of J2ME is to cut out superfluous functionality from the typical Java platform
functionality, the profiles always have less than you would want as a developer.
So, you always have to build more custom code than desired, but this is so that
the basic platform can be kept to a bare minimum.

To see how J2ME profiles treat the GUI problem, let us just quickly look at the
MIDP 1.0 treatment of building GUIs. MIDP 1.0 provides basic components that
need to be extended to be meaningful such as Canvas, entire functional compo-
nents such as List that do not need any further embellishment to be useful as a
complete user interface, and components that are essentially GUI containers and
need to be embellished with further placement of components within them such
as Form.

Figure 6.20 shows an example of J2ME MIDP 1.0 code to create a simple GUI
application. Refer to Chapter 2 to see the basic differences in J2ME and the pro-
cess of developing J2ME applications with J2SE and the process of developing
J2SE applications. Also note that a real-world J2ME application would probably
look more functional than the purist object-oriented view we have shown in our
example for the sake of efficiency. This is just an example and we will leave the
implementation details of your application to you.

Now that we have looked at these different tools a bit more in depth, let us look
at UIML as a comparable technology to UIML.

User Interface Markup Language
Throughout this text, we have chosen to use XForms for our examples in building
generic user interfaces. We have done this for a variety of reasons, among the most

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 367

import java.util.Enumeration;

import java.microedition.lcdui.*;

public class VoteList() {
private DomainVotes mVotes;

private List mVotesList;

private Display mDisplay;

public HelloWorld(Display aDisplay) {
mDisplay = aDisplay;

mVotesList = new List("Vote:",Choice.EXCLUSIVE);

visit(mVotes);

}
public void visit(DomainVotes aVotes) {

Enumeration e = aVotes.getVoteEnumeration();

while (e.hasMoreElements()) {
mVotesList.append((String) e.nextElement();

}
}
public void getSelectedVote() {

mVotes.getSelectedVote(mVotesList.

getSelectedIndex());

}
public void setDomainVotes(DomainVotes aVotes)

{mDomainVotes = aVotes;}
}

FIGURE 6.20. Sample Class for a Simple GUI for MIDP 1.0.

important of which are that XForms is a W3C standard and that it is a well-defined
application of XML with some momentum in being adopted by the open-source
community and by commercial browser makers. However, AUIML presents us
with a viable alternative to XForms. We will look at it in this section.

We should also note that there are two markup languages very closely named:
AUIML, which is the Abstract User Interface Markup Language, and UIML, which
is the User Interface Markup Language. AUIML is also known as DIML. AUIML
was started by IBM; this effort is one of the roots of what has eventually given
rise to XForms. UIML is an open but proprietary (controlled by Harmonia Inc.)
standard that addresses the same problem. UIML is different from XForms in
that UIML defines a metalanguage in which to define languages such as XForms.
We already discussed the comparison of the approaches between a generic user
interface language such as XForms and a user interface metalanguage such as UIML
in a subsection of Section 6.1.1. (Transformation-Based Techniques for Mobile
Applications).

To give you a better feel of how UIML is implemented, let us go through some
of the syntax and look at what the designers had in mind when creating it. UIML

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

368 DEVELOPING MOBILE GUIs

SIDE D ISCUSSION 6 .2

Comparing XForms and UIML

UIML specifications recommend that the mappings specified at
http://www.uiml. org/toolkits be used. However, this is somewhat against the
concept of defining a metalanguage to build generic user interfaces. The idea behind
any metalanguage, for example the metamodel introduced by UML, is to provide a
customized extensibility mechanism. So, instead of describing specific solutions, it
describes the way to come up with a solution. Using the same set of mappings over
and over for the same metalanguage eliminates the need for having a metalanguage.

This inconsistency is one of the reasons we selected XForms over UIML for our
examples. Nevertheless, the concept behind UIML, a metalanguage for describing
user interfaces instead of a language for generic user interfaces, remains very valid.

breaks down the task of describing a user interface into describing four aspects of
user interfaces:

1. Headers: The headers in a UIML document are enclosed within <head>

</head> tags. Headers provide a way to describe the document using XML
tags. They also give us a way to provide extra information to the UIML parser
or browser not enclosed within the remainder of the document.

2. Interface: All those tags needed to describe a given type of a user interface
itself are enclosed within <interface></interface> tags. We will look at these
elements a bit later.

3. Peers: Peer elements, defined by <peer></peer> tags, are used to map structure
and behavior of UIML to other user interface markup languages. For example,
if we wanted to define the mapping of UIML to VXML, this would be done
inside the <peer></peer> tags.

4. Presentation: This element encloses the legal vocabulary for describing the user
interface (mostly done in the interface section of the UIML document) enclosed
in <presentation></presentation> tags.

The basic structure of a UIML document is described in Figure 6.21. UIML is
implemented using XML, so let us review the XML tags as we have been doing for
other XML-based technologies. These are listed in Table 6.3.

First, nearly all elements in a UIML document have the attribute of id. The
id attribute must be unique within the document. The interface elements have
the attribute class. This is based on the W3C CSS class that allows addressing of
elements by type so that styling can be applied to a class of elements.

Many UIML elements have the attribute source. This attribute is always set to a
Web style URI. There are two uses of this attribute within the various UIML ele-
ments. When it points to a UIML document, it is used as an “include” mechanism
and the external UIML document is included within the document that points
to it at the point of occurrence of the element with the source attribute. If the
URI points to a non-UIML document, the target is used by the UIML parser in a
parser-specific manner (by including it in the specialized user interface instance,

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 369

<?xml version="1.0" ?>

<!DOCTYPE uiml PUBLIC "-//UIT//DTD UIML 2.0 Draft//EN"

UIML2_0f.dtd">

<uiml>

<head>...</head>

<interface>...</interface>

<peers></peers>

<template></template>

</uiml>

FIGURE 6.21. Basic Structure of a UIML Document.

by ignoring it if the file type is not understood, etc.). The way the external source
is treated may be specified further by specifying a how attribute when available.

6.2.2 From Generic UIs to Specialized Graphical User Interfaces
So what does this all mean? How do we use it all to build GUIs for our mobile
applications?

The tools that we have looked at let us build applications on mobile devices that
render user interfaces or build markup language–based documents that are ren-
dered by a browser on the mobile device. Alternatively, the mobile device may have
an application that consumes a markup language such as XForms and produces a
user interface.

In the previous chapters, we looked at building generic user interfaces and
specializing them. Then, we introduced specific development techniques including
design patterns that help us implement user interfaces in a manner that minimizes
the development effort and maximizes the flexibility of the application to changes
during the software life cycle. We had already looked at high-level architectures
in Chapter 1.

From there, it is up to the software engineer to understand the requirements
of the application and to select the right architecture, implementation techniques,
and implementation tools to build the application. As for any software problem,
there is no “golden hammer” solution to building GUIs for mobile applications.
The left-hand side of the equation is a problem represented by the requirements
of the customer and the right-hand side is a solution, selected by the engineer(s),
that fit the problem. Obviously, the design and implementation of the GUI are not
the only considerations in selecting the tools and techniques to build the appli-
cation. There may be many other considerations, such as availability of specific
functionalities on the tools (such as GPS for location services), time constraints
that may affect development techniques chosen, and budgetary constraints that
might affect the choice of development tools. Our goal here has been to introduce
the tools that you need to build your mobile application in an educated manner.

Of course, while we are building the GUI to our mobile application, we need
to use a tool that guides us during the development process. Note that the tool

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

TA
B

LE
6
.3

.
D

e
sc

ri
pt

io
n

o
f

S
o
m

e
o
f

th
e

U
IM

L
Ta

gs

Ta
g

A
tt

ri
bu

te
s

D
es

cr
ip

ti
on

<
m

et
a>

n
am

e,
de

sc
ri

pt
io

n
T

h
is

ta
g

is
u

se
d

w
it

h
in

th
e

<
h

ea
d>

<
/h

ea
d>

ta
gs

an
d

en
ca

ps
u

la
te

s
m

et
ad

at
a

to
be

u
se

d
by

th
e

do
cu

m
en

t
pa

rs
er

or
th

e
re

ad
er

of
th

e
do

cu
m

en
t.

T
h

e
n

am
e

an
d

de
sc

ri
pt

io
n

at
tr

ib
u

te
s

pr
ov

id
e

a
n

am
e–

va
lu

e
pa

ir
m

ec
h

an
is

m
fo

r
sp

ec
if

yi
n

g
th

e
m

et
ad

at
a.

<
st

ru
ct

u
re

>
id

,r
es

ou
rc

e,
h

ow
,e

xp
or

t
T

h
is

ta
g

is
u

se
d

w
it

h
in

th
e

<
in

te
rf

ac
e>

ta
g

an
d

sp
ec

ifi
es

th
e

st
ru

ct
u

re
of

th
e

pa
rt

ic
u

la
r

u
se

r
in

te
rf

ac
e

in
st

an
ce

(s
cr

ee
n

,d
ia

lo
gu

e,
et

c.
).

T
h

is
is

w
h

er
e

w
e

sp
ec

if
y

th
e

m
od

e
an

d
ch

an
n

el
-d

ep
en

de
n

t
st

ru
ct

u
re

of
a

pa
rt

ic
u

la
r

ty
pe

of
u

se
r

in
te

rf
ac

e.
<

pa
rt

>
id

,c
la

ss
T

h
is

ta
g

is
u

se
d

w
it

h
in

th
e

st
ru

ct
u

re
ta

g
an

d
al

lo
w

s
u

s
to

de
fi

n
e

sp
ec

ifi
c

ty
pe

s
of

u
se

r
in

te
rf

ac
e

el
em

en
ts

su
ch

as
bu

tt
on

s,
co

m
bo

bo
xe

s,
an

d
ot

h
er

s.
<

st
yl

e>
id

,s
ou

rc
e,

h
ow

,e
xp

or
t

T
h

is
ta

g
is

u
se

d
w

it
h

in
th

e
<

in
te

rf
ac

e>
ta

g
an

d
sp

ec
ifi

es
th

e
sp

ec
ifi

c
fo

rm
at

ti
n

g
of

va
ri

ou
s

u
se

r
in

te
rf

ac
e

co
m

po
n

en
ts

de
fi

n
ed

in
th

e
re

st
of

th
e

do
cu

m
en

t.
T

h
e

u
se

r
in

te
rf

ac
e

co
m

po
n

en
ts

fo
rm

at
te

d
th

ro
u

gh
th

e
st

yl
e

se
ct

io
n

of
th

e
<

in
te

rf
ac

e>
ar

e
ad

dr
es

se
d

th
ro

u
gh

th
e

<
pr

op
er

ty
>

el
em

en
t.

<
pr

op
er

ty
>

n
am

e,
so

u
rc

e,
h

ow
,e

xp
or

t,
pa

rt
-n

am
e,

pa
rt

-c
la

ss
,

ev
en

t-
n

am
e,

ev
en

t-
cl

as
s

P
ro

pe
rt

ie
s

ar
e

va
ri

ou
s

st
yl

in
g

de
sc

ri
pt

io
n

s
of

u
se

r
in

te
rf

ac
e

el
em

en
ts

re
le

va
n

t
to

th
os

e
pa

rt
ic

u
la

r
el

em
en

ts
.F

or
ex

am
pl

e,
w

e
ca

n
cr

ea
te

a
pr

op
er

ty
w

h
os

e
n

am
e

at
tr

ib
u

te
is

se
t

to
“c

ol
or

”
an

d
de

sc
ri

be
s

th
e

co
lo

r
of

a
u

se
r

in
te

rf
ac

e
co

m
po

n
en

t
th

at
is

vi
su

al
.

M
os

t
of

th
e

ti
m

e,
yo

u
ca

n
th

in
k

of
pr

op
er

ti
es

li
ke

ad
je

ct
iv

es
th

at
de

sc
ri

be
th

e
in

te
rf

ac
e

co
m

po
n

en
ts

.A
n

ot
h

er
ex

am
pl

e
of

a
pr

op
er

ty
is

a
fo

n
t.

T
h

os
e

u
se

r
in

te
rf

ac
e

co
m

po
n

en
ts

(d
efi

n
ed

in
th

e
st

ru
ct

u
re

se
ct

io
n

by
pa

rt
s)

to
w

h
ic

h
th

e
co

n
ce

pt
of

fo
n

t
is

re
le

va
n

t
(a

n
yt

h
in

g
th

at
h

as
te

xt
or

is
te

xt
)

co
u

ld
h

av
e

a
fo

n
t

pr
op

er
ty

.
<

ca
ll
>

O
n

e
of

th
e

bi
g

di
ff

er
en

ce
s

be
tw

ee
n

X
F

or
m

s
an

d
U

IM
L

re
si

de
s

in
th

is
ta

g.
W

h
er

ea
s

X
F

or
m

s
u

se
s

X
E

ve
n

ts
as

th
e

m
ec

h
an

is
m

to
h

an
dl

e
cl

ie
n

t-
si

de
ev

en
ts

,U
IM

L
al

lo
w

s
de

fi
n

in
g

an
in

te
rf

ac
e

to
ca

ll
ex

te
rn

al
fu

n
ct

io
n

s
w

it
h

ou
t

an
y

aw
ar

en
es

s
of

th
e

im
pl

em
en

ta
ti

on
of

th
is

fu
n

ct
io

n
(i

m
pl

em
en

ta
ti

on
de

pe
n

de
n

ce
is

on
th

e
U

IM
L

pa
rs

er
/b

ro
w

se
r)

.

370

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 371

PAC

MVC

PAC-TG

Others

Development
Techniques

Client-Server

Client

Server

Mobile Agents

Architectural
Designs

J2ME

Device Side
Implementation

Tools

Infrastructure
Implementation

Tools

Symbian
WAP

Windows CE
BREW
Others

XForms
UIML
WAP
HTTP
BREW
Others

Mobile GUI Solution
FIGURE 6.22. Arriving at a Mobile GUI Solution for Your Mobile Application.

alone will not be enough and that we will need a process that uses the tool. For
example, many organizations use the Rational Unified Process for development
of complex stationary applications. We are not going to outline such a process
here; rather, we are going to give you the tools you need to complement whatever
process you select to take into account the dimensions of mobility. UML has been
the tool that we have uniformly used throughout this text to do this and we will
continue to look at UML as the tool to guide us through the development process
and to bind the various pieces of the development process together. Figure 6.22
shows the typical component strategy in designing Mobile Applications that have
significant user interfaces.

Modeling GUIs with UML
Since its inception, UML has been mostly used in modeling business processes,
domain models that represent business logic, and other types of object models
internal to the operations of the system. Although use cases are widely used to
specify user requirements, screen mockups are the tool of choice for most projects.
This is because most software development projects aim at building an application
for a specific user interface type, mostly a GUI. Note that at the time of authoring
this text, UML 2.0 has not yet been released. There are distinct differences be-
tween UML 1.4 and UML 2.0. The early drafts are available and, unfortunately, the
modifications and additions to UML 2.0 do not seem to address the dimensions of
mobility as we are concerned with them. Nevertheless, keep in mind that some of
the basic definitions of various diagrams may be different with UML 2.0. This book
has been authored based on UML 1.4; however, there are no barriers to applying
the extensions that we introduce here to UML 2.0.

Only recently has there been a concerted effort in using UML to model GUIs
and the users’ interactions with GUIs. The motivation of this effort has been
mainly in creating a seamless software development process around UML. Al-
though we are interested in this aspect as well, our motivation in using UML to
model user interfaces and the users’ interactions with user interfaces is in creating a

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

372 DEVELOPING MOBILE GUIs

uniform method of documenting UI architecture, design, and implementation that
is independent of the type of GUI used and the type of channel(s) through which
the GUI is displayed to the user.

Although there are no recommended ways of using UML for user interfaces
by OMG, the organization that controls the evolution of UML, there have been
a variety of papers published on this topic suggesting many different ways to
use UML for user interfaces. In this section, we will take a survey of the various
methods suggested to date and relate them to our problem, namely, developing
GUIs for mobile applications.

UML may be used in many different ways to facilitate the process of user inter-
face development. OCL can always be used nearly like a programming language
to allow us to specify all the constraints that would encapsulate all of the infor-
mation needed about a user interface. However, by the time we do this, we end up
having implemented the user interface in another programming language: OCL.
So, we will use OCL very judiciously. We will mainly try to use UML diagrams to
represent user interfaces and the user’s interactions with them. In this light, let us
begin with UML Activity Diagrams.

6.2.3 Using UML Activity Diagrams for GUI Development
As you may recall from Chapter 4, activity diagrams are a type of state diagram
with some subtle differences with UML state diagrams such as the fact that end
points are not required. Activity diagrams are primarily used in modeling process
flows. And, the way we will use them to model GUIs is to model the activities that
take place between the user and the user interface.

Lieberman [Lieberman 2001] recognizes some stereotypes for extending UML
activity diagrams in modeling user interfaces: page, frame, exception, presentation,
and connector.

The connector stereotype is used for the purpose of nesting activity diagrams
so that user interactions with the GUI or the interactions between the different
GUI components can be reused the same way that we may reuse GUI compo-
nents themselves. The other advantage of nesting activities is that it allows us to
“drill-down” into the details instead of being inundated with the details of many
different activities or, alternatively, not representing enough detail in the activ-
ity diagrams representing the various user interface interactions. This stereotype
can be particularly useful in designing mobile GUIs because some interactions may
be applicable to some GUIs and not others (based on device, available channels,
etc.).

Page and frame stereotypes borrow their definitions from HTML pages and
frames. A page represents a displayable unit that occupies the entire display; a
frame can be any part of that display, outlined in a logical manner. It must be
noted that Lieberman’s analysis is primarily done for representing complex GUIs
such as Web pages. We are not guaranteed what type of functionality is supported
by the various mobile devices and how complicated the GUI may be. So, although
the concept of page is always applicable, we are not guaranteed that the concept
of a frame is applicable to a particular user interface or not.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 373

The presentation stereotype is a stereotype on an action (as are the other stereo-
types we have mentioned here) and indicates interface interactions between the
user and the system.

The exception stereotype is designed to represent an “exceptional” condition.
This could be a user error (perhaps the result of rejected validation) or simply an
event that does not fit within the predictable workflow. The exception stereotype
fits well within the context of our discussion since, regardless of the type of inter-
face we are dealing with, validation may be a requirement and various unforeseen
events may occur (such as connection timeouts, etc.).

Lieberman also color codes the various states with which each of these stereo-
types are associated. Use the reference paper if you wish to use color coding in
UML diagrams for better clarification. Here, we will not be using color coding, sim-
ply the stereotype tags indicated by <<exception>>, <<page>>, <<frame>>,
and <<connector>>.

Let us look at a simple example where the user’s address is collected in Fig-
ure 6.23.

The obvious problem with our diagram is that it does not really show the fact
that the user could enter the requested data in any possible order. To do this, we
could use forks and joins: We use the fork to show the various possible routes
the user may take and then use the join to bring these routes back together where
the next action is the same for multiple permutations. If you want to express
that the user can enter the data in any order then you could use a fork and a
corresponding join, but then we cannot show, in one diagram, that either case
could be true. We could indeed draw all of the possible state transitions from the
beginning and create an initial state that would simply represent the user viewing
the screen. However, as you can imagine, representing a large system with many
workflows would lead to an activity proliferation problem. This would detract
from the usefulness of using UML to begin with. Nevertheless, as long as we are
not concerned about the asynchronous nature of some interactions between the
user and the user interface, we are able to model the interface using the activity
diagram in a very reasonable way.

Now, let us make our interactions a bit more sophisticated and include some
validation messages when the user enters wrong information into the system. We
will do this only for the first frame of the activity diagram of Figure 6.23. This is
shown in Figure 6.24. Note that this time we use an escalating prompt that only
takes two user errors and then exits the component. Though in real life, we may
not do this for collecting a user’s address, this is a good example of how exceptions
stereotypes are used.

In our example, we use a transition called “Token Filled,” which simply indi-
cates that the user has indicated, in some way by clicking, tabbing, etc., that he or
she is finished with giving input to the giving component. Also, note that we have
used a frame to model an individual field. This may seem like overkill for a Web
page or thick-client application on a PC, but it is semantically correct as defined
by Lieberman. The reason for doing this is that we do not know how many com-
ponents may fit on a particular display page at a time. Some displays may allow
for all of the components to be displayed on the same page (for example, HTML

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

To
ke

n_
F

ill
ed

To
ke

n_
F

ill
ed

To
ke

n_
F

ill
ed

To
ke

n_
F

ill
ed

To
ke

n_
F

ill
ed

In
va

lid
_A

dd
re

ss

In
va

lid
_P

os
ta

lC
od

e

V
al

id
_C

ou
nt

ry

In
va

lid
_C

ou
nt

ry

In
va

lid
_S

ta
te

V
al

id
 _

A
dd

re
ss

V
al

id
_S

ta
te

V
al

id
_P

os
ta

lC
od

e

In
va

lid
_C

ity

V
al

id
_C

ity

«f
ra

m
e»

G
et

S
tr

ee
tA

dd
re

ss

E
nt

er
_A

dd
re

ss
_C

ol
le

ct
io

n_
In

te
ra

ct
io

n

«f
ra

m
e»

G
et

C
ity

«f
ra

m
e»

G
et

S
ta

te

«f
ra

m
e»

G
et

P
os

ta
lC

od
e

«f
ra

m
e»

G
et

C
ou

nt
ry

FI
G

U
RE

6.
23

.
U

si
ng

an
Ac

tiv
ity

Di
ag

ra
m

to
Re

pr
es

en
ta

G
U

IC
om

po
ne

nt
to

Co
lle

ct
Ad

dr
es

s
In

fo
rm

at
io

n.

374

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

To
ke

n_
F

ill
ed

To
ke

n_
F

ill
ed

To
ke

n_
F

ill
ed

In
va

lid
_S

tr
ee

tA
dd

re
ss

In
va

lid
_S

tr
ee

tA
dd

re
ss

In
va

lid
S

tr
ee

tA
dd

re
ss

V
al

id
_S

tr
ee

tA
dd

re
ss

V
al

id
_S

tr
ee

tA
dd

re
ss

V
al

id
_A

dd
re

ss

«f
ra

m
e»

G
et

S
tr

ee
tA

dd
re

ss

«f
ra

m
e»

G
et

C
ity

«f
ra

m
e»

D
is

pl
ay

_E
rr

or
_M

es
sa

ge

«e
xc

ep
tio

n»

F
irs

t_
In

va
lid

_R
es

po
ns

e

«f
ra

m
e»

P
ro

m
pt

_F
or

_C
or

re
ct

_R
es

po
ns

e

D
is

pl
ay

_H
el

p_
A

nd
_P

ro
m

pt
_F

or
_R

es
po

ns
e

«e
xc

ep
tio

n»

FI
G

U
RE

6.
24

.
U

si
ng

Ex
ce

pt
io

n
St

er
eo

ty
pe

s
fo

rM
od

el
in

g
U

se
rI

nt
er

fa
ce

Va
lid

at
io

n
w

ith
Ac

tiv
ity

Di
ag

ra
m

s.

375

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

376 DEVELOPING MOBILE GUIs

browsers), whereas other components will require one page per component (for
example, WML 1.1).

Now, let us use the page stereotype by including the address component, whose
interactions with the user was modeled in Figure 6.23, in a component that takes
a user’s name, address, and phone number.

In his doctoral thesis, Nunes [Nunes 2001] takes the approach of using activ-
ity diagrams one step further and recognizes the development of user interfaces
with respect to the entire development process and developing what he calls the
“Wisdom approach.” The Wisdom approach, per Nunes’ prescription, has merit in
any type of software development, but let us see how it applies to the development
of mobile applications, generic user interfaces, and specialization of those generic
user interfaces.

The Wisdom Approach
Nunes [Nunes 2001] is one of the first and few who have recognized the impor-
tance of two things in developing user interfaces. First, user interfaces should be
developed with more abstractions such as when building generic user interfaces
and then specializing them. Second, UML and its extension mechanisms can be
used to facilitate the process of developing user interfaces (and further that this re-
sults indirectly in better integration of the user interface development process with
the other parts of the development process). As we did earlier, Nunes recognized
PAC and MVC as the state-of-the-art architectural design patterns for building
layered user interfaces and points out their shortcomings.

Although Nunes outlined an entire software user interface–focused design
methodology, in this text, we do not outline a software methodology framework ex-
plicitly. However, we do implicitly outline a software methodology focused on de-
veloping mobile applications. The two are inherently orthogonal. However, Nunes’
Wisdom model architecture and Wisdom notation, respectively dealing with UML
extensions for the user interface and the corresponding notational augmentations
to UML, are directly relevant to our topic. So, let us review the Wisdom model
architecture and the Wisdom notation. If you are interested in learning more about
the Wisdom methodology of software development and applying it to your soft-
ware projects, we recommend Nunes thesis, which clearly outlines the process.
We will borrow from Nunes’ methodology to outline a rough draft for the process
of developing mobile applications in Chapter 15. But, as we will note then, mobile
application development is far too young at this point to start relying on a particu-
lar software development methodology. Software development methodologies are
evolutionary and come from years of learning from mistakes.

The Wisdom Model Architecture
Like Lieberman, Nunes recognizes the advantages of activity diagrams in repre-
senting the user interface. But, in his Wisdom model architecture, he recommends
the following implementation models:

1. User Role Model: This model is easily represented by the typical use case
diagrams and focuses on the responsibilities of actors and the high-level

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 377

interactions of actors with each other and with the use cases. Note that the
use case diagrams of the user role model must focus on the interaction of the
user with the system; therefore, they should be heavily biased toward how an
end user sees the system as opposed to the internal implementation of the
system.

2. Domain Model and Use Case Diagrams for the Domain Model: The domain model
is one of the first things that UML users learn and perhaps presents the most
prevalent use of UML in software implementation. Domain models in the Wis-
dom methodology are represented with class diagrams as they are in all other
UML-based methodologies. Nunes also suggests the use of use case diagrams
to specify the interactions between the different users and the system as repre-
sented by the various internal components of the system. The difference between
these use case diagrams and the ones in the user role model is their perspective
is from the internal implementation of the application. Therefore, the sum of
the diagrams in the domain model focus on aspects like which use has access
to what component, what classes make up that particular component, and the
details of how the internal classes are related to each other.

3. Analysis Model and Interaction Model: Whereas the analysis model focuses on
the interactions between the internal components of the system and the ac-
tivities that take place while the system is operating, the interaction model
focuses on how the user interacts with different parts of the system. It is
important to note that although there may be a one-to-one or other type
of mapping between the internal components and the external user inter-
face segments, this is not necessary. This is essentially the difference between
the two models. Both focus on the flow and interaction of components, but
one deals with the flow and interaction of user interface components with
the user (interaction model) and the other with the interactions and work-
flows among the different components internally (analysis model). Nunes
introduced some UML extensions for the interaction model that will be ex-
tremely handy to us. Remember that one of our biggest hurdles lies in using
UML to represent generic and specific interactions between the user and the
system.

4. Design Model and Dialogue Model: The dialogue model focuses on the different
interactions with the system with respect to time. As we discussed in Chapter
5, dialogues are made of atomic interactions between the user and the sys-
tem. The dialogue model gives us a method to represent these atomic inter-
actions. Wisdom introduces some UML extensions for dialogue models. The
design model represents the same atomic interactions, but this time among
the components of the system. The design model relies heavily on UML state
diagrams.

5. Presentation Model: This model helps us represent the final user interface pre-
sented to the user. In our case, these final interfaces can be text based, graphical,
voice driven, based on motion, etc. There are extensions introduced here as well.
As one may expect, the presentation model is well linked to the dialogue model
and this will help us describe the specialization of generic interfaces into specific
user interfaces.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

378 DEVELOPING MOBILE GUIs

6. Implementation Model: What Nunes calls the implementation model is really not
a model; it is the actual implementation of the system. The reason it exists is to
provide a link between the other models and real code. Tools that support round-
trip engineering use the same approach by having some implementation model
that abstracts the model away from the code (which could be automatically
generated).

These various “models” can be thought of as different views of the same model.
However, depending on the view with which you look at the system, the actual
model of the system may be different. In other words, how one models the internals
of a system depends on the perspective with which one has looked at the system.

This gives us a general feel for how the Wisdom architectural model differs from
the other typical UML-based models in using the diagrams throughout the devel-
opment process. What we are really interested in are the extensions that Wisdom
provides us. These extensions have a great value in and of themselves without
the methodology and the architecture: They help us recognize what categories of
stereotypes are needed to model user interface components. In this way, Wisdom
UML extensions are valuable regardless of the overall software methodology used
in the project.

Let us dive right into these extensions and see what value they may offer us in
developing mobile applications.

The Wisdom UML Extensions
Nunes had a great approach in the way he designed his UML extensions in the
Wisdom model. He used stereotypes to define the extensions and then augmented
them with graphical widgets that accompany these stereotypes. Using stereotypes
alone has value in recognizing a taxonomy of types of things in a particular domain.
However, the real value of stereotypes are much more readily apparent when they
are accompanied by new graphical widgets that allow software developers, user in-
terface developers, and business analysts, all equally, to view the base functionality
of the system and the user interface.

The three “inventors” of UML [Jacobson, Booch, and Raumbaugh 1999] break
down the problem of modeling into modeling behavior, information, and interface
(where the term interface is not about the interface of a class but about the interface
to the system—the human-to-machine barrier). Wisdom breaks down the problem
further. First, it breaks down the problem of user interface–based modeling to the
analysis model and the interaction model, with the analysis model focusing on the
internals of the system and the interaction model focusing on the user interface
interactions of the system. The analysis model then has the same dimensions that
Jacobson, Booch, and Raumbaugh recognized for modeling: behavior, interaction,
and interface. The interaction model still has information as one of its dimensions,
but it introduces the new concepts of dialogue and presentation. We have already
talked about dialogue in Chapter 5. The concept of dialogue in Wisdom is the
same one that we introduced: a series of interactions that take place between two
parties (in our specific case the user and the system). Presentation represents the
look-and-feel or the sound-and-feel of the user interface. The interaction model

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 379

TABLE 6.4. Basic Iconic Representation of Model Types

Analysis Model Interaction Model
(Representing the System (Representing the User

Internals) Interface)

Behavior Interface Information Dialogue Information Presentation

is not related to the internal implementation of a system but rather is a perspec-
tive of an outside observer over the way a system interacts with a human actor.
Table 6.4 shows the widgets that we use to represent these concepts.

We can use these iconic representations of the model types in use case diagrams
for modeling the interaction of actors with a given type of model or for modeling
the interactions of the internals of a system.

It is notable at this point to mention that Nunes’ Wisdom methodology does
not use all of the available UML diagrams. Unlike Wisdom, we do not prohibit you
from using any of the techniques and diagrams available in UML regardless of how
advanced they may be. The key is to have enough tools to correctly communicate
the requirements and design of a mobile application.

Let us outline the specific extensions to the entities of each diagram type and
the corresponding widgets under the Wisdom methodology in Table 6.5.

Now, let us look at why we need to distinguish each of these stereotypes:

1. Essential Use Cases: Essential use cases are technology free and do not contain
any unnecessary restrictions or limiting assumptions regarding a specific im-
plementation detail reduced to its minimal form of expression [Nunes 2001].
In other words, essential use cases exist to describe a grouping of a set of in-
teractions that take place between the user and the system and are essential to
describe the purpose of the system.

2. Human Actors: This is an explicit abstraction of the person who actually interacts
with the system. The benefit of this abstraction is mainly in its ability to group
a set of roles that are meaningful only to the system into a bucket that can
represent an actual person. For example, someone named Phil may have the
duties of janitorial engineering as well as release engineering on an MS Windows
platform. Phil would be a human actor and each of his duties would be roles.

3. System Actors: This represents a grouping of all the roles that a system can
play when users use it. For example, a given system could be responsible for
keeping a history on the location of users as well as integrating with external
GPS systems to get the location of the user to begin with. Each of these is a
system role, whereas the system that actually accomplishes them is a system
actor.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

380 DEVELOPING MOBILE GUIs

TABLE 6.5. Wisdom UML Extensions for Building User
Interface–Driven Modeling

Diagram Type Stereotype Iconic Presentation

Use Case Diagrams <<essential use-case>>

<<human actor>>

<<system actor>>

Class Diagrams <<Task>>

<<Interaction Space>>

<<Boundary>>

<<Control>>

<<Entity>>

4. Tasks: Task classes are used to model the structure of the dialogue between the
user and the system in terms of meaningful and complete sets of actions required
to achieve a goal [Nunes 2001]. Think of tasks as large-grained workflows that
have a beginning and an end that comprise a meaningful start and stop to a
business action. For example, making a deposit to your bank account can be
considered a task.

5. Interaction Space: This stereotype roughly models the concept of an input and
an output channel from the user to the system. We have touched upon this
concept previously. It is a core concept for developing applications that use
multiple channels (such as audio telephony, text screens, graphics screens, etc.)
because distinguishing between the types of channels is crucial to the design of
such applications.

6. Boundaries: In heterogeneous environments where multiple systems are com-
municating, it is important to model the “boundary” lines between those sys-
tems. These systems may be abstract (all of the systems could be running under
the same process, same thread, etc.) or they could be actual distinct processes
and threads. Boundaries are MMI lines.

7. Controls: These type of classes represent all logic that is not business logic. In
other words, they represent all logic relating to the handling of other classes

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 381

and objects. For example, if a class is designed to control the life cycle of other
classes, then it is a control class.

8. Entities: Entity classes represent the business logic that represents the real-life
problem being solved. For example, a class that reads and writes the user’s
personal information is an entity. This class might use another class that merely
encapsulates the data structure that represents a user’s personal information, in
which case that class would be an entity as well. Note that the class that reads
and writes the user’s personal information to a file is not a control class because
the manner of persistence (reading and writing to a file) is application specific
and not a generic problem of handling any other classes.

Now that we have looked at the new UML extensions in Wisdom, let us look
at some additional extensions to associations provided in Wisdom that allow the
new entity extensions we just discussed to communicate with one another or other
entities in a UML model. These are shown in Table 6.6.

As you may recall, we discussed dialogues in some detail in Chapter 5. Rep-
resenting dialogues has traditionally been one of the most difficult parts of mod-
eling user interfaces. UML 1.4 by itself certainly does not address the problem
of modeling the user interface. Nunes’ approach is to use the ConcurTaskTrees
(CTT) as the foundation for building extensions that represent dialogues
properly.

Once again, as you may recall, in Chapter 5 we defined dialogues as being
composites of one or more interactions between the user and the system. These
interactions take place in some sequence and this sequence is part of what defines
the temporal context of the dialogue and the temporal context of the interactions
making up the dialogue. This temporal context is what Nunes borrows from CTT.
Therefore, the following atomic interactions may take place:

1. The interactions can start at any time and end at any time independent of one
another and be represented as T1 | | | T2.

2. The user may choose any interaction, but once one is chosen, no other interac-
tions can be performed until this interaction is finished; this may be represented
by T1 |[]| T2.

3. The interactions may start and end at any time, but they have some sort of
interdependency (they pass messages to one another, etc.) so that they must be
synchronized in some manner. This may be represented by T1 | [] | T2.

4. The termination of one interaction (T2) may cause the termination of one (T1)
or more interactions in the dialogue; this may be represented by T1[>T2.

5. The activation of one interaction (T2) may cause the activation of one (T1) or
more interactions in the dialogue; this may be represented by T1>>T2.

6. Iteration and finite iteration allow you to indicate an unlimited or limited rep-
etition of a task until it is signaled to stop. They are respectively indicated by
T∗ and T1(n).

Optional tasks are indicated by [T] and model tasks whose completion does not
affect the workflow and continuation of normal interaction with the system.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

TA
B

LE
6
.6

.
B

re
ak

do
w

n
o
f

A
dd

it
io

na
l
M

o
de

ls
In

tr
o
du

ce
d

by
N

u
ne

s’
W

is
do

m

In
te

ra
ct

io
n

M
od

el
C

om
m

u
n

ic
at

e
(A

ss
oc

ia
ti

on
be

tw
ee

n
an

ac
to

r
an

d
a

u
se

ca
se

or
be

tw
ee

n
bo

u
n

da
ri

es
,c

on
tr

ol
s,

an
d

en
ti

ti
es

)

T
h

is
as

so
ci

at
io

n
is

in
te

n
de

d
to

re
pr

es
en

t
pa

ss
in

g
of

m
es

sa
ge

s
be

tw
ee

n
an

ac
to

r
an

d
a

u
se

ca
se

or
be

tw
ee

n
bo

u
n

da
ri

es
,c

on
tr

ol
s,

an
d

en
ti

ti
es

.I
t

is
im

po
rt

an
t

to
n

ot
e

th
at

th
is

st
er

eo
ty

pe
in

di
ca

te
s

pa
ss

in
g

of
m

es
sa

ge
s

in
a

ve
ry

ge
n

er
ic

w
ay

w
it

h
ou

t
de

sc
ri

bi
n

g
th

e
m

et
h

od
u

se
d

fo
r

pa
ss

in
g

th
e

m
es

sa
ge

s
(p

u
bl

is
h

–s
u

bs
cr

ib
e,

po
in

t-
to

-p
oi

n
t,

et
c.

)
Su

bs
cr

ib
e

(A
ss

oc
ia

ti
on

be
tw

ee
n

tw
o

cl
as

se
s

re
pr

es
en

ti
n

g
in

te
rn

al
im

pl
em

en
ta

ti
on

of
th

e
sy

st
em

,
be

tw
ee

n
bo

u
n

da
ri

es
an

d
en

ti
ti

es
,b

et
w

ee
n

co
n

tr
ol

s
an

d
en

ti
ti

es
,o

r
am

on
g

en
ti

ti
es

)

T
h

is
as

so
ci

at
io

n
ty

pe
al

so
in

di
ca

te
s

pa
ss

in
g

of
m

es
sa

ge
s,

bu
t

u
n

li
ke

th
e

co
m

m
u

n
ic

at
e

as
so

ci
at

io
n

,i
t

in
di

ca
te

s
a

sp
ec

ifi
c

ty
pe

of
m

es
sa

gi
n

g,
n

am
el

y
pu

bl
is

h
–s

u
bs

cr
ib

e.
T

h
er

e
ar

e
tw

o
ca

se
s:

1.
on

e
of

th
e

cl
as

se
s

is
th

e
pu

bl
is

h
er

an
d

th
e

ot
h

er
th

e
su

bs
cr

ib
er

an
d

2.
an

en
ti

ty
is

th
e

pu
bl

is
h

er
an

d
th

e
bo

u
n

da
ry

,
co

n
tr

ol
,o

r
an

ot
h

er
en

ti
ty

is
th

e
su

bs
cr

ib
er

.

Sp
ec

ia
li

ze
s

(A
ss

oc
ia

ti
on

s
be

tw
ee

n
h

u
m

an
ac

to
rs

or
es

se
n

ti
al

u
se

ca
se

s)

T
h

is
as

so
ci

at
io

n
si

m
pl

y
de

n
ot

es
th

at
th

e
h

u
m

an
ac

to
r

or
es

se
n

ti
al

u
se

ca
se

sp
ec

ia
li

ze
s

(i
n

h
er

it
s

in
th

is
ca

se
be

ca
u

se
im

pl
em

en
ta

ti
on

s
fo

r
u

se
ca

se
s

or
ac

to
rs

do
n

ot
m

ak
e

m
u

ch
se

n
se

)
th

e
pr

op
er

ti
es

of
an

ot
h

er
h

u
m

an
ac

to
r

or
u

se
ca

se
.

In
cl

u
de

s
(A

ss
oc

ia
ti

on
s

be
tw

ee
n

h
u

m
an

ac
to

rs
or

es
se

n
ti

al
u

se
ca

se
s)

T
h

is
as

so
ci

at
io

n
is

ju
st

li
ke

th
e

sp
ec

ia
li

ze
s

as
so

ci
at

io
n

,e
xc

ep
t

th
at

it
de

n
ot

es
an

ag
gr

eg
at

io
n

re
la

ti
on

sh
ip

(a
h

u
m

an
ac

to
r

ca
n

h
av

e
an

ot
h

er
h

u
m

an
ac

to
r

or
an

es
se

n
ti

al
u

se
ca

se
ca

n
h

av
e

an
ot

h
er

es
se

n
ti

al
u

se
ca

se
).

In
th

e
ca

se
of

th
e

h
u

m
an

ac
to

r,
th

e
pu

rp
os

e
is

to
be

ab
le

to
re

pr
es

en
t

a
gr

ou
p

of
on

e
or

m
or

e
ac

to
rs

or
to

de
sc

ri
be

a
n

ew
ac

to
r

u
si

n
g

th
e

pr
op

er
ti

es
en

ca
ps

u
la

te
d

by
ot

h
er

s.
T

h
is

re
la

ti
on

sh
ip

m
u

st
be

u
se

d
ca

re
fu

ll
y.

R
em

em
be

r
th

at
th

e
pr

em
is

e
of

th
e

ex
is

te
n

ce
of

th
e

h
u

m
an

ac
to

r
is

to
ge

t
as

cl
os

e
to

a
re

al
h

u
m

an
as

po
ss

ib
le

(t
h

er
eb

y
be

tt
er

sp
ec

if
yi

n
g

th
e

n
ee

ds
of

th
e

u
se

r
in

re
la

ti
on

w
it

h
th

e
u

se
r

in
te

rf
ac

e)
.

382

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

D
ia

lo
gu

e
M

od
el

R
efi

n
e

ta
sk

(A
ss

oc
ia

ti
on

be
tw

ee
n

tw
o

ta
sk

s)
T

h
is

st
er

eo
ty

pe
is

u
se

d
w

h
en

on
e

ta
sk

re
pr

es
en

ts
a

h
ig

h
er

le
ve

lo
f

de
ta

il
th

an
th

e
ot

h
er

ta
sk

.T
h

e
pa

re
n

t
ta

sk
(t

h
e

on
e

w
it

h
le

ss
de

ta
il

)
is

th
e

so
u

rc
e.

In
fo

pa
ss

(A
ss

oc
ia

ti
on

be
tw

ee
n

tw
o

ta
sk

s)
T

h
is

st
er

eo
ty

pe
is

u
se

d
w

h
en

tw
o

ta
sk

s
ar

e
ex

ch
an

gi
n

g
in

fo
rm

at
io

n
th

ro
u

gh
m

es
sa

gi
n

g
or

so
m

e
ot

h
er

m
ec

h
an

is
m

.
Se

q (A
ss

oc
ia

ti
on

be
tw

ee
n

tw
o

ta
sk

s)
T

h
is

ta
sk

in
di

ca
te

s
th

at
a

gi
ve

n
ta

sk
“s

eq
u

en
ti

al
ly

”
fo

ll
ow

s
an

ot
h

er
ta

sk
.I

n
ot

h
er

w
or

ds
,i

t
st

ar
ts

w
h

en
th

e
ta

sk
th

at
it

de
pe

n
ds

on
en

ds
.

Se
qi (A

ss
oc

ia
ti

on
be

tw
ee

n
tw

o
ta

sk
s)

T
h

is
ta

sk
in

di
ca

te
s

th
at

on
e

ta
sk

ca
n

st
ar

t
an

ot
h

er
ta

sk
by

si
gn

al
in

g
it

in
so

m
e

w
ay

.N
ot

e
th

at
th

is
is

si
m

il
ar

to
th

e
se

q
st

er
eo

ty
pe

ex
ce

pt
th

at
th

e
se

q
st

er
eo

ty
pe

in
di

ca
te

s
a

cl
ea

r
te

m
po

ra
lr

el
at

io
n

sh
ip

in
on

e
ta

sk
en

di
n

g
to

st
ar

t
th

e
ot

h
er

.I
n

th
is

ca
se

,t
h

er
e

is
n

o
as

su
m

pt
io

n
m

ad
e

on
w

h
at

pa
rt

ic
u

la
r

ev
en

t
ca

u
se

s
th

e
st

ar
t

of
th

e
se

co
n

d,
si

m
pl

y
th

at
th

e
ta

sk
th

at
it

de
pe

n
ds

on
te

ll
s

it
to

st
ar

t.
D

ea
ct

(A
ss

oc
ia

ti
on

be
tw

ee
n

tw
o

ta
sk

s)
T

h
is

st
er

eo
ty

pe
m

od
el

s
a

re
la

ti
on

sh
ip

be
tw

ee
n

tw
o

ta
sk

s,
on

e
of

w
h

ic
h

ca
n

si
gn

al
th

e
ot

h
er

to
en

d.

P
re

se
n

ta
ti

on
M

od
el

N
av

ig
at

e
(A

ss
oc

ia
ti

on
be

tw
ee

n
tw

o
in

te
ra

ct
io

n
s)

N
av

ig
at

e
m

od
el

s
th

e
“t

ra
n

si
ti

on
”

fr
om

on
e

in
te

ra
ct

io
n

to
an

ot
h

er
as

de
fi

n
ed

in
C

h
ap

te
r

5.
In

ca
se

s
w

h
en

th
e

tr
an

si
ti

on
is

te
m

po
ra

ll
y

or
sp

at
ia

ll
y

se
qu

en
ti

al
(e

.g
.,

a
vo

ic
e

in
te

ra
ct

io
n

th
at

fo
ll

ow
s

an
ot

h
er

vo
ic

e
in

te
ra

ct
io

n
th

ro
u

gh
a

tr
an

si
ti

on
),

th
is

as
so

ci
at

io
n

is
u

n
id

ir
ec

ti
on

al
.I

n
ca

se
s

w
h

en
it

is
n

ot
(e

.g
.,

w
h

en
th

er
e

ar
e

m
u

lt
ip

le
in

pu
t

bo
xe

s
on

th
e

sa
m

e
fo

rm
th

at
ca

n
be

n
av

ig
at

ed
to

in
an

y
or

de
r)

,t
h

is
as

so
ci

at
io

n
is

bi
di

re
ct

io
n

al
.

C
on

ta
in

s
(A

ss
oc

ia
ti

on
be

tw
ee

n
tw

o
in

te
ra

ct
io

n
s)

If
on

e
in

te
ra

ct
io

n
in

cl
u

de
s

an
ot

h
er

in
te

ra
ct

io
n

,t
h

ey
ar

e
re

la
te

d
th

ro
u

gh
a

co
n

ta
in

s
as

so
ci

at
io

n
.A

s
di

sc
u

ss
ed

in
C

h
ap

te
r

5,
th

e
co

n
ta

in
s

st
er

eo
ty

pe
al

lo
w

s
fo

r
m

od
el

in
g

of
co

m
po

si
te

in
te

ra
ct

io
n

s.
B

ec
au

se
th

er
e

is
a

st
ri

ct
pa

re
n

t
an

d
ch

il
d

re
la

ti
on

sh
ip

in
th

e
ca

se
of

co
n

ta
in

s,
th

is
re

la
ti

on
sh

ip
is

al
w

ay
s

u
n

id
ir

ec
ti

on
al

.

(c
on

ti
nu

ed
)

383

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

TA
B

LE
6
.6

(c
on

ti
n

u
e

d
)

In
pu

t
el

em
en

t
(S

te
re

ot
yp

e
on

an
at

tr
ib

u
te

—
a

cl
as

s)

A
s

w
e

m
en

ti
on

ed
in

C
h

ap
te

r
5,

ev
er

y
ty

pe
of

u
se

r
in

te
rf

ac
e

h
as

a
va

ri
et

y
of

m
ec

h
an

is
m

s
to

re
ce

iv
e

in
pu

t
fr

om
th

e
u

se
r.

T
h

e
<

<
in

pu
t

el
em

en
t>

>
st

er
eo

ty
pe

al
lo

w
s

u
s

to
m

od
el

th
e

m
ec

h
an

is
m

fo
r

re
ce

iv
in

g
in

pu
t

fr
om

th
e

u
se

r
in

a
ge

n
er

ic
w

ay
(f

u
rt

h
er

sp
ec

ifi
ca

ti
on

ca
n

be
do

n
e

by
se

tt
in

g
at

tr
ib

u
te

s
on

th
e

in
st

an
ce

cl
as

s,
re

la
ti

on
sh

ip
be

tw
ee

n
cl

as
se

s,
et

c.
).

E
xa

m
pl

es
co

u
ld

a
be

a
V

U
I

pr
om

pt
an

d
th

e
fo

ll
ow

in
g

si
le

n
ce

th
at

is
aw

ai
ti

n
g

a
re

co
rd

in
g

or
th

e
in

pu
t

bo
x

th
at

is
pr

oc
ee

de
d

by
a

la
be

l.
O

u
tp

u
t

el
em

en
t

(S
te

re
ot

yp
e

on
an

at
tr

ib
u

te
—

a
cl

as
s)

L
ik

e
th

e
in

pu
t

el
em

en
t

st
er

eo
ty

pe
,t

h
e

<
<

ou
tp

u
t

el
em

en
t>

>
st

er
eo

ty
pe

al
lo

w
s

u
s

to
m

od
el

ou
tp

u
t

of
in

fo
rm

at
io

n
to

th
e

u
se

r.
In

a
V

U
I,

th
is

co
u

ld
be

so
m

e
au

di
o

pl
ay

ba
ck

to
th

e
u

se
r;

in
a

G
U

I,
th

is
m

ay
be

gr
ap

h
ic

,t
ex

t,
or

vi
de

o
pr

es
en

te
d

to
th

e
u

se
r.

A
ct

io
n

(B
as

ic
co

m
po

n
en

t
of

ac
ti

vi
ty

di
ag

ra
m

s)

W
h

er
ea

s
m

et
h

od
s

(o
r

op
er

at
io

n
s)

in
di

ca
te

be
h

av
io

r
in

ob
je

ct
-o

ri
en

te
d

pr
og

ra
m

m
in

g,
th

e
<

<
ac

ti
on

>
>

st
er

eo
ty

pe
al

lo
w

s
u

s
to

m
od

el
so

m
et

h
in

g
th

at
th

e
u

se
r

do
es

.I
t

is
re

co
m

m
en

de
d

th
at

th
is

st
er

eo
ty

pe
be

u
se

d
at

a
h

ig
h

le
ve

l
in

st
ea

d
of

ac
co

u
n

ti
n

g
fo

r
ev

er
y

m
ou

se
m

ov
em

en
t

an
d

le
tt

er
ty

pe
d.

F
or

ex
am

pl
e,

an
ac

ti
on

st
er

eo
ty

pe
co

u
ld

be
u

se
d

w
h

en
a

u
se

r
is

do
n

e
fi

ll
in

g
a

fo
rm

an
d

cl
ic

ks
on

th
e

su
bm

it
bu

tt
on

.

384

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 385

These symbols are used more like cardinality than an OCL, on top of the Wisdom
UML diagrams, to give enough refinement to the relationship between tasks so
that it is not necessary to make any assumptions regarding the presentation logic.
It should be noted that look-and-feel is not something that we can, nor intend
to, model using Nunes’ methodology or any other UML-based tool. What we
have introduced here, in leveraging works from Lieberman and Nunes, is prin-
cipally to help us develop UML diagrams for GUIs so that we can get a handle
on the user interface, the interactions of the user with the user interface, and
various other aspects of the mobile human-to-computer interaction concerning
our mobile applications without being tied to a particular platform or a particular
implementation.

Thus far, Nunes offers the most comprehensive approach to modeling user
interfaces with UML. It is possible that future versions of UML mandate Wisdom
or some other extension to better model user interfaces and use interactions with
user interfaces.

6.2.4 UML Extensions for Mobile Applications
Our goal in this text is to first understand how to build mobile applications and then
to use UML to facilitate that building process. There are proven methods of using
UML that apply equally to stationary applications as well as mobile applications.
But there are those aspects of mobile applications that are not accommodated by
the vanilla implementation of UML and require us to use the extension mechanism.
In the previous two sections, we discussed useful extensions for representing the
user interfaces in UML. We recommend the use of Nunes’ Wisdom extensions
when developing mobile applications and their user interfaces. Now, hold this
thought.

We briefly talked about mobile agents in Chapter 1 and later, in Chapter 9,
we will look at extensions that model mobile agents. We will see how mobile
agents differ from client–server applications and how to represent their unique
properties by using UML. These extensions, added together with extensions to
model user interfaces, particularly Wisdom extensions, will take us most of the
way there to representing mobile applications with UML. But, there are some
holes. Namely, there is nothing that distinguishes a mobile user from a station-
ary user, nothing that distinguishes mobile use cases from stationary use cases,
and nothing that allows us to represent dimensions of mobility and the mo-
bile condition of the user. Specifically, we need both a semantic and an iconic
representation of these things so that we have a well-defined and meaning-
ful semantic and visual representation of the application we intend to build
and how it is going to be used. Therefore, let us introduce the stereotypes in
Table 6.6.

The extensions listed in Table 6.7 focus on the use case model and representing
the user interactions with the system. We introduced a couple of stereotypes relat-
ing to location sensitivity that we will discuss again in Chapter 12. We discussed
these because they extend existing definitions from Wisdom.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

TA
B

LE
6
.7

.
A

dd
it

io
na

l
M

o
bi

le
A

pp
li
ca

ti
o
n

D
ev

e
lo

pm
e
nt

U
M

L
E
xt

e
ns

io
ns

St
er

eo
ty

pe
D

es
cr

ip
ti

on
Ic

on

<
<

M
ob

il
e

A
ct

or
>

>
T

h
is

st
er

eo
ty

pe
ex

te
n

ds
W

is
do

m
’s

<
<

H
u

m
an

A
ct

or
>

>
to

be
u

se
d

in
u

se
ca

se
di

ag
ra

m
s

an
d

is
in

te
n

de
d

to
in

di
ca

te
a

h
u

m
an

ac
to

r
w

h
o

is
de

fi
n

it
el

y
m

ob
il

e
at

th
e

ti
m

e
of

in
te

ra
ct

in
g

w
it

h
a

pa
rt

ic
u

la
r

u
se

ca
se

or
in

te
ra

ct
in

g
w

it
h

an
ot

h
er

ac
to

r.
(T

h
e

ar
ro

w
n

ot
at

io
n

is
bo

rr
ow

ed
fr

om
th

e
m

ob
il

e
ag

en
t

U
M

L
ex

te
n

si
on

s
w

e
w

il
ll

oo
k

at
in

C
h

ap
te

r
9.

)
T

h
is

st
er

eo
ty

pe
is

st
ri

ct
ly

in
tr

od
u

ce
d

to
in

di
ca

te
th

e
co

n
di

ti
on

of
th

e
u

se
r

at
th

e
ti

m
e

of
u

si
n

g
th

e
ap

pl
ic

at
io

n
.I

t
do

es
n

ot
in

di
ca

te
w

h
et

h
er

th
e

ap
pl

ic
at

io
n

it
se

lf
is

on
e

th
at

is
de

si
gn

ed
or

im
pl

em
en

te
d

as
a

m
ob

il
e

ap
pl

ic
at

io
n

or
n

ot
.I

f
it

is
n

ot
,t

h
en

w
h

et
h

er
th

e
u

se
r

is
m

ob
il

e
or

st
at

io
n

ar
y

at
th

e
ti

m
e

of
in

te
ra

ct
in

g
w

it
h

th
e

ap
pl

ic
at

io
n

,W
is

do
m

’s
<

<
H

u
m

an
A

ct
or

>
>

st
er

eo
ty

pe
sh

ou
ld

be
u

se
d.

<
<

St
at

io
n

ar
y

A
ct

or
>

>

T
h

is
st

er
eo

ty
pe

ex
te

n
ds

W
is

do
m

’s
<

<
H

u
m

an
A

ct
or

>
>

to
be

u
se

d
in

u
se

ca
se

di
ag

ra
m

s
an

d
is

in
te

n
de

d
to

in
di

ca
te

a
h

u
m

an
ac

to
r

w
h

o
is

de
fi

n
it

el
y

st
at

io
n

ar
y

at
th

e
ti

m
e

of
in

te
ra

ct
in

g
w

it
h

a
pa

rt
ic

u
la

r
u

se
ca

se
or

in
te

ra
ct

in
g

w
it

h
an

ot
h

er
ac

to
r.

T
h

is
st

er
eo

ty
pe

do
es

n
ot

in
di

ca
te

th
at

th
e

ap
pl

ic
at

io
n

it
se

lf
is

de
si

gn
ed

as
a

st
at

io
n

ar
y

ap
pl

ic
at

io
n

.T
h

e
ap

pl
ic

at
io

n
m

ay
be

m
ob

il
e,

bu
t

a
pa

rt
ic

u
la

r
u

se
ca

se
m

ay
on

ly
be

re
le

va
n

t
w

h
en

th
e

u
se

r
is

st
at

io
n

ar
y.

If
th

e
ap

pl
ic

at
io

n
is

n
ot

m
ob

il
e,

th
en

w
h

et
h

er
th

e
u

se
r

is
m

ob
il

e
or

st
at

io
n

ar
y

at
th

e
ti

m
e

of
in

te
ra

ct
in

g
w

it
h

th
e

ap
pl

ic
at

io
n

,W
is

do
m

’s
<

<
H

u
m

an
A

ct
or

>
>

st
er

eo
ty

pe
sh

ou
ld

be
u

se
d.

<
<

M
ob

il
e

U
se

C
as

e>
>

T
h

is
st

er
eo

ty
pe

ex
te

n
ds

U
M

L
’s

u
se

ca
se

st
er

eo
ty

pe
.I

t
is

u
se

d
to

in
di

ca
te

th
at

a
u

se
ca

se
is

a
m

ob
il

e
u

se
ca

se
(f

u
rt

h
er

di
sc

u
ss

ed
in

C
h

ap
te

r
15

).
B

y
a

m
ob

il
e

u
se

ca
se

,w
e

m
ea

n
th

at
th

e
im

pl
em

en
ta

ti
on

of
th

e
u

se
ca

se
in

vo
lv

es
u

sa
ge

or
co

n
si

de
ra

ti
on

of
th

e
di

m
en

si
on

s
of

m
ob

il
it

y.

386

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

<
<

E
ss

en
ti

al
M

ob
il

e
U

se
C

as
e>

>

T
h

is
st

er
eo

ty
pe

ex
te

n
ds

W
is

do
m

’s
<

<
E

ss
en

ti
al

U
se

C
as

e>
>

.I
t

is
to

be
u

se
d

to
in

di
ca

te
th

at
th

e
pa

rt
ic

u
la

r
u

se
ca

se
is

a
m

ob
il

e
u

se
ca

se
an

d
th

at
it

is
n

ec
es

sa
ry

to
de

sc
ri

be
th

e
fu

n
ct

io
n

al
it

y
of

a
m

ob
il

e
ap

pl
ic

at
io

n
.T

h
is

st
er

eo
ty

pe
is

to
be

u
se

d
in

W
is

do
m

in
te

ra
ct

io
n

m
od

el
s

(u
se

r
in

te
rf

ac
e–

or
ie

n
te

d
ex

te
n

si
on

to
th

e
u

se
ca

se
di

ag
ra

m
s)

.
<

<
M

ob
il

e
C

om
m

u
n

ic
at

e>
>

T
h

is
st

er
eo

ty
pe

ex
te

n
ds

W
is

do
m

’s
<

<
co

m
m

u
n

ic
at

e>
>

st
er

eo
ty

pe
in

th
e

in
te

ra
ct

io
n

m
od

el
.I

t
in

di
ca

te
s

co
m

m
u

n
ic

at
io

n
be

tw
ee

n
an

y
ac

to
r

an
d

an
y

u
se

ca
se

w
h

il
e

th
at

ac
to

r
is

m
ob

il
e.

N
ot

e
th

at
th

is
sy

m
bo

li
s

no
t

to
be

u
se

d
to

in
di

ca
te

co
m

m
u

n
ic

at
io

n
be

tw
ee

n
th

e
in

te
rn

al
cl

as
se

s
of

a
m

ob
il

e
ap

pl
ic

at
io

n
as

it
w

ou
ld

ca
u

se
co

n
fu

si
on

w
it

h
ex

te
n

si
on

s
al

re
ad

y
de

fi
n

ed
fo

r
m

ob
il

e
ag

en
ts

(t
o

be
di

sc
u

ss
ed

in
C

h
ap

te
r

9)
.A

s
yo

u
re

ca
ll

in
th

e
de

fi
n

it
io

n
of

th
e

in
te

ra
ct

io
n

m
od

el
,t

h
e

fo
cu

s
is

on
th

e
u

se
r

in
te

rf
ac

e
in

te
ra

ct
io

n
s.

<
<

Si
n

gl
e-

C
h

an
n

el
C

om
m

u
n

ic
at

e>
>

T
h

is
st

er
eo

ty
pe

ex
te

n
ds

<
<

M
ob

il
e

C
om

m
u

n
ic

at
e>

>
.T

h
is

st
er

eo
ty

pe
is

to
be

u
se

d
w

h
en

co
m

m
u

n
ic

at
io

n
be

tw
ee

n
th

e
ac

to
rs

an
d

u
se

ca
se

s
is

do
n

e
th

ro
u

gh
on

ly
on

e
co

m
m

u
n

ic
at

io
n

ch
an

n
el

.W
e

de
fi

n
ed

ch
an

n
el

s
in

C
h

ap
te

r
5.

Sp
ec

ifi
ca

ti
on

of
th

e
ch

an
n

el
ca

n
be

do
n

e
th

ro
u

gh
te

xt
ad

de
d

to
th

e
sy

m
bo

l.
<

<
M

u
lt

i-
C

h
an

n
el

C
om

m
u

n
ic

at
e>

>

T
h

is
st

er
eo

ty
pe

ex
te

n
ds

<
<

M
ob

il
e

C
om

m
u

n
ic

at
e>

>
.T

h
is

st
er

eo
ty

pe
is

u
se

d
be

tw
ee

n
ac

to
rs

an
d

u
se

ca
se

s
or

ac
to

rs
an

d
ot

h
er

ac
to

rs
in

in
te

ra
ct

io
n

m
od

el
di

ag
ra

m
s.

It
in

di
ca

te
s

th
at

th
e

co
m

m
u

n
ic

at
io

n
w

it
h

a
sp

ec
ifi

c
u

se
ca

se
is

do
n

e
th

ro
u

gh
tw

o
or

m
or

e
ch

an
n

el
s.

O
C

L
m

ay
be

u
se

d
to

sp
ec

if
y

w
h

et
h

er
m

es
sa

ge
s

m
ay

be
pa

ss
ed

sy
n

ch
ro

n
ou

sl
y

or
as

yn
ch

ro
n

ou
sl

y
th

ro
u

gh
ev

er
y

ch
an

n
el

.
Sp

ec
ifi

c
ch

an
n

el
s

m
ay

be
sp

ec
ifi

ed
th

ro
u

gh
te

xt
ad

de
d

to
th

e
sy

m
bo

l.
<

<
L

oc
at

io
n

B
as

ed
C

on
tr

ol
>

>

T
h

is
st

er
eo

ty
pe

ex
te

n
ds

th
e

<
<

C
on

tr
ol

>
>

st
er

eo
ty

pe
of

W
is

do
m

.A
s

yo
u

re
ca

ll
,

th
e

<
<

C
on

tr
ol

>
>

st
er

eo
ty

pe
w

as
pu

t
on

a
cl

as
s

th
at

pr
ov

id
es

co
or

di
n

at
io

n
am

on
g

ot
h

er
cl

as
se

s,
ob

je
ct

s,
an

d
co

m
po

n
en

ts
(W

is
do

m
an

al
ys

is
m

od
el

).
A

lo
ca

ti
on

-b
as

ed
co

n
tr

ol
is

a
sp

ec
ia

lt
yp

e
of

co
n

tr
ol

th
at

u
se

s
lo

ca
ti

on
in

fo
rm

at
io

n
to

pe
rf

or
m

on
e

or
m

or
e

of
it

s
ta

sk
s.

G
IS

(c
on

ti
nu

ed
)

387

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

TA
B

LE
6
.7

(c
on

ti
n

u
e

d
)

St
er

eo
ty

pe
D

es
cr

ip
ti

on
Ic

on

<
<

L
oc

at
io

n
B

as
ed

B
ou

n
da

ry
>

>

T
h

is
st

er
eo

ty
pe

ex
te

n
ds

th
e

<
<

B
ou

n
da

ry
>

>
st

er
eo

ty
pe

of
W

is
do

m
.A

s
yo

u
re

ca
ll

,
bo

u
n

da
ri

es
ar

e
u

se
d

to
in

di
ca

te
th

e
in

te
rf

ac
e

li
n

es
be

tw
ee

n
su

bs
ys

te
m

s
an

d
co

m
po

n
en

ts
th

at
m

ak
e

u
p

th
e

ap
pl

ic
at

io
n

.L
oc

at
io

n
-b

as
ed

bo
u

n
da

ri
es

ar
e

u
se

d
to

sp
ec

if
y

th
e

bo
u

n
da

ri
es

be
tw

ee
n

th
e

co
re

fu
n

ct
io

n
al

it
y

of
th

e
ap

pl
ic

at
io

n
an

d
th

e
sy

st
em

(s
)

or
su

bs
ys

te
m

(s
)

w
h

os
e

so
le

fu
n

ct
io

n
al

it
y

is
to

pr
ov

id
e

G
IS

(G
eo

gr
ap

h
ic

al
In

fo
rm

at
io

n
Sy

st
em

s)
in

fo
rm

at
io

n
.W

e
w

il
ll

oo
k

at
<

<
L

oc
at

io
n

B
as

ed
B

ou
n

da
ry

>
>

an
d

<
<

L
oc

at
io

n
B

as
ed

C
on

tr
ol

>
>

fu
rt

h
er

in
C

h
ap

te
r

12
.

L
B

S

<
<

M
ob

il
e

Ta
sk

>
>

T
h

is
st

er
eo

ty
pe

ex
te

n
ds

W
is

do
m

’s
<

<
Ta

sk
>

>
st

er
eo

ty
pe

.T
h

is
st

er
eo

ty
pe

de
fi

n
es

a
co

m
pl

et
e

se
t

of
in

te
ra

ct
io

n
s

be
tw

ee
n

th
e

m
ob

il
e

u
se

r
an

d
th

e
sy

st
em

to
ac

h
ie

ve
so

m
et

h
in

g
m

ea
n

in
gf

u
li

n
te

rm
s

of
th

e
bu

si
n

es
s

pr
oc

es
s.

388

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 389

Vanilla
UML

(No Application
Of Extensions)

Mobile Agent
UML Extensions

UML

Wisdom

Mobile UML

FIGURE 6.25. Mobile UML: Building a Collective Set of UML Extensions for Mobile Application
Development.

Although we focus on using UML for user interface development in this chapter,
we will see other extensions in future chapters. In fact, throughout this text, you
will see both the application of the UML standard without any extensions or
profiles and incrementally introduced extensions that better refine how we will
use UML. We have not specified any “UML Profiles” that collect a certain set of
the extensions we have introduced. We leave this up to the reader. Figure 6.25
shows the taxonomy of what we will collectively refer to as “Mobile UML,” simply
meaning a collection of methodologies that we will use to build mobile applications
using UML and its extensions. The diagram refers to UML, as an OMG standard
and as of version 1.4, without any extensions and profiles, as “Vanilla UML.”

At this point, you must be waiting for an example of how this is all used. But
you will have to wait till the last chapter of this book. There we use a real project
to go through the step-by-step use of UML extensions that we introduce here and
the implementation code that goes along with it.

Optimization of Mobile GUIs
We have now looked at different techniques and tools for building mobile GUIs.
One of the things we have not discussed yet is how to design efficient user inter-
faces. As we have said repeatedly in this text, mobile applications typically require
support for more than just one interface. Every interface type and every device has
a different set of properties: the data entry method, the screen size, etc. Therefore,
every interface type and device has a unique set of requirements for optimiza-
tion. Obviously, we cannot outline the “best practices” of the user interface for
every type of mobile device and every type of interface. Besides, even if we did,

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

390 DEVELOPING MOBILE GUIs

it would nearly immediately be obsolete as we see new types of interfaces and
devices entering the marketplace every day.

Nevertheless, we can approach the problem with one of our favorite words in this
text: “meta.” We can outline a set of instructions that specify a “metasolution”—
a set of instructions that may be applied to different types of user interfaces for
purposes of optimization from the usability standpoint. We first need some metrics
that allow us to define what optimization of the user interface means when it comes
to mobile applications. So, let us map the dimensions of mobility and the mobile
condition of the user:

1. Lack of Focus: We mentioned that the user is not focused on the task of com-
puting. This means that the mobile user may be driving, walking, or doing a
variety of other things while using the application. So, we need to minimize
the number of interactions the user has with the application without reducing
functionality.

2. Limited Power Supply: Most of the time, battery life is precious. If the device
provides information regarding battery life, then we can use it to dynamically
decide if things like advertisements should be displayed or not. If the device does
not provide such information or we cannot obtain it for our application for some
other reason, then we need to assume the worst-case scenario and make sure all
unnecessary evils are nonexistent. The more superfluous materials are included
on the user interface, the longer it takes the user to digest the information on
the screen and the more power is consumed in rendering.

3. Device Proliferation: As we have seen earlier, there are numerous existing devices
and interfaces, and new mobile devices and interfaces are continually being in-
troduced to the marketplace. When optimizing our user interfaces, we have
to keep them consistent for maintaining a consistent user experience regard-
less of the device used. It is also often desirable (though not always possible)
to automate the process of publishing to multiple user interfaces: Whatever
optimization we do must be accounted for in the publishing mechanism.

4. Limited Input Mechanisms: Most mobile devices are limited in the input mech-
anism that they offer because they are designed to be portable and accessible
on the move. We need to optimize our user interface to require the minimum
amount of information to be input to the system with the minimum amount of
difficulty.

Let us now turn to some optimization techniques. Note that by introducing these
techniques, we are trying to make a science out of an art; do not assume that
what we introduce here is all-inclusive. Optimizing usability and designing user
interfaces are still much more of an art learned through years of experience; never-
theless, we will attempt to quantify and qualify some techniques to optimize user
interfaces for mobile applications.

Optimizing GUIs through “Path of Least Resistance”
One of the most obvious things we can do to improve the usage of a user interface
is to minimize the number of interactions the user has with the system. In this text,

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 391

we refer to this as user interface optimization through path of least resistance with
the idea being that we are trying to minimize the resistance of the user interface
to what the user wants to use the computing system for. The question is how to
quantify the interactions of the user with the system. Discussing this in detail for
all types of user interfaces is outside of the scope of this text; as always, we focus
on those things that concern mobile applications most. The goal of the discussion
is twofold.

First, we want to outline techniques that help us optimize our user interfaces
during the design and testing phases. We need techniques used during the design
phase to select the best user interface. If we somehow do not select the best
interface or miss some optimizations, this should be caught during the quality
assurance and testing process. Second, if we want to use automation in generating
the user interfaces to different devices, these techniques should be integrated
into the implementation of the run-time engine of the user interface publishing
mechanism (though this automation may not be possible or desirable depending
on the project). Because of the art (as opposed to science) involved, the techniques
we introduce here are merely to be used at the discretion of the developers. In
addition, one would apply the typical user interface usability techniques outlined
by Nielson [Nielson 1994] and others.

Let us see what it is that we need to quantify and then see how we can measure
each:

1. Data Output to the User for Each Individual Interaction: The more data the user
has to receive through as output from the system (read on the screen, hear
through the speakers, etc.) to accomplish the necessary task, the higher the
impedance is between the user and the user interface.

2. Date Input by the User for Each Individual Interaction: The more data the user
has to input into the system (type on the keyboard, push on the phone keypad,
stab on the screen with the stylus, etc.) to accomplish the necessary task, the
higher the impedance is between the user and the user interface.

3. Navigation from One Interaction to the Next throughout the Application: The higher
the number of controls and screens are, and the more complex the navigational
model among those controls and screens are, the higher the impedance is be-
tween the user and the user interface.

We will start with Fitts’ Law, developed in 1954 by Paul Fitts and based on
Shannon’s theorem, and one the most basic principles in information theory:

Capacity = bandwidth∗ log2(SNR + 1),

Where SNR is the signal to noise ratio (signal divided by noise). In the context of
user interfaces, Fitts applied Shannon’s theorem so that capacity represented the
effectiveness of the information exchange between the user and the system. Fitts
defined two quantities, the Index of Performance (IP) quantifying the ability of a
human and his or her mechanical reflexes and skills and the Index of Difficulty
(ID) quantifying the difficulty of dealing with something that required mechanical
reflexes and skills.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

392 DEVELOPING MOBILE GUIs

Fitts’ law then states that for visual interactions

ID = log2(2A/W),

where A is the distance from the starting point to the center of the target and W
is the width of the target. You can think of A as the distance that one may have to
move a mouse pointer to get it to the center of the control and W as the width of
a control such as a button. We will not go through the proof here, but this makes
intuitive sense: The smaller the control, the more difficult it is to deal with it; the
farther we have to move the mouse pointer to reach the control, the more difficult
it is.

Fitts then measures the performance of the person interacting with the system
based on the amount of time spent to interact with a particular task. In other
words, he states that

MT = ID/IP,

where MT is the so-called Movement Time. We can also conclude from this that to
minimize Movement Time, we need to minimize ID and maximize IP. We do not
have much control over the user’s efficiency in using the application other than
making it easier to learn. But, we can reduce the Index of Difficulty.

There is also variety among the types of applications, which means that the
graph of Movement Time may be shifted up or down by some constant. Taking
this into account and substituting for the Index of Difficulty, we get

MT = a + b log2(2A/W),

where b = 1/IP.

So, our goal will be to provide the ideal values for 2A/W. In other words, make
it so that the user has to do the least amount of work and be as inaccurate as pos-
sible and yet get the job done. Unfortunately, the problem is a bit more complex
than that. Making controls bigger means that we can have less of them per screen
and this in turn means that we have to navigate through a number of screens,
making it much more difficult. So, we need to apply this principle not just over
a single screen but to the collection of all interactions over the entire user inter-
face of the system. This is where Andrew Sears’ work on Layout Appropriateness
comes in.

Sears’ Layout Appropriateness looks into this issue. The cost of a layout is
computed by assigning a cost to each sequence of actions and weighting those
costs by how frequently each sequence is used [Sears 1992]:

cost =
∑

All Transitions

[Frequency of the Transition∗ Cost of the Transition].

The Layout Appropriateness is then computed as

LA = 100∗
(

Cost of the LA Optimal Layout

Cost of the Proposed Layout

)

But, what is a transition? In Chapter 5, we defined transitions as the boundaries
between different user interface components. These boundaries can be spatial or

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 393

temporal. In other words, we may be talking about transitioning from one screen
to the next where the transition is a temporal (time-dependent) one or we may
be talking about the transition between two panels appearing on the same screen
where the transition is a spatial one.

The cost of the transition depends on the type of user interface with which we
are dealing and the specific project. If we are using this methodology to create a tool
that produces user interfaces, then the tool must provide the proper configurations
that allow us to add new devices and user interface types and specify the cost, or
weight, of each transition.

Now, there is one piece left to our puzzle. We need to account for the cost
of individual interactions that involve things like typing as opposed to moving
something across the screen with a mouse. We can use Fitts’ Law for things like
moving a mouse, but what do we do for things like the difficulty of key presses on
a mobile phone keypad?

We can accommodate this by taking every type of entry, assigning it a “weight”
that is relevant to the difficulty of its use, and then attempt to minimize the
sum of all entry values. Although we can assign a value using Fitts’ Law to some
of these, others are more difficult. Let us take for example the Palm shorthand
technique called Graffiti as an example of this. In such cases, you will need to
decide the weight based on a user survey or usability tests designed to measure
the difficulty of entry of each symbol and subsequently measure the difficulty of
entry of the symbols by a given input method (such as the Graffiti) compared to
another method (such as a phone keypad). Obviously, the weight of every action
changes depending on the type of user interface. For example, entering data into
a keypad is much more difficult than entering data using a keyboard. So, the
application of these equations for evaluation and comparisons of several versions
of a user interface should be done with consideration to the specific user interface
for which they are being implemented.

We can continue to leverage the Sears approach in adding the “impedance” or
the “cost” of each control in a linear manner to get the cost of a given screen. Then
add in the cost of navigating between those screens and you have the final cost of
the user interface.

Let us apply all of this theory and look at a quick example based on a WAP
application that uses a phone keypad.

Finding the Path of Least Resistance for a WAP Application
Most WAP applications are accessed through a mobile phone. Mobile phones have
at least one method of data entry: a telephone keypad that has ten digits of 0–9,
each mapped to a standard set of letters. Although some phones provide additional
software that facilitates faster typing of content (such as predictive software and
others), we will assume that the only thing available on the target device for data
entry is the standard phone keypad with the standard mapping to the English
alphabet (or use the appropriate mapping for other languages where they apply).
There are also some standard auxiliary buttons for Yes/No answers or scrolling.
Then, we are concerned with a set of input actions. Let us call these input actions

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

394 DEVELOPING MOBILE GUIs

{P1, P2, P3, . . . , Pn}. Let us define the following:

1. P1: Single Scroll Action. We will assign a weight, W1, to every single scroll action,
defined by one press of the scrolling button on the keypad.

2. P2: Multiple Scroll Action. We will assign a weight, W2, to every multiple scroll
action. For the sake of simplifying our model, we will assume that pushing the
scroll button twice is equally as difficult as three times and so on (though this
assumption may not be correct).

3. P3 and P4: Repeating Keys. Certain text, such as letters “s” and “k,” require
multiple pushes from the same button. This is cumbersome because you must
be speedy in pushing the same button multiple times to get the desired letter
(e.g., three quick pushes on the number 5 produce the letter “l”). We will assign
a weight of W3 any time a multiple push character is required and a multiplier of
W4 as a coefficient for the number of times that button must be pushed (twice,
three times, and so on).

4. P5: Alpha Entry. Depending on the device, certain characters such as “(” or “$”
might require navigation to a different screen. Most of the time, this is indicated
by a prompt allowing the user to navigate to an area marked “ALPHA.” Such
characters cause extra confusion and force the user to do extra navigation. We
will assign a weight of W5 to any character that requires navigation to another
screen.

5. P6: Forward Navigation Button. It is possible to use various buttons (such as the
left-top button on Nokia phones used as OK) for navigation. Various devices
map the available keys to different navigation rules. We will assign W6 to use
any device-specific navigation.

We can recognize other variables if we further specify the device family, but, for
the sake of simplifying our example, let us stay with these six variables. So, any
set of WML 1.x screens on this particular device family can be described by a cost,
defined by Sears in the previous section as

cost of interactions per screen =
6∑

i=1

ni Wi ,

where n is the number of times a recognized input type is pressed (we defined the
set of {P1, P2, P3, . . . , Pn} by looking at the keypad) and Wi is the weight that we
assigned for how difficult it may be to activate the input type (in our case how
difficult it is to push the button).

Now we can apply this to optimize the user interface of a real-life application:

1. We may have two or more sets of possibilities for our screen layouts. Each set of
screen layouts will have a cost of interaction per screen and a cost of navigation
between the screens. We can compute these costs, add them up to come up
with a total cost of interaction for a set of screens, and see which set of screen
layouts give us the minimum cost.

2. We may have the choice of using other input types such as a stylus for Graffiti
input, tilt-based scrolling such as that used in the Compaq Itsy, or voice user

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

A Deeper Look at WAP, J2ME, BREW, and Microsoft Platforms 395

interfaces. We can create a weighting system for each type of interface and
compute a total cost of interactions for the user interface implemented in each
individual interface type. So, we would have a cost of interactions for using
only the keypad, using only the stylus, using only the voice user interface, and
so on.

If we have a multimodal and multichannel interface (which we will look at in
Chapter 8), we can have sets of user interface implementations that use multiple
channels, modes, input mechanisms, and so on. In this scenario, we have to assign
the weights to the individual input mechanisms based on looking at all of them
in a single set as opposed to weighting them separately in their own buckets. In
other words, we have to compare the difficulty of pressing a particular button to
the difficulty of saying something or to the difficulty of writing the same thing
with a stylus on a Graffiti pad. Obviously, this is not only difficult, but it requires
gathering empirical data from a set of sample users.

This method of calculating the cost of interaction between a user and the mobile
user interface can be invaluable for finding the best user interface to present to the
user in an objective way. As we mentioned repeatedly, the weights of individual
interactions can be determined with empirical experimentation. We could always
make an educated guess on these weights, but the results will not be as useful nor
as reliable.

Application of Direct Combination to Mobile GUIs
As you may recall, in Chapter 5, we discussed putting together simple user inter-
face components to build more complex components. This technique can prove
particularly useful as user interface types proliferate. Even if we have nirvana and
all commercial and academic entities agree on one language, such as XForms, for
building user interfaces, we still will have a large variety of devices with each dis-
playing the user interface in a different way. So, how do we compose more complex
interfaces from simpler parts?

Commercial technologies such as IBM Portlets have tried to tackle this issue,
but existing solutions are simple and not context sensitive. Basically, nearly all
solutions that allow the system to build a complex GUI based on smaller compo-
nents are concerned with only the spatial context of the components and whatever
metadata the developer may assign the individual component to give it additional
context. Though this approach is valid, it is very rudimentary and difficult to fit
into a multichannel and multimodal world such as that of mobile applications.
We do not claim to have a solution to present to you in this text. When we build
composite user interface components from smaller ones, besides needing to make
sure that all the components “fit” onto the composite component, and besides
needing to make sure the smaller components fit together and within the bigger
component contextually, we need to ensure that whatever it is that we have come
up with is the best possible solution or at least one of the better possible solutions.
In other words, we need to do some optimization in composing a larger component
from the smaller ones. Without touching this subject, we would have neglected
an important topic in developing mobile GUIs and so we will present you with

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

396 DEVELOPING MOBILE GUIs

a summary of the work of Holland and colleagues, an approach that looks at the
optimization of mobile HCI.

Holland and Oppenheim [Holland and Oppenheim 1999] first introduced Di-
rect Combination, building on Direct Manipulation, introduced by Smith, Kimball,
Verplank, and Harslem at Xerox in the early 1980s [Smith et al. 1982]. Direct
Manipulation basically states that GUI components should be built to allow the
user to reversibly, incrementally, simply, and through physical actions manipulate
metaphors that allow interactions with the user interface. A menu is a good exam-
ple of this. The user can click on a choice that takes him or her to another place,
perform a task, return, and click on another menu choice. Direct Manipulation
deals with the user’s interactions with individual user interface metaphors. Direct
Combination is a way of extending Direct Manipulation by focusing systemati-
cally not on single interaction objects but on pairs of interaction objects and the
essential requirement for Direct Combination is that for every pair of interaction
objects in the system, there should be at least one or more operators defined and
available to the user [Holland and Oppenheim 1999]. Direct Combination looks at
the user’s interaction with things like dragging and dropping where there is more
than one GUI widget involved in the interaction. One of our goals for producing
better composite user interface components is that the user should be able to
interact with the composite component, which is really a collection of simpler
components plus added context, in an optimal way.

Therefore, the relevance here to Direct Combination is that by keeping in mind
a set of principles, we optimize the interactions of the user with the composite
component and thereby optimize the composite component itself (because op-
timization is really a matter of improving the interactions between the user and
the user interface). The major driving forces of Direct Combination as applied to
mobile GUIs, as stated in Holland et al.’s paper [Holland, Morse, and Gedenryd
2002] are as follows:

1. Every object of interest, both virtual and in the environment should be
a. visible (or perceptible) and
b. capable of a range of useful interactions with any other object of interest.

2. The available interactions between pairs of objects should be
a. diverse and
b. tailored to each pair (or n-tuple) of object types.

3. Direct Combination interactions must be implemented in such a way that they
are immediately available but do not impede access to preexisting interaction
styles.

The first two are recognized as principles of visibility and n-fold interaction. The
third is recognized as the principle of subsumption. Now, let us interpret this to
real-life mobile GUI design situations.

The principle of subsumption is probably the most obvious: We do not want to
put simple components together that will hinder one another’s operation. Most of
the time, this is not allowed by the language that we use. For example, we cannot

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

6.3 Summary 397

put select widgets and input widgets together on the same WML card: The card will
not compile to WMLC (you will get an error in the WAP browser or the emulator
will tell you that you have an error on your card). However, this is not always the
case. For example, we may put a select box and an input box together on the same
canvas in J2ME. And there is nothing that says this is necessarily problematic. But,
if we are publishing multiple user interfaces, we may get inconsistencies across
different interfaces if two or more components can live in a composite in one
specialized interface although they combine just fine in another specialized user
interface.

The principle of visibility and n-fold interaction tells us that when we put a
bunch of user interface components together, they should all be visible and that
they should be able to interact with one another, directly or indirectly through
the container. The cases when this applies are a bit more obvious: We do not
want to have one component hide another component, include components that
do not have the proper interfaces exposed to interact with the container or other
components, or put components together that are all essentially the same (for if
that were the case, then they should have been the same user interface component
to begin with).

Both these principles are key to designing your transformations to specialize a
generic user interface to specific types of interfaces. If you want to keep your user
interfaces consistent (which you should), creating transformations is not as easy
as you may think.

6.3 SUMMARY

We started this chapter by looking at some techniques in turning a generic user
interface into a specific type of GUI for a mobile application. From Chapter 5,
we knew that we could use XForms to represent the interactions of a user with a
computing system in a generic way and why it is important to do this for mobile ap-
plications. Here, we delved into techniques that help us in converting this generic
user interface to specific GUIs that can be displayed to the user. We did not
touch upon the subject of channels. For everything we did here, we assumed
that there was an available data channel, such as TCP/IP or WAP, that is well
known to us. We also looked at various design patterns, specifically MVC, PAC,
and variations on PAC, that can be used for building user interfaces to mobile
applications.

We then looked at the user interface capabilities of our development tools a
little closer and then went on to studying what types of interfaces they can allow
us to implement. There, we changed gears and looked at how to use UML to drive
the process of user interface development for mobile applications and help us in
designing and documenting the user interface. We will look at a case study that
uses the various extensions we introduced here in Chapter 19. We recommend
you look at that example to get a better feel for using these extensions to build a
real system.

P1: FCH

0521817331c06 CB752-B’Far-v3 May 5, 2005 10:44

398 DEVELOPING MOBILE GUIs

Finally, we looked at some optimization techniques. Because of the large variety
of interfaces, input mechanisms, and other factors, we may be faced with choices
to make during the design and implementation of a mobile GUI. Though our
discussion here was short, these optimization techniques are quite useful whether
you are building tools for mobile GUIs or simply implementing mobile GUIs.

Note that there are still many issues related to mobile GUIs that we have not
covered in appropriate depth. For example, we have not addressed how to design
the GUI best for a distracted user who may push the wrong button frequently
or how to modify the user interface, dynamically and over time, as the battery
is depleted. There are a variety of these types of issues, mostly revolving around
usability, that we will leave out of this text merely to control the scope.

Our dealing with mobile GUIs does not end here. Visual interfaces are one
modality among several. And, we have yet to discuss multichannel GUIs. We will
leave these subjects to Chapter 8, once we have become familiarized with VUIs in
Chapter 7.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

CHAPTER 7

VUIs and Mobile
Applications

It is forbidden to kill; therefore all murderers are punished unless they kill in large
numbers and to the sound of trumpets.

Voltaire

7.1 INTRODUCTION

As their name indicates, voice user interfaces (VUIs) are interfaces that allow users
to interact with computing systems through use of voice. Although our voice can
be used in different ways, VUIs typically refer to communication through the use
of language. This narrows down the problem at hand as communication through
VUIs is a subset of communicating through aural user interfaces. It is possible to
communicate with computers through sounds other than pronounced words and
sentences. Different sounds can be used to communicate information through their
frequency, amplitude, duration, and other properties that make them unique. How-
ever, language is how we naturally communicate, be it through voice or text; there-
fore, when referring to VUIs, we refer to communicating with machines using
pronounced language.

It is also true that most of us have had very frustrating experiences trying to
bypass the voice recognition system and reach an operator. However, this is not an
indicator of the lack of value of voice recognition systems. In fact, most systems
that lead users to be frustrated are those that have not been well designed or those
that require a high degree of cognition by the computing system: something that
computing systems do not do well yet. As we have already seen, the user interface
problem is one of the biggest problems in mobile computing. To reiterate, the
mobile user cannot carry a sizable keyboard and mouse, nor is the user always

399

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

400 VUIs AND MOBILE APPLICATIONS

physically stable enough to be able to rely on text entry. Whereas there are a variety
of ways to communicate with computing systems, one of the most natural is voice.
And, when it comes to mobile applications, the clear advantage it offers is that
human beings can talk while they are moving around much more easily than they
can type, write, or use any other means of communicating with computers that
requires our visual sensory systems. So, although today’s VUIs and the foundation
technologies on which they depend are very rudimentary, they still offer a very
effective way to solve many of the mobile user interface problems.

There are three basic technologies at the heart of systems that interact with
users through the use of voice, namely voice recognition, voice transcription, and
speech synthesis (a subset of which is referred to as text-to-speech). So, the first task
at hand is to introduce these foundation technologies. Of course, when it comes
to various voice-based interface technologies, more than just the voice interac-
tions is involved; there is understanding the meaning of what is said by the user
(typically covered in the field of cognitive computing and artificial intelligence),
there are various aspects of linguistics in both understanding the spoken words
and producing spoken words from text, and there are various other broad topics
to be considered. For the most part, we will not go into any of these topics as they
divert from our main purpose, which is to see how to build mobile applications.

Voice transcription and voice recognition systems are used to treat user input.
Although both of these systems are often referred to as voice recognition systems,
within this text, for the purpose of clarity and brevity, we will refer to free-flow
conversion of speech to text, whether speaker dependent or speaker independent,
as voice transcription. We will call those systems that are able to understand speech
that fits predefined patterns and grammars in a speaker-independent manner voice
recognition systems. Voice transcription systems are also often referred to as speech
dictation systems; voice recognition systems are referred to as command-and-
control voice recognition systems.

Speech-synthesis systems produce speech from binary or textual data. Although
the industry uses the terms “text-to-speech” and “speech synthesis” interchange-
ably, it is important to understand that text-to-speech systems are a subset of
speech-synthesis systems. Speech-synthesis systems can take a variety of data
types as their input whereas text-to-speech systems only take text, formatted or
not, as their input. Text-to-speech systems do just what their name says: They turn
text into speech. There are different types of text-to-speech technologies that we
will look at later in this chapter. The problem of text-to-speech, in general, is an
easier technical one to solve than those for voice recognition or voice transcription.
The reason is somewhat obvious: Computers are years, perhaps centuries, away
from having cognitive abilities like humans. We will mainly look at text-to-speech
systems, but, when reading this text, you should understand that speech-synthesis
systems that do not take text as input can typically replace text-to-speech systems
in your architecture in a modular manner.

In this chapter, we will start out by looking at what speech is and what qualities
differentiate speech from other types of sounds. Then, we will move on to look
at the various infrastructure technologies available to build VUIs for applications,
mobile or otherwise. Finally, we will delve into the heart of the matter and see

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.2 Qualities of Speech 401

how to build a real VUI for mobile systems, how to model voice-based interactions
using UML, and how to fine-tune the VUI after deployment.

If you are already familiar with VUIs, you may want to skip Sections 7.2 and
7.3 as they are introductory. If you would like to learn more about VUIs, there
are a number of good textbooks that discuss VUIs in much greater detail than
what we discuss here. We are concerned with VUIs only because of the value they
offer mobile computing applications, but they can be used for stationary software
applications as well. Refer to the references at the end of this chapter for some
suggested texts. Now, let us take a closer look at what speech is and some of
the basic technologies we use to communicate with computing systems through
speech.

7.2 QUALITIES OF SPEECH

The qualities of speech are those things that differentiate speech from other types of
aural input. To build good VUIs, a general understanding of the physical qualities
of speech not only give us a better high-level insight into the operation of voice
recognition engines but also leads us toward building better VUIs. So, let us take
a survey of what these qualities of speech are.

7.2.1 Amplitude
Speech, as in any other type of aural input, has a loudness level. The loudness
of a sound is based on the amplitude of the sound wave that makes the sound.
The amplitude of speech is important in that input devices are designed to receive
sounds within certain amplitude thresholds. If the sound is too loud, it causes
distortion in conversion of the sound, in our case the speech, into an electrical
signal that can then be digitized. Though most distortion can be filtered, distortion
always introduces some additional errors into the final processed data left over after
speech is completely scrubbed into a digital signal. Likewise, if the amplitude of
the signal is too low, there is not enough signal strength to convert the speech into
a meaningful digital signal. So, to accomplish voice recognition or transcription of
a speech signal successfully and within some predictable error rate, the amplitude
of the speech signal must fall within some upper and lower bounds.

There is also the matter of signal-to-noise-ratio, or SNR for short. If the ampli-
tude of the signal is high enough but there is significant noise, caused by sound
sources in the background, by the process of digitizing, or by the communication
channel that delivers the final signal to the voice recognition and/or transcription
system, the digitized speech signal may not have enough meaningful information
for processing. Making out the content of a speech signal also strongly depends
on whether the SNR is above a minimum threshold. This threshold depends on
the specific task at hand (whether we are recognizing or transcribing speech, what
the size of the allowable grammar may be, etc.).

Of course, voice recognition and transcription systems have to deal with much
more than just the amplitude thresholds of a speech signal and the SNR. A given
user’s speech amplitude rarely ever stays the same during an interaction with a

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

402 VUIs AND MOBILE APPLICATIONS

Distortion Threshold

Minimum Understandable Amplitude

FIGURE 7.1. Amplitude of the Speech and Relevant Thresholds.

computer system (see Figure 7.1) because speech amplitude is one of the ways
humans express emotions. Computer systems that deal with interpreting a user’s
speech must be able to mark the beginning and end of speech segments, using
speech amplitude, and the various properties of speech amplitude, among other
qualities of speech. There are other qualities of amplitude that are used by com-
puter systems that interpret voice. The important thing to remember is that signal
amplitude is one of the most crucial parts of getting recognizable speech into a
computer system.

7.2.2 Frequencies and Pitch
Another quality of speech is the set of frequencies that make up the sounds that
in turn make speech. Along with the amplitude of our voice, the combination
of these frequencies is what makes up the different pitches and sounds that we
use to make speech. Devices that capture speech typically act as band-pass filters,
cutting out the lowest and highest of the frequencies that make up speech. To-
day’s voice transcription systems are user dependent and rely on a training process
that familiarizes them with the pitch and tone of a specific user’s spoken words.
Therefore, when using most voice transcription systems, changes in the frequency
and pitch will cause errors. Voice recognition systems tend to be user independent
so they rely less heavily on the frequencies of the spoken words. However, even
voice recognition systems have some boundaries with acceptable pitches and fre-
quencies as they are statistically optimized and tuned to yield the best recognition
results for the average listeners.

Frequencies and pitch are not just important in the speech input to the system;
they are also critical in the output side when the user receives aural messages from
the system. For example, a female voice can be more soothing to a male user by
the virtue of the frequencies and pitch that make a female voice different from that
of a male voice. Frequencies and pitches provide a great tool in creating the right
type of “hear-and-feel” to the listener.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.2 Qualities of Speech 403

7.2.3 Meaning and Context
Sounds make up words, words make phrases and sentences, and a combination of
spoken sounds, words, phrases, and sentences make up spoken language. Individ-
ual sounds can have meaning (such as “hmmm . . .” expressing a thinking pause).
Words, phrases, and sentences, each and on their own can have meaning too.
However, the meaning of different combinations of sounds, words, phrases, and
sentences in spoken language depends largely on the context in which the spoken
language is used. Although the phrase, “Isn’t the sky blue!” can be broken down
into the three keywords of “sky,” “isn’t,” and “blue,” it is not possible to derive
the facetious meaning of the answer to a question that must certainly have a pos-
itive response, such as “Are software engineers typically poor communicators?”
In the context of the phrase being the answer to an obvious question, “Isn’t the
sky blue!” means “Yes,” but this not the meaning of any of the words, nor is it
the literal meaning of the sentence. Idioms and metaphors are examples of spoken
language segments that have meaning based on other contexts in addition to the
meaning of the words that make them up. Remember that we talked about context
and that user interface components have various types of context in Chapter 5.

Homophones and words that sound similar make context that much more
important in voice recognition. For example, consider the two words “blue” and
“blew.” The pronunciations of the words are exactly the same. So, how does a
voice recognition engine know which was said?

As we will see later, we limit the choice of possible words by grammars in voice
recognition systems. Grammars, then, in a way limit the contexts in which a VUI
can be used. Using a context-dependent way of limiting the possible interactions
between the user and the system is the only way that speaker-independent speech
recognition can be achieved with today’s technologies. When building GUIs, the
words are already known because of their textual existence: There is no “guessing
game” in interpreting what has been said. This is not the case for VUIs as the
biggest part of the problem is to recognize what has been said, and context is
crucial in helping achieve recognition.

7.2.4 Utterance
Utterance is simply a “chunk” of speech marked by a beginning and an end. An
utterance may be a sentence marker or an incidental sound such as “hmmm”; it
may be a single word, a combination of words in a phrase or a sentence, or even a
combination of sentences. The biggest significance of utterance is that it has well-
defined start and end points. Utterances are most relevant to voice recognition
and voice transcription systems as they represent the individual units that these
systems convert to text. The size of the utterance is important as the larger it is,
the more difficult it is to transcribe or recognize.

When dealing with mobile applications, utterances are typically shorter. As we
previously mentioned, mobile users are not focused on the task of computing;
therefore, we need to tell the user as much information as possible in as clear and
concise of a manner as possible. User utterances to be interpreted by the system
are also typically shorter as users tend to be more abrupt and to the point when
interfacing with a mobile application.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

404 VUIs AND MOBILE APPLICATIONS

7.2.5 Language
Language is a way of combining audible sounds, signs, and gestures to allow
people to communicate. When dealing with VUIs, we are concerned with spoken
language, which is the subset of the aural things that can represent a language.
Interpreting this spoken language is the final goal of both voice recognition and
voice transcription systems. Pronouncing written language is the goal of text-
to-speech systems. Because of context of usage, spoken language can be very
complicated as the sum of its parts can have a larger set of meanings than the sum
of the meaning of the individual parts.

7.2.6 Speaker Dependence
All those qualities of speech that we have discussed—the amplitude, frequencies,
and context—are unique for every single user. This makes a person’s voice much
like a person’s fingerprint: inherently unique. This uniqueness, however, presents
us with a new problem in that VUIs must be designed with the ability to understand
more than just one user and be able to give input back to the user with a flexible
persona that takes advantage of the qualities of speech. A VUI may be speaker
dependent or speaker independent. Although most systems strive to be speaker
independent, today’s voice transcription systems are nearly all speaker dependent
as speaker-independent transcription of voice remains somewhat of an unsolved
technical problem. Voice transcription systems typically require training by the
specific user who will use the system so that the system gets familiarized with the
qualities of the particular user’s voice. In contrast, most of today’s voice recognition
systems are able to perform speaker-independent recognition. We will discuss the
differences between voice recognition and voice transcription systems a bit later on.

Sometimes, however, VUIs are purposefully designed to be speaker dependent.
As we mentioned, the voice is just like a fingerprint; it is unique to the speaker.
Therefore, speaker dependence can be used as a very reliable security mechanism
to authenticate a user.

Generally, speaker independence is something desired when building voice
recognition–based user interfaces. Making the interface truly speaker indepen-
dent, however, is a bit more difficult than simply using a recognition engine
that provides speaker-independent facilities. Voice recognition engines that pro-
vide such functionality take care of the speaker-independence when it comes to
the basic qualities of speech, but they do not treat building bigger components
in a speaker-independent manner; this is something that is left up to the VUI
developers.

7.2.7 Internationalization, Languages, and Dialects
Voice input to computer systems is only meaningful within the context of a given
language. Without knowing the language, computers cannot recognize what is
said, because, in the end, it is the meaning of the language that is used to perform
actions. Translation of user interfaces is really a two-dimensional problem: First
there is the literal translation of the individual interactions and then there is the
contextual translation. In other words, when translating a user interface from one
language to another, not only do the individual interactions between the user and

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.3 Voice Transcription 405

the system have to be translated, but also the appropriateness of the way each
interaction is designed must be reconsidered.

7.2.8 Locale
In the same way as language, though not as palpable, the location of the user is
important in understanding the user’s speech. People living in different locales,
in the same country or territory speaking the same language, may use language
in different ways. For example, a user in Huntington Beach, California, may say
“that is tubular” meaning that there is a great wave to surf on or that something
pleasant happened. The same thing in Boston, Massachusetts, may only have one
meaning: that something has a cylindrical shape. Once again, grammars, which
we will talk about later, take into account the difference in what may be said in
different locales. Locale is not only important in defining the meaning of speech; it
is also an important factor that other qualities of speech depend on. For example,
in locations where the humidity in the air is greater, the signal received by the voice
transcription or voice recognition engine may end up being slightly different than
in a location with very low humidity. In this particular case, different algorithms
may be required for conversion of speech to a signal that is subsequently recognized
as speech.

7.2.9 Other Qualities
There are a variety of other qualities that make a speech signal and understanding
it into a unique problem. Speech can be spoken among multiple parties. The user’s
gender, mood, and a variety of other physical and psychological factors make up
other factors that create differentiations among the voice of various users or in the
voice of the same user at different times.

Understanding the general principles of what make up speech is important,
but we do not have to worry about the implementation details of infrastructure
software such as voice recognitions systems. To build VUIs, we will be employing
off-the-shelf software such as voice transcription and voice recognition systems
that implement algorithms to understand or synthesize speech.

Let us start by looking at voice transcription systems, the Holy Grail of speech
technologies today.

7.3 VOICE TRANSCRIPTION

Courtroom clerks and secretaries have transcribed voice recording as well as real-
time voice from third-party speakers for years. Transcription of speech is something
that our brains do very well very fast. So, it is something that we generally take for
granted. However, speaker-independent automated transcription of voice remains
one of the Holy Grails at the edge of computing technology today. The main
problem is that people basically pronounce things differently. Basic differences
may be locale related: where they are born, where they learn to speak, where
they live, etc. But things get much more complicated. Education level, speech
impediments, mood, context of conversation, and other factor all make speech

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

406 VUIs AND MOBILE APPLICATIONS

recognition between a computer and a live person a problem whose challenges
rely more within the realm of artificial intelligence and cognition then they do in
simple analysis of waveforms and the sound produced in speech.

There are automated voice transcriptions today, but they are speaker dependent.
This means that the voice transcription system has to learn the speech patterns
of the user through a training process. This training process can be long, taking
several hours, before enabling the system to recognize the user’s voice reasonably
well. Even then, voice transcription systems fall short in delivery: They typically
have a limit on how well they transcribe the user’s voice without errors regardless
of the amount of training; they do not deal very well with homophones (words that
have different meanings but similar pronunciations); they do not deal with incor-
rect grammars very well (which is acceptable especially in natural user interfaces);
multiple-user systems require that one user at a time uses the system and switch-
ing between users is either explicit (you have to execute a series of commands
that tells the system a new user will start speaking) or is done through automated
speaker recognition (using various complex digital signal processing algorithms
to determine who the user is) and is extremely CPU intensive.

The first step in making voice transcription a reality has already been taken:
You can purchase a piece of software, install it on your PC, train it, and then try
to dictate a word processing document. However, you will often have to correct
it and pay close attention to mistaken homophones or unrecognized words. You
will also have to be careful not to say anything that you do not want transcribed
(so you cannot begin dictating and talk to someone on the phone at the same
time). Most people find that simply typing the document is simpler. Today’s voice
transcription technologies still do have economically viable reasons for existing
in assisting the handicapped and other special circumstances.

We are more than a few years away from dependable and reliable technology
that transcribes a person’s voice with reasonable accuracy without knowing much
about the user’s speech patterns and even farther from a system that allows multiple
users to interact with it simultaneously by voice transcription.

Using voice transcription for mobile applications is an interesting proposition.
When it comes to the mobile user, the primary method of accessing a VUI is tele-
phony. Moreover, most mobile users are connected through some sort of wireless
device. Today’s voice transcription systems are not well suited to be used with the
noise levels that typically surround the mobile user. Another problem lies in the
fact that voice transcription systems are very resource intensive (in terms of both
CPU and memory) and mobile devices are resource-starved, a fact that has pre-
vented their implementation on today’s mobile devices. However, mobile devices
are becoming more and more powerful and some or all of the transcription can be
done in a centralized manner. The noise problem is bigger, but its solution is not
too far down the road. The value of speaker-dependent transcription with mobile
applications remains somewhat of a question under research. Will users want to
train the system? Can users afford the errors made by the transcription system?
Can we build a centralized scalable system able to transcribe voice for many users?
For a plethora of reasons, grammar-based voice recognition is typically a better
solution for mobile applications until such time when voice transcription systems

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 407

and the statistical modeling techniques on which they rely improve by orders of
magnitude.

Although voice transcription allows for natural interactions, voice recognition
gives us a more realistic way of recognizing what the user’s speech means with
technologies that are available today in a user-independent manner. We can build
voice recognition systems so that interacting with them feels relatively natural, but
we can never achieve a free-flow natural language conversation with computers
based on voice recognition systems. This does not lessen their value though.
Let us now look at voice recognition systems and their use in building mobile
applications.

7.4 VOICE RECOGNITION

Unlike voice transcription, voice recognition has not been so illusive in achieving.
Voice recognition allows the recognition of a word, a phrase, a sentence, or multiple
sentences pronounced by voice against a finite set possible matches. In other words,
the computing system tries to match something said by the user to a given set of
possibilities that it already understands. For example, telephone companies have
used this technology for years in their directory systems asking the user to “Please
say one to reach Bob and two to reach Phil.” If the user says “three,” the system
cannot find a match and tells the user “That’s not a valid option; please say one to
reach Bob and two to reach Phil.” Though the term voice recognition is often used
as an encompassing definition of voice transcription and voice recognition, in this
text, we will use it to recognize the so-called command-and-control type of recog-
nition. Some major distinctions between voice transcription and voice recognition,
as defined in this text, are the following:

1. Voice recognition systems rely on predefined interactions with the user. These
interactions can be composed of predefined words, phrases, or sentences. The
interactions can also be composites of predefined words, phrases, or sentences.
Grammars are how these words, phrases, sentences, or their composites are
predefined.

2. Voice recognition systems attempt to map these predefined words, phrases,
sentences, or composites to something that is understandable by the computing
system.

3. Voice recognition systems are typically used for “command and control” of a
computing system as opposed to dictating text. Though it is possible to cre-
ate dictation systems using voice recognition systems, it is awkward to do so.
Besides, voice recognition, by definition, is limited to a finite vocabulary that
constrains not just possible words, but the possible combination of words into
phrases and sentences. Therefore, an exploding vocabulary set typically makes
voice recognition systems inadequate for transcription tasks.

4. Performance of voice recognition systems is inversely related, typically expo-
nentially, to the size of the grammar vocabulary for a given transaction. This is

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

408 VUIs AND MOBILE APPLICATIONS

System: “Welcome home Bob. Would you like me to turn on the lights for you?”
Bob: “I don’t know.”
System: “I’m sorry Bob. Please say Yes or No. If you want me to stop, say Quiet.”
Bob: “Yes.”
System: “Which lights would you like me to turn on. Bathroom, bedroom, your

office, kitchen, or living room?”
Bob: “Bathroom.”

FIGURE 7.2. Directed Dialogue.

not necessarily true of voice transcription systems as their performance is much
less dependent on the specifics of a particular user interaction.

5. Voice recognition systems are typically speaker independent. Whereas most
voice transcription systems are tuned to a given user’s voice and enunciation
patterns, voice transcription systems are designed to be independent of the
user’s voice.

Because the strength of voice recognition systems is in command and control, it is
most valuable when building navigation controls in VUIs. The weakness of voice
recognition is in accepting the free flow of speech from the user. Functionality
offered by today’s voice recognition systems could be in one of several of the
following forms:

1. Directed Dialogue: As the term suggests, this is the case when every response by
the user is preceded by a list of acceptable responses as well as an explanation
of them. An example of such a dialogue is shown in Figure 7.2. As you see in
this example, the dialogue is directed by the system. The analog of this type of
dialog in the GUI world would be an interface entirely comprised of list boxes
that are bound to predetermined selections.

2. Natural Language: The ultimate goal of voice recognition is to be able to have
the computing system understand the commands that you give it even if things
are paraphrased or are put into the wrong order. Figure 7.3 is an example of a
natural language interaction, taking place between a user and the computing
system. As you can see in this example, although the system can only understand
sentences and words that concern turning on and off lights or adjusting the tem-
perature in the house, the user is able to put those words and sentences in any
order desired. This is where nearly all of today’s voice recognition products are
striving to be. Most offer some natural language capabilities, but none provide
a truly smooth experience as in the case of our example. This is mainly because
of two reasons. First, there are thousands of possible combinations of words that
can indicate the desired meaning by the user in a natural language dialogue—
merely recognizing these possible combinations is something fairly difficult.
Second, performance degrades as the number of combinations increase; there-
fore, thousands of combinations may not be acceptable performance-wise. The

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 409

System: “Welcome home Bob. How was your day? Can I help you tonight?”
Bob: “Yeah. Turn on the lights in the garage, will you?”
System: “Lights are already on in the garage Bob. Is there anything else I can do

for you?”
Bob: “Can you warm up the dinner please?”
System: “I’m sorry Bob, I only understand tasks related to lighting and tem-

perature. You’ll have to upgrade me to help you with the other household
controls?”

Bob: “Ok, well, turn on the lights in the kitchen and go into quiet mode.”
System: “Thank you Bob. Lights are now on in the kitchen. Just say ‘Genie’ if

you need me.”

FIGURE 7.3. Natural Language.

best way to get some natural language capabilities is to design the dialogs as a
mixture of natural language and directed-dialog interactions (often referred to
as mixed-mode or mixed-initiative).

3. Mixed-Mode Dialogues: Mixed-mode dialogs are often referred to as mixed-
initiative or natural language as well (though this second is a bit of a misnomer
as mixed-mode dialogues are not as flexible as natural language dialogues).
Mixed-mode dialogues allow natural language interactions while directing the
user so as to contain the possible responses to a given question to a minimum.
Figure 7.4 shows an example of a mixed-mode dialog between our fictitious
system and Bob. Note that although the system drives the conversation taking
place with the user and tries to limit the expected responses from the user, it
understands the user’s natural language response.

Much of the design of a VUI involves selecting initial dialogs that allow the user to
conveniently interact with the system and iterate to final dialogs that minimize the
unexpected answers and recognition failures that may result in user frustration.
Before we look at the process of designing a VUI, let us look at its components.
Then, we will put these components together to create the full picture. We will

System: “Welcome home Bob. How was your day? Can I turn on any lights or
adjust the temperature for you tonight?”

Bob: “Yeah. Could you turn on the lights please?”
System: “Where would you like to turn on the lights Bob? Your bedroom, the

bathroom, the kitchen, or the garage?”
Bob: “My Bedroom and the bathroom lights please?”
System: “Ok Bob. Those lights are now on.”
Bob: “Great. You can go into quiet mode now.”

FIGURE 7.4. Mixed-Initiative Dialogs.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

410 VUIs AND MOBILE APPLICATIONS

System: “Welcome home Bob. Would you like me to turn on the lights for you?”
Acceptable Responses: Quiet, Stop, Yes, No.
System: “Which lights would you like me to turn on. Bathroom, bedroom, your

office, kitchen, or living room?”
Acceptable Responses: Bathroom, Living Room, Bed Room, Garage.
System: “Would you like to change the temperature?”
Acceptable Responses: Quiet, Stop, Yes, No.
System: “What would you like the new temperature to be adjusted to?”
Acceptable Responses: Seventy, Seventy-One, Seventy-Two, Seventy-Three,

Seventy-Four, Seventy-Five, Seventy-Six, Seventy-Seven, Seventy-Eight,
Seventy-Nine.

FIGURE 7.5. Decomposition of the User Responses to Create Grammars for Figure 7.2.

start with grammars, the tool used to define the vocabulary set that constrains the
understandable responses from the user.

7.4.1 Grammars
To constrain the possible responses by a user, we need a linguistic method of spec-
ifying the constraints to the computing system. This is done through grammars.
Grammars specify the constraints of the expected utterance, whether initiated by the
user or given to the system as a response to a directed dialogue. Grammars can be
quite complex or very simple. For example, a particular grammar may specify that
the user can say one of two things: yes or no. Another grammar may specify how
a user can order food from a menu in natural language. Utterances are the sounds,
words, phrases, or sentences that the user may say. Of course, to specify grammars,
there are a variety of scriptlike languages. We will look at these a bit later. For now,
let us focus on how we may come up with a particular grammar.

Let us use our previous examples of Figures 7.2–7.4. The first, Figure 7.2, is a
short directed-dialogue taking place between the user and the system. Our home
automation system may turn on by sensing the opening of a door and kicking off
the dialogue. From there, the system asks the user (Bob) what he would like to
do. The system asks the user if he wants to turn on any of the lights or change
the temperature. So, the expected response is going to address one or both of
these. Anything that does not include either of these is going to return a no-match
condition that tells us we should instruct the system to ask the question again to
get an expected response. The first step, then, is to go through a set of possible
dialogues between the user and the system. This is equivalent to creating user
interface mockups for the GUI developers. The difference is that it is much more
difficult to constrain the user responses. Figure 7.5. shows the decomposition of
the possible answers that are allowed by the system in the directed-dialogue in-
teraction set of Figure 7.2. Whereas in the directed dialogue case we are facing
only a few possibilities for responses the user can give, the possibilities begin to
grow by factorials as we allow the user to respond with phrases and sentences

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 411

System: ”Welcome home Bob. How was your day? Can I turn on any lights or
adjust the temperature for you tonight?”

Acceptable User Responses:
1. “Yeah. Could you turn on the lights please?”
2. “Hmm . . . Please turn on the lights.”
3. “Please turn on the lights.”
4. “Lights on.”
5. “Lights.”
6. “Turn on the lights.”
7. “Flip on the lights.”
System: ”Where would you like to turn on the lights Bob? Your bedroom, the

bathroom, the kitchen, or the garage?”
Acceptable User Responses:

1. “Hmm ... Bedroom and bathroom.”
2. “Bedroom.”
3. “Bathroom.”
4. “Living room and bedroom.”
5. “Bedroom, living room, and bathroom.”
6. “Living room.”
7. “Only the living room please.”
8. “Quiet.”
9. “Stop.”

10. “Shut up.”

FIGURE 7.6. Decomposition of the User Responses to Create Grammars for Figure 7.3.

as in the example in Figure 7.6 (the decomposition of possible responses to
Figure 7.3).

This returns us to the types of dialogues that we discussed: directed dialogue,
mixed-initiative, and natural language. Grammars for directed-dialogue interac-
tions are typically well defined and limited to a small vocabulary set. Therefore,
the recognition engine can do a faster and better job of recognizing the command.
However, creating grammars for complete natural language interactions is nearly,
if not completely, impossible as the number of different responses grows very fast.
Mixed-initiative interactions lie somewhere in the middle. Designing the gram-
mars for mixed-initiative interactions, then, becomes part art and part science.

A good strategy to take in designing mixed-initiative dialogues is to start with
directed dialogues and to iteratively make them more and more “natural.” This
iterative approach allows the VUI designer to make the qualitative decisions that
balance the two diametrically opposed factors: guiding the user to limit his or
her responses to make the technical problem a solvable one and making the VUI
“natural” enough. We will look more closely at the process of designing voice
interactions for voice recognition systems later.

Now that we have learned about the basics of grammars, we need to look at
how they are represented programmatically.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

412 VUIs AND MOBILE APPLICATIONS

Representing Grammars Programmatically
Traditionally, IVR (Interactive Voice Response) systems have been fairly propri-
etary. Therefore, each system has traditionally had its own programming interface,
including its own language for defining grammars. However, recently, there has
been much movement in standardizing the syntax by which grammars are defined.
There are many obvious reasons for this along the same line as standardizing the
syntax of programming languages.

Most of today’s popular voice recognition systems support one of a few stan-
dard grammar syntax types. The standard grammar can then be compiled, much
like an application written in a high-level programming language is compiled into
assembly, to something understandable by the particular voice recognition engine
deployed. There are two basic types of grammars, rule grammars and dictation gram-
mars. In this text, we will deal strictly with rule grammars. Dictation grammars
impose fewer restrictions on what can be said, making them closer to providing
the ideal of free-form speech input [Apaydin 2002]. Dictation grammars are typi-
cally refined at run time using some statistical model. The details of how different
types of grammars work are not something we are concerned with here as this is
specific to the implementation of the voice recognition engine. Rule grammars are
those grammars that let us define a set of rules that in turn define a limited set
of responses from the user. These grammars are implemented successfully today
and with little or no user dependence. These are the types of grammars that most
voice recognition systems use.

Building VUIs requires knowing one or more of the most prevalent grammar
languages. Let us survey some of these.

JSGF
As we have seen throughout this text, when there is a need of a standard syn-
tax, there is typically a solution offered by the Java platform. The need for a
standard syntax for grammars is no different: JSGF, Java Speech Grammar For-
mat, is one of the more popular grammar formats supported by voice recognition
platforms today. It should be noted that although JSGF uses similar syntax to
Java, it can be used by non-Java-based systems. In fact, in those cases where the
grammar is to be compiled dynamically at run time, it may be a wise decision to
have native code perform the compilation to improve performance. JSGF is a rule
grammar.

JSGF is designed to syntactically define the possible components of an utterance
(any block of speech that can be marked by a starting and an ending point). Now, let
us get started in understanding how to create JSGF grammars and then we will
learn to use them.

Naming
As in the case of a programming language, rule grammars are written in a human-
readable format in text and saved into files. There are a set of rules to be followed
for the naming of these files and the grammars that go into them based on how
grammars are going to be used and their contents. These naming conventions tend
to be specific to the grammar language.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 413

Example 7.1: Simple JSGF Grammar.

#JSGF V1.0;

grammar com.cienecs.yes_no;

// Body

public <YES_NO> = (Yes | No) *;

In the case of JSGF, the conventions of the Java programming language are used
to build the name of the grammars. Specifically, there are two concepts: package
names and grammar names. Package names are a dot-separated string representing
the directory structure in which the grammar file exists. Each grammar file repre-
sents a single grammar only. Example 7.1 shows a very simple JSGF grammar. The
grammar file has one or more header lines at the top. The first line of the header
must be a directive that specifies the version, character encoding, and locale of the
grammar. The format for this line is as follows”

JSGF version char-encoding locale

Specifying the version is necessary for the obvious reason of compatibility
among different versions of the syntax if and when the grammar language is
changed for different versions. Character encoding and locale go hand-in-hand.
As in the case of Java programming language, locale and character encoding pro-
vide us with a method of providing multiple grammars for one or more locales
(geographical locations with a particular set of characteristics) that may require
one or more character sets for one or more languages spoken in those locales. This
directive makes it possible to determine which grammars should be chosen when
the voice recognition system first starts up or, in the case of more robust systems,
dynamically at run time.

The second line of our header in Example 7.1 shows the name of the grammar.
Every JSGF grammar can be referred to by two names: a full grammar name or a
simple grammar name. The simple grammar name is just the name of the gram-
mar, in the case of our example, it is yes no. The full grammar name includes
the package name, in our case com.cienecs. Packaging is used primarily for or-
ganizing the grammars and name resolutions. Let us say, for example, that we
want to have two different sets of grammars, one for more formal direct dialogue
interactions with the user and the other for more informal mixed-initiative inter-
actions. They could both be named yes no, but packaged differently, for example,
com.cienecs.formal.yes no and com.cienecs.informal.yes no. Then, the package can
be selected based on some configuration settings or other rules and the proper
grammar can be used. For those familiar with the Java programming language, the
full grammar name is similar to the fully qualified name of a class and the simple
grammar name is similar to the name of the class by itself.

The last line of our simple example shows a rule. Every grammar is made up
of one or more rules. Every rule has a name and a scope. Only those grammars
that are public are exposed to the other grammars and can be used through com-
position. In JSGF, the rule begins with a scooping keyword (such as public in

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

414 VUIs AND MOBILE APPLICATIONS

our example) and is followed by the name of the grammar enclosed in <>. Rule
names can be anything but <NULL> or <VOID>. <NULL> defines a rule that
is automatically matched, that is, matched without the user speaking any word;
<VOID> defines a rule that can never be spoken. Inserting <VOID> into a se-
quence automatically makes that sequence unspeakable [JSGF 2002]. <NULL>

and <VOID> are used mostly for development purposes or for situations where
the grammar is dynamically (at run time or startup time) recompiled based on a
set of application-dependent rules.

The remainder of the last statement in our example is how the rule is defined.
We will look at the syntax for building the rules in the next section.

Rules and Tokens
Tokens, also sometimes referred to as slots, are the placeholder for what the user
may say. In a purely directed-dialogue situation, tokens are typically just various
individual words that the user may say. As the interaction becomes more natural,
these tokens can be used to represent incidentals, markers, words, phrases, or
sentences.

An individual token is only one word, but incidental, or marker, multiple tokens
can be put together to make a sentence. Example 7.2 shows how we put together
the words “could” and “be” to get “could be,” one possible answer to the system
when the user wants to give an uncertain yes answer. Tokens are separated by
spaces. The other characters seen in the rule allow combining the tokens. Table 7.1
outlines what each one of these symbols mean as well as some keywords in the
JSGF syntax.

Example 7.2: Simple JSGF Grammar.

#JSGF V1.0;

grammar com.cienecs.yes_no_maybe;

// Body

public <YES_NO> = (Yes | No) *;

public <MAYBE>=(Possibly | Maybe | Could be | It's Probably) *;

This wraps up the summary of the most important syntactical points in JSGF.
Next, we look at modularization of grammars into cleanly separated components
that we can put together to build VUIs.

Nesting
Building a VUI of any significance requires a large set of interactions with the
user. In a way, the number of permutations of dialogues with the user is directly
proportional to the number of grammars. So, when building a VUI, modularization
of grammars is something fairly critical. Modularization of grammars not only
allows us to break up large unmanageable grammar files into smaller manageable
ones but also allows an easier and methodical tuning of the individual grammars
for a better VUI.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 415

TABLE 7.1. Symbols Used in Building Grammar Rules

Symbol Definition

<> As we mentioned previously, the greater and less than signs
are used to enclose the name of the grammar.

“” Quotation marks are used to encapsulate written words that
are to be said in a single word utterance. For example, the
word “Los Angeles” should be enclosed in quotation
marks to clarify the fact that it is one word and to provide
a mechanism to distinguish it from individual
pronunciations of Los and Angeles.

\ The back slash is used as an escape character for other
symbols. For example, if you want a quotation mark (")
to be part of the grammar, then it must be included as \ "
When dealing with symbols, however, this type of usage
is discouraged. Most recognizers deal better with
“ampersand” than “ \ &.” Besides, seldom does a good
VUI need to use symbols because symbols are more
relevant to written language than they are to spoken
language. There are, however, exceptions, such as
possessives in the English language. Depending on the
voice recognition engine, “Bob’s” or “Bob \ ’s” may be
acceptable.

; The definition of every rule must be terminated with a
semicolon. Many programming languages such as Java
follow this convention.

// Two forward slashes are used to include a single comment
line. They must be placed in the beginning of the
comment and can be placed inline after the code.

/ Whether dealing with a directed-dialogue or a more natural
user interface, there may be several different choices for
the same thing. For example, a rule call YES may have
“yeah,” “yes,” or “yep” as possible answers. The
probability of some answers being given by the user is
more than the probabilities for others. This may be
application or context dependent. We may not know the
various probabilities until we have deployed and tuned
the system (which will be discussed later during the
chapter) or we may know the probabilities fairly
accurately based on the application. Regardless, there may
be probabilities associated with each possible answer.
This probability is referred to as a “weight.” For our
example, we could have a 10% chance of the user saying
“yep,” a 60% chance of the user saying “yes,” and a 28%
chance of the user saying “yeah” (with the remainder due
to errors or other ways of saying “yes” not accommodated
by the particular grammar).

(continued)

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

416 VUIs AND MOBILE APPLICATIONS

TABLE 7.1 (continued)

Symbol Definition

The forward slash (/) is used to enclose a wait associated
with a token in a rule. Therefore, our rule YES would be

public <YES> = (/10/ yep | /60/ yes | /28/ yeah);

In JSGF, all of the weights must be positive floating-point
numbers or zero and at least one of them must not be
zero. There are no other restrictions on the total amount
of the weights dictated by JSGF; however, there may be
restrictions imposed by the voice recognition system. Not
abiding by those restrictions should simply render the
weights useless as opposed to causing a compilation error.
As a rule of thumb, it is a good idea, for the reasons of
readability of code, to stay with the same numbering
system throughout all of the grammars for a given system
(so, if you use the weights to represent a percent-based
probability, then the weights of a given rule should add up
to be 100 or less).

() Parentheses are used to group subsections of rules and to
set precedence for resolution of tokens. For example, in

public <YES NO> = (Yes | Yep | Yeah) (Please)

the user will be expected to give two answers. The first
word will be recognized to match Yes, Yep, or Yeah. The
second word will be recognized to match Please.
Parentheses may not be left empty.

[] Brackets are used to enclose optional tokens. They are
particularly useful for incidentals and markers used in
speech. Let us look at an example:

public <NATURAL YES NO> = [Please | hmmm | well]
(Yes | Yep | Yeah) [Please | Thank You]

Optional grouping functionality represented by the
brackets in JSGF gives us a very important tool to begin
developing a more natural interface. As you can see in
this quick example, the user may say a variety of things
such as

Hmmm, Yes Please.
Yes Please.
Yes Thank You.
Hmmm, Yep.

or a variety of other combinations and return a proper
recognition. As in the case of parentheses, brackets may
not be left empty.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 417

Symbol Definition

* The Kleene star (*) is used to indicate that a given token can
happen zero or more times. For example, a user may say

Yes, Yes, Yes

This could be accommodated by the following grammar:

public <YES> = (Yes | Yeap | Yeah) *;

The Kleene star is one of the three unary operators
(operators that work on one token or one group of
tokens).

+ Another unary operator is the plus sign. It indicates that a
token may occur one or more times. The only difference
between this operator and the Kleene star is that the
token has to occur at least once.

{} Curly brackets are used to indicate the third and last type
of unary operator in JSGF, namely tags. Tags are used as a
mechanism for application-specific values. Their primary
purpose is to return a value when a token is satisfied. For
example, if we have a rule

public <YES> = (Yes {YES} | Yep {YES})*;

the value returned to the application is “YES” whether the
user says “Yes” or “Yep.” Tags are associated with the
tokens that they follow immediately.

= The equal sign is used to separate the name of a rule from its
definition.

public The public keyword is used to specify that a rule can be
referred to externally by other rules. If a rule is not
preceded by the public keyword, it is not exposed to other
grammars, in the same package or other packages, that
may want to use it.

/* comment */ As in the Java programming language, /* and */ are used to
enclose single or multiple lines of comments in the
grammar.

grammar The grammar keyword precedes the simple or fully qualified
name of the grammar. It is recommended that a packaging
scheme is always used for grammars to promote
reusability of the grammars.

import The import keyword allows importing all of the rules of one
grammar into another grammar. Use of “import” enables
composition of grammars. We will look at nesting rules
and grammars in the next section.

(continued)

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

418 VUIs AND MOBILE APPLICATIONS

TABLE 7.1 (continued)

Symbol Definition

@ The @ symbol is used to create Java-Doc (documentation
enclosed inside the code as a part of a documentation
standard for Java programming language) style
documentation for your grammars. Namely, it may be
followed by the keywords author, which defines the
author of the grammar; version, which defines the version
of the grammar; example, which can allow the developer
to include sample rules; and see, which points to the
other grammars that have some relationship to the
particular grammar at hand.

We have already looked at the “import” statement, which allows us to import
one grammar definition set into another grammar definition set, thereby using
rules from one in the other. JSGF also provides a syntactical naming convention to
refer to rules from within other rules. Namely, we can refer to a rule, by reference,
through usage of the rule name enclosed in <>:

public <YES> = (yes | yep | yeah)+;

public <INCIDENTAL>= (please | "thank you" | sure);

public <NATRUAL_YES> = <INCIDENTAL>* <YES>+ <INCIDENTAL>*;

In the first two rules, we define a set of words that can be used to respond as YES
and another set of rules for the incidental words used to express politeness. Because
the rules to express politeness may be used in a variety of contexts, it may be that
we want to put them in a separate grammar file and include them, through the use
of the import statement, in other grammar files. So, without having to redefine the
politeness incidentals, we have defined a rule that defines them, then referred to
it in our new rule NATURAL INCIDENTALS. Example 7.3 puts some of the tools
in JSGF to work to produce a grammar that uses other grammars.

Example 7.3: Building Modular Grammars.

JSGF V1.0 ISO8859-1 en;

grammar com.cienecs.examples.voice.home_automation;

import <com.cienecs.examples.voice.basic.YES >;

import <com.cienecs.examples.voice.incidentals.politeness>;

/**

* @author Reza B'Far

* @see com.cienecs.examples.voice.basic.YES

*/

public <LIGHTS_ON>=<YES>* <POLITENESS_INCIDENTALS>* turn*

lights on

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 419

Example 7.4: Building Recursive Grammars in JSGF.

JSGF V1.0 ISO8859-1 en;

grammar com.cienecs.examples.voice.home_automation;

import <com.cienecs.examples.voice.basic.ON >;

import <com.cienecs.examples.voice.incidentals.politeness>;

/**

* @author Reza B'Far

* @see com.cienecs.examples.voice.basic.ON

*/

public <LIGHTS > = on* <POLITENESS_INCIDENTALS>* off*

lights on;

public <LIGHTS_RECURSE> = <LIGHTS_RECURSE>* (on | off)*

<LIGHTS_RECURSE>*;

public <LIGHTS_ON> = <ON> | <LIGHTS_NEST_RECURSE>;

public <LIGHTS_ NEST_RECURSE> = another thing <LIGHTS_ON>;

The last significant form of nesting is recursion. Using recursion in grammars
is not for the faint of heart. It can cause bugs and slow down performance if not
used properly. However, it can be a powerful tool in building complex grammars.
It is also important to note that recursion is not a feature supported by all voice
recognition engines.

There are two types of recursion in JSGF, right recursion and nested right recur-
sion. Let us say that you want to turn a light on and off n times in one interaction
with the system. This would mean that an utterance could be something like “on
please, off, on.” Now, if n is a constant, say three, we can write a grammar such as
that in rule LIGHTS of Example 7.4. But, if n is a variable, we need to use recursion.
This is demonstrated by the rule LIGHTS RECURSE. This is an example of the
right recursion in a grammar.

In the same example, LIGHTS ON and LIGHTS NEST RECURSE show
an example of nested right recursion in which LIGHTS ON refers
to LIGHTS NEST RECURSE and LIGHTS NEST RECURSE refers back to
LIGHTS ON. Use of nested right recursion is strongly discouraged except for those
cases when it is absolutely necessary to simplify overly complicated grammars.

This wraps up our discussion of JSGF. Obviously, this is not a comprehensive
discussion of JSGF; Sun Microsystems provides extensive documentation freely
available to developers if you are looking at a voice recognition system that uses
JSGF.

W3C Speech Grammar Specification
W3C, whose standards we have discussed several times previously in this text,
has started a speech recognition grammar standard based on JSGF, but more
platform-independent in nature. This standard is simply called the W3C Speech
Grammar Specification. Because it has been based on JSGF, we will simply point

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

420 VUIs AND MOBILE APPLICATIONS

out the differences between the W3C Speech Grammar Specification and JSGF:

1. W3C Speech Grammar Specification provides two formats: Automated BNF
(Backus-Naur Form) Syntax (ABNF) and XML based. The two formats can be
linearly mapped and transformed. Obviously, the XML format is more verbose
as it has a series of tags surrounding the grammar syntax elements; however,
there is an advantage to this method: The grammar can be parsed by any XML
parser. Although the ABNF syntax is the one that is nearly syntactically identical
to JSGF, the XML format is, in spirit, the same. The following tags are used to
wrap the elements of concern to us:
a. <ruleref>: This is the tag that specifies a rule. You can think of this as the

equivalent to a rule name tag.
b. <token>: This tag is used to identify a token to be recognized.
c. <item>: Items wrap tokens and their attributes (such as their weight

attribute).
d. <one-of>: This element wraps around several items and it has the same

effect as the or gate (|) in ABNF syntax.
e. <grammar>: This tag specifies the version of the grammar and the language

of the grammar, points to the schema to validate the grammar, and finally
adds a mode attribute (see item 3).

2. Referencing rules, created by a naming and packaging mechanism similar to
that of Java, are also provided as a URI-based mechanism in W3C Speech
Grammars:
a. The dollar sign ($) is used in the ABNF format to refer to rules: $rulename.

A tag called ruleref is used to refer to rules in the XML format: <ruleref
uri=“grammarname#rulename”>.

b. An additional special rule called GARBAGE is provided (remember that the
two special rules in JSGF were NULL and VOID). Garbage provides a token
that matches any utterance until that utterance is ended and the next one is
started. The next token is used for the next utterance.

3. Whether the user is giving the system input through voice or some other audio
input such as DTMF tones is left outside of JSGF. The W3C Grammar Spec-
ification pulls this in and provides a mechanism to specify whether the input
is voice or DTMF. (In this way, if there are other possible audio inputs to a
voice recognition system in the future, extension is done by a simple change
of the XML Schema to accept additional alternatives for the attribute). This is
done through a mode command in the ABNF format (e.g., mode voice;) and a
mode attribute for the <grammar> tag in the XML format.

4. W3C grammars also allow specification of lexical pronunciations of tokens
in the rules of the grammars. These lexical pronunciations can be fed into a
voice recognition system to extend its recognizable vocabulary set. Documents
that hold lexical pronunciation information are referred to through the URI
mechanism. In the ABNF format, they are represented as a single line: lexi-
con http://grammars.cienecs.com/examples/yeap.lex; In the XML format, they
are represented as an example element: <lexicon uri=http://grammars.cienecs.
com/examples/yeap.lex>

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 421

5. As may be expected, the W3C Grammar Specification also adds metadata ca-
pabilities to the starting base of JSGF. This is done so that we can find out
information about the grammar files without having to look at the lexical con-
tent of those files. There are two types of metadata in W3C grammars. The first
is a metatag equivalent to the http-equiv tag. This tag is basically used to add
metadata in name–value pair format to the grammar document. Because the
format is unstructured (simple name–value pairs), it can be represented in ei-
ther the ABNF or XML formats. Name–value pairs can be an inefficient method
of storing metadata because metadata may have structure and complexity be-
yond simple name–value pairs. It is also possible to add XML metadata to W3C
grammars; however, this is only possible in the XML representation of the
grammar

6. Comments in the ABNF format are identical to those in JSGF. In the XML
format, XML-style comments, enclosed between <!-- and --> are used.

There is extensive documentation on the Web, particularly on the W3C site, on
W3C grammars. Though JSGF is more prevalent across most voice recognition
platforms, W3C will grow as it is a bit more comprehensive and very similar, in
syntax, to JSGF.

Though there are a variety of syntaxes for representing grammars, they are not
much different than JSGF and W3C grammars. There are a couple of common
problems with grammars when developing VUIs of any significant size:

1. Porting VUIs from one platform to another is often problematic because of lack
of documentation and modeling for the grammars. Porting grammars from one
platform to another often means reverse engineering every grammar, sometimes
prohibiting migration from one voice recognition platform to another.

2. Grammars can grow in complexity exponentially as they are nested, reused,
and changed over the life cycle of the VUI development project or during the
maintenance of the system.

These two problems, particularly the second, give rise to an entirely new set of
problems. One of the most time-consuming processes in designing VUIs is the
tuning process; the complexity of grammars or porting them between platforms
can render the tuning process indefinitely long. UML was not designed to represent
grammars, but we are going to try to use it to address some of these problems
because it gives us a series of graphical tools to tie grammars with the other parts
of the system.

Representing VUI Grammars in UML
Though grammars are not objects, they are often organized as classes are organized
in OOP languages. So, let us compare grammars and classes:

1. Grammars in JSGF and W3C grammars have rules with well-defined scopes
and can be nested. These two properties enable grammars to display the same
type of behavior as aggregation and composition in OOP.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

422 VUIs AND MOBILE APPLICATIONS

simpleresponses homeautomation

lights temprature

FIGURE 7.7. Representing Grammar Packages in UML.

2. To keep grammar files under control, making them into logical groups is rec-
ommended. These logical groupings resemble name spaces (also known as
packages) in object-oriented languages.

3. A grammar has one or more rules. These rules encapsulate data as well as logic.
However, the invocation of the logic is not done through delegation of method
calls. In this way, grammars differ from classes. Grammars are typically compiled
into something understandable by the voice recognition program. They are then
used, at startup time or run time, by the voice recognition engine.

4. As we noted, grammar rules can have weights associated with the tokens that
make up the rules. Classes do not have anything that compares to this, though
it is possible to create name–value pairs that model these weights in UML.

Because of the structure of grammars, we can represent them with class diagrams.
Let us walk through an example.

Example 7.5: A Simple Grammar Representing “Yes,” “No,” and “Maybe.”

JSGF V1.0 ISO8859-1 en;

grammar com.cienecs.examples.homeautomation.yes_no_maybe;

import <com.cienecs.examples.simpleresponses.YES >;

import <com.cienecs.examples.simpleresponses.NO>;

import <com.cienecs.examples.simpleresponses.MAYBE>;

public <YES_NO_MAYBE> = (<YES>* | <NO>* | <MAYBE>*);

Example 7.5 outlines a JSGF grammar representing the answer to a simple
question such as “Would you like to eat dinner now?” There are three options:
Yes, No, and Maybe. As we saw earlier, there are multiple ways of saying Yes and
this is defined in the grammar com.cienecs.YES; there are multiple ways of saying
No and this is defined in the grammar com.cienecs.NO; and so on. First, we see
that this grammar is in a particular package and uses grammars in other packages.
The diagram in Figure 7.7 shows how we may model the relationship among the
packages to which the individual grammars belong.

Then, we need to show the relationship between the grammars inside the pack-
ages, in our case the individual grammars YES, NO, MAYBE, and YES NO MAYBE.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 423

JSGF_Headers

<<metaclass>>

+mName: String

+mVersion: String

+mLocale: Locale

+mCharEncoding: String

+mImportDirective: String

JSGF_Rule

<<metaclass>>

+mRequiredToken: String

+mOptionalToken: String

Grammar

<<metaclass>>

SimpleGrammar

<<metaclass>>

CompsiteGrammar

<<metaclass>>

JSGF_Grammar

<<metaclass>>

*

*

FIGURE 7.8. Suggested Metamodel for JSGF.

But before we move on, we need to think about representing the structure of
grammars in UML. We can do this in a few different ways. Let us look at some of
the possible alternatives:

1. Metamodeling: We can define our own metamodel with our own metaclasses.
Unfortunately, to date, there are no standard efforts to create a metamodel that
represents grammars, particularly those used in VUIs, in UML. Figure 7.8 shows
a simple metamodel that we propose for modeling JSGF. This metamodel is not
canonical; nor is it part of any standards effort. The UML extension mechanism
is flexible enough to allow defining the metamodel for the grammar in a way
that fits the needs of a project and the interpretation of the implementers of the
project. Metamodels give us a clean and layered way of representing grammars;
unfortunately, lack of efforts in standardization may cause problems. In our
example, we have simply used a class diagram representing the metaclasses
for JSGF grammars. The graphical widgets of your choice may be added for
additional graphical support in modeling grammars though it is probably not
necessary.

2. OCL: OCL may be used to define custom constraints on attributes and behavior
of objects and their defining classes. The use of OCL in representing grammars
has the advantage of representing the grammar independent of implementation
syntax such as JSGF. However, OCL itself is a textual, not a graphical, language.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

424 VUIs AND MOBILE APPLICATIONS

NO

<<implementationClass>>

+mNoRule: JSGF_Rule

YES_NO_MAYBE

<<implementationClass>>

+mYesNoMaybe: JSGF_Rule

YES

<<implementationClass>>

+mYesRule: JSGF_Rule

MAYBE

<<implementationClass>>

+mMaybeRule: JSGF_Rule

** *

FIGURE 7.9. Using UML Class Diagrams to Model Grammars.

Therefore, it does not do much in the way of reducing complexity; in fact, if
anything, using OCL to represent VUI grammars probably adds complexity.
OCL is not something that we recommend in representing VUI grammars.

3. Class Diagrams: Figure 7.8 shows a metamodel-level class diagram of what JSGF
grammars are, but we can represent grammars without defining a metamodel
layer. The advantage here is that nothing is created, at the metamodel layer,
that is not standard. The disadvantage is that there is no separation of concerns
between the definition of JSGF and an instance of a JSGF grammar (because we
cannot really use objects to represent an instance of JSGF grammars as we may
use them in representing an instance of a class as grammars are classes and not
inherently time dependent).

Figure 7.9 shows an instance of the metamodel of Figure 7.8 for the
YES NO MAYBE grammar we outlined in Example 7.5. Note that we have used
association links as opposed to aggregation links. Because grammars are really not
instantiated the same way as classes are to create objects, using aggregation to
model relationships between various grammars may imply too much. Therefore,
we use associations, which give us a looser definition of dependency between
different classes. In our case, of course, we do not have classes, but grammars. As-
sociations are also a better method of modeling relationships between grammars
as grammars use the rules defined in other grammars as opposed to using other
grammars in their entirety.

Also, note that the multiplicity (Kleene star) is used to indicate that grammar
YES NO MAYBE can use each one of the subgrammars multiple times.

It is also possible to define grammars without an underlying metamodel by sim-
ple use of classes, defining all of the things that make up a grammar (tokens, rules,
headers, etc.) as data members of the classes. Such use is still useful although not
as semantically correct when looking at UML and where the meta-metamodel, the
metamodel, and the model layers exits. By representing grammars at the model
layer, we would ignore the difference in the “type” of things that grammars are
from all other things that UML may be used for. Although semantically incor-
rect, remember that the more important goals of using UML in building mobile
applications are to maintain consistency, to provide a platform-independent way

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 425

of representing application logic and structure, and to create a uniform way of
documenting. It is important to maintain the semantics of UML so that we are
not creating our own modeling language; nevertheless, we must balance this with
practical application of UML as a tool to enhance the development process and
not another layer of complexity. Therefore, any of the suggested methods can be
used to represent grammars in UML based on the specific application. UML tool
makers may even decide to provide their own widgets corresponding to a par-
ticular metamodel (which would be very helpful in providing a unique way of
visually representing grammars). Meanwhile, this is too much work for an end
user (mobile application developer) who may choose to represent grammars with
no metamodel in simple class diagrams.

Grammars for Mobile Applications
As we have defined in this section, grammars help us to decompose the elements of
one or more utterances and to recognize the contextual meaning of the utterances
and/or the parts of the utterances. We also mentioned that the interactions of a user
with a VUI may be different between mobile and stationary users. So, this brings
us to try to see if there are differences between grammars of mobile applications
and their stationary counterparts. Of course, the answer is yes. Let us see what
those differences are by enumerating those dimensions of mobility that have an
effect on grammars:

1. Localization: As we have seen, both JSGF and W3C grammars allow for specifi-
cation of some locale-based information. This is particularly crucial in the case
of mobile applications. For example, an application may use Euro’s as the mon-
etary unit in one region while offering Pounds in another region. As the user
may move from one location to another, the application should provide the
appropriate grammar for the user to perform a transaction. The location infor-
mation can be provided by the mobile device or the user may need to provide the
information; regardless, the applications may need to provide the functionality.
Therefore, providing the grammars for the appropriate locale is a necessity for
VUIs designed for mobile applications and not a nicety as in the case of their sta-
tionary counterparts. Tuning the grammars is also a locale-dependent process as
users have different accents in different locales or use slightly different dialects
of the language (for example, there are subtle, but apparent differences in the
accents and use of the English language between southeastern and southwestern
states in the United States).

2. Higher Use of Discourse Markers and Incidentals: The mobile user is not focused
on the task of computing. Therefore, he or she is much more apt to use unnec-
essary words. For example, the mobile user may be a passenger in a car who is
carrying out a conversation with someone else in the car as well as using the
VUI. Because of this lack of focus, the user is more apt to use words such as
“hmmm,” “shoot,” “well,” “wait,” “ok,” etc.

3. Effects of QOS: There are two side effects on the VUI when the QOS of the
connectivity of a mobile user is low. First, if the mobile user is connected to
the network through a wireless connection, the quality of signal may go down

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

426 VUIs AND MOBILE APPLICATIONS

to a point where the SNR is not acceptable for recognition. In such cases, it
is recommended that the VUI be designed to slowly move away from a natu-
ral language–based VUI to a DTMF-based VUI. Machine-generated tones are
much easier to recognize and have much less stringent SNR requirements. In
other cases, the user may be losing signal intermittently altogether. Mobile
VUIs should be designed to detect this and to dynamically adjust themselves
to present more concise prompts while presenting the user with more clear
options. This implies that the size of the grammars should decrease as does the
QOS. Although many of today’s voice recognition engines are designed to take
into account noise levels for wireless connections, it is important for the VUI
designers to understand that a mobile application delivering a piece of func-
tionality and accessible through a VUI may have a different set of grammars
than a stationary application delivering the same set of functionality.

VUIs are affected in more ways than just this by the mobile condition of the user
and the dimensions of mobility but at higher granularity levels than the grammars
and rules that make them up. We will look at these effects next.

Now that we have a basic understanding of how to build grammars in JSGF
or W3C grammars for a basic VUI interaction, we next need to look at a method
to build scripts that enable a voice recognition system to perform a series of
interactions with the user.

7.4.2 Building VUI Interactions
Grammars help us break down a given response by the user, but a VUI is created
by putting a series of prompts presented based on the responses given one
after the other. So, the next thing we will look at is how to build VUIs by using
some of the more popular languages and techniques used in the industry today.
To understand the motivations behind some of the design principles used in the
various languages that we will look at, let us first look at some basic properties of
VUIs.

VUIs are inherently state driven. As we discussed in Chapter 5, State Machines are
one of the most popular mechanisms for implementing user interfaces in general,
but they fit VUIs particularly well. This is because a VUI consists of a serial set of
interactions with the user where the user is presented with a series of questions
or requests and gives the system a series of responses. These responses are the
triggers that change the state of the user interface. Because of this, IVR systems,
the first generation of computer systems that allowed users to interact with the
system through voice, have typically had development environments that basically
provide a mechanism for the interface developer to construct a state chart of the
user interface.

Although State Machine UIMs are the choice for those VUIs, using strictly
directed-dialogue, grammar-based UIMs prove useful for those VUIs that in-
volve more natural interactions with the user. As you may recall from Chapter 5,
grammar-based UIMs are used to represent interactions that involve parsing of
some response to match a given set of grammar rules. Earlier in this chapter,
we also mentioned that a complete, user-independent, natural language–based

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 427

Invalid State

Valid State

InvalidCity

ValidCity

GetStateFromUser GetCityFromUser

GetStreetFromUser

InvalidStreetName

ValidStreetName

GetHouseNumber

InvalidHouseNumber

ValidHouseNumber

FIGURE 7.10. UML State Diagram for Obtaining a User’s Address.

user interface is not possible with today’s voice recognition and/or transcription
technologies. So, we can draw the following conclusions regarding VUI UIMS:

1. Grammar-based UIM’s are architecturally well suited for building very natural
VUIs. If the underlying infrastructure of such a system relies on voice recog-
nition, grammars are required to limit the vocabulary used in the interactions.
For automated voice transcription, when and if it becomes a reality, grammars
will help in defining what may be a valid or an invalid input to the system by
the user.

2. As we mentioned previously, full-fledged natural language–based VUIs are not
a commercial reality today. At the opposite end of the spectrum are the directed
dialogue–based systems. In a purely directed dialogue–based environment, State
Machine UIMs make the most sense. These systems are available today; in fact,
the great majority of IVR systems are based on such systems. Figure 7.10 shows
a simple state chart that may be used by a State Machine UIM for obtaining a
user’s address.

3. Building mixed-initiative VUIs requires using an overall architecture that most
resembles the State Machine UIMs of directed-dialogue systems but includes
implementation of grammar-based components that operate on the individual
natural-language interactions between the user and the system. Whereas navi-
gating between large-grained interactions is handled by a State Machine UIM,
the individual small-grained interactions are handled by grammars that are pro-
cessed by grammar-based components that analyze how many tokens in a given
rule are filled by a given user response and then ask the user to fill the unful-
filled tokens. Figure 7.11 shows a state chart used to obtain a user’s contact
information, one of which is the user’s address (in a natural language–based
interaction as opposed to a directed-dialogue interaction).

Now, before we get started on a real example of how to build a VUI, let us look at
some tools and languages that allow us to build them.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

G
et

F
irs

tN
am

e
G

et
La

st
N

am
e

G
et

A
ge

G
et

A
dd

re
ss

D
ire

ct
ed

D
ia

lo
gu

e

To
o

M
an

y
E

rr
or

s

G
et

N
at

ur
al

ly
S

po
ke

nA
dd

re
ss

In
va

lid
 A

dd
re

ss

H
*

FI
G

U
RE

7.
11

.
U

M
L

St
at

e
Di

ag
ra

m
fo

rO
bt

ai
ni

ng
a

U
se

r’s
Pe

rs
on

al
In

fo
rm

at
io

n.

428

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 429

Custom
Application

Third-Party IDEs and Development Environment
(BeVocal, TellMe, Voice Genesis, etc.)

Custom
Application

Custom
Application

Custom
Application

Java C++ C++ C++ C++Java

Nuance SpeechWorks OthersIBM

Java Java

FIGURE 7.12. Building VUIs Directly on Vendor-Based Voice Recognition Systems.

Languages for Building a VUI
Figure 7.12 shows tools and languages that can be used on some of the more
popular speech recognition and synthesis platforms to build a VUI. Figure 7.13
shows the same thing but eliminates the use of middle-man service providers
such as BeVocal or TellMe. So far, we have seen that we recognize user utterances
based on grammars and that a state-driven UIM is the basic infrastructure that
will control our VUI components. There are two basic approaches to building
VUIs:

1. Build applications that interact with the voice recognition system directly: We can
build the VUI to model the State Machine or build our own State Machine
infrastructure. Either way, we would have to use some API to directly commu-
nicate with the voice channel to obtain the voice data and some other API to
communicate with the voice recognition system to hand it the voice input (in
real time or batched) as well as specifying the grammar for the voice input.

2. Leverage existing frameworks on top of voice recognition systems: Software refac-
toring techniques show us that we need to factor out the commonalities that
various problems share and build tools that allow us to avoid solving the same
problems and implementing the same solutions repeatedly. The case is no dif-
ferent for building VUIs than for any other piece of software. There are a variety

Custom
Application

Custom
Application

Custom
Application

Custom
Application

Java C++ C++ C++ C++Java

Nuance SpeechWorks OthersIBM

Java Java

FIGURE 7.13. Building VUIs Using Vendor-Provided APIs.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

430 VUIs AND MOBILE APPLICATIONS

of tools and frameworks that allow us to expedite building VUIs. They include
the following:
a. IDEs: IDEs are used in nearly all disciplines of software. They facilitate faster

development by automating some development tasks, providing textual and
graphical interfaces for faster development, and assisting in the development
process (development, debugging, unit testing, etc.). Most vendors of voice
recognition systems such as Nuance, IBM, and Speech Works provide IDEs
that accompany their voice recognition systems. IDEs that accompany voice
recognition systems, however, are typically tightly coupled to the vendor’s
voice recognition system, providing an environment that is specific to the
voice recognition platform. There are also third-party vendors such as TellMe,
BeVocal, and others who provide vendor-neutral IDEs. VUI IDEs that offer
a GUI typically offer some way of diagramming state diagrams that basi-
cally outline the behavior of a State Machine UIM for the particular VUI. An
example of this is Nuance’s V-Builder, which allows design and implemen-
tation of VUIs in a graphical environment that supports state chart notation
as specified by Nuance. One of our goals in this text, however, is to push the
developer to use UML and its accompanying notation. Because of this, we
will model the states of user interface components with UML state diagrams
instead of using proprietary notations and tools.

b. High-Level APIs Using Standard Programming Languages: The internals of
voice recognition systems are typically written in C or assembly because
of the high performance requirements. If the internals were to be exposed
through an API, the job of developing a VUI would be very difficult as it would
require a deep understanding of the operation of voice recognition engines.
Besides, vendors are not too keen on exposing too much of the internal APIs
as they deem it to be a source of possible leak of the intellectual property used
in building the voice recognition implementation. So, most vendors, provide
high-level APIs in standard application development languages such as C,
C++, and Java that allows straightforward and easy access to the functions of
voice recognition systems. For example, Nuance provides Java Speech Ob-
jects as well as a C++ API to the Nuance voice recognition engine. Nonethe-
less, invariably, the vendors produce different interfaces for their APIs partly
because the implementations of the voice recognition engines are different
and partly because it provides them a way to differentiate their products
from competitors. However, this is not a good thing for the consumer, the
developer.

Using proprietary vendor APIs leads to building nonportable VUIs, reduc-
ing the choice of changing voice recognition engines during the life of the
application, thereby possibly limiting the quality of delivery of a solution to
the end consumer. There are efforts to eliminate this problem through speci-
fying APIs and allowing vendors to implement the APIs. The most successful
of these efforts to date has been the Java Speech APIs. Much like the other
standard Java APIs, a group of industry experts and vendors gathered and
decided on the interface of the APIs that a vendor must implement to provide
a Java Speech API interface.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 431

c. Integration with Various Telephony Hardware: One of the routine tasks that
has to be done upon every interaction with the user is to capture the voice
and send it to the voice recognition system. We may also have to get the
speech produced by the text-to-speech engine and play it over whatever au-
dio channel is provided to interact with the user. So, integration with the
audio channel providers becomes crucial. Audio channels may be telephony
systems (POTS, cellular telephony, etc.) accessed by phones, microphones,
or other hardware. Most voice recognition and text-to-speech systems to-
day provide this integration with the popular hardware platforms. This has
two advantages. First, the performance of the integration between the voice
recognition or text-to-speech platforms is tuned by their vendors on the
various hardware platforms. Second, and more importantly, the application
developer does not have to be concerned with dealing with the audio channel
and the related hardware (such as the telephony channel and the hardware
to support it).

Integration with telephony hardware or other audio channels such as
sound cards affects the APIs accessed by the VUI application that interfaces
with the user. Support for the appropriate hardware must be checked prior
to the start of development. Depending on the audio channel hardware and
types of channels supported by the combination of the voice platform and
the hardware that it is to run on, the development cycle may be affected as
well because frequent unit testing often requires use of sound cards as op-
posed to a telephony channel.

d. Voice Browsers: After the success of the Web, the idea of a thin client prolifer-
ated into various software development fields, one being VUI development.
Voice browsers allow the interpretation of a markup language that outlines
voice output to the user as well as accepting voice input for recognition.
VXML is the most popular of these markup languages and the only stan-
dard markup language (ratified by W3C and implemented by vendors of
most voice recognition platforms). There are other proprietary markup lan-
guages such as SALT sponsored by Microsoft. The downside of a proprietary
markup language such as SALT is loss of portability across voice platforms.
VXML and SALT are competing technologies. Whereas VXML fits within the
bigger picture of the markup languages designed by the W3C, design and
implementation of SALT has been driven primarily by Microsoft and with the
specific purpose of offering VUIs to Microsoft-specific infrastructure. When
it comes to our examples, we will use VXML. We recommend that you do so
too for implementation of your VUIs.

Now, we will try to build some simple user interfaces using each one of these
techniques.

Speech and Call Control with High-Level APIs
Figure 7.14 expands on Figures 7.12 and 7.13: it shows how we can layer VUI
applications if we use XML as the binding between our custom application and
the voice platforms. As we previously discussed, one approach to building VUI

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

432 VUIs AND MOBILE APPLICATIONS

Custom

Application
Custom

Application

Custom

Application

Custom

Application

TTSTTSTTSTTS VRVRVRVR CCCCCCCC

C++
C++C++C++

Nuance SpeechWorks

Other

OthersIBM

Java
JavaJavaJava

Browser (VXML, CCML,
and other ML Support)

Browser (VXML, CCML,
and other ML Support)

Browser (VXML, CCML,
and other ML Support)

Browser (VXML, CCML,
and other ML Support)

FIGURE 7.14. Building VUIs Using an Integrated Environment of TTS, Voice Recognition, and
Telephony Platforms.

applications is to use high-level APIs that allow access to the voice infrastructure:
voice recognition system, speech-synthesis system, audio channels, and all of the
other basic necessary technologies to create voice interactions with the user.

These APIs are either specified by a standards body and implemented by the
vendors or specified and provided by the vendors themselves.

When building a VUI, there are currently two practical approaches. The first is
to use the high-level speech and call control APIs provided by the vendors. The
second is to use markup languages and build so-called voice browsers using the
first tool: the high-level speech and call control APIs.

Vendor-Based APIs
Vendor-based APIs are the first set of APIs through which VUI developers were
able to access the functionality of speech-synthesis engines and voice recogni-
tion systems. These APIs are typically provided in C, C++, or Java programming
languages and allow access to the speech recognition engine, speech-synthesis en-
gine, and an underlying telephony platform if one is applicable (where the audio
channel can be a microphone or something else).

An example of such an API is the Nuance Speech Object APIs. Nuance Speech
Objects provide object-oriented APIs on top of the Nuance C/C++ APIs that provide
access to the Nuance voice recognition system.

The speech object APIs provide a framework to build a VUI as components in a
State Machine–based UIM. Specifically, the APIs provide classes such as SODialog,
SORecord, and others that are to be extended (through inheritance). To provide
the proper behavior in the user interface, a specified set of methods must be
overridden; a behavior is specialized through overriding of the behavior.

Vendor-provided APIs provide a very rich set of APIs that allow full access to the
underlying infrastructure and do much of the work that needs to be done to build

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 433

a VUI for the application developer. For example, Nuance Speech Objects include
implementations of classes that provide intelligent processing of input from the
user that is expected to be a date, a number, a choice in a menu, or a telephone
number.

Vendor-provided APIs also typically offer little degradation in performance (as
a result of the added abstraction layer) as they are tightly coupled with the un-
derlying implementation of the speech platform. Unfortunately, another one of
the advantages of vendor-provided APIs—the fact that they are able to provide
an API that takes full advantage of all of the features provided by the underlying
platform—is also their biggest disadvantage. If you use a vendor-provided API to
build your VUI application, you will most probably need to completely rewrite
your VUI application if you decide to change infrastructure vendors (for speech-
synthesis engine, speech recognition engine, etc.). Let us look at the Java Speech
APIs, another offering by the Java platform that aims at making the vendors abide
by a canonical set of APIs so as to provide the application developers and customers
with more flexibility on their choice of voice platform.

Java Speech APIs
As in the case of other APIs, the Java platform offers a canonical API, agreed upon
by the various vendors of speech-related software. JSAPI, or Java Speech APIs, is
this canonical API. Although this API is no different than any other API, con-
sidering it has two benefits. First, because it has been agreed on by more than one
commercial entity, there is less bias in it toward any particular platform implemen-
tation. Second, it gives us a good high-level view of what any API may implement
in providing access to the underlying technologies for a VUI.

There are three main packages in JSAPI:

1. javax.speech: This package provides the infrastructure to connect to the voice
channels for input and output and to manage dictionary vocabularies dynami-
cally. It also provides the interfaces that are later used by the other two packages
in JSAPI.

2. javax.speech.synthesis: As its name may suggest, this package provides an API
suitable for providing an interface to speech-synthesis systems. This package
provides the utilities to adjust the different values for the quality of speech
provided by the speech-synthesis engine for tighter control of the synthesis. It
also provides JSML hooks into the system so that the synthesis can be done
based on JSML.

3. javax.speech.recognition: This package provides the interfaces for managing
grammars, rules, recognition results, and the settings of the recognition en-
gine. As may be suspected, it takes advantage of JSGF,

Today, several of the major vendors of speech synthesis and speech recognition
software, such as IBM and Lernout & Hauspie, provide JSAPI implementations
for their systems.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

434 VUIs AND MOBILE APPLICATIONS

Perhaps the biggest advantage that JSAPI provides over proprietary vendor APIs
is portability. And, portability is so very important when dealing with voice sys-
tems in a mobile environment. Currently, the various products available in the
marketplace outperform one another depending on the usage. Some voice recog-
nition platforms do a better job than others when recognizing speech input with
noise caused by bad wireless QOS. Others do better when recognizing speech input
with environmental noise. There are many other variables like this that make the
choice of infrastructure platform very much dependent on the business require-
ments of the application. Therefore, portability is absolutely crucial when dealing
with voice applications. JSAPI provides such portability.

It is also important to note that in its 1.0 incarnation, JSAPI was primarily
designed to be used as a server-side product (J2SE and J2EE platforms discussed
in Chapter 2). JSAPI 2.0, in the process of ratification at the time of authoring
this text, is intended to address J2ME. This means that the API will be designed
in a modular manner with some modules available for J2ME, J2SE, and J2EE, and
other modules available only for the J2SE and J2EE platforms. This also is a sign
of more and more of the VUI processing moving to the edge of the network (in
our case, the mobile device).

The example in Figure 7.15 provides a sample VUI component authored using
JSAPI. Once again, as with Nuance Java Speech Objects, it is very evident that the
component is authored as a component using a framework that runs based on a
State Machine.

JSAPI provides a speech recognition and synthesis API to access the underly-
ing infrastructure. And though it provides a mechanism to get a handle on the
underlying speech channels so that the voice can be acquired for recognition or
played back after synthesis, it does not provide a way to manipulate specific types
of voice channels such as telephony channels.

Obviously, the most popular method of accessing a VUI is through telephony.
Once again, there are a variety of telephony APIs typically referred to as TAPIs.
Because we have used various Java-based standards for our examples so far, we will
continue in this manner with JTAPI, the part of the Java platform that addresses
telephony control. But before we start, keep in mind that when it comes to choosing
a telephony platform, it is crucial that some sort of standard API support is available
for it. There are telephony vendors whose products are not well supported or who
do not provide standard compliant APIs. Telephony equipment and systems are
commodities that may need to be changed. It is crucial that the VUI application
does not prohibit this by being tightly coupled to a platform without support for
standard APIs.

JTAPI
JTAPI version 1.3 takes a comprehensive approach to addressing APIs for tele-
phony call control. Four major categories of problems in call control are treated:
basic call control problems, problems associated with mobile telephony sys-
tems, problems associated with the various types of media used by the tele-
phony systems, and problems associated with various types of telephony channels
(Voice over IP [VoIP], POTS, etc.). As we have done before, let us go through

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

import javax.speech.*;

import javax.speech.recognition.*;

public class Address extends ResultAdapter {
public static Recognizer mRecognizer = null;

private String[] mGrammarFileNames = null;

private RuleGrammar mGrammar = null;

public void resultAccepted(ResultEvent e) {
Result myResults = (Result) (e.getSource());

ResultToken myTokens[] = myResults.getBestTokens();

/*

* Do whatever needs to be done with the recognition

results here

* (for example, the content may be posted to some

HTTP Listener).

*/

mRecognizer.deallocate();

}

// This method initializes the handle to the recognition

// engine as well as the grammars

public void init() {
try {

if (mRecognizer == null) {
mRecognizer = Central.createRecognizer(

new EngineModeDesc(Locale.ENGLISH));

}
mRecognizer.allocate();

FileReader myGrammarFileReader = new

FileReader(mGrammarFileNames);

} catch (Exception e) {
e.printStackTrace();

}
}

public void initGrammars() {//load the grammars here}

// Unit Testing

public static void main(String[] args) {
try {

Address myAddress = new Address();

myAddress.init();

mRecognizer.addResultListener(myAddress);

mRecognizer.commitChanges();

mRecognizer.requestFocus();

mRecognizer.resume();

} catch (Exception e) {
e.printStackTrace();

}
}

}

FIGURE 7.15. Sample JSAPI Class.

435

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

436 VUIs AND MOBILE APPLICATIONS

the JTAPI packages and see the general intent of the classes provided in each
packages:

1. javax.telephony: This package defines the interfaces for all basic telephony con-
trol such as the definition of a source and destination telephony address (a
phone number with POTS, an IP address with VoIP, etc.), interfaces for the ba-
sic events, and others. All the other packages are included inside this package
as extensions.

2. javax.telephony.callcenter: Call centers have long been a staple of telephony sys-
tem applications. Routing, predictive calling, associating data from a call with
an application, and call distribution are examples of typical call center function-
ality. A great deal of functionality offered within this package is typically used
for telemarketing applications or customer relationship management (CRM)
applications.

3. javax.telephony.callcontrol: Call control is one of the most basic functionalities
required for handling telephony channels. Examples are conferencing two or
more calls and transferring calls.

4. javax.telephony.capabilities: This package allows for dynamic discovery of what
is possible and what is not possible with the telephony platform and the under-
lying APIs. It is important to remember that reliability and stability are much
more important in VUIs where the user’s tolerance and patience are much lower.
This package is mostly designed to provide queries that enable the programmer
to make sure run-time exceptions are avoided at all costs.

5. javax.telephony.events: State Machine UIMs change states of components based
on a variety of events. This package defines the interfaces to the basic events
in JSAPI. The other individual extensions also include their own events that
extend the events in this package to provide more specific functionality.

6. javax.telephony.mobile: This package deals specifically with the issues of the
telephony channel in mobile networks. Mobile telephony networks such as
cellular networks typically have very different underlying infrastructure than
typical telephony networks. For example, cellular users can roam to an area
where their own network provider does not provide coverage but where another
provider that supports a protocol understood by their phone (such as CDMA)
does. We will look at this extension in more depth shortly.

7. javax.telephony.media: The input and output to the telephony channel may be
of a variety of formats. This package provides the basic interfaces for specify-
ing what sort of input to expect (DTMF, voice, etc.), what events to generate
depending on the type of media received, and handling of media that is to be
streamed over the audio channel back to the user.

8. javax.telephony.privatedata: This package is provided to allow the JTAPI applica-
tion to take advantage of platform-specific functionality (provided by the TAPI
layer). Use of this package is discouraged unless absolutely necessary as it can
prevent portability of JTAPI applications across different voice infrastructures
(because using this package basically circumvents JTAPI).

9. javax.telephony.phone: Some telephony infrastructures provide for information
about the end telephony device. This information could include the setting on

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 437

JTAPI Application

TAPI Platform
Implementation

Telephony
Infrastructure (POTS,

VoIP, PBX, etc.)

RMI, Telephony Protocol, etc.

JTAPI Implementation

FIGURE 7.16. Typical JTAPI Application Architecture.

the ringer (whether it is set on a high, medium, or low volume), whether there is
a graphical display available, and other similar information. Such information
can be particularly useful in the case of mobile devices and integration with
a multimodal application that provides the user with multiple user interfaces.
Keep in mind that currently most of the wired telephony infrastructure does
not provide much in the way of advanced functionality in a consistent manner
if at all.

JTAPI applications are designed as clients to the server provided by the telephony
infrastructure. As you can see in Figure 7.16, the application sits on top of the
JTAPI implementation. The JTAPI implementation is the set of classes and accom-
panying native code that maps the native telephony APIs to JTAPI. The JTAPI
Application and JTAPI Implementation in the diagram must reside on the same
system whereas the TAPI implementation can be on the same or different system.
The communication protocol between the JTAPI implementation and the TAPI
implementation depends on the JTAPI implementation.

JTAPI’s Mobile Package
We saw in the last section that one of the extensions in JTAPI 1.3 addresses mobile
telephony. Let us take a closer look at the interfaces provided in this API as it can
give us an insight into the differences between cellular telephony infrastructure
versus the wired telephony infrastructure:

1. MobileAddress: Whereas wired phones are often associated with a geographical
location (home, office, etc.), mobile phone numbers are typically associated
with a device. This association of the end address with the device as opposed to
an end location is a fundamental difference between the wired and wireless tele-
phony infrastructure. Sometimes mobile phones have SIM cards (such as GSM
chips) that can be moved from phone to phone to carry the addressing identity
with them. This dynamic nature of addressing mobile phones is addressed by
using this interface.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

438 VUIs AND MOBILE APPLICATIONS

2. MobileNetwork: Wired phone calls have static network end points associated
with the provider to which the wired phone is connected to. Mobile phones are
not the same. Mobile phones are carried from place to place and can connect to
a variety of networks. Therefore, knowing the information about the network
to which the device is connected can be a very important piece of information.

3. MobileProvider: The provider represents the software system that is either part
of the TAPI implementation or communicates with the TAPI implementation to
provide the TAPI functionality on the given network and/or hardware platform.

4. MobileRadio: This interface provides the QOS information about the connectiv-
ity of the device to the network. For example, we can query the signal strength
or whether the device is available.

5. MobileTerminal: This interface represents the end-point telephony terminal (the
phone). This end point can be a variety of devices such as a mobile phone, a
PDA, etc. This interface is mostly used for two purposes: to uniquely identify the
device and to provide DTMD generation information about the device. (Tones
are typically not generated at the device in cellular networks; they are generated
by the network by proxy.)

6. NetworkSelection: Although the device is connected to the network, it can be
connected through a variety of systems. For example, in GPRS networks, the
phone can be connected through a regular TDMA connection or through a
GPRS connection. This interface allows for selection and/or discovery of the
connectivity method.

Today, the landscape of wireless telephony is rapidly changing. In addition to this,
there is the chance that ad hoc (such as WIFI, etc.) networking technologies can
be used to place and receive calls. Therefore, the mobile part of JTAPI is sure to
be changing and expanding to provide for the proper interfaces to take advantage
of new features in the wireless networks.

Using UML in Building VUIs with High-Level Speech APIs
As we saw in Chapter 6, Nunes’ Wisdom UML extensions give us a great utility
in extending generic user interfaces. In this chapter, we looked at a metamodel
for VUI grammars. Now, let us continue with applying the principles we already
learned about Nunes’ and other methods of extending user interfaces.

1. We can use the Wisdom UML extensions for modeling the use cases. Just like
GUIs, VUIs are composed of interactions and dialogues. So, these high-level
extensions should work just as well for a VUI.

2. We mentioned that the UIM of choice for VUIs is one based on State Machines.
This would lead us to conclude that state diagrams are a good tool to model the
internals of a VUI. To model the grammars, we can refer back to the metamodel
that we previously discussed.

3. We can continue to use activity diagrams to show the detailed interactions of a
user with the system.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 439

View and Select
Materials to Buy

Fill Out Personal
Information

Fill Out Shipping
Information

Concatenative
Speech Synthesis
System

Voice Recognition
System

Speech Synthesis
System

FIGURE 7.17. Wisdom UML Use Case Diagram for a Point-of-Purchase VUI.

4. Because VUI interactions are almost always temporally sequential, we can use
the CTT extensions, as does Wisdom, to specify the interdependencies of in-
teractions and tasks.

5. Because of the very sequential nature of voice interactions, sequence diagrams
may be very useful as well. Sequence diagrams are easy to create and interpret
when there are few permutations of the order in which the interactions can take
place.

Now, let us take an example and see how these principles apply in practice. We
will start with something simple. Let us assume that we need to build a VUI that
takes the user’s personal information when the user is purchasing something by
using a VUI.

Figure 7.17 shows a very simplified overview of the functionality that the system
may offer. First, we have a human actor who is interacting with the user interface of
the system. Then, we have the system actors: the speech recognition system and
two different speech-synthesis systems, one for producing concatenated speech
and the other for machine-generated speech. Note that the voice user interacts
with all three essential use cases. The voice recognition is the same because it has
to recognize whatever the user gives the system as input. Although the speech
synthesis for the prompts in interacting with the user in two use cases are done
with machine-generated speech synthesis, the prices and names of products are
prerecorded and another speech-synthesis system with better concatenation abil-
ities is used there. This diagram gives us a good example of how we need to
augment our use cases for representing the user’s interactions with the system at

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

440 VUIs AND MOBILE APPLICATIONS

<<connector>>

AcquirePersonalInformation

<<connector>>

SelectItemsToPurchase

<<connector>>

GetShippingInformation

<<connector>>

Confirmation

Not Finished

Finished

Enter Shipping

Buy More

FIGURE 7.18. High-Level Activity Diagram with Lieberman Stereotypes for User-Based Actions.

a high level. Keep in mind that we still need the typical use cases that we would
otherwise gather. There is a slight chance that there may be a one-to-one mapping
between the “essential use cases” and the system use cases. However, remember
that the essential use cases present the interactions of the user with sections of
the user interface from the user’s perspective. Typical UML use cases represent
the chunks of functionality as seen from the business logic perspective. In the
case of our example in Figure 7.17, the breakdown of typical use cases may be
Registration, Billing Information, Authentication, Authorization, Material Search,
Shopping Cart Management, Shipping, and Confirmation.

Next, we need to represent the details of the interactions between the user and
the system. For this, let us use an activity diagram. For our example, we will only
look at the essential use case of filling out personal information.

Figures 7.18–7.20 show activity diagrams representing the voice interactions
necessary to gather the user’s personal information given that the personal infor-
mation is a collection of a small set of billing information, name, and address.
Here, we are going to borrow a page from Lieberman [Lieberman 2001] whose
work we looked at in Chapter 6. If you remember, Lieberman defined stereotypes
of <<exception>>, <<frame>>, <<connector>>, <<presentation>>, and
<<page>>. We will use the <<exception>> stereotype to identify recognition
errors, <<connector>> stereotype to drill down from a large dialogue to sub-
dialogues, and <<frame>> to indicate a grouping of voice interactions. Because
<<frame>> and <<page>> were stereotypes designed based on GUI concepts,
one may have chosen <<page>> instead. We chose frame in this case as it is se-
mantically more representative of a grouping of atomic elements that allow user in-
terface interactions rather than specification of a physical space. Note that although

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 441

<<connector>>

SelectedItemsToPurchase

<<frame>>

GetAddress

<<connector>>

GetShippingInformation

IsUserDone
Token_Filled

Yes

No

<<frame>>

GetCreditCardInfo

<<frame>>

GetName

<<presentation>>

ConfirmPersonalInformation

FIGURE 7.19. Using Lieberman’s UML Extensions for State Diagrams in VUIs.

Nunes lays down a high-level foundation of extensions for user interfaces, Lieber-
man gives us specific treatment of the actions within an activity diagram.

When using activity diagrams for representing VUIs, we will almost never use
join states (forks) to represent the user interface itself. This is because although a
user interface action may give rise to multiple concurrent system actions, the user
is never presented with two things concurrently (e.g., prompted for two inputs
concurrently). The only time when a join state (fork) makes senses within the
context of describing the presentation of a VUI is when modeling barge-in (as
seen in the subsection on voice browsers later on in this section). Barge-in allows
the user to cut-off an aural output being played back by the system with his/her
own input to the system.

<<frame>>

NoRecognition_EscalatingPrompt

<<frame>>

LogicallyInvalidCity_EscalatingPrompt

<<exception>>

InvalidCity

<<exception>>

InvalidCity

<<connector>>

GetStateFromUser

<<presentation>>

CompletePrompt

<<presentation>>

StartCityPrompt

AcceptInputForCityName
No Recognition TokenFilled

FIGURE 7.20. Activity Diagram Representing part of GetAddress frame in Figure 7.19.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

442 VUIs AND MOBILE APPLICATIONS

Also, note that the highest level of granularity with activity diagrams is nearly
equivalent to the detailed description of the actual dialogues.

This all leads us to see some new stereotypes that we can define specifically for
representing VUIs with UML. (These stereotypes apply to classes used to model
the internal operation of a VUI; however, the state of an instance of the class can
be used to represent the user interface in state diagrams.) These stereotypes are
listed in Table 7.2.

Figure 7.21 shows a metamodel class diagram of Table 7.2. Now, let us look at
the internal implementation of a subdialogue (represented by a frame stereotype in
our examples) that gets the user’s address and utilizes the stereotypes that were
defined in Figure 7.22. Figure 7.23 shows the usage of UML class diagrams for
modeling VUI implementations.

Because there is currently no industry wide acceptance on iconic representations
of these stereotypes, we will simply use the stereotype tags on the classes of the
particular types. Note that the metaclasses that we have defined relate to the
implementation of a VUI rather than the interactions with the user interface.

We can do one of three things to model the interactions of the user. First,
we can use a state diagram to show the state of a subdialogue as in Figure 7.22.
However, these stereotypes model the structure and behavior of the components
that cause the reactions to the users responses to the interface. Our second choice
is to use sequence diagrams to model the VUIs. This can be very effective be-
cause of the heavily temporal nature of VUIs. Although sequence diagrams do not
give us the most desirable tool for GUIs (they are very temporal as the messages
are ordered in time as one moves down the diagram), they can do a great job
of modeling interactions with a VUI system. To do this, we need to create some
message stereotypes. These stereotypes will be similar to the stereotypes that we
have already defined for the GUI components. Finally, we can use state diagrams
to model the state of the interactions themselves in a given dialogue between the
user and the system.

Table 7.3. shows the stereotypes that we define to help us with meaningful
sequence diagrams that represent VUIs.

Figure 7.24 shows us an example of how we can use a sequence diagram to
model VUI interactions.

Note that we only represented two of the interactions. Sequence diagrams with
accompanying notes can provide considerable detail for describing VUIs.

Now, let us summarize how we can model a VUI with UML:

1. We can create stereotypes of typical VUI components to represent the building
blocks of the internal implementation of a VUI. We did this with building a
metamodel with some of the more common types of behaviors and data bundled
in classes used to build VUIs. You can add your own stereotype as you discover
commonly used classes in building VUIs. Then, based on these stereotypes,
you can build class diagrams that represent the internal implementation of
subdialogues and dialogues.

2. We can create state diagrams that represent the behavior of a dialogue or sub-
dialogue based on the events that trigger a move from one state to another in
the dialogue or subdialogue.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

TABLE 7.2. Using Stereotypes to Represent Different Types of
Atomic Voice Interactions with a User

Stereotype Definition and Purpose

Escalating Prompt

<<escalating prompt>>

Stereotype on Class

Inherits from Wisdom’s
<<input element>>

This stereotype represents an aural input whose
prompt changes, if it is given incorrect or
unrecognizable input, in an escalating
manner.

Record

<<record>>

Stereotype on Class

Inherits from Wisdom’s
<<input element>>

This stereotype indicates free input of speech. If
the speech given to the system is not to be
recognized, but merely recorded for playback
or some other reason, we use this stereotype.

Natural Input Prompt

<<natural prompt>>

Stereotype on Class

Inherits from Wisdom’s
<<input element>>

It is important to distinguish between those
inputs that expect natural responses from the
user as opposed to those that expect a
command. As we have seen in this chapter,
we cannot achieve true natural language
HCIs. In our case, we are defining a
<<natural prompt>> stereotyped input as
any input that is expecting more than one
token to be filled by the user’s input.

Confirm

<<confirm>>

Stereotype on Class

Inherits from Wisdom’s
<<input element>>

Some user input is always repeated back to the
user to make sure that it was understood
properly. This may be done through a
speech-synthesis engine or by other
techniques. The <<confirm>> stereotype is
used to model such aural inputs.

Voice Print

<<voice print>>

Stereotype on Class

A user’s voice may be recorded solely for the
purpose of authentication. Voice clips can be
used just like fingerprints to uniquely identify
a given person and whether the voice is
coming from a live person or if it is a
recording. This stereotype helps us model an
input from the user that is to be used for this
purpose.

Speakable

<<speakable>>

Stereotype on Class

Inherits from Wisdom’s
<<ouput element>>

For a speech-synthesis engine to produce voice
from text, the text information must be
pronounceable. Some text is not speakable.
For example, if the synthesizer is set to
synthesize words in English and there is a
text segment in Farsi, the speech-synthesis
engine is unable to produce meaningful
speech. To avoid such errors, we want to
“mark” the objects that are pronounceable
versus those that are not. The speakable
stereotype allows us to do this.

443

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

In
pu

t

<
<

m
et

ac
la

ss
>

>

R
ec

or
d

<
<

m
et

ac
la

ss
>

>

+
re

co
rd

()

V
oi

ce
P

rin
t

<
<

m
et

ac
la

ss
>

>

+
au

th
en

tic
at

e(
)

N
at

ur
al

In
pu

tP
ro

m
pt

<
<

m
et

ac
la

ss
>

>

E
sc

al
at

in
gP

ro
m

pt

<
<

m
et

ac
la

ss
>

>

C
on

fir
m

P
ro

m
pt

<
<

m
et

ac
la

ss
>

>

G
ra

m
m

ar

<
<

m
et

ac
la

ss
>

>

R
ec

og
ni

za
bl

eI
np

ut

<
<

m
et

ac
la

ss
>

>

M
ac

hi
ne

S
yn

th
es

iz
ed

S
pe

ec
h

<
<

m
et

ac
la

ss
>

>

C
on

ca
te

na
te

dS
pe

ec
h

<
<

m
et

ac
la

ss
>

>

S
pe

ak
ab

le

<
<

m
et

ac
la

ss
>

>

+
pl

ay
()

+
ge

tA
ud

io
In

pu
t(

)

FI
G

U
RE

7.
21

.
M

et
am

od
el

fo
rV

U
IC

la
ss

Ex
te

ns
io

ns
.

444

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 445

H

GetCountryName

H

GetStreetNumber

H

GetStateName

H

GetPostalCode

Confirm

H

GetStreetName
H

{xor}

FIGURE 7.22. Using State Diagrams for Dialogues and Subdialogues.

3. We can use activity diagrams to show the activities that take place when the
user interacts with the system.

4. We can use Nunes’ Wisdom extensions to create use case diagrams that give us
a greater amount of detail for the VUI and are centered on the user interface.

5. We can use sequence diagrams to show voice interactions in their temporal
order.

PersonalInformationDialogue

<<frame>>

BillingInformationSubDialogue

<<frame>>

ConfirmAddressAndBillingInformation

<<ConfirmPrompt>>

AddressSubDialogue

<<frame>>

AddressSubDialogue
<<frame>>

StreetAddress

<<EscalatingPrompt>>
CountryName

<<EscalatingPrompt>>

+mInitialPrompt:

+mFirstErrorPrompt:

+mFinalPrompt: State

<<EscalatingPrompt>>

+mInitialPrompt:

+mFirstErrorPrompt:

+mFinalPrompt:

PostalCode

<<EscalatingPrompt>>

+mInitialPrompt:

+mFirstErrorPrompt:

+mFinalPrompt:

StreetGrammar

<<Grammar>>

CountryGrammar

<< Grammar>>

StateGrammar

<<Grammar>>

PostalCodeGrammar

<<Grammar>>

NumberGrammar

<<Grammar>>

FIGURE 7.23. Using Class Diagrams and VUI Stereotypes to Model VUI Implementation.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

446 VUIs AND MOBILE APPLICATIONS

TABLE 7.3. Specializing Sequence Diagram Messages for Modeling
VUI Interactions

Stereotype Definition and Purpose

Escalating Message

<<EscalatingMessage>>

Stereotype on Association

Inherits from UML Message
Stereotype

This stereotype represents a message or
messages generated by the system in
an escalating manner (if the response
the user gives is incorrect or
unrecognizable, the prompt that
requests the information changes
every subsequent time). This is a
unidirectional association from the
system to the actor.

Natural Response

<<NaturalInput>>

Stereotype on Association

Inherits from UML Message
Stereotype

A user’s response to the system may
contain more than one token along
with markers and other utterances
that are unimportant for recognition.
In such a case we will refer to the
response as a “NaturalResponse”
(though as we have mentioned
repeatedly throughout this text there
is no such thing as true natural
dialogues with today’s technologies).
This is a unidirectional message from
the actor to the system since we
assume that the user understands
whatever the system aural output is.

Confirm Request Message

<<ConfirmationRequest
Message>>

Stereotype on Association

Inherits from UML Message
Stereotype

This stereotype is a message sent from
the system to the user that plays back
what the system recognizes to be the
user input and requests the user for a
“Yes” or “No” type response as a
confirmation. This is a unidirectional
message.

Concatenated Speech

<<ConcatenatedSpeech>>

Stereotype on Association

Inherits from UML Message
Stereotype

This stereotype represents some speech
being played back to the user that
consists of concatenated audio
produced by a speech-synthesis
engine.

Machine Synthesized Speech

<<MachineSpeech>>

Stereotype on Association

Inherits from UML Message
Stereotype

This stereotype allows us to model some
speech being played back to the user
that consists of purely
machine-generated speech from text.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 447

Human Actor : ?

1: unspecified1.1: SendAction

1.2.1: SendAction

3: SendAction

2: SendAction

1.2: unspecified

DialogueManager : PersonalInformationDialogue

1. What country do you live in?
2. I'm sorry, I didn't understand, what country
do you reside in?
3. Please say a valid country such as Great
Britain or United States. Otherwise, please
hang up and try again.

1. In which state do you live?
2. I'm sorry, I didn't understand, what state do
you reside in?
3. Please say a valid state such as
California. Otherwise, please hang up and try
again.

<<EscalatingMessage>>

<<EscalatingMessage>>

<<EscalatingMessage>>

<<RecognizableResponse>>

FIGURE 7.24. Using Sequence Diagrams to Model VUI Interactions.

We will leave the discussion of specializing a UML model that represents a generic
user interface to a specific user interface (such as a VUI) to the next chapter because
specialization of interfaces is mainly to provide a maintainable mechanism for
multiple user interfaces to the same system. If the VUI is the only way we access a
system, then we need not worry about specializing the interface and the associated
problems.

The number of diagrams you use to model your VUI depends on the size of
the project and your requirements. Generally, the larger the project gets, the more
diagrams are needed so that every detail is documented, nothing slips through, and
the complex web of user interactions with the system can be deciphered visually
using the UML diagrams. However, if you are just building a prototype, then you
do not need much other than some basic activity diagrams and perhaps some
class diagrams (only if it makes sense for the language and API in which you have
chosen to author your VUI).

We now know how to build basic VUI applications based on voice recognition
and voice transcription using vendor-provided APIs or standard APIs such as
JSAPI. We also know how to model these applications using UML. Now, let us
look at how various Web technologies have contributed to VUI design to give
birth to a new way of implanting VUIs with so-called voice browsers.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

448 VUIs AND MOBILE APPLICATIONS

Voice Browsers
The success of the Web in creating a flexible and distributed system for accessing
visual content has driven the VUI development community to make an attempt at
emulating the architecture. Voice browsers are the child of such efforts. Perhaps
the most important distinction between the voice browsers and HTML browsers
is that voice browsers are still a server-side technology because a phone is typically
unable to execute programs.

Whereas voice browsers emulate, the model of HTML browsers is in consuming
a markup language and their ability to execute ECMAScript. Voice browsers are
built to communicate with voice recognition and speech-synthesis systems. They
are also typically built to communicate with telephony systems. A voice browser is
essentially a VUI application built to communicate with voice recognition, speech
synthesis, and telephony vendors from one or more vendors.

Like the Web browsers, voice browsers maintain the concept of a session.
Whereas a session is maintained by the cooperation of the Web browser and the
Web server through the use of cookies or URL rewriting for the Web browsers, the
voice browsers do all the work in maintaining the session because their clients are
not smart enough nor is the communication channel to their clients sophisticated
enough (typically a telephony channel) in assisting to maintain the notion of a
session.

There are several markup languages designed for consumption by voice
browsers. VXML (pronounced Voice XML) is the most popular as well as the
industry de facto. CCML (Call Center Markup Language) and SSML (Speech Syn-
thesis Markup Language) complement VXML in providing markup languages for
call control and speech synthesis, respectively. Microsoft’s SALT is a markup lan-
guage designed to work with the Microsoft platform and voice browsers. Our
consistent bias will be to stick with technologies recommended by nonproprietary
standards bodies such as the W3C. Therefore, we will look at VXML, CCSML, and
SSML for short case studies on how voice browsing technologies work. If you are
interested in building a VUI application based on a proprietary technology such as
SALT, you will still be able to apply the principles and concepts introduced here.
Let us get started with VXML.

VXML
VXML has its roots in efforts by Motorola, AT&T, and a group of other companies.
The goal was to create a model similar to the thin-client GUI Web browsers such as
Mosaic, Netscape Navigator, or MS Internet Explorer. As various markup language
were suggested by different groups, it became apparent that a standard language
was needed and this is when various commercial entities, under the direction of
W3C, began to develop VXML. VXML version 2.0 is the latest ratified version of
VXML. Before we go into the syntactical aspects of VXML, let us take a step back
and see what VXML is and what it is not:

1. VXML is normally not consumable by the end telephony device. Perhaps the biggest
misconception about VXML is that, like HTML, it is consumed by a browser that
runs on a device that is in control of the user. VUIs are accessed through an audio

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 449

channel, typically telephony. A traditional phone typically has no processing
power at all. Even if one could write a browser to parse VXML on a mobile
phone or any other phone with processing power, it is not conceivable that a
voice recognition engine could be run on the same device. As we mentioned
in the previous section, the term voice browser comes from the architectural
similarities rather than the implementation or usage similarities between VXML
and HTML.

2. SALT and VXML are not equivalent in functionality, architecture, or any other as-
pects. SALT and VXML are largely competing technologies. VXML has been
designed to fulfill the voice recognition piece of the puzzle in a larger architec-
tural design along with a series of other standards such as CCML, SSML, SMIL,
and others. SALT provides a cross section of the functionality offered by these
various standards. If you are only building a voice application, SALT may be
worth looking at depending on your platform preferences; however, SALT does
not fit the bigger picture of building multichannel user interfaces.

3. Whether VXML can be used on a project depends on whether the voice recogni-
tion platform offers a VXML-compliant browse. VXML simply offers us an easier
method of specifying the states and navigation methods between the different
states of a VUI. We still need the voice recognition engine and an API to access
its functionality. The voice browser is just an application, implemented by a
third party or the voice recognition system vendor, built on top of the voice
recognition engine and its APIs that allows for building VUIs using a high-level
markup language, in this case VXML.

4. VXML can be static or dynamically generated. Just like HTML, we can have static
VXML documents, generate the VXML in batches, or we can generate the doc-
uments at run time based on a set of rules. One of the values that VXML offers
is that we can leverage existing Web-based technologies such as Microsoft’s
Advanced Server Pages (ASP) or Java’s JSPs and J2EE framework in generating
VXML. Alternatively, for mobile systems, we can simply specialize the generic
user interface, in XForms or something else, using existing transformation
technologies.

VXML has the following set of goals:

1. To provide a simple mechanism to build VUIs.
2. To separate the concerns of business logic from the concerns of building VUIs.
3. To provide a language that is portable across multiple voice recognition

platforms.
4. To enable one VXML document to hold multiple voice interactions. This lessens

the number of interactions between the application running on the voice plat-
form and applications, databases, or other interfaces providing the business
logic necessary to generate the VXML document.

5. To offer a small but sufficient set of features for basic telephony call control
and text-to-speech interactions. Although the functionality through VXML for
these functions are sufficient for smaller efforts, it is recommended that more
comprehensive efforts, particularly for mobile applications, defer telephony
control to CCPP and text-to-speech generation to SSML.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

TA
B

LE
7
.4

.
V

X
M

L
S

yn
ta

x
Ta

gs

Ta
g

N
am

e
A

tt
ri

bu
te

s
D

efi
n

it
io

n

<
vx

m
l>

xm
l:l

an
g,

xm
l:b

as
e,

ve
rs

io
n

,x
m

ln
s,

T
h

is
is

th
e

ro
ot

ta
g

of
V

X
M

L
do

cu
m

en
ts

.A
s

in
th

e
ca

se
of

ot
h

er
X

M
L

-b
as

ed
sy

n
ta

xe
s,

th
e

ve
rs

io
n

at
tr

ib
u

te
is

u
se

d
to

sp
ec

if
y

w
h

ic
h

ve
rs

io
n

of
V

X
M

L
is

u
se

d
fo

r
th

e
pa

rt
ic

u
la

r
do

cu
m

en
t.

L
ik

ew
is

e,
th

e
xm

ln
s

at
tr

ib
u

te
sp

ec
ifi

es
th

e
n

am
es

pa
ce

,t
h

e
cu

rr
en

t
ve

rs
io

n
of

w
h

ic
h

po
in

ts
to

h
tt

p:
//

w
w

w
.w

3.
or

g/
20

01
/v

xm
lb

y
de

fa
u

lt
.

T
h

e
at

tr
ib

u
te

xm
l:b

as
e

is
u

se
d

to
de

fi
n

e
a

ba
se

U
R

I
fo

r
al

lo
f

th
e

re
la

ti
ve

U
R

Is
in

th
e

do
cu

m
en

t.
So

,f
or

ex
am

pl
e,

if
xm

l:b
as

e=
“ h

tt
p:

//
w

w
w

.c
ie

n
ec

s.
co

m
/e

xa
m

pl
es

”
th

en
th

e
U

R
I

“/
vo

ic
e/

te
st

/a
.w

av
”

po
in

ts
to

“ h
tt

p:
//

w
w

w
.c

ie
n

ec
s.

co
m

/e
xa

m
pl

es
/v

oi
ce

/t
es

t/
a.

w
av

.”
A

s
w

it
h

ot
h

er
X

M
L

-b
as

ed
la

n
gu

ag
es

,t
h

e
xm

l:l
an

g
at

tr
ib

u
te

is
u

se
d

fo
r

de
al

in
g

w
it

h
m

u
lt

ip
le

la
n

gu
ag

es
.

<
pr

op
er

ty
>

n
am

e,
va

lu
e

So
m

et
im

es
it

is
n

ec
es

sa
ry

to
in

se
rt

so
m

e
pl

at
fo

rm
-s

pe
ci

fi
c

pa
ra

m
et

er
s

in
to

th
e

V
X

M
L

do
cu

m
en

t
be

ca
u

se
vo

ic
e

br
ow

se
rs

ar
e

de
pe

n
de

n
t

on
th

e
vo

ic
e

re
co

gn
it

io
n

pl
at

fo
rm

on
to

p
of

w
h

ic
h

th
ey

ru
n

.I
n

su
ch

oc
ca

si
on

s,
th

e
<

pr
op

er
ty

>
el

em
en

t
is

u
se

d
to

sp
ec

if
y

th
es

e
n

am
e–

va
lu

e
pa

ir
s.

It
is

st
ro

n
gl

y
re

co
m

m
en

de
d

th
at

th
is

ta
g

be
in

se
rt

ed
in

to
th

e
do

cu
m

en
t

in
a

dy
n

am
ic

an
d

co
n

fi
gu

ra
bl

e
m

an
n

er
to

m
ai

n
ta

in
th

e
po

rt
ab

il
it

y
of

th
e

V
X

M
L

do
cu

m
en

ts
.

<
bl

oc
k>

T
h

is
el

em
en

t
su

rr
ou

n
ds

ot
h

er
el

em
en

ts
th

at
ei

th
er

pl
ay

ba
ck

so
m

e
so

u
n

d
to

th
e

u
se

r
or

pe
rf

or
m

so
m

e
co

n
tr

ol
st

ru
ct

u
re

s.
A

s
w

e
m

en
ti

on
ed

in
th

e
in

tr
od

u
ct

io
n

to
th

is
se

ct
io

n
,

V
X

M
L

do
es

pr
ov

id
e

co
n

tr
ol

st
ru

ct
u

re
s.

It
is

cr
u

ci
al

n
ot

to
ov

er
u

se
th

es
e

co
n

tr
ol

st
ru

ct
u

re
s

to
bu

il
d

bu
si

n
es

s
lo

gi
c

pr
og

ra
m

m
in

g.
O

th
er

w
is

e,
th

er
e

is
n

o
se

pa
ra

ti
on

of
co

n
ce

rn
s,

bu
si

n
es

s
lo

gi
c

bl
ee

ds
in

to
th

e
u

se
r

in
te

rf
ac

e,
an

d
m

ai
n

ta
in

in
g

an
y

sp
ec

ifi
c

u
se

r
in

te
rf

ac
e,

le
t

al
on

e
m

ai
n

ta
in

in
g

co
n

si
st

en
cy

am
on

g
th

e
u

se
r

in
te

rf
ac

es
,i

s
di

ffi
cu

lt
.

F
or

ex
am

pl
e,

th
e

su
bm

it
el

em
en

t
m

u
st

be
en

cl
os

ed
w

it
h

in
<

bl
oc

k>
<

/b
lo

ck
>

be
ca

u
se

it
is

a
co

n
tr

ol
st

ru
ct

u
re

.

450

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

<
m

et
a>

n
am

e,
h

tt
p-

eq
u

iv
,

co
n

te
n

t
W

e
ca

n
as

so
ci

at
e

tw
o

ty
pe

s
of

m
et

ad
at

a
w

it
h

th
e

do
cu

m
en

t.
T

h
e

fi
rs

t
ty

pe
is

a
n

am
e–

va
lu

e
pa

ir
th

at
m

ay
be

co
n

su
m

ab
le

by
th

e
vo

ic
e

br
ow

se
r.

F
or

th
es

e
ty

pe
s,

w
e

u
se

th
e

at
tr

ib
u

te
s

n
am

e
to

sp
ec

if
y

th
e

n
am

e
of

th
e

pr
op

er
ty

to
be

sp
ec

ifi
ed

an
d

co
n

te
n

t
to

sp
ec

if
y

th
e

va
lu

e
as

si
gn

ed
to

th
e

pr
op

er
ty

.
W

e
ca

n
al

so
in

cl
u

de
so

m
e

H
T

T
P

h
ea

de
rs

in
th

e
do

cu
m

en
t

be
ca

u
se

V
X

M
L

is
sp

ec
ifi

ca
ll

y
de

si
gn

ed
to

be
su

it
ab

le
fo

r
tr

an
sp

or
t

vi
a

H
T

T
P

.F
or

th
es

e
pr

op
er

ti
es

,w
e

sp
ec

if
y

th
e

h
tt

p-
eq

u
iv

at
tr

ib
u

te
as

th
e

n
am

e
of

th
e

pr
op

er
ty

an
d

co
n

te
n

t
as

th
e

va
lu

e
of

th
e

pr
op

er
ty

.
A

lt
er

n
at

iv
el

y,
th

e
co

n
te

n
ts

en
cl

os
ed

w
it

h
in

th
e

<
m

et
a>

an
d

<
/m

et
a>

ta
gs

ca
n

be
R

D
F

co
n

te
n

t.
A

s
di

sc
u

ss
ed

in
C

h
ap

te
r

3,
R

D
F

is
a

gr
ea

t
w

ay
to

m
ak

e
do

cu
m

en
ts

ac
ce

ss
ib

le
an

d
to

cr
ea

te
a

w
id

el
y

in
te

ro
pe

ra
bl

e
en

vi
ro

n
m

en
t.

T
h

er
ef

or
e,

if
po

ss
ib

le
,i

t
is

re
co

m
m

en
de

d
th

at
th

is
m

et
h

od
be

u
se

d
in

st
ea

d
of

th
e

si
m

pl
e

n
am

e–
va

lu
e

pa
ir

s.
<

va
r>

n
am

e,
ex

pr
T

h
is

ta
g

al
lo

w
s

fo
r

sp
ec

ifi
ca

ti
on

of
a

va
ri

ab
le

in
th

e
do

cu
m

en
t’s

sc
op

e.
T

h
e

n
am

e
at

tr
ib

u
te

is
u

se
d

to
sp

ec
if

y
th

e
n

am
e

of
th

e
va

ri
ab

le
;i

t
m

u
st

be
u

n
iq

u
e

to
th

e
do

cu
m

en
t

(a
ft

er
th

e
fi

rs
t

u
sa

ge
,t

h
ey

w
il

la
ll

re
fe

r
to

th
e

sa
m

e
va

ri
ab

le
).

T
h

e
ex

pr
at

tr
ib

u
te

is
u

se
d

to
as

si
gn

a
va

lu
e

to
th

e
va

ri
ab

le
.

V
ar

ia
bl

es
in

V
X

M
L

ar
e

va
ri

an
ts

(w
ea

kl
y

ty
pe

d)
;t

h
er

ef
or

e,
th

ey
ca

n
ta

ke
on

an
y

st
at

ic
va

lu
e

as
w

el
la

s
po

in
ti

n
g

to
th

e
re

su
lt

of
an

y
E

C
M

A
Sc

ri
pt

.A
ll

of
th

e
fo

ll
ow

in
g

de
fi

n
it

io
n

s
ar

e
va

li
d:

<
va

r
n

am
e=

”B
ir

th
D

ay
”

ex
pr

=”
M

yS
cr

ip
t.

ge
tB

ir
th

D
at

e(
)”

/>
<

va
r

n
am

e=
”A

ge
”

ex
pr

=”
31

”/
>

<
va

r
n

am
e=

”fi
rs

tN
am

e”
ex

pr
=”

R
ez

a”
/>

<
as

si
gn

>
n

am
e,

ex
pr

W
it

h
th

is
el

em
en

t,
w

e
ca

n
as

si
gn

a
va

lu
e

(i
n

ex
pr

)
to

an
ex

is
ti

n
g

va
ri

ab
le

po
in

te
d

to
by

th
e

n
am

e
at

tr
ib

u
te

.
<

sc
ri

pt
>

sr
c,

ch
ar

se
t,

fe
tc

h
h

in
t,

fe
tc

h
ti

m
eo

u
t,

m
ax

ag
e,

m
ax

st
al

e

To
u

se
E

C
M

A
Sc

ri
pt

,w
h

ic
h

is
ex

ec
u

te
d

by
th

e
vo

ic
e

br
ow

se
r

(“
cl

ie
n

t
si

de
”)

,t
h

e
sc

ri
pt

m
u

st
be

in
cl

u
de

d
in

th
e

V
X

M
L

do
cu

m
en

t.
A

t
th

e
sa

m
e

ti
m

e,
th

e
sc

ri
pt

m
u

st
be

se
pa

ra
te

d
fr

om
th

e
re

st
of

th
e

do
cu

m
en

t
co

n
te

n
t.

E
C

M
A

Sc
ri

pt
sn

ip
pe

ts
ar

e
to

be
en

ca
ps

u
la

te
d

w
it

h
in

<
sc

ri
pt

>
<

/s
cr

ip
t>

ta
gs

.

(c
on

ti
nu

ed
)

451

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

TA
B

LE
7
.4

(c
on

ti
n

u
e

d
)

Ta
g

N
am

e
A

tt
ri

bu
te

s
D

efi
n

it
io

n

Ju
st

li
ke

gr
am

m
ar

s,
E

C
M

A
Sc

ri
pt

ca
n

be
sp

ec
ifi

ed
in

li
n

e
or

ex
te

rn
al

ly
.I

ft
h

e
sc

ri
pt

is
ex

te
rn

al
to

th
e

V
X

M
L

do
cu

m
en

t,
th

e
sr

c
at

tr
ib

u
te

is
u

se
d

to
po

in
t

to
th

e
U

R
I

w
h

er
e

th
e

sc
ri

pt
ex

is
ts

.O
th

er
w

is
e,

th
e

sc
ri

pt
is

en
ca

ps
u

la
te

d
w

it
h

in
[!

C
D

AT
A

[a
n

d]
]

ta
gs

(w
h

ic
h

ar
e,

in
tu

rn
,i

n
si

de
th

e
<

sc
ri

pt
>

ta
gs

.T
h

e
ch

ar
se

t
at

tr
ib

u
te

is
u

se
d

to
sp

ec
if

y
th

e
ch

ar
ac

te
r

se
t

u
se

d
fo

r
E

C
M

A
P

Sc
ri

pt
au

th
or

in
g

(i
n

te
rn

al
an

d
ex

te
rn

al
).

fe
tc

h
h

in
t,

fe
tc

h
ti

m
eo

u
t,

m
ax

ag
e,

m
ax

st
al

e
ar

e
u

se
d

to
se

t
th

e
ti

m
eo

u
ts

fo
r

re
tr

ie
vi

n
g

ex
te

rn
al

re
so

u
rc

es
as

w
el

la
s

ex
pi

ri
n

g
an

d
re

fr
es

h
in

g
th

os
e

re
so

u
rc

es
.F

or
E

C
M

A
Sc

ri
pt

s,
th

es
e

se
tt

in
gs

ap
pl

y
to

ex
te

rn
al

E
C

M
A

Sc
ri

pt
se

tt
in

gs
.

<
fo

rm
>

id
,s

co
pe

Se
e

F
ig

u
re

7.
25

.V
X

M
L

do
cu

m
en

ts
ar

e
m

ad
e

of
di

al
og

u
es

.V
X

M
L

fo
rm

s
ar

e
on

e
w

ay
of

sp
ec

if
yi

n
g

di
al

og
u

es
.C

on
ce

pt
u

al
ly

,V
X

M
L

fo
rm

s
ar

e
ve

ry
si

m
il

ar
to

H
T

M
L

fo
rm

s:
T

h
ey

pr
es

en
t

th
e

u
se

r
w

it
h

a
se

ri
es

of
pr

om
pt

s
an

d
co

ll
ec

t
th

e
in

fo
rm

at
io

n
re

qu
es

te
d

by
th

os
e

pr
om

pt
s.

T
h

e
id

of
ev

er
y

fo
rm

m
u

st
be

u
n

iq
u

e
to

al
lo

w
pr

op
er

re
fe

re
n

ci
n

g
th

ro
u

gh
th

e
st

an
da

rd
U

R
I

m
ec

h
an

is
m

.
A

s
w

e
sa

w
in

th
e

di
sc

u
ss

io
n

of
gr

am
m

ar
s,

gr
am

m
ar

s
an

d
th

ei
r

ru
le

s
h

av
e

sc
op

e.
T

h
e

sc
op

e
at

tr
ib

u
te

of
th

e
fo

rm
el

em
en

t
sp

ec
ifi

es
th

e
sc

op
e

of
al

lo
f

th
e

gr
am

m
ar

s
w

it
h

in
th

e
fo

rm
,

de
te

rm
in

in
g

w
h

et
h

er
th

ey
ar

e
ac

ce
ss

ib
le

ou
ts

id
e

of
th

e
fo

rm
or

n
ot

.
T

h
e

st
at

e
di

ag
ra

m
in

F
ig

u
re

7.
25

sh
ow

s
h

ow
a

fo
rm

is
h

an
dl

ed
.T

h
e

fo
rm

is
th

e
ba

si
c

u
n

it
h

an
dl

ed
by

th
e

vo
ic

e
br

ow
se

r
St

at
e

M
ac

h
in

e
U

IM
.N

av
ig

at
io

n
w

it
h

in
th

e
sa

m
e

fo
rm

or
fr

om
on

e
fo

rm
to

an
ot

h
er

fo
rm

is
,t

h
en

,d
et

er
m

in
ed

by
th

e
st

at
e

of
th

e
fo

rm
.T

h
e

st
at

e
of

th
e

fo
rm

is
ba

se
d

on
th

e
pr

om
pt

s
th

at
it

pl
ay

s,
th

e
re

sp
on

se
s

it
re

ce
iv

es
,a

n
d

th
e

m
at

ch
es

m
ad

e
af

te
r

th
e

vo
ic

e
re

co
gn

it
io

n
sy

st
em

co
m

pa
re

s
th

e
re

ce
iv

ed
re

sp
on

se
s

to
th

e
co

rr
es

po
n

di
n

g
gr

am
m

ar
s.

F
or

m
s

co
n

ta
in

co
n

tr
ol

it
em

s
an

d
in

pu
t

it
em

s.

452

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

<
fi

el
d>

n
am

e,
ex

pr
,c

on
d,

ty
pe

,
sl

ot
,m

od
al

T
h

is
el

em
en

t
al

lo
w

s
u

s
to

pl
ay

a
pr

om
pt

to
th

e
u

se
r

an
d

re
ce

iv
e

an
u

n
co

n
st

ra
in

ed
re

sp
on

se
.

T
h

e
n

am
e

at
tr

ib
u

te
al

lo
w

s
u

s
to

sp
ec

if
y

a
n

am
e,

u
n

iq
u

e
w

it
h

in
th

e
do

cu
m

en
t,

th
at

en
ab

le
s

ac
ce

ss
to

th
e

fi
el

d.
T

h
e

ex
pr

at
tr

ib
u

te
le

ts
u

s
se

t
an

in
it

ia
lv

al
u

e
to

th
e

fi
el

d
re

su
lt

an
d

th
e

co
n

d
at

tr
ib

u
te

al
lo

w
s

u
s

to
sp

ec
if

y
a

co
n

di
ti

on
th

at
is

tr
u

e
or

fa
ls

e.
T

h
e

co
n

d
at

tr
ib

u
te

is
tr

u
e

by
de

fa
u

lt
.T

h
e

co
n

d
at

tr
ib

u
te

is
th

e
pi

ec
e

of
th

is
el

em
en

t
th

at
al

lo
w

s
u

s
to

se
e

w
h

et
h

er
a

co
n

di
ti

on
h

as
be

en
m

et
or

n
ot

an
d

to
bu

il
d

th
e

st
at

e
of

th
e

fo
rm

ba
se

d
on

th
at

co
n

di
ti

on
(m

ov
e

on
to

th
e

n
ex

t
fi

el
d

or
n

ex
t

fo
rm

or
pe

rf
or

m
w

h
at

ev
er

n
av

ig
at

io
n

st
ep

m
ay

be
re

qu
ir

ed
).

W
it

h
in

fo
rm

s,
yo

u
m

ay
fi

n
d

a
va

ri
et

y
of

el
em

en
ts

th
at

al
lo

w
pl

ay
ba

ck
of

au
di

o
to

th
e

u
se

r,
ca

pt
u

re
of

au
di

o
fr

om
th

e
u

se
r,

te
st

in
g

th
e

co
n

te
n

t
re

ce
iv

ed
fr

om
th

e
u

se
r,

an
d

fi
n

al
ly

su
bm

it
ti

n
g

th
e

re
su

lt
s

to
a

U
R

I.
A

s
w

e
sa

w
w

it
h

gr
am

m
ar

s,
ev

er
y

gr
am

m
ar

re
tu

rn
s

a
va

lu
e

w
h

en
on

e
of

th
e

to
ke

n
s

is
sa

ti
sfi

ed
.T

h
es

e
va

lu
es

ar
e

of
te

n
re

fe
rr

ed
to

as
sl

ot
s.

B
ec

au
se

ev
er

y
gr

am
m

ar
w

it
h

in
th

e
fi

el
d

m
ay

h
av

e
m

or
e

th
an

on
e

to
ke

n
,t

h
er

e
m

ay
be

m
or

e
th

an
ju

st
on

e
sl

ot
fi

ll
ed

.T
h

e
sl

ot
at

tr
ib

u
te

of
th

e
fi

el
d

el
em

en
t

te
ll

s
th

e
vo

ic
e

br
ow

se
r

w
h

ic
h

sl
ot

va
lu

e
is

to
be

u
se

d
to

fi
ll

th
e

va
lu

e
of

th
e

fi
el

d
el

em
en

t.
T

h
e

m
od

al
at

tr
ib

u
te

ca
n

be
se

t
to

tr
u

e
or

fa
ls

e.
If

it
is

se
t

to
fa

ls
e,

al
lg

ra
m

m
ar

s
in

sc
op

e
of

th
e

do
cu

m
en

t
ar

e
u

se
d

fo
r

m
ak

in
g

a
m

at
ch

an
d

fi
ll

in
g

th
e

sl
ot

.I
f

it
is

se
t

to
tr

u
e,

on
ly

th
e

gr
am

m
ar

sp
ec

ifi
ed

ex
pl

ic
it

ly
in

th
e

sa
m

e
fi

el
d

or
th

ro
u

gh
th

e
ty

pe
at

tr
ib

u
te

is
u

se
d.

T
h

is
is

im
po

rt
an

t
fo

r
tw

o
re

as
on

s.
F

ir
st

,t
h

e
n

u
m

be
r

of
ac

ti
ve

gr
am

m
ar

s
in

a
vo

ic
e

re
co

gn
it

io
n

sy
st

em
is

in
ve

rs
el

y
pr

op
or

ti
on

al
to

th
e

pe
rf

or
m

an
ce

of
th

e
sy

st
em

.I
n

ot
h

er
w

or
ds

,t
h

e
m

or
e

gr
am

m
ar

s
ar

e
ac

ti
ve

,t
h

e
sl

ow
er

th
e

sy
st

em
ge

ts
.S

ec
on

d,
al

th
ou

gh
ce

rt
ai

n
w

or
ds

m
ay

be
al

lo
w

ab
le

in
so

m
e

pa
rt

s
of

th
e

fo
rm

(f
or

so
m

e
fi

el
ds

,e
tc

.)
,t

h
ey

m
ay

n
ot

be
al

lo
w

ab
le

in
ot

h
er

pa
rt

s.

(c
on

ti
nu

ed
)

453

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

TA
B

LE
7
.4

(c
on

ti
n

u
e

d
)

Ta
g

N
am

e
A

tt
ri

bu
te

s
D

efi
n

it
io

n

<
pr

om
pt

>
ba

rg
ei

n
,b

ar
ge

in
ty

pe
,

co
n

d,
co

u
n

t,
ti

m
eo

u
t,

xm
l:l

an
g

T
h

is
el

em
en

t
is

u
se

d
w

it
h

in
ot

h
er

el
em

en
ts

an
d

it
s

m
ai

n
pu

rp
os

e
is

to
pl

ay
au

di
o

to
th

e
u

se
r.

A
s

w
e

pr
ev

io
u

sl
y

m
en

ti
on

ed
,S

SM
L

,w
h

ic
h

w
e

w
il

ll
oo

k
at

in
a

la
te

r
se

ct
io

n
,i

s
a

be
tt

er
fi

t
fo

r
pr

od
u

ci
n

g
sy

n
th

es
iz

ed
sp

ee
ch

.A
n

d
th

e
de

si
gn

er
s

of
V

X
M

L
re

co
gn

iz
ed

th
is

.
So

,t
h

er
e

ar
e

tw
o

w
ay

s
to

pr
od

u
ce

sp
ee

ch
in

V
X

M
L

.F
ir

st
,w

e
ca

n
pu

t
th

e
te

xt
to

be
sy

n
th

es
iz

ed
by

th
e

te
xt

-t
o-

sp
ee

ch
en

gi
n

e
w

it
h

in
th

e
<

pr
om

pt
>

an
d

<
/p

ro
m

pt
>

ta
gs

.
T

h
is

de
fe

rs
th

e
co

n
ve

rs
io

n
of

te
xt

to
sp

ee
ch

to
th

e
im

pl
em

en
ta

ti
on

of
th

e
vo

ic
e

br
ow

se
r

an
d

h
ow

it
co

m
m

u
n

ic
at

es
w

it
h

th
e

sp
ee

ch
-s

yn
th

es
is

en
gi

n
e.

F
or

ex
am

pl
e,

a
pr

om
pt

co
u

ld
be

<
pr

om
pt

>
H

el
lo

W
or

ld
<

pr
om

pt
>

T
h

e
al

te
rn

at
iv

e
is

to
en

cl
os

e
SS

M
L

sy
n

ta
x

w
it

h
in

th
e
<

pr
om

pt
>

an
d

<
/p

ro
m

pt
>

ta
gs

.I
n

th
is

ca
se

,w
e

in
cl

u
de

al
l

of
th

e
SS

M
L

ta
gs

ex
ce

pt
fo

r
th

e
ro

ot
ta

g
of

<
sp

ea
k>

.S
o,

a
pa

rt
ic

u
la

r
pr

om
pt

co
u

ld
be

<
pr

om
pt

>

<
pa

ra
gr

ap
h
>

<
se

n
te

n
ce

>
H

el
lo

W
or

ld
<

/s
en

te
n

ce
>

<
au

di
o

sr
c=

”G
oo

dB
ye

.w
av

”>
G

oo
d

B
ye

<
/a

u
di

o>
<

/p
ar

ag
ra

ph
>

<
/p

ro
m

pt
>

T
h

e
ba

rg
ei

n
at

tr
ib

u
te

ca
n

be
se

t
to

tr
u

e
or

fa
ls

e,
al

lo
w

in
g

th
e

u
se

r
to

sp
ea

k
at

an
y

ti
m

e
du

ri
n

g
th

e
pr

om
pt

if
it

is
se

t
to

tr
u

e
an

d
fo

rc
in

g
th

e
u

se
r

to
w

ai
t

th
ro

u
gh

th
e

en
ti

re
pr

om
pt

if
it

is
se

t
to

fa
ls

e.
It

sh
ou

ld
be

n
ot

ed
th

at
th

is
at

tr
ib

u
te

is
h

on
or

ed
on

ly
if

th
e

u
n

de
rl

yi
n

g
vo

ic
e

re
co

gn
it

io
n

sy
st

em
an

d
h

ar
dw

ar
e

su
pp

or
t

ba
rg

ei
n

.

454

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

T
h

e
ba

rg
ei

n
ty

pe
at

tr
ib

u
te

ca
n

be
ei

th
er

“h
ot

w
or

d”
or

“s
pe

ec
h

”
an

d
is

on
ly

re
le

va
n

t
if

th
e

ba
rg

ei
n

at
tr

ib
u

te
is

se
t

to
tr

u
e.

If
th

e
ba

rg
ei

n
ty

pe
is

se
t

to
h

ot
w

or
d,

th
e

pr
om

pt
is

n
ot

in
te

rr
u

pt
ed

u
n

ti
lt

h
e

u
se

r
sa

ys
a

ke
yw

or
d.

F
or

ex
am

pl
e,

ou
r

ke
yw

or
d

m
ay

be
“G

en
ie

,”
in

w
h

ic
h

ca
se

th
e

pr
om

pt
w

ou
ld

n
ot

be
in

te
rr

u
pt

ed
u

n
le

ss
th

e
u

se
r

sa
ys

th
e

w
or

d
“G

en
ie

”
so

m
ew

h
er

e
in

h
is

or
h

er
sp

ee
ch

.I
f

th
e

ba
rg

ei
n

ty
pe

is
se

t
to

“S
pe

ec
h

,”
th

e
pr

om
pt

is
in

te
rr

u
pt

ed
w

it
h

an
y

sp
ee

ch
,r

eg
ar

dl
es

s
of

th
e

co
n

te
n

t.
A

n
y

u
tt

er
an

ce
sa

id
af

te
r

sp
ee

ch
is

in
te

rr
u

pt
ed

co
n

st
it

u
te

s
sp

ee
ch

to
be

u
se

d
as

an
u

tt
er

an
ce

to
be

re
co

gn
iz

ed
so

th
at

a
sl

ot
is

fi
ll

ed
fo

r
th

e
fi

el
d.

T
h

e
co

n
d

at
tr

ib
u

te
al

lo
w

s
u

s
to

dy
n

am
ic

al
ly

se
le

ct
w

h
et

h
er

w
e

w
an

t
a

pa
rt

ic
u

la
r

pr
om

pt
pl

ay
ed

or
n

ot
.T

h
e

co
n

d
at

tr
ib

u
te

ca
n

op
er

at
e

on
co

n
st

an
ts

,E
C

M
A

Sc
ri

pt
s

in
th

e
do

cu
m

en
t,

an
d

va
ri

ab
le

s
de

cl
ar

ed
an

d
de

fi
n

ed
in

th
e

V
X

M
L

do
cu

m
en

t.
<

gr
am

m
ar

>
m

od
e,

xm
l:l

an
g,

ve
rs

io
n

,r
oo

t,
sr

c,
ty

pe

T
h

er
e

ar
e

tw
o

ty
pe

s
of

gr
am

m
ar

s
in

V
X

M
L

do
cu

m
en

ts
:i

n
li

n
e

gr
am

m
ar

s
an

d
ex

te
rn

al
gr

am
m

ar
s.

In
li

n
e

gr
am

m
ar

s
u

se
th

e
W

3C
gr

am
m

ar
s.

V
X

M
L

br
ow

se
rs

ar
e

gu
ar

an
te

ed
to

su
pp

or
t

th
e

X
M

L
sy

n
ta

x
fo

r
W

3C
gr

am
m

ar
s.

H
ow

ev
er

,i
m

pl
em

en
ta

ti
on

of
th

e
A

B
N

F
sy

n
ta

x
is

op
ti

on
al

.
W

h
en

th
e

m
od

e
at

tr
ib

u
te

is
sp

ec
ifi

ed
,i

t
is

im
pl

ic
it

th
at

th
e

co
n

te
n

t
in

si
de

of
th

e
<

gr
am

m
ar

>
<

/g
ra

m
m

ar
>

ta
gs

is
W

3C
gr

am
m

ar
sy

n
ta

x
fo

r
an

in
li

n
e

gr
am

m
ar

.T
h

er
e

ar
e

tw
o

va
li

d
m

od
es

,“
vo

ic
e”

an
d

“d
tm

f,
”

re
fe

rr
in

g
to

th
e

ty
pe

of
in

pu
t

th
at

th
e

gr
am

m
ar

is
u

se
d

ag
ai

n
st

to
do

th
e

ap
pr

op
ri

at
e

m
at

ch
es

.(
O

bv
io

u
sl

y
dt

m
f

ou
tp

u
t

re
qu

ir
es

a
di

ff
er

en
t

ty
pe

of
gr

am
m

ar
th

an
vo

ic
e

be
ca

u
se

dt
m

f
in

pu
t

is
li

m
it

ed
to

in
pu

t
of

po
si

ti
ve

in
te

ge
r

n
u

m
be

rs
.)

H
ow

ev
er

,i
t

is
po

ss
ib

le
fo

r
th

e
pa

re
n

t
el

em
en

t
(l

ik
e

fi
el

d)
to

h
av

e
tw

o
gr

am
m

ar
s,

on
e

w
it

h
a

dt
m

f
m

od
e

an
d

th
e

ot
h

er
w

it
h

a
vo

ic
e

m
od

e.
F

or
ex

te
rn

al
gr

am
m

ar
s,

th
e

sr
c

at
tr

ib
u

te
po

in
ts

to
a

va
li

d
U

R
I

fr
om

w
h

er
e

th
e

gr
am

m
ar

ca
n

be
.L

ik
ew

is
e,

th
e

ty
pe

at
tr

ib
u

te
is

se
t

to
in

di
ca

te
th

e
ty

pe
of

gr
am

m
ar

po
in

te
d

to
by

th
e

sr
c

at
tr

ib
u

te
d.

(c
on

ti
nu

ed
)

455

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

TA
B

LE
7
.4

(c
on

ti
n

u
e

d
)

Ta
g

N
am

e
A

tt
ri

bu
te

s
D

efi
n

it
io

n

<
li

n
k>

n
ex

t,
ex

pr
,e

ve
n

t,
ev

en
te

xp
r,

m
es

sa
ge

,
m

es
sa

ge
ex

pr
,d

tm
f,

fe
tc

h
au

di
o,

fe
tc

h
h

in
t,

fe
tc

h
ti

m
eo

u
t,

m
ax

ag
e,

m
ax

st
al

e

T
h

e
li

n
k

el
em

en
t

al
lo

w
s

u
s

to
n

av
ig

at
e

am
on

g
V

X
M

L
do

cu
m

en
ts

or
am

on
g

th
e

di
al

og
u

es
of

th
e

sa
m

e
do

cu
m

en
t.

A
lt

er
n

at
iv

el
y,

th
e

li
n

k
el

em
en

t
al

lo
w

s
u

s
to

th
ro

w
an

ev
en

t
th

at
ca

n
th

en
be

h
an

dl
ed

by
th

e
vo

ic
e

br
ow

se
r,

E
C

M
A

Sc
ri

pt
,o

r
an

ot
h

er
do

cu
m

en
t.

If
th

e
li

n
k

is
to

n
av

ig
at

e
to

a
st

at
ic

U
R

I,
th

e
ne

xt
at

tr
ib

u
te

is
to

be
u

se
d.

(T
h

is
st

at
ic

U
R

I
m

ay
po

in
t

to
a

dy
n

am
ic

do
cu

m
en

t;
fo

r
ex

am
pl

e,
h

tt
p:

//
w

w
w

.c
ie

n
ec

s.
co

m
/t

es
t.

js
p

is
a

U
R

I
th

at
do

es
n

ot
ch

an
ge

bu
t

re
tu

rn
s

dy
n

am
ic

co
n

te
n

t.
)

If
th

e
li

n
k

is
to

n
av

ig
at

e
to

a
U

R
I

th
at

is
an

ev
al

u
at

ed
E

C
M

A
Sc

ri
pt

,t
h

e
U

R
I

m
u

st
be

po
in

te
d

to
u

si
n

g
th

e
ex

pr
at

tr
ib

u
te

.
A

lt
er

n
at

iv
el

y,
if

th
e

li
n

k
ca

u
se

s
an

ev
en

t
th

at
is

st
at

ic
pe

r
in

st
an

ce
of

th
e

do
cu

m
en

t,
it

is
sp

ec
ifi

ed
u

si
n

g
th

e
ev

en
t

at
tr

ib
u

te
,a

n
d

if
it

is
de

te
rm

in
ed

w
it

h
E

C
M

A
Sc

ri
pt

,t
h

en
it

is
po

in
te

d
to

u
si

n
g

th
e

ev
en

te
xp

r
ex

pr
es

si
on

.
A

m
es

sa
ge

(w
h

ic
h

ca
n

be
u

se
d

to
w

ar
n

th
e

u
se

r,
et

c.
)

ca
n

be
as

so
ci

at
ed

w
it

h
th

e
th

ro
w

n
ev

en
t.

O
n

ce
ag

ai
n

,i
f

th
e

m
es

sa
ge

is
st

at
ic

pe
r

in
st

an
ce

of
th

e
V

X
M

L
do

cu
m

en
t,

th
e

m
es

sa
ge

at
tr

ib
u

te
is

u
se

d,
an

d
if

th
e

m
es

sa
ge

is
de

te
rm

in
ed

u
si

n
g

E
C

M
A

Sc
ri

pt
,t

h
e

m
es

sa
ge

ex
pr

at
tr

ib
u

te
is

u
se

d.
fe

tc
h

h
in

t,
fe

tc
h

ti
m

eo
u

t,
m

ax
ag

e,
an

d
m

ax
st

al
e

al
la

pp
ly

as
pr

ev
io

u
sl

y
di

sc
u

ss
ed

.
<

m
en

u
>

id
,s

co
pe

,d
tm

f,
ac

ce
pt

N
ea

rl
y

al
lu

se
r

in
te

rf
ac

e
ty

pe
s

h
av

e
on

e
or

m
or

e
co

n
st

ru
ct

s
th

at
al

lo
w

u
se

rs
to

se
le

ct
fr

om
a

li
st

of
ch

oi
ce

s.
<

m
en

u
>

le
ts

u
s

bu
il

d
a

li
st

of
ch

oi
ce

s
to

be
se

le
ct

ed
by

th
e

u
se

r.
T

h
e

in
di

vi
du

al
ch

oi
ce

s
ar

e
sp

ec
ifi

ed
u

si
n

g
th

e
<

ch
oi

ce
>

ta
g.

T
h

e
id

at
tr

ib
u

te
is

a
u

n
iq

u
e

id
en

ti
fi

er
th

at
al

lo
w

s
th

e
m

en
u

to
be

n
av

ig
at

ed
th

ro
u

gh
th

e
u

se
of

ev
en

ts
an

d
li

n
ks

.
T

h
e

dt
m

f
at

tr
ib

u
te

is
u

se
d

to
as

si
gn

au
to

m
at

ic
dt

m
f

n
u

m
be

rs
to

th
e

ch
oi

ce
s.

T
h

e
n

u
m

be
rs

1–
9

ar
e

as
si

gn
ed

se
qu

en
ti

al
ly

to
th

e
fi

rs
t

n
in

e
ch

oi
ce

s.
If

a
m

en
u

h
as

m
or

e
th

an
n

in
e

ch
oi

ce
s,

th
os

e
ch

oi
ce

s
pa

st
n

in
e

ar
e

n
ot

as
si

gn
ed

a
dt

m
f

sh
or

tc
u

t.
H

ow
ev

er
,h

av
in

g
m

or
e

th
an

n
in

e
ch

oi
ce

s
in

a
V

U
I

is
n

ot
re

co
m

m
en

de
d

be
ca

u
se

u
se

rs
h

av
e

a
to

u
gh

ti
m

e
re

m
em

be
ri

n
g

lo
n

g
li

st
s

th
at

ar
e

re
ad

to
th

em
se

qu
en

ti
al

ly
.

456

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

<
ch

oi
ce

>
dt

m
f,

ac
ce

pt
,n

ex
t,

ex
pr

,
ev

en
t,

ev
en

te
xp

r,
m

es
sa

ge
,

m
es

sa
ge

ex
pr

,
fe

tc
h

au
di

o,
fe

tc
h

in
t,

fe
tc

h
ti

m
eo

u
t,

m
ax

ag
e,

m
ax

st
at

e

O
n

e
or

m
u

lt
ip

le
ch

oi
ce

el
em

en
ts

ar
e

u
se

d
in

si
de

th
e

m
en

u
el

em
en

t
to

sp
ec

if
y

th
e

ex
ac

t
ch

oi
ce

s
of

fe
re

d
by

th
e

m
en

u
.

T
h

e
be

h
av

io
r

of
th

e
at

tr
ib

u
te

s
dt

m
f,

n
ex

t,
ex

pr
,e

ve
n

t,
ev

en
te

xp
r,

m
es

sa
ge

,m
es

sa
ge

ex
pr

,
fe

tc
h

au
di

o,
fe

tc
h

h
in

t,
fe

tc
h

ti
m

eo
u

t,
m

ax
ag

e,
an

d
m

ax
st

at
e

ar
e

id
en

ti
ca

lt
o

th
e

be
h

av
io

r
of

a
li

n
k.

B
as

ic
al

ly
,w

h
en

a
ch

oi
ce

is
se

le
ct

ed
,i

t
is

tr
ea

te
d

as
a

li
n

k
to

so
m

e
po

in
t.

T
h

e
ac

ce
pt

at
tr

ib
u

te
is

pr
ov

id
ed

to
op

ti
on

al
ly

ov
er

ri
de

th
e

m
en

u
ac

ce
pt

at
tr

ib
u

te
fo

r
a

sp
ec

ifi
c

ch
oi

ce
.

E
ve

ry
ch

oi
ce

ca
n

h
av

e
it

s
ow

n
gr

am
m

ar
by

in
cl

u
di

n
g

a
gr

am
m

ar
el

em
en

t.
A

ls
o,

al
th

ou
gh

th
e

m
en

u
sp

ec
ifi

es
a

pr
om

pt
,e

ac
h

ch
oi

ce
ca

n
ad

d
it

s
ow

n
ad

di
ti

on
al

pr
om

pt
s

th
ro

u
gh

th
e

u
se

of
pr

om
pt

el
em

en
ts

.T
h

er
ef

or
e,

th
e

gr
am

m
ar

s
fo

r
ea

ch
ch

oi
ce

ca
n

be
in

li
n

e
or

ex
te

rn
al

an
d

pr
om

pt
s

ca
n

be
sp

ec
ifi

ed
in

SS
M

L
,u

se
co

n
ca

te
n

at
ed

au
di

o,
or

le
av

e
it

u
p

to
th

e
V

X
M

L
br

ow
se

r
to

ap
pl

y
a

de
fa

u
lt

be
h

av
io

r
to

h
ow

th
e

te
xt

is
co

n
ve

rt
ed

to
sp

ee
ch

.
<

su
bd

ia
lo

g>
n

am
e,

sr
c

If
yo

u
re

m
em

be
r

ou
r

di
sc

u
ss

io
n

of
co

m
po

n
en

ts
an

d
co

m
po

si
te

co
m

po
n

en
ts

in
C

h
ap

te
r

5,
yo

u
w

il
lh

av
e

an
ea

sy
ti

m
e

u
n

de
rs

ta
n

di
n

g
w

h
at

su
bd

ia
lo

gs
ar

e.
Su

bd
ia

lo
gs

ar
e

th
e

in
di

vi
du

al
V

U
I

in
te

ra
ct

io
n

s
th

at
m

ak
e

u
p

se
ts

of
in

te
ra

ct
io

n
s

w
it

h
th

e
u

se
r.

F
or

ex
am

pl
e,

ga
th

er
in

g
a

u
se

r’s
ad

dr
es

s
th

ro
u

gh
a

V
U

I
ta

ke
s

ge
tt

in
g

th
e

st
re

et
ad

dr
es

s,
ci

ty
,s

ta
te

or
pr

ov
in

ce
,a

n
d

co
u

n
tr

y.
G

at
h

er
in

g
ea

ch
pi

ec
e

of
in

fo
rm

at
io

n
m

ay
be

do
n

e
in

a
su

bd
ia

lo
g.

B
re

ak
in

g
la

rg
er

di
al

og
u

es
in

to
sm

al
le

r
on

es
al

lo
w

s
u

s
to

h
av

e
re

u
sa

bl
e

di
al

og
u

e
co

m
po

n
en

ts
(w

h
at

w
e

ca
ll

su
bd

ia
lo

gs
in

V
X

M
L

).
C

on
si

de
r,

fo
r

ex
am

pl
e,

th
e

ad
dr

es
s

ca
se

.W
e

m
ay

w
an

t
to

ge
t

th
e

ci
ty

in
w

h
ic

h
th

e
u

se
r

w
as

bo
rn

as
w

el
l.

W
h

en
th

is
is

re
qu

ir
ed

,w
e

ca
n

si
m

pl
y

re
ca

ll
th

e
ci

ty
su

bd
ia

lo
g.

To
re

fe
re

n
ce

su
bd

ia
lo

gs
,t

h
ey

ar
e

as
si

gn
ed

a
n

am
e

th
at

h
as

to
be

u
n

iq
u

e
pe

r
V

X
M

L
do

cu
m

en
t.

A
lt

er
n

at
iv

el
y,

if
th

e
su

bd
ia

lo
g

be
in

g
ac

ce
ss

ed
is

in
a

di
ff

er
en

t
V

X
M

L
do

cu
m

en
t,

th
e

sr
c

at
tr

ib
u

te
is

pr
ov

id
ed

to
po

in
t

to
th

e
U

R
I

of
th

at
do

cu
m

en
t.

(c
on

ti
nu

ed
)

457

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

TA
B

LE
7
.4

(c
on

ti
n

u
e

d
)

Ta
g

N
am

e
A

tt
ri

bu
te

s
D

efi
n

it
io

n

<
ob

je
ct

>
n

am
e,

cl
as

si
d,

da
ta

,
ex

pr
,c

od
eb

as
e,

co
de

ty
pe

,t
yp

e,
ar

ch
iv

e,
fe

tc
h

h
in

t,
fe

tc
h

ti
m

eo
u

t,
m

ax
ag

e,
m

ax
st

al
e

T
h

is
ta

g
is

th
e

on
ly

ta
g

w
h

os
e

u
se

m
ay

pr
oh

ib
it

po
rt

ab
il

it
y

of
a

gi
ve

n
V

X
M

L
do

cu
m

en
t.

T
h

e
ob

je
ct

ta
g

is
sp

ec
ifi

ca
ll

y
de

si
gn

ed
to

al
lo

w
ac

ce
ss

to
pl

at
fo

rm
-s

pe
ci

fi
c

fu
n

ct
io

n
al

it
y,

w
h

ic
h

in
h

er
en

tl
y

le
ad

s
to

po
rt

ab
il

it
y

pr
ob

le
m

s.
T

h
e

n
am

e
at

tr
ib

u
te

of
th

is
ta

g
pr

ov
id

es
a

u
n

iq
u

e
n

am
e

by
w

h
ic

h
th

e
ob

je
ct

ca
n

be
ac

ce
ss

ed
th

ro
u

gh
ou

t
th

e
V

X
M

L
do

cu
m

en
t.

T
h

e
cl

as
si

d
at

tr
ib

u
te

in
cl

u
de

s
th

e
pl

at
fo

rm
-s

pe
ci

fi
c

st
ri

n
g

th
at

is
u

se
d

to
in

vo
ke

a
co

m
po

n
en

t
sp

ec
ifi

c
to

th
e

pl
at

fo
rm

.F
or

ex
am

pl
e,

th
e

cl
as

si
d

m
ay

eq
u

al
“c

om
.c

ie
n

ec
s.

co
m

.T
es

tC
la

ss
,”

re
fe

rr
in

g
to

a
cl

as
s

pr
ov

id
ed

in
th

e
Ja

va
A

P
I

to
a

sy
st

em
.

T
h

e
ex

te
rn

al
co

m
po

n
en

t
to

be
ac

ce
ss

ed
m

ay
be

ac
ce

ss
ed

th
ro

u
gh

a
U

R
I

po
in

te
d

to
by

th
e

da
ta

at
tr

ib
u

te
an

d
th

e
pa

ra
m

et
er

s
to

be
pa

ss
ed

to
th

e
co

m
po

n
en

t
be

fo
re

it
is

in
vo

ke
d

ar
e

pu
t

in
to

<
pa

ra
m

>
<

/p
ar

am
>

ta
gs

th
at

h
av

e
n

am
e–

va
lu

e
pa

ir
s

en
ca

ps
u

la
te

d
in

th
ei

r
at

tr
ib

u
te

s
of

n
am

e
an

d
ex

pr
(w

h
ic

h
ca

n
be

dy
n

am
ic

al
ly

re
so

lv
ed

th
ro

u
gh

th
e

in
vo

ca
ti

on
of

an
E

C
M

A
Sc

ri
pt

m
et

h
od

).
<

if
>

co
n

d
T

h
e

<
if
>

ta
g

is
on

e
of

th
e

th
re

e
co

n
di

ti
on

al
st

ru
ct

u
re

s
in

V
X

M
L

;t
h

e
ot

h
er

tw
o

ar
e

<
el

se
if
>

an
d

<
el

se
>

.
T

h
e

co
n

d
at

tr
ib

u
te

ca
n

be
an

y
va

li
d

E
C

M
A

Sc
ri

pt
or

a
m

et
h

od
th

at
ev

al
u

at
es

an
in

li
n

e
or

ex
te

rn
al

E
C

M
A

Sc
ri

pt
ca

ll
.I

f
th

e
co

n
di

ti
on

is
tr

u
e,

th
en

th
e

co
de

w
it

h
in

<
if
>

an
d

<
/i

f>
is

ex
ec

u
te

d.
O

th
er

w
is

e,
th

e
co

de
w

it
h

in
th

e
<

el
se

>
<

/e
ls

e>
is

ex
ec

u
te

d
if

on
e

ex
is

ts
.T

h
e

el
se

an
d

el
se

if
ta

gs
ar

e
u

se
d

on
ly

in
si

de
<

if
>

<
/i

f>
.

<
el

se
>

Se
e

<
if
>

.
<

el
se

if
>

co
n

d
T

h
e

el
se

if
is

ju
st

li
ke

th
e

if
,e

xc
ep

tt
h

at
it

is
pe

rf
or

m
ed

w
h

en
a

pr
ev

io
u

s
if

co
n

di
ti

on
ev

al
u

at
es

to
fa

ls
e.

If
co

n
d

re
tu

rn
s

tr
u

e,
th

e
co

de
w

it
h

in
<

el
se

if
>

an
d

<
/e

ls
e>

ta
gs

ar
e

ex
ec

u
te

d.
<

ev
en

t>
T

h
er

e
ar

e
n

u
m

er
ou

s
te

le
ph

on
y

or
ot

h
er

ev
en

ts
th

at
ca

n
be

cr
ea

te
d

in
V

X
M

L
.T

h
is

ta
g

is
u

se
d

to
T

H
R

O
W

an
ev

en
t

(c
re

at
e

an
ev

en
t

an
d

n
ot

if
y

li
st

en
er

s)
.F

or
de

ta
il

s
on

al
lo

f
th

e
av

ai
la

bl
e

ev
en

ts
w

it
h

th
is

ev
en

t,
pl

ea
se

re
fe

r
to

th
e

V
X

M
L

sp
ec

ifi
ca

ti
on

do
cu

m
en

t
at

W
3C

.

458

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

<
ca

tc
h
>

ev
en

t,
co

n
d,

co
u

n
t

E
ve

n
ts

ar
e

th
ro

w
n

to
be

ca
u

gh
t

so
th

at
so

m
e

se
qu

en
ce

of
th

in
gs

ca
n

be
gi

n
.T

h
e

ca
tc

h
ta

g
al

lo
w

s
u

s
to

ca
tc

h
di

ff
er

en
t

ty
pe

s
of

ev
en

ts
.

T
h

e
ev

en
t

at
tr

ib
u

te
m

u
st

be
se

t
to

th
e

n
am

e
of

th
e

ev
en

t
th

ro
w

n
.I

t
is

im
po

rt
an

t
to

ke
ep

in
m

in
d

th
at

V
X

M
L

ev
en

ts
,u

n
li

ke
ev

en
ts

in
m

os
t

pr
og

ra
m

m
in

g
la

n
gu

ag
es

,a
re

ca
u

gh
t

by
n

am
e

in
st

ea
d

of
ty

pe
.I

n
ot

h
er

w
or

ds
,i

f
w

e
h

av
e

tw
o

di
ff

er
en

t
h

el
p

ev
en

ts
n

am
ed

“h
el

p1
”

an
d

“h
el

p2
,”

w
e

ca
n

n
ot

re
al

ly
ca

tc
h

al
lh

el
p

ev
en

ts
.R

at
h

er
,w

e
ca

tc
h

th
e

“h
el

p1
”

ev
en

t
by

se
tt

in
g

th
e

ev
en

t
at

tr
ib

u
te

of
th

e
ca

tc
h

el
em

en
t

to
“h

el
p1

”
an

d
w

e
ca

tc
h

“h
el

p2
”

ev
en

t
by

se
tt

in
g

th
e

ev
en

t
at

tr
ib

u
te

of
th

e
ca

tc
h

el
em

en
t

to
“h

el
p2

.”
O

n
ce

th
e

ev
en

t
is

ca
u

gh
t,

th
e

co
n

tr
ol

lo
gi

c
w

it
h

in
th

e
<

ca
tc

h
>

an
d

<
/c

at
ch

>
ta

gs
ar

e
ex

ec
u

te
d,

ex
ce

pt
w

h
en

th
e

co
n

d
ex

pr
es

si
on

ev
al

u
at

es
to

a
fa

ls
e.

A
s

be
fo

re
,c

on
d

ca
n

be
se

t
to

st
at

ic
va

lu
es

or
dy

n
am

ic
va

lu
es

co
m

pu
te

d
by

E
C

M
A

Sc
ri

pt
.

H
ow

m
an

y
ti

m
es

an
ev

en
t

is
in

vo
ke

d
m

ay
m

ak
e

a
di

ff
er

en
ce

in
w

h
at

w
e

do
.F

or
ex

am
pl

e,
le

t
u

s
as

su
m

e
w

e
h

av
e

so
m

e
va

li
da

ti
on

th
at

ca
u

se
s

an
er

ro
r

ev
en

t
to

be
th

ro
w

n
ca

ll
ed

“e
rr

or
1.

”
T

h
e

fi
rs

t
ti

m
e

th
e

ev
en

t
is

th
ro

w
n

,w
e

m
ay

si
m

pl
y

w
an

t
to

re
pl

ay
th

e
sa

m
e

pr
om

pt
,w

h
er

ea
s

th
e

se
co

n
d

ti
m

e
ar

ou
n

d
w

e
m

ay
w

an
t

to
pl

ay
a

di
ff

er
en

t
pr

om
pt

w
it

h
m

or
e

ex
pl

an
at

io
n

of
w

h
at

is
ex

pe
ct

ed
of

th
e

u
se

r.
<

er
ro

r>
,<

n
oi

n
pu

t>
,<

n
om

at
ch

>
,a

n
d

<
h

el
p>

ar
e

so
m

e
sh

or
tc

u
ts

fo
r

co
m

m
on

ev
en

ts
of

,
re

sp
ec

ti
ve

ly
,a

n
er

ro
r,

n
o

in
pu

t
fr

om
th

e
u

se
r,

n
o

m
at

ch
fo

u
n

d
ag

ai
n

st
th

e
gr

am
m

ar
,o

r
h

el
p

re
qu

es
te

d
by

th
e

u
se

r.
B

ec
au

se
th

ey
ar

e
si

m
pl

y
sh

or
th

an
d

re
pr

es
en

ta
ti

on
of

an
<

ev
en

t>
ta

g
w

it
h

th
e

ev
en

t
at

tr
ib

u
te

se
t

to
th

e
re

sp
ec

ti
ve

n
am

e,
th

ey
ca

n
ta

ke
on

th
e

ot
h

er
tw

o
at

tr
ib

u
te

s
of

co
n

d
an

d
co

u
n

t.
<

re
co

rd
>

n
am

e,
ex

pr
,m

od
al

,
co

n
d,

be
ep

,m
ax

ti
m

e,
fi

n
al

si
le

n
ce

,
dt

m
ft

er
m

,t
yp

e

T
h

is
co

n
st

ru
ct

al
lo

w
s

u
s

to
re

co
rd

au
di

o
in

pu
t

fr
om

th
e

u
se

r
an

d
su

bm
it

it
if

de
si

re
d.

T
h

e
au

di
o

be
in

g
re

co
rd

ed
st

ar
ts

at
th

e
en

d
of

th
e

la
st

pr
om

pt
pl

ay
ed

an
d

af
te

r
th

e
ex

ec
u

ti
on

of
th

e
<

re
co

rd
>

ta
g

an
d

co
n

ti
n

u
es

u
n

ti
la

D
T

M
F

to
n

e
is

re
ce

iv
ed

(w
h

en
u

se
r

pu
sh

es
a

bu
tt

on
on

th
ei

r
ph

on
e

if
th

at
is

th
e

de
vi

ce
be

in
g

u
se

d)
,t

h
er

e
is

si
le

n
ce

th
at

pa
ss

es
th

e
sp

ec
ifi

ed
ti

m
eo

u
t,

or
th

e
le

n
gt

h
of

th
e

re
co

rd
in

g
ex

ce
ed

s
so

m
e

pr
ed

efi
n

ed
le

n
gt

h
.

(c
on

ti
nu

ed
)

459

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

TA
B

LE
7
.4

(c
on

ti
n

u
e

d
)

Ta
g

N
am

e
A

tt
ri

bu
te

s
D

efi
n

it
io

n

T
h

e
at

tr
ib

u
te

n
am

e
is

u
se

d
to

po
in

t
to

th
e

st
or

ed
au

di
o

re
co

rd
in

g.
(T

h
e

st
or

ag
e

is
do

n
e

u
n

de
r

th
e

co
ve

rs
by

th
e

V
X

M
L

br
ow

se
r;

de
pe

n
di

n
g

on
th

e
pl

at
fo

rm
im

pl
em

en
ta

ti
on

th
e

au
di

o
co

n
te

n
t

m
ay

be
st

or
ed

in
a

fi
le

sy
st

em
,d

at
ab

as
e,

or
w

h
at

ev
er

m
ec

h
an

is
m

is
u

se
d

by
th

e
pl

at
fo

rm
.)

If
co

n
d

do
es

n
ot

re
so

lv
e

to
tr

u
e,

th
e

au
di

o
is

n
ev

er
re

co
rd

ed
.T

h
e

ty
pe

at
tr

ib
u

te
sp

ec
ifi

es
th

e
fo

rm
at

of
th

e
re

co
rd

in
g

(R
AW

m
on

o
w

it
h

µ
-l

aw
co

m
pa

n
di

n
g,

R
AW

m
on

o
w

it
h

a-
la

w
co

m
pa

n
di

n
g,

et
c.

).
<

tr
an

sf
er

>
n

am
e,

ex
pr

,c
on

d,
de

st
,

de
st

ex
pr

,b
ri

dg
e,

co
n

n
ec

ti
on

ti
m

eo
u

t,
m

ax
ti

m
e,

aa
i,

aa
ie

xp
r,

tr
an

sf
er

au
di

o,

T
h

is
ta

g
al

lo
w

s
u

s
to

sw
it

ch
se

n
de

r
au

di
o

ch
an

n
el

s
(r

ed
ir

ec
t

th
e

u
se

r
to

a
di

ff
er

en
t

ph
on

e
n

u
m

be
r,

et
c.

)
or

sw
it

ch
to

a
di

ff
er

en
t

vo
ic

e
ap

pl
ic

at
io

n
.

L
ik

e
m

an
y

ot
h

er
el

em
en

ts
,t

h
e

<
tr

an
sf

er
>

el
em

en
t

is
id

en
ti

fi
ed

by
a

u
n

iq
u

e
st

ri
n

g
in

th
e

n
am

e
at

tr
ib

u
te

.
T

h
e

tr
an

sf
er

w
il

lh
ap

pe
n

on
ly

if
th

e
co

n
d

ex
pr

es
si

on
ev

al
u

at
es

to
tr

u
e.

If
th

e
de

st
in

at
io

n
of

th
e

tr
an

sf
er

is
a

co
n

st
an

t,
it

is
sp

ec
ifi

ed
th

ro
u

gh
th

e
de

st
at

tr
ib

u
te

;i
f

it
is

dy
n

am
ic

(d
et

er
m

in
ed

by
E

C
M

A
Sc

ri
pt

),
it

is
sp

ec
ifi

ed
th

ro
u

gh
th

e
de

st
ex

pr
at

tr
ib

u
te

.
It

sh
ou

ld
be

n
ot

ed
th

at
th

is
el

em
en

t
m

os
tl

y
le

n
ds

it
se

lf
to

u
se

w
it

h
va

ri
ou

s
te

le
ph

on
y

ap
pl

ic
at

io
n

s
as

op
po

se
d

to
V

U
Is

ac
ce

ss
ed

by
m

ic
ro

ph
on

es
or

ot
h

er
de

vi
ce

s.
H

ow
th

e
ac

tu
al

tr
an

sf
er

h
ap

pe
n

s
is

pl
at

fo
rm

de
pe

n
de

n
t.

H
ow

ev
er

,v
oi

ce
br

ow
se

rs
sh

ou
ld

h
av

e
im

pl
em

en
ta

ti
on

of
“b

ri
dg

ed
”

or
“b

li
n

d”
tr

an
sf

er
s.

B
li

n
d

tr
an

sf
er

s
ar

e
so

m
ew

h
at

li
ke

ca
ll

fo
rw

ar
di

n
g.

W
e

si
m

pl
y

fo
rw

ar
d

th
e

ca
ll

er
to

an
ot

h
er

de
st

in
at

io
n

.B
ri

dg
ed

tr
an

sf
er

s
co

n
n

ec
t

to
th

e
de

st
in

at
io

n
an

d
th

en
br

in
g

th
e

ca
ll

er
in

to
th

e
sa

m
e

co
n

n
ec

ti
on

,c
re

at
in

g
so

m
et

h
in

g
th

at
is

si
m

il
ar

to
a

th
re

e-
w

ay
ca

ll
if

w
e

th
in

k
of

th
e

ca
ll

er
,t

h
e

cu
rr

en
t

ap
pl

ic
at

io
n

,a
n

d
th

e
br

id
ge

d
ap

pl
ic

at
io

n
s

ea
ch

as
a

pa
rt

ic
ip

an
t

in
th

e
ca

ll
.I

ft
h

e
at

tr
ib

u
te

d
br

id
ge

is
se

t
to

tr
u

e,
th

e
tr

an
sf

er
is

br
id

ge
d.

O
th

er
w

is
e,

th
e

tr
an

sf
er

is
bl

in
d.

So
m

e
of

th
e

ot
h

er
at

tr
ib

u
te

s
of

th
e

tr
an

sf
er

el
em

en
t

ar
e

re
al

ly
de

si
gn

ed
as

su
m

in
g

th
at

th
e

de
st

in
at

io
n

of
th

e
tr

an
sf

er
is

po
ss

ib
ly

an
ot

h
er

vo
ic

e
br

ow
se

r
or

an
ap

pl
ic

at
io

n
sm

ar
t

en
ou

gh
to

kn
ow

th
at

it
ca

n
re

ce
iv

e
tr

an
sf

er
re

d
ca

ll
s

fr
om

a
vo

ic
e

br
ow

se
r.

460

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 461

Validate
Make

Matches

Collect InputPlay Prompt

Not Done

Done

Start

Submit

FIGURE 7.25. UML State Diagram of Voice Browser Handling of Forms.

VXML provides both a markup language syntax as well as support for
ECMAScript (the parent to JavaScript and Jscript) for implementation of “client-
side” logic. We will first look at the VXML syntax and then look at the different
ways we can add dynamic behavior to the generation of VXML and handling of
VXML on the voice browser using ECMAScript. VXML is a fairly large language
so we will not be treating it in its entirety here. We will show enough so that the
reader may understand the basics and then move on to use VXML in building
VUIs and multichannel user interfaces for mobile applications.

Table 7.4 shows a basic syntactical review of VXML. Now that we have reviewed
the basic syntax of VXML, let us look at a sample VXML document in Figure 7.26.

UML and VXML
We have already seen how to use UML to represent VUIs, the interactions of a
user with VUIs, and the internal implementation of VUIs using UML. VXML is a
tool that we use to build VUIs. So, all of what we have talked about generically
about UML and VUIs apply to VXML. In other words, we can utilize the methods
mentioned in the section entitled Speech and Call Control with High-Level APIs
for modeling VXML documents and VUIs built of multiple VXML documents.
Now, let us see how we can utilize UML specifically to represent VUIs built with
VXML.

As we mentioned in Chapter 5, there are various reasons to design and imple-
ment mobile user interfaces as components. In the case of VXML, there are two
ways of doing this: We can create VXML components that leverage subdialogues
or we can create VXML dynamically using a server-side scripting language such
as ASP or JSP.

UML can help us create models that make reusability of these components
simpler because managing a large number of VXML components can make using
them prohibitive. We can use UML class diagrams to represent the relationships

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

462 VUIs AND MOBILE APPLICATIONS

<?xml version="1.0"?>

<vxml version="1.0" >

<form id="hello">

<field name="country">

<prompt>In Which Country Do You Live?</prompt>

</field>

<field name="Country">

<prompt>Please enter your credit card

number.</prompt>

</field>

<filled>

<!-- The Country Name is Sent to the Server -->

<result name="United States">

<prompt>Please say the name of the city in

which you live</prompt>

<filled><result name="Huntington Beach">

<prompt>Greatest Town in the US!</prompt>

</result></filled>

</result>

</filled>

</form>

</vxml>

FIGURE 7.26. Basic VXML Example Obtaining Country and City.

among multiple VXML documents from an internal representation perspective.
From the user-interface perspective, we can use Wisdom extensions of task and
presentation models to represent the navigation between VXML documents and
the relationship among VXML documents. Figure 7.27 shows the shopping dia-
logue that we discussed earlier in this chapter using Nunes’ Wisdom extensions.
Wisdom task and presentation models are particularly helpful at a high level.

We can use the Wisdom presentation model in a similar way. Remember that
these tools simply augment the ones that we have already outlined to model VUIs.
VXML is just a tool to build VUIs based on a browsing technology.

Now, let us see if and how we can use a tool for building generic user interfaces
such as XForms with VXML to produce a VUI from a generic user interface.

From XForms to VXML
One of our goals throughout this text is to build user interfaces in a consistent
manner and in a way that suits mobile applications. As we reviewed in Chapter 5,
mobile applications often refer to many different user interfaces. So, we showed
that one way of reducing the complexity of the development problem as well
as solving other problems such as maintaining consistency among different user
interfaces is to create a generic user interface that models the interactions of the

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 463

1

1

1
1

1 1 1 1

1
11

1

1

1
1

1

1

Shopping Dialogue

<<seq info pass>><<seq info pass>>

<<seq>> <<seq>> <<seq>>
<<seq>>

 <<seq info pass>>

Personal Information
Dialogue

Purchase Items
Dialogue

Name Dialogue Address Dialogue

Shipping Information
Dialogue

Billing Information
Dialogue

Contact Information
Dialogue

Personal Information
Confirmation Dialogue

Shopping
Confirmation Dialogue

FIGURE 7.27. Using the Wisdom Task Model to Represent VXML Dialogue Structures.

user with the interface and then specialize this interface for the specific interfaces
that are needed.

We should try to use the same approach for voice. As we have reviewed, VXML
is a markup language and it is fully plausible that we should be able to convert
XForms to VXML using XS’s or some other type of transformation technology.

The catch is that both XForms and VXML are designed to be “statefull.” By this,
we mean that an XForms browser is designed to do some of the exact same things
as a voice browser is designed to do: It is designed to hold a document that is very
much form based and can take input from the user, it can have validation logic,
and it can have multiple states. The XForms container basically operates on the
state of the XForms documents like a State Machine.

So, let us see what our choices are in producing VXML from a generic user
interface:

1. We can use XForms to represent generic user interfaces in a stateless manner. In this
case, we would almost be using XForms as the markup language for a stateless
Web service that has some generic information about the user interface. In this
way, the voice browser would maintain state, while periodically requesting a new
document from a source that returns an XForms document to be transformed
by a proxy or by the voice browser itself.

2. We can divide the state information between XForms and VXML in a manner that the
state of the generic interactions between the user and the system (such as validation
of the data that are returned by the user) are kept in the XForms browser and the
state of the information specific to the VUI (such as audio-channel information
and grammars) are kept in the VXML brower. This is probably the most elegant
technical solution, but it is relatively difficult and time consuming to implement.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

464 VUIs AND MOBILE APPLICATIONS

The key here is to first organize the state information specific to the VUI and
then to cleanly separate it from the state information that would need to be kept
track of in any type of user interface.

3. The VXML browser can be “XForms enabled.” One easy way to solve the problem
is to make the VXML browsers understand XSL and XForms so that they can
take an XForms document, transform it to the appropriate VXML document
using style sheets, and then start it up. However, we are not aware of any
current commercial or open-source efforts to support XForms on any VXML
browsers.

4. Create an XForms browser that is VXML enabled. XForms browsers are designed
to treat XForms, whose main purpose is to deal with a generic markup lan-
guage. To support VXML, the XForms browsers would have to include SSML
and CCML implementations to deal with speech synthesis and call control in
addition to having some modular way of connecting to various voice recognition
systems.

5. Transform the XForms documents to small enough VXML documents so that the
VXML document does not use any state informtion. Although this approach cir-
cumvents one of the main design goals of VXML, namely lowering the traffic
between the VXML browser and other applications to improve performance, it
can be implemented with reasonable simplicity without any demands on the
feature set supported by XForms browsers or VXML browers outside of what
they support today.

By now, you probably see that the central impedance mismatch for using VXML
with XForms is that they are both designed to be stateful. Keeping two state-
ful browsers synchronized creates a tremendous amount of network traffic and
presents an undue processing burden on both browsers so it is not an option.
Which one of the choices you select as the solution to your requirements depends
on the details of your problem.

To date, there is no published canonical XForms to VXML mapping in XSL or
any other language. However, Table 7.5 shows a rough mapping of some of the
XForms and VXML constructs.

There are some things that do not map between the XForms and VXML:

1. VXML <grammar> tags: The concept of grammars is used to limit the possible
things a user can say to the system. This is really not a problem that we face
with graphical or textual user interfaces as there is no natural language to be
parsed and there is no voice to be recognized.

2. XForms <secret> tags: There is no way to mask voice input from the user. Voice
verification may be used for authentication instead of username and password.

3. Binding to user interface components: VXML provides no separation between
the instance, the model, and processing of the document. The VXML browser
processes a particular instance of the VXML document.

4. Generic channel control: This is by design, but it makes the mapping between
XForms and VXML a difficult one if channel control is required from the
document.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 465

TABLE 7.5. VXML and XForms Construct Mapping

XForms Construct VXML Construct

<selectOne> tag allows us
to specify multiple options
and select one option.

<menu> tag allows us to specify multiple
options and select one option.

<item> tag is for specifying
the individual choices
inside the <selectOne>
tag.

<choice> tag allows us to specify the
individual options from which one is to
be selected when contained within the
<menu> tags.

<selectMany> tag allows us
to select multiple items at
the same time.

There is no good equivalent in VUIs to this
type of functionality. However, we can
get similar behavior out of the <menu>

and <choice> combinations if the
grammar specified for a given <choice>
contains multiple tokens and the
returning value from the choice includes
multiple values within it.

<input> tag allows us to get
input from the user.

Depending on the usage, the <input> tag
may map to one of the following:

1. the <record> tag, which simply records
the contents of the audio interactions
taking place between the user and the
system, or

2. the <field> tag, which allows us to
specify a prompt and then return a slot
filled against a specified grammar.

<range> tag allows us to
specify a range between
two numbers.

The functionality of the XForms <range>
tag can be emulated by restricting the
grammar of the field tag to include the
upper and lower range numbers as well
as all of the acceptable numbers in
between based on the specified interval
(for example, if the finest interval is
0.01, the min is 0, and the max is 0.5,
the grammar would have to include all
proper tokens for the set
{0,0.01,0.02, . . . ,0.50}).

<button> event allows us to
trigger an event without
any input.

There is no good equivalent to buttons in a
VUI. However, we can simulate a similar
behavior in a VUI with <link>,
<event>, or <goto> depending on the
exact desired behavior while the form is
initialized, while it is being filled, or after
it is finished being filled.

(continued)

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

466 VUIs AND MOBILE APPLICATIONS

TABLE 7.5 (continued)

XForms Construct VXML Construct

<upload> allows us to
upload data.

The only meaningful information that can
be uploaded to a system using the lowest
common denominator voice channel
(such as POTS telephony) is audio
content. This audio content can be
recorded and submitted through the
<record> tag.

<submit> allows us to send
information to the server.

<submit> allows us to send information to
the server.

(Although we try to stay away from recommending code generation solutions,
particularly for the user interface, that rely on UML, generating a first cut of
the VXML documents from the collective set of UML diagrams described in the
following may be a worthwhile effort. This does not mean that maintaining your
VXML code in UML is practical, but you can at least get the first version generated
and then go from there.)

In conclusion, there is no industry-recognized canonical method of mapping
XForms to VXML. However, this is not to say that we cannot map XForms to
VXML. We can certainly do this fairly well at build time (before run time) using
XSLs or some other transformation mechanism or use another one of the methods
mentioned here. Nonetheless, the mapping is not exactly straightforward. Now,
let us see how we can use VXML for building mobile applications.

Using VXML for Mobile Applications
Though there is a great deal of effort today to implement embedded voice recogni-
tion systems onto mobile devices, resource-starved devices do not lend themselves
to voice browsing technologies. So, when it comes to using VXML for mobile ap-
plications, we are primarily referring to the server-side interpretation of the VXML
document.

VXML can be produced from existing GUIs using transcoding mechanisms that
convert another user interface markup language to VXML, using XSLs or other
technologies. In theory, the primary advantage of using VXML in this manner is to
reduce the necessary development, create consistency among different interfaces,
and to reduce the cost of changes and maintenance during the lifetime of an
application. In practice, things do not quite work that way because of a number
of factors. Some of these are as follows:

1. There is a large performance cost in using VXML on the server side. Conse-
quently, many commercial applications that have moved from the traditional
IVR model of building on top of vendor-specific APIs suffer some performance
loss. This problem can typically be easily solved by increasing CPU and mem-
ory. Because CPU and memory are now mostly inexpensive commodities, the

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 467

problem is not significant. Nevertheless, it is important to be aware of the per-
formance loss when moving from a legacy VUI to a VXML-based VUI.

2. Because VXML has been designed as a browser that utilizes ECMAScript to
reduce traffic with the other applications, it is stateful. And because it is stateful,
the task of transforming a generic interface to VXML can be a fairly complicated
one.

3. Generating VXML with typical server-side technologies such as JSP or ASP
has the drawback of increasing network traffic although it has the advantage
of allowing us to apply the same techniques used for generating HTML-based
Web pages to generate VXML pages.

4. Automated conversion mechanisms that consume HTML or XHTML to pro-
duce VXML are typically flawed. Whereas the same technologies do a fair job
with text and GUIs, VUIs are much more sensitive to errors. One wrong or
poorly designed interaction with the user will turn the user off from using the
system. The key with VUIs is that the user interface must be as close to per-
fect as possible. Users are simply not as patient with VUIs as they are with
GUIs.

In the context of mobile application development, VUIs are usually meaningful as a
way for the mobile user to access the system through a wired or wireless telephony
channel (cell phones or land lines). When dealing with wirelessly connected users,
there is a decreased SNR. This in turn causes the recognition times to increase and
the successful recognitions to decrease. So, we need the best possible VUI we can
design.

Using VXML for mobile applications should be done only after careful consid-
eration of requirements. Whereas architecturally it provides a plethora of benefits,
its weak point corresponds to one of the GUI Web technologies’ strong points:
scalability and performance. Where VXML can meet the requirements of your
project performance-wise, it is clearly the best choice among the available tech-
nologies today. It provides a platform-independent infrastructure built the same
way as many GUI Web-based applications are with HTML; therefore, it lets us use
proved technologies to provide VUI access to existing systems.

We have now reviewed the basic VXML syntax and its applications to the mo-
bile environment. Let us see how we can integrate VXML into CCML, a markup
language designed to deal with the telephony call control aspects of VUIs.

CCML
The Call Control Markup Language, CCML (also referred to as CCXML) is the
W3C standard that complements VXML and SSML in controlling telephony chan-
nels, the primary channel utilized by VUIs. Although CCML is designed to be well
integrated with VXML, it is a separate language. VXML allows us to interact with
one user and handle events thrown during interactions with that user through
one audio channel. However, there is no mechanism provided for switching back
and forth between audio channels, transferring audio channels, or taking any
other action that involves multiple channels. CCML is designed to do this. Obvi-
ously, because a VXML document has no hooks into any other channels but the
one that it operates on, CCML must have hooks into XML documents to provide an

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

468 VUIs AND MOBILE APPLICATIONS

integration point. And it does. It is important to understand that the CCML con-
tainer becomes the first point of entry for the incoming calls so it has control over
the dialogue browsers. The CCXML browser does most of its communication with
the dialogue browsers through an event model. As we will see in the syntax review
of CCXML, the events in CCXML have been designed to be very close to those of
VXML to avoid an impedance mismatch in the event models.

One last thing to keep in mind is that CCML containers are State Machines.
This is very evident in the design of the language, which is based on the CCML
document, the various states that it may be in, how it handles events, and how it
controls the state of dialogue browsers by the events that it emits and receives.

Table 7.6 presents a subset of the VXML syntax.
We have not covered the entire syntax or the concepts behind CCML, but

remember that our focus here is on the general concepts. Refer to the specifications
at W3C for details. Now, let us look at integration of CCML and VXML.

As we mentioned earlier, either the voice browser understands CCML or the
voice browser understanding VXML can communicate with an application that
understands CCML. It is important to keep in mind that the implementation
details of the interactions between the CCML browser and the VXML browser, if
not handled by the same voice browser, are platform dependent. Figure 7.28 shows
a CCML document that accepts a call and then points it to a dialogue browser that
obtains a user’s address.

Note that our example is very simple. There is a single active state called “ac-
tive.” There are three different events that can be emitted at this state, each leading
to a different transition. If there is an incoming call event, a call id is created and
assigned to the call (we have called this the “waiting” state). Once this is done,
an event should be thrown that tells the system the call is connected (connec-
tion.CONNECTION CONNECTED). We have called this transition “to vxml.” It
is the transition that tells the infrastructure to bind a VXML document instance
to the call addressed by the callid. When the dialogue in the VXML is finished,
a dialog.exit event should be thrown that causes the transition “existing” to be
performed. This in turn exits the CCML application.

Obviously, this is an overly simplistic example. The functionality encapsulated
in most telephony-controlled VUIs would require multiple CCML documents,
each much longer in length than the one we looked at in this example. This
example, however, shows us the basics of how to bind to VXML dialogue browsers
and make two simple telephony-related calls.

You can see by looking at our simple example that CCML is very much based on
a State Machine UIM. Also, CCML documents can be very long and convoluted,
making them a perfect candidate for modeling with UML state diagrams to achieve
simplification and better documentation.

CCML and UML
As we saw in the previous section, CCML is built on three major concepts: states,
events, and transitions. These are the same concepts that are involved in any State
Machine–driven system. Let us now use UML state diagrams to model the CCML
document in Figure 7.28. This is shown in Figure 7.29.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

TA
B

LE
7
.6

.
C

C
X

M
L

S
yn

ta
x

Ta
gs

Ta
g

N
am

e
A

tt
ri

bu
te

s
D

efi
n

it
io

n

<
cc

xm
l>

ve
rs

io
n

T
h

is
is

th
e

ro
ot

of
C

C
X

M
L

do
cu

m
en

ts
.A

s
in

th
e

ca
se

of
m

os
t

X
M

L
-b

as
ed

la
n

gu
ag

es
,

ve
rs

io
n

is
u

se
d

fo
r

m
at

ch
in

g
th

e
do

cu
m

en
t

to
th

e
pr

op
er

sc
h

em
a

or
D

T
D

as
im

pr
ov

em
en

ts
ar

e
m

ad
e

to
cc

xm
la

n
d

n
ew

ve
rs

io
n

s
ar

e
ra

ti
fi

ed
.

<
if
>

co
n

d
<

if
>

,<
el

se
if
>

,a
n

d
<

el
se

>
ar

e
th

e
ba

si
c

co
n

di
ti

on
al

co
n

tr
ol

st
ru

ct
u

re
ta

gs
in

V
X

M
L

.
If

th
e

co
n

d
at

tr
ib

u
te

,w
h

ic
h

ca
n

be
a

st
at

ic
va

lu
e

or
E

C
M

A
Sc

ri
pt

,r
es

ol
ve

s
to

tr
u

e,
th

e
st

at
em

en
ts

w
it

h
in

th
e

<
if
>

an
d

<
/i

f>
st

at
em

en
ts

ar
e

ex
ec

u
te

d.
T

h
e

<
el

se
if
>

st
at

em
en

t
is

th
e

sa
m

e,
bu

t
it

is
pr

ec
ed

ed
by

an
<

if
>

st
at

em
en

t,
w

h
ic

h
m

u
st

re
so

lv
e

to
fa

ls
e

w
h

er
ea

s
th

e
co

n
d

at
tr

ib
u

te
of

th
e

<
el

se
if
>

re
so

lv
es

to
tr

u
e.

T
h

e
el

se
st

at
em

en
t

is
ex

ec
u

te
d

if
th

e
co

n
d

at
tr

ib
u

te
of

th
e

pr
ec

ed
in

g
<

if
>

re
so

lv
es

to
fa

ls
e.

<
el

se
if
>

co
n

d
Se

e
<

if
>

.
<

el
se

>
Se

e
<

if
>

.
<

di
al

og
st

ar
t>

ca
ll

id
,s

rc
,t

yp
e,

n
am

el
is

t,
di

al
og

id
T

h
is

is
th

e
ta

g
th

at
al

lo
w

s
u

s
to

bi
n

d
a

di
al

og
u

e
do

cu
m

en
t

(f
or

ex
am

pl
e

a
V

X
M

L
do

cu
m

en
t)

w
it

h
a

ca
ll

.T
h

e
sr

c
at

tr
ib

u
te

po
in

ts
to

th
e

di
al

og
u

e
do

cu
m

en
t

w
h

er
ea

s
th

e
ca

ll
id

at
tr

ib
u

te
ca

n
be

a
st

at
ic

va
lu

e
or

a
dy

n
am

ic
va

lu
e

ca
lc

u
la

te
d

by
E

C
M

A
Sc

ri
pt

to
po

in
t

to
a

pa
rt

ic
u

la
r

ca
ll

in
st

an
ce

(i
n

st
an

ce
of

an
au

di
o

ch
an

n
el

).
T

h
e

so
u

rc
e

of
th

e
di

al
og

u
e

do
cu

m
en

t
ca

n
be

of
an

y
fo

rm
at

u
n

de
rs

ta
n

da
bl

e
by

th
e

vo
ic

e
br

ow
se

r.
T

h
e

ty
pe

at
tr

ib
u

te
is

u
se

d
to

sp
ec

if
y

th
e

M
IM

E
ty

pe
of

th
e

do
cu

m
en

t.
F

or
ex

am
pl

e,
fo

r
V

X
M

L
,t

h
e

ty
pe

at
tr

ib
u

te
is

ap
pl

ic
at

io
n

/x
m

l+
vx

m
l.

T
h

e
n

am
el

is
t

at
tr

ib
u

te
al

lo
w

s
u

s
to

pa
ss

so
m

e
pa

ra
m

et
er

s
vi

a
n

am
e–

va
lu

e
pa

ir
s

in
th

e
U

R
L

.
It

s
co

n
te

n
t

is
th

e
co

m
m

a-
de

li
m

it
ed

n
am

e
of

pa
ra

m
et

er
s

to
be

pa
ss

ed
th

ro
u

gh
th

e
U

R
L

.
T

h
e

di
al

og
id

at
tr

ib
u

te
le

ts
u

s
ke

ep
a

h
oo

k
in

to
th

e
di

al
og

u
e

w
h

il
e

it
is

st
il

lg
oi

n
g

on
.I

t
pl

ay
s

th
e

ro
le

of
a

se
ss

io
n

id
th

at
le

ts
u

s
ac

ce
ss

it
la

te
r

on
if

n
ee

de
d.

(c
on

ti
nu

ed
)

469

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

TA
B

LE
7
.6

(c
on

ti
n

u
e

d
)

Ta
g

N
am

e
A

tt
ri

bu
te

s
D

efi
n

it
io

n

<
di

al
og

te
rm

in
at

e>
di

al
og

id
,

im
m

ed
ia

te
T

h
is

el
em

en
t

le
ts

u
s

te
rm

in
at

e
an

ex
is

ti
n

g
di

al
og

u
e.

T
h

e
di

al
og

id
at

tr
ib

u
te

is
es

ta
bl

is
h

ed
vi

a
th

e
<

di
al

og
st

ar
t>

el
em

en
t,

w
h

ic
h

es
ta

bl
is

h
es

th
e

di
al

og
u

e.
T

h
e

im
m

ed
ia

te
at

tr
ib

u
te

m
ay

be
se

t
to

tr
u

e
or

fa
ls

e
an

d
it

s
m

ea
n

in
g

is
so

m
ew

h
at

pl
at

fo
rm

de
pe

n
de

n
t.

T
h

e
id

ea
of

th
is

at
tr

ib
u

te
is

to
sp

ec
if

y
w

h
et

h
er

th
e

ca
ll

sh
ou

ld
be

te
rm

in
at

ed
re

ga
rd

le
ss

of
th

e
ap

pl
ic

at
io

n
st

at
e

or
w

h
et

h
er

so
m

e
cl

ea
n

u
p

ta
sk

s,
be

th
ey

in
te

ra
ct

iv
e

ta
sk

s
w

it
h

th
e

u
se

r
or

ju
st

ap
pl

ic
at

io
n

m
ai

n
te

n
an

ce
ty

pe
ta

sk
s,

sh
ou

ld
be

pe
rf

or
m

ed
.

<
ev

en
t>

n
am

e,
di

al
og

id
,

ca
ll

id
A

s
w

e
m

en
ti

on
ed

pr
ev

io
u

sl
y,

th
e

C
C

M
L

co
n

ta
in

er
is

de
si

gn
ed

to
co

m
m

u
n

ic
at

e
w

it
h

th
e

di
al

og
u

e
do

cu
m

en
t

br
ow

se
rs

th
ro

u
gh

ev
en

ts
.T

h
e

n
am

e
at

tr
ib

u
te

sp
ec

ifi
es

a
n

am
e

fo
r

th
e

ev
en

tb
y

w
h

ic
h

it
ca

n
be

ca
u

gh
t.

T
h

e
di

al
og

id
at

tr
ib

u
te

le
tu

s
u

s
se

n
d

th
e

ev
en

tt
o

th
e

ri
gh

t
di

al
og

.R
em

em
be

r
th

at
di

al
og

id
’s

ar
e

as
si

gn
ed

th
ro

u
gh

th
e

di
al

og
st

ar
t.

ca
ll

id
at

tr
ib

u
te

sp
ec

ifi
es

th
e

id
of

th
e

ca
ll

w
h

os
e

au
di

o
ch

an
n

el
is

be
in

g
u

se
d

by
th

e
di

al
og

u
e

br
ow

se
r.

T
h

er
e

ar
e

a
va

ri
et

y
of

ca
ll

co
n

tr
ol

–b
as

ed
ev

en
ts

.T
o

fi
n

d
an

en
u

m
er

at
io

n
of

th
os

e
ev

en
ts

,
re

fe
r

to
th

e
C

C
M

L
sp

ec
ifi

ca
ti

on
[C

C
M

L
20

02
].

<
va

r>
n

am
e,

ex
pr

<
va

r>
el

em
en

t
do

es
th

e
ex

ac
t

sa
m

e
th

in
g

as
th

e
V

X
M

L
<

va
r>

el
em

en
t.

<
as

si
gn

>
n

am
e,

ex
pr

<
as

si
gn

>
el

em
en

t
do

es
th

e
ex

ac
t

sa
m

e
th

in
g

as
th

e
V

X
M

L
<

as
si

gn
>

el
em

en
t.

<
sc

ri
pt

>
sr

c
T

h
is

el
em

en
t

ca
n

w
ra

p
ar

ou
n

d
in

li
n

e
E

C
M

A
Sc

ri
pt

or
al

te
rn

at
iv

el
y

po
in

t
to

an
ex

te
rn

al
U

R
I,

w
h

ic
h

re
tu

rn
s

E
C

M
A

Sc
ri

pt
th

ro
u

gh
th

e
sr

c
at

tr
ib

u
te

.
<

ev
en

th
an

dl
er

>
id

,s
ta

te
va

ri
ab

le
T

h
is

el
em

en
t

is
a

co
n

ta
in

er
fo

r
on

e
or

m
or

e
tr

an
si

ti
on

el
em

en
ts

.
T

h
e

id
at

tr
ib

u
te

le
ts

u
s

ad
dr

es
s

th
e

ev
en

th
an

dl
er

.T
h

e
st

at
ev

ar
ia

bl
e

ac
ts

li
ke

a
co

n
ta

in
ed

da
ta

m
em

be
r

th
at

m
ai

n
ta

in
s

th
e

st
at

e
of

an
ev

en
th

an
dl

er
.

<
tr

an
si

ti
on

>
n

am
e,

st
at

e,
ev

en
t,

co
n

d
T

h
e

tr
an

si
ti

on
el

em
en

t
m

od
el

s
th

e
tr

an
si

ti
on

be
tw

ee
n

di
ff

er
en

t
st

at
es

in
a

St
at

e
M

ac
h

in
e.

T
h

e
n

am
e

of
th

e
tr

an
si

ti
on

al
lo

w
s

u
s

to
ad

dr
es

s
it

.

470

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

T
h

e
st

at
e

at
tr

ib
u

te
po

in
ts

to
th

e
st

at
e

at
w

h
ic

h
th

e
C

C
M

L
m

u
st

be
in

fo
r

th
is

tr
an

si
ti

on
to

ap
pl

y.
T

h
e

co
n

d
at

tr
ib

u
te

is
a

st
at

ic
va

lu
e

or
a

dy
n

am
ic

va
lu

e
ev

al
u

at
ed

ba
se

d
on

E
C

M
A

Sc
ri

pt
.I

f
th

e
co

n
d

at
tr

ib
u

te
do

es
n

ot
re

so
lv

e
to

tr
u

e,
th

e
tr

an
si

ti
on

do
es

n
ot

h
ap

pe
n

.I
f

th
e

co
n

d
at

tr
ib

u
te

re
so

lv
es

to
tr

u
e,

an
ev

en
t

of
th

e
ty

pe
po

in
te

d
to

by
th

e
at

tr
ib

u
te

ev
en

t
is

cr
ea

te
d.

C
C

M
L

re
co

gn
iz

es
a

w
id

e
va

ri
et

y
of

te
le

ph
on

y
ev

en
ts

th
at

ar
e

in
de

pe
n

de
n

t
of

th
e

n
et

w
or

k
ty

pe
(V

oI
P,

P
O

T
S,

et
c.

),
th

e
ca

rr
ie

r
n

et
w

or
k

(c
om

m
er

ci
al

pr
ov

id
er

s
su

ch
as

AT
&

T
in

th
e

U
n

it
ed

St
at

es
an

d
Vo

da
fo

n
e

in
E

u
ro

pe
),

an
d

ca
ll

co
n

tr
ol

ap
pl

ic
at

io
n

ve
n

do
rs

(P
B

X
ve

n
do

rs
,s

w
it

ch
ve

n
do

rs
,e

tc
.)

.T
h

es
e

ev
en

ts
in

cl
u

de
ev

en
ts

th
at

re
la

te
to

es
ta

bl
is

h
in

g
a

ca
ll

an
d

te
rm

in
at

in
g

a
ca

ll
.F

or
a

li
st

of
th

es
e

ev
en

ts
,p

le
as

e
re

fe
r

to
th

e
C

C
M

L
sp

ec
ifi

ca
ti

on
at

th
e

W
3C

si
te

[C
C

M
L

20
02

].
<

se
n

d>
ev

en
t,

ta
rg

et
,n

am
e,

de
la

y,
n

am
el

is
t

T
h

is
ta

g
le

ts
u

s
em

it
ev

en
ts

to
ot

h
er

pr
oc

es
se

s,
in

cl
u

di
n

g
di

al
og

u
es

an
d

ot
h

er
C

C
M

L
ap

pl
ic

at
io

n
s.

If
a

se
t

of
pr

op
er

ti
es

ar
e

to
be

se
n

t
to

th
e

ta
rg

et
,t

h
ei

r
n

am
es

ar
e

to
be

li
st

ed
in

th
e

n
am

el
is

t
at

tr
ib

u
te

.T
h

e
ty

pe
of

ev
en

t
is

sp
ec

ifi
ed

by
th

e
ev

en
t

at
tr

ib
u

te
an

d
th

e
sp

ec
ifi

c
pr

oc
es

s
to

re
ce

iv
e

th
e

pr
oc

es
s

is
sp

ec
ifi

ed
th

ro
u

gh
th

e
ta

rg
et

at
tr

ib
u

te
.

<
m

ov
e>

en
dp

oi
n

t,
ev

en
t,

se
ss

io
n

id
T

h
is

el
em

en
t

(e
n

d
po

in
t)

ca
u

se
s

an
ev

en
t

to
be

re
tu

rn
ed

w
h

en
th

e
C

C
X

M
L

ap
pl

ic
at

io
n

re
ac

h
es

it
s

en
d

po
in

t.
T

h
is

el
em

en
t

is
m

os
t

u
se

fu
li

n
al

lo
w

in
g

a
ta

rg
et

C
C

X
M

L
do

cu
m

en
t

to
re

tu
rn

co
n

tr
ol

to
th

e
pa

re
n

t
do

cu
m

en
t

th
at

in
vo

ke
d

it
.

<
ac

ce
pt

>
ca

ll
id

T
h

is
el

em
en

t
al

lo
w

s
an

in
co

m
in

g
ca

ll
to

be
ac

ce
pt

ed
.B

ec
au

se
th

e
ca

ll
m

u
st

be
ad

dr
es

sa
bl

e
th

ro
u

gh
ou

t
th

e
C

C
M

L
ap

pl
ic

at
io

n
,a

u
n

iq
u

e
id

m
u

st
be

as
si

gn
ed

to
it

th
ro

u
gh

th
e

ca
ll

id
at

tr
ib

u
te

.
<

re
di

re
ct

>
ca

ll
id

,r
ea

so
n

,
de

st
O

n
e

of
th

e
m

os
tb

as
ic

op
er

at
io

n
s

in
te

le
ph

on
y

is
ro

u
ti

n
g

ca
ll

s.
T

h
e
<

re
di

re
ct

>
el

em
en

ta
ll

ow
s

u
s

to
se

n
d

a
ca

ll
th

at
h

as
be

en
ac

ce
pt

ed
or

cr
ea

te
d,

ad
dr

es
se

d
th

ro
u

gh
th

e
as

si
gn

ed
ca

ll
id

,t
o

a
de

st
in

at
io

n
ad

dr
es

se
d

th
ro

u
gh

th
e

at
tr

ib
u

te
de

st
.

T
h

e
at

tr
ib

u
te

re
as

on
al

lo
w

s
u

s
to

sp
ec

if
y

a
re

as
on

fo
r

th
e

re
di

re
ct

of
th

e
ca

ll
,t

h
ro

u
gh

th
e

re
as

on
at

tr
ib

u
te

.T
h

is
at

tr
ib

u
te

ca
n

be
u

se
d

to
gi

ve
fe

ed
ba

ck
to

th
e

u
se

r
or

u
se

d
fo

r
pa

ss
in

g
va

lu
es

am
on

g
th

e
C

C
M

L
ap

pl
ic

at
io

n
(s

)
in

pl
ay

.

(c
on

ti
nu

ed
)

471

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

TA
B

LE
7
.6

(c
on

ti
n

u
e

d
)

Ta
g

N
am

e
A

tt
ri

bu
te

s
D

efi
n

it
io

n

<
re

je
ct

>
ca

ll
id

,r
ea

so
n

O
cc

as
io

n
al

ly
,w

e
m

ay
w

an
t

to
re

je
ct

an
in

co
m

in
g

ca
ll

.A
lt

h
ou

gh
u

si
n

g
bo

th
ca

ll
id

an
d

re
as

on
at

tr
ib

u
te

s
ar

e
op

ti
on

al
,w

e
ca

n
u

se
th

em
to

as
so

ci
at

e
an

id
n

u
m

be
r

an
d

a
re

as
on

fo
r

re
je

ct
io

n
in

ca
se

ke
ep

in
g

tr
ac

k
of

th
e

re
je

ct
ed

ca
ll

is
of

so
m

e
si

gn
ifi

ca
n

ce
.

<
cr

ea
te

ca
ll
>

de
st

,n
am

e
T

h
is

ta
g

is
u

se
d

w
h

en
w

e
n

ee
d

to
in

it
ia

te
an

ou
tb

ou
n

d
ca

ll
.A

s
yo

u
m

ay
n

ot
e,

th
er

e
is

n
o

ca
ll

id
at

tr
ib

u
te

as
so

ci
at

ed
w

it
h

th
is

el
em

en
t.

T
h

is
is

be
ca

u
se

th
e

ca
ll

is
cr

ea
te

d
as

yn
ch

ro
n

ou
sl

y,
an

d
th

e
pr

oc
es

si
n

g
of

th
e

C
C

M
L

do
cu

m
en

t
is

co
n

ti
n

u
ed

on
ce

th
is

ca
ll

be
gi

n
s

to
pr

oc
es

s.
W

h
en

an
d

if
th

e
ca

ll
is

su
cc

es
sf

u
l,

an
ev

en
t

is
cr

ea
te

d
an

d
th

is
ev

en
t

is
h

ow
w

e
ge

t
a

h
an

dl
e

to
th

e
ca

ll
.

So
,e

ve
ry

cr
ea

te
ca

ll
el

em
en

t
m

u
st

h
av

e
an

as
so

ci
at

ed
tr

an
si

ti
on

el
em

en
t

(d
is

cu
ss

ed
pr

ev
io

u
sl

y)
th

at
sp

ec
ifi

es
w

h
at

h
ap

pe
n

s
af

te
r

th
e

ca
ll

is
re

ce
iv

ed
.

<
cr

ea
te

co
n

fe
re

n
ce

>
id

T
h

is
el

em
en

t
cr

ea
te

s
a

pl
ac

eh
ol

de
r

fo
r

a
co

n
fe

re
n

ce
ca

ll
an

d
as

si
gn

s
it

an
id

.T
h

e
co

n
fe

re
n

ce
ca

ll
ca

n
th

en
be

jo
in

ed
th

ro
u

gh
th

e
<

jo
in

>
el

em
en

t.
<

de
st

ro
yc

on
fe

re
n

ce
>

id
T

h
is

el
em

en
t

de
st

ro
ys

an
ex

is
ti

n
g

co
n

fe
re

n
ce

ca
ll

,c
au

si
n

g
al

le
xi

st
in

g
pa

rt
ic

ip
at

in
g

ca
ll

s
in

to
th

e
co

n
fe

re
n

ce
to

be
di

sc
on

n
ec

te
d.

<
jo

in
>

id
1,

id
2,

du
pl

ex
T

h
e

jo
in

el
em

en
t

is
u

se
d

to
jo

in
tw

o
ex

is
ti

n
g

ca
ll

s
to

ge
th

er
(w

h
ic

h
in

ef
fe

ct
cr

ea
te

s
a

co
n

fe
re

n
ce

ca
ll

of
tw

o
pa

rt
ic

ip
an

ts
,b

u
t

w
it

h
ou

t
a

co
n

fe
re

n
ce

ob
je

ct
an

d
th

e
su

bs
eq

u
en

t
h

an
dl

in
g

fu
n

ct
io

n
al

it
y

th
at

it
of

fe
rs

),
to

jo
in

an
ex

is
ti

n
g

co
n

fe
re

n
ce

in
to

an
ex

is
ti

n
g

ca
ll

,
or

to
jo

in
an

ex
is

ti
n

g
ca

ll
in

to
an

ex
is

ti
n

g
co

n
fe

re
n

ce
.

T
h

e
du

pl
ex

ta
g

m
ay

be
se

tt
o

“f
u

ll
”

or
“h

al
f”

de
pe

n
di

n
g

on
w

h
o

sh
ou

ld
be

ab
le

to
h

ea
r

w
h

at
.

472

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

If
th

e
du

pl
ex

le
ve

li
s

se
t

to
“f

u
ll

,”
th

en
al

lp
ar

ti
ci

pa
n

ts
ca

n
h

ea
r

al
lt

h
e

ot
h

er
pa

rt
ic

ip
an

ts
.I

f
th

e
du

pl
ex

le
ve

li
s

se
t

to
“h

al
f,

”
th

en
th

e
pa

rt
ic

ip
an

t
m

ar
ke

d
by

id
1

(a
n

ex
is

ti
n

g
ca

ll
or

an
ex

is
ti

n
g

co
n

fe
re

n
ce

)
ca

n
h

ea
r

th
e

pa
rt

ic
ip

an
t

m
ar

ke
d

by
id

2,
bu

t
th

e
pa

rt
ic

ip
an

t
m

ar
ke

d
by

id
2

ca
n

n
ot

h
ea

r
th

e
pa

rt
ic

ip
an

t
m

ar
ke

d
by

id
1.

T
h

is
fu

n
ct

io
n

al
it

y
is

pa
rt

ic
u

la
rl

y
u

se
fu

l
w

h
en

an
ap

pl
ic

at
io

n
h

as
to

h
an

dl
e

co
n

fe
re

n
ci

n
g

as
w

el
la

s
vo

ic
e

W
eb

ca
st

s
(w

h
er

e
on

e
pa

rt
ic

ip
an

t
do

es
al

lt
h

e
ta

lk
in

g
an

d
th

e
ot

h
er

u
se

rs
ar

e
li

st
en

in
g

fo
r

m
os

t
of

th
e

ca
ll

,b
u

t
th

e
pa

rt
ic

ip
an

ts
ca

n
in

te
ra

ct
iv

el
y

jo
in

in
du

ri
n

g
th

e
qu

es
ti

on
an

d
an

sw
er

pa
rt

of
th

e
vo

ic
e

W
eb

ca
st

).
<

u
n

jo
in

>
id

1,
id

2
W

e
ca

n
u

n
jo

in
a

ca
ll

er
fr

om
a

co
n

fe
re

n
ce

ca
ll

u
si

n
g

th
is

el
em

en
t.

O
n

e
of

th
e

at
tr

ib
u

te
s

m
u

st
be

as
si

gn
ed

to
th

e
id

of
th

e
ca

ll
to

be
re

m
ov

ed
fr

om
th

e
co

n
fe

re
n

ce
an

d
th

e
ot

h
er

to
th

e
id

of
th

e
co

n
fe

re
n

ce
.

If
bo

th
at

tr
ib

u
te

s
po

in
t

to
jo

in
ed

or
br

id
ge

d
ca

ll
s

w
it

h
ou

t
a

co
n

fe
re

n
ce

,t
h

e
ca

ll
s

ar
e

u
n

br
id

ge
d.

<
di

sc
on

n
ec

t>
ca

ll
id

,r
ea

so
n

T
h

is
el

em
en

t
al

lo
w

s
u

s
to

di
sc

on
n

ec
t

an
ex

is
ti

n
g

ca
ll

ad
dr

es
se

d
by

th
e

ca
ll

id
at

tr
ib

u
te

.I
t

m
ay

be
de

si
re

d
to

ke
ep

tr
ac

k
of

th
e

in
fo

rm
at

io
n

ab
ou

t
th

e
ca

ll
af

te
r

it
h

as
be

en
di

sc
on

n
ec

te
d,

so
th

is
in

fo
rm

at
io

n
re

m
ai

n
s

ad
dr

es
sa

bl
e

th
ro

u
gh

th
e

ca
ll

id
.T

h
e

re
as

on
at

tr
ib

u
te

ca
n

be
u

se
d

to
sp

ec
if

y
a

re
as

on
fo

r
th

e
di

sc
on

n
ec

t
as

a
st

ri
n

g.

473

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

474 VUIs AND MOBILE APPLICATIONS

<?xml version="1.0" encoding="UTF-8"?>

<ccxml version="1.0">

<var name="incoming_callid" expr="'incoming'" />

<var name="mState" expr="'active'" />

<eventhandler statevariable="mState">

<transition state="waiting" event="connection.

CONNECTION_ALERTING" name="evt">

<assign name="incoming_callid"

expr="evt.callid" />

<accept callid="incoming_callid" />

</transition>

<transition state="to_vxml" event="connection.

CONNECTION_CONNECTED" name="evt">

<dialogstart callid="incoming_callid"

src="'address.vxml'" />

<assign name="mState"

expr="'AddressDialog_State'" />

</transition>

<transition name="exiting" state="'active'"

event="dialog.exit" name="evt">

<exit />

</transition>

</eventhandler>

</ccxml>

FIGURE 7.28 Using CCML to Control VXML Applications.

Note that this diagram represents the CCML document exactly. If we were to
represent the states of the CCML document, we may want to incorporate the states
of the CCML container as well. This would mean that each transition would lead
into a different state because the CCML browser would be at a different state. In

active

connection.CONNECTION_CONNECTED / dialogstart

connection.CONNECTION_ALERTING / accept

Start_CCML_Browser dialog.exit/exit

FIGURE 7.29 Using UML State Diagrams to Model CCML Documents.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 475

establishing_connection

waiting_for_vxml_event

waiting_for_call

entry / assign
exit / accept

connectin.CCONNECTION_CONNECTED

connection.CONNECTION_ALERTING

Initializing_CCML_Document

dialog.exitentry / dialogstart

FIGURE 7.30 UML State Diagram Representing the State of the CCML Document Container.

our example, there would be three states, waiting for a call, waiting for the VXML
browser to return an exit event, and finally exiting. See Figure 7.30.

Which way you select to represent your CCML documents in UML depends on
your usage. If you are using UML to generate CCML code, then you probably want
the first representation (plus whatever OCL code, stereotypes, and tags you want
to add to get the right representation of CCML) as there is a more straightforward
mapping between the definition of widgets to CCML elements and attributes. If
you are trying to model the entire system in a uniform manner, then you are
probably better off using an approach more similar to the second representation
that includes the state of the CCML browser. This representation would be less
specific to CCML.

As in the case of VXML, we can use the Wisdom task and presentation models
to, respectively, represent the internal implementation of the relationship among
multiple CCML documents and represent a high-level interaction of the user with
the system interface (in this case the telephony navigation).

From a Generic User Interface to CCML
Generic user interfaces do not encapsulate any knowledge of the channel through
which they are displayed to the user; CCML is designed primarily for handling
telephony channels. Therefore, CCML is somewhat orthogonal to user interface
design.

This is not to say that we can neglect handling of channels in a user-specific
manner. The experts have recognized the need for handling all types of different
communication channels, but the channels themselves are very different in nature.
We are, however, fortunate that the handling of channels (audio, visual, and the
various technologies such as VoIP, HTTP, etc. that provide transport infrastruc-
tures) is not a problem to be solved at the application layer. Infrastructures such
as those designed to handle SMIL, and all of the channels that are supported by it,
help us handle different types of channels and bind them to the appropriate user
interface. We will take a closer look at this in Chapter 8.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

476 VUIs AND MOBILE APPLICATIONS

XHTML Voice Profile
As we saw in Chapter 6, XHTML is the next generation of the hypertext markup
language. Creation of different extensions to XHTML through an organized set of
modules is the way it has been designed to deal with different document types.
XHTML allows for the integration of voice interactions into XHTML documents
that represent GUI interactions. Moreover, as we previously discussed, XHTML
is a “specialized” markup language, meaning that we can create XHTML from
XForms using one of many specialization techniques discussed in this text.

In a sense, XHTML wraps around VXML and other voice standards of W3C to
provide a markup language for multimodal access to the system. It accomplishes
this by modularization of VXML into XHTML. This allows VXML snippets to be
called by events within the rest of the XHTML document.

There is one big difference between an XHTML document utilizing the XHTML
Voice profile and the other type of markup languages we have discussed for build-
ing VUIs: It assumes a multichannel browser. In other words, the same browser
environment that understands the textual syntax of XHTML and renders a GUI is
also interpreting the VXML and controlling the audio channel. This means that
we have one of three situations:

1. An XHTML document may be browsed by a text browser or a voice browser
and the sections that are not understood by each browser are simply ignored.

2. An XHTML document may be browsed by a browser that is able to handle both
audio and visual channels.

3. An XHTML document may go through an intermediary or proxy to provide
understandable content to the end client.

The third case makes little sense because there is no reason to build a generic
interface, specialize it to XHTML, and then take it apart again before delivering it
to the client. We could go straight from XForms or some other markup language
designed to represent user interfaces and accompanying interactions in a generic
manner to the final interface without using XHTML.

So, either the XHTML browser is able to handle both audio and text or it is going
to ignore the type of interactions it does not understand. Remember that XHTML
browsers are running on the end-client device. For example, we could serve up an
XHTML page that displays “Hello World” on a Palm device. The markup language
is interpreted by a browser running on the Palm device. This, in turn, means that
XHTML Voice profile makes sense only if we assume that the end-user device
is going to be able to have a browser that can deal with both audio and text.
Most mobile devices are not advanced enough today to accomplish such a task.
This means that the XHTML Voice profile may not be the best choice for mobile
devices. There may soon, however, be XHTML browsers on PCs for handling both
audio and text channels, thereby making laptops or other similar powerful mobile
devices possible candidates for using the XHTML Voice profile.

Now that we have looked at a few different standards and technologies for
designing VUIs, let us look at how we build VUIs for mobile applications.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 477

7.4.3 Designing Voice Recognition–Based VUIs
for Mobile Applications
We have seen the general components that go into building a VUI, looked at dif-
ferent types of architectures within which VUIs are built, examined some tools
such as JSAPI and VXML used to implement such interfaces, and seen how we
can use UML to model VUIs in general and use UML with VXML or other tools.
As with many other topics discussed in this text, there are many good texts out
there for VUI design. Although we took a quick survey of building VUIs, our
focus is on building mobile user interfaces that use voice interactions as a way
to present the mobile user with a better way of communicating with the system.
We will now quickly survey some of the most important principles in design-
ing VUIs and then move on to discuss how the dimensions of mobility add to
the typical concerns of designing VUIs. Our focus here will be user-independent-
based VUIs. It is important to remind you that, to date, these systems are essen-
tially based on command-and-control voice recognition rather than voice tran-
scription. The single most important aspect of building VUIs is to understand
the user who is interacting with the system. Consider this throughout all of
the stages of a VUI and for each and all of the concerns that we distinguish
here.

A common mistake that the typical reader of this text may make is to design
a VUI as if the interactions are based on written sentences rather than spoken
language. This is where we will start.

Design for Speaking, Not Writing
Speaking and writing are inherently different. Besides idioms used to communicate
when speaking, most people use slightly different vocabulary sets to write than
they do to speak. Whereas incorrect grammar is intolerable for writing, it is quite
acceptable when speaking. In fact, idiomatic dialogues may be considered prefer-
able in certain circumstances based on the user and the application. Incidentals
such as “Hmmm,” “Okay,” “Oops,” or “By the way” can give the dialogue taking
place between the user and the system a more natural feel. Such incidentals can
even be introduced into the dialogue randomly so that the user does not begin to
recognize a pattern of how they are used.

Whether the recognition is strictly directed dialogue or a more natural dialogue,
the prompts or other voice output from the system can integrate incidentals to
make the dialogue much more natural. There are other ways of making the dis-
course more natural. The choice of words, phrases, and sentences to be used in
creating the grammars for the user input as well as those words, phrases, and
sentences used for system output should suit the application and the profile of the
user of the application. For example, a banking application should use very clear
instructions, make no or little use of incidentals and idioms, and employ a voice
talent that conveys the serious nature of the application. However, an application
that tells you the results of the games your favorite sports teams were involved in
may be less formal when using idioms that suit conversations focusing on sports,
and add in incidentals that present happiness or sadness depending on whether
your teams won or lost.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

478 VUIs AND MOBILE APPLICATIONS

Understanding the User
As we previously mentioned, the single most important factor in designing VUIs
is to know the user. The information about the user can be divided into three
categories:

1. Information Collected During the Session. As the user interacts with the sys-
tem we can collect a “history” or a list of the things that are done during a
given session. Session boundaries are typically dependent on the communica-
tion channel used for the VUI. For example, the session boundaries of a phone
call begin with the user dialing a phone number and end with the user hanging
up. During the session, information can be collected based on the responses
given to help us prompt the user with better prompts or give the user bet-
ter responses. For example, a particular user may intuitively prefer directed
dialogue over natural language interactions. This may be concluded if he or
she is able to navigate and interact with the system more quickly when using
a directed-dialogue interaction as opposed to a mixed-initiative dialogue. In
such a case, as the session progresses, we may have the logic in the system
to present more directed-dialogue interactions to the user. Example 7.6 shows
such a case. In this example, either the prompts are not clear enough or the
user does not recognize the fact that to check the score of a game, he or she
has to first say the name of the league and then the name of the team. The user
is given the chance to interact through mixed-initiative dialogues, but once he
or she does not provide the system with an easily understandable response,
the system goes into a directed-dialogue mode for the remainder of the ses-
sion. Also note that, as in the case of any typical application, some settings can
be remembered from previous interactions with the user. In this example, the
user has set some profile information that specifies his or her favorite sports
teams.

2. Application-Dependent (Domain-Dependent) Assumptions about the User. Making
assumptions about the user is not only acceptable but may even be necessary
to build a good VUI. If the user is using a complex accounting application, it
is fine to assume that he or she has a fair amount of knowledge in accounting.
This can tell us much about the profile of the user. To limit the grammar of the
dialogues between a user and a system, we can make assumptions about the
user that increases the usability of the application by orders of magnitude to the
majority of the users (although it may make it more cumbersome for a small
subset of the user base).

3. Specifics of the Mobile State of the User. It is important to understand the specifics
of the mobile state of the user and to design the user interface appropriately.
In other words, a good mobile user interface is dynamic enough to adjust itself
to the condition of the mobile user. For example, if the user is driving in a
convertible and communicating with the system through a mobile phone, it
may be appropriate to switch to a female voice with a higher pitch so that the
user has an easier time making out the words. Every VUI interaction for a mobile
system should be designed with the mobile condition of the user (Chapter 1)
in mind.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 479

Example 7.6: Sample of a Directed-Dialogue Interaction.

System: Would you like to hear the scores? Please say the name of the league
first and then the name of the team.

User: Sure, how did the Bronco’s do?
System: I’m sorry, I didn’t get that. Which league did you want to check, NHL,

NBA, or NFL.
User: NFL.
System: Did you want to check the Denver Bronco’s Score?
User: Yes.
System: Denver beat New England 24–16 today. Would you like to continue?
User: What happened in the Laker game?
System: I’m sorry, I didn’t get that. Would you like to check an NHL game, NFL

game, or NBA game?
User: NBA.
System: Which team would you like, the Los Angeles Lakers or the Los Angeles

Clippers? If you’d like another team, please say the name of the team.
User: Lakers.
System: The Lakers didn’t have a game today. Would you like the most recent

score?
User: No, thanks. Quit.
System: Thank you for using the SportsAreLife Portal. Good bye.

Using Pronouns and Other Markers
Mobile users are not focused and usually rushed so we need to keep interactions
concise. However, they also need a little more time to understand prompts and
other aural output as they are typically doing multiple things at the same time. So,
as a general rule of thumb, when building mobile VUIs, keep the content of the
prompts short and to the point, but use markers and pronounce frequently. For
example, instead of prompting the user “Please say the five digit postal code of your
address now,” we should prompt the user as “Ok, what is your zip code?” Such
prompts also tend to be more informal. In the context of mobile applications, using
pronouns and markers to make the user interface more friendly takes precedence to
abiding to a consistent look and feel (as, for example, with formal communications
in a banking application).

Consistency
It may seem too obvious too mention, but in the case of VUIs, as in any other type
of user interface, consistency is crucial. Maintaining consistency is important at
three levels:

1. Interface Details: Keeping the same voice talent, identity, vocabulary sets, and
other details used in communicating to the user is crucial. For example, if one
part of the application uses incidentals, markers, and pronouns to deliver a more
natural interface and another part does not, the user will “feel” as if he or she

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

480 VUIs AND MOBILE APPLICATIONS

is communicating with two different systems, thereby creating a discontinuity
in the user’s experience.

2. Interface Metadesign Decisions: When designing a VUI, there are some principles
that drive the design strategies. Although these principles may vary by applica-
tion, they should stay the same for a given application. For example, we may
decide to use escalating error correction for an application. If so, than the entire
application should use escalating error corrections as opposed to other options.
Whereas maintaining consistency in the details of the interface (the first prin-
ciple) helps deliver a consistent “look, hear, and feel” to the user, maintaining
consistent metadesign decisions helps us deliver cognitive consistency while
the user is interacting with the system.

3. Analogous Components of Other User Interface Types: Often times, the VUI is not
the only interface to the application. As a part of designing a good multichannel
user interface, the VUI components should be consistent with their counterparts
in GUIs. For example, let us take an application that provides cooking recipes
and is available for access through both a Web and a VUI. In the Web version,
there may be a wizard available that the user utilizes to navigate through the
steps of cooking on his or her own time. The same analogous functionality must
be available through voice, say, for example, a voice wizard where the VUI asks
the user whether the user wants more time, wants to move on to the next step,
or wants to hang-up (if accessing voice through telephony) and call back again
to follow up with the next steps.

Confirming User Input
As you noted in the previous sections, we already introduced a stereotype called
“confirm” to specify the VUI components that confirm the user’s input. Confirming
the user and allowing the user to correct the input is crucial for mobile users. The
mobile user is not focused and is much more error prone in responses given to the
system. You can confirm things in steps (e.g., confirm the address before moving
on to the next subdialogue) or confirm everything at the end. A well-designed
VUI finds a balance between these two. If the confirmation is too long (contains a
lot of information), the user just gets confused (because the user of a VUI does not
have the luxury of a GUI user to scan the graphics and text on the screen multiple
times and any order desired). Too many confirmations begin to annoy the user.
So, the key is to find just the right balance.

Correcting User Input
When the user makes an error, the system should correct him or her. This is
obvious. What is somewhat of an art is how to correct the user. There are several
possibilities:

1. Escalating Corrections: Repeating the same error message often simply leads
to user frustration. So, a good way of handling errors is to start with concise
correction messages and get more and more descriptive as the same mistake
is repeated. This type of interaction can occur so frequently that we created a
stereotype to represent it.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 481

2. Transferring to a Live Person: Numerous VUIs support larger back-end trans-
actions. An example of this is a hotel reservation system. For such cases, it is
prudent to have a small team at a call center to help out those users who get
frustrated by the system’s inability to recognize their input.

3. Start Natural and Move to Directed-Dialogue: If mixed-initiative or natural lan-
guage interactions are used to build the user interface, errors could be caused
by a limited grammar set, performance limitations, or poor design. As we dis-
cussed earlier, the more natural the interaction with the user, the larger the
grammar set, and subsequently, the larger the chance for misunderstanding
possible responses. So, if the system does not get an understandable response
in the mixed-initiative mode of interaction, design it so that it gradually moves
to a more directed dialogue. Example 7.7 displays an example of such a case.
Note one more thing: Once we have gone into a directed-dialogue mode, we
stay there. Whether the system is designed to escalate to a directed-dialogue
mode and stay there or whether it is designed to go back to a more natural dis-
course once the context of the interaction with the user is changed is up to the
designer. This decision should be made based on the context of the interaction
with the user.

Example 7.7: Correcting the User by Moving from Mixed-Initiative to Directed
Dialogue.

System: Would you like to adjust the temperature or the lights?
User: This room is very dry. Please increase the humidity.
System: I’m sorry, I didn’t understand that. Could you repeat?
User: It’s dry in here. Increase humidity.
System: I’m sorry. I can only change the temperature or the lighting levels.
What would you like to do: adjust the temperature or turn on the lights?
User: It’s too dry in here.
System: Please say one of the following: lights or temperature.
User: Temperature.
System: Would you like it higher or lower?
User: Lower.

In addition to these, correcting the mobile user may need to differ from correcting
users of other applications. Because the mobile environment introduces consid-
erable noise, whether because of a low-quality wireless connection or because of
the noise of various activities going on in the background, correction of the user
must incorporate the dimensions of mobility. Namely, we need to consider the
following:

1. If the background noise is too high, inform the user so that he or she may change
the environmental conditions to eliminate the background noise, thereby im-
proving the accuracy and consistency of recognition. Recognition results may
be low because of background noise. However, the user may be oblivious to
this. A feature desired for voice recognition systems being deployed in mobile
environments is an interface that allows the application to determine the amount

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

482 VUIs AND MOBILE APPLICATIONS

of background noise and enables it to distinguish the background noise from
white noise caused by low QOS. In this way, if the voice recognition system
fails in recognizing the user input, the noise can be examined; subsequently, if
the background noise level is too high, the user can be presented with a prompt
such as “I’m sorry, I can’t recognize what you are saying because there is too
much background noise. Could you go somewhere quieter or say that louder.”
It should be noted that the user saying something louder does not guarantee
better recognition as the audio interface (microphone, phone, etc.) has some
saturation limit beyond which raising the voice actually causes further degra-
dation of the quality of the received signal. This is just an example of a prompt.
Depending on the application and the context of the interaction with the user, a
more meaningful prompt can be presented. For example, if a mobile application
is targeted for construction field workers, the standard background noise can
be recognized by the appropriate filters and corresponding message can be pre-
sented as “Sounds like there is some hammering going on in the background;
could you please go somewhere with less noise.”

2. If there is white noise, or other types of noise, caused by low QOS of a wirelessly
connected user, let users know that their connection is of low quality. In such
cases, it is best to let the mobile user know that the problem with the interface
is in the connection. Once again, by changing location or some other action,
users can improve the quality of the connection. Also, the reality of applica-
tions is that the end goal is to deliver a service to a customer and to keep that
customer happy. It is critical that, if there are problems outside of the appli-
cation itself, with the device, the connectivity to the network, or others, the
user is informed. This helps manage the user’s frustrations as well as pointing
them to the right source to correct the application problems. A simple message
such as “You are not receiving enough bandwidth in this area. Please contact
your carrier.” can go a long way in reducing the frustration of a user with an
application.

3. Verify location information and present the proper error information. Knowing
where the user is gives us a great deal of information and can often be used in
presenting more meaningful error-correction prompts. Example 7.8 shows how
a system can use such information to limit the grammar and give the user more
meaningful error prompts. Note that by knowing that the mobile device to be
contacted was within the vicinity of the user, the system helped the user. Also
note that this particular “correction” was a contextual correction as opposed to
a recognition correction. Regardless of the type of correction, the same strategy
may be used by using the location information to guide the user to give us the
proper response.

Example 7.8: Using the User’s Location to Improve Correction Prompts.

Let us assume that we know that the user is at home. In this scenario, we assume
that the system is the user’s (Bob’s) cell phone communicating with a centralized
voice recognition system.
Phil: Call my daughter Maria.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.4 Voice Recognition 483

System: Phil, Maria’s cell phone is currently located within one-hundred meters
of your location. Do you want me to call her somewhere else?

Phil: Yeah, call her at her friend’s house.
System: I’m sorry Phil, I didn’t understand that. If you have an alternate number

for Maria, could you say it. Otherwise, please say the name of the person
whose number you’d like to call.

Phil: Call my wife.
System: Calling your wife now.

4. Take advantage of the multichannel user interface when possible. Many mo-
bile applications use multichannel user interface, with voice being one of the
channels of communication with the user. If your correction through the VUI
fails consistently, it may be suitable to switch to a GUI or, at least, to prompt
the user if he or she wants to use a GUI. For example, if recognition errors are
increasing because of excess background noise, the user can be directed to use
a GUI. Once the noise level is reduced, the VUI can come back on.

Clarity
We have mentioned brevity and clarity many times already. We reemphasize that
giving mobile users clear and concise directions to request their input is crucial.
Also, we once again emphasize the fact that the mobile user is typically doing
something other than interacting with the computing system that is more impor-
tant to him or her (which is probably why the user is mobile to start with). So,
mobile users have little tolerance for listening to long aural output from the sys-
tem. Design your prompts to be to the point, clear, and concise. Yet, make sure
that you do not sacrifice a “friendly” tone.

Persona
When designing and implementing a VUI, put yourself in the user’s place. The
user is communicating with the system through voice. The perception of the
user is similar to communicating with the system because of these voice-based
interactions. So, to make the user feel more comfortable and to make the system
easier to use, create a “persona” for the system. The persona of a VUI is the same
as the look-and-feel of a GUI. It is the perfect vehicle for conveying the corporate
look-and-feel, friendliness, and all those other things that may be desired to be
communicated to the user. The persona of a system delivers a consistent VUI that
can make the user feel more like he or she is communicating with a person rather
than a computer. And this is one of the most important goals in designing a VUI.

Tuning a VUI
The process of testing and refining a VUI is a bit differernt from that for a GUI. In
fact, we may want to remove some of the methodologies used in refining VUIs and
apply them to GUIs. There are some common problems that need to be solved.
One is that a VUI is designed with a set of assumptions about the typical user,
some of which may end up being untrue. We may also get unexpected responses

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

484 VUIs AND MOBILE APPLICATIONS

that cause no recognition because the grammars would not account for them. In
addition, environmental conditions such as background noise may be different
than planned for.

We cannot take a comprehensive look at testing and tuning a VUI in this text.
Our goal is merely an introductory one. However, here are some typical steps to
take while tuning:

1. After you are done designing and implementing, test the system with ten to
twenty randomly sampled users in sample environmental conditions. Use the
recognition errors and any pointers that these users may have for an initial
round of tuning. Do this first round of tuning without any telephony. This way,
you can separate the problems associated with the handling of the voice channel
from the problems associated with the voice interactions themselves.

2. Repeat step 1, but this time have the users use telephones. Repeat the tuning
process again.

3. Now, take the same users and have them test the system under mobile conditions
through wireless telephony. Repeat tuning again.

4. Now, select another set of randomly sampled users and go through the steps
again.

Your system and budget may not allow for ten to twenty sample users. However,
the project may be large enough to allow for more users. Use your judgement
and the project size to adjust the sampling size, but stick with the process. Also
remember that if the sampling size gets too small (less than five to seven users),
you may end up going in circles and never actually tuning the system because the
input from those users may not be representative of the median user of the system.
The problem of tuning is inherently a statistical problem. So, apply the principles
accordingly.

7.5 TEXT-TO-SPEECH TECHNOLOGIES: CONVERTING WRITTEN LANGUAGE
TO SPOKEN LANGUAGE

So far, in this chapter, we have discussed mostly how to deal with aural input
generated by the user to be processed by the system. VUIs are at their most
natural when both input and output of the system are spoken words. This is
where the text-to-speech technologies come into play. Text-to-speech applications
are those applications that change written language into spoken language. There are
two main categories of software programs that convert written language into spo-
ken language: those that produce spoken language by concatenation of words
spoken by live human beings and those that attempt to produce speech without
help from prerecorded words. Let us look at the two.

7.5.1 Speech Synthesis by Concatenation
Today’s best VUIs concatenate prerecorded utterances to make up synthesized
speech. This is typically referred to as speech synthesis by concatenation. Good

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.5 Text-to-Speech Technologies 485

speech-synthesis engines are able to meld the ends and beginnings of utterances
together. Also, the size of the bank of prerecorded utterances makes a large dif-
ference in the quality of speech produced: The more prerecorded utterances there
are, the better quality of speech is produced. For example, different pronuncia-
tions of the word “that” could be prerecorded so that the speech-synthesis engine
can decide the usage of the right pronunciation depending on the structure of the
sentence and the possible meaning of the word within the context of the phrase,
sentence, or paragraph.

7.5.2 Pure Speech Synthesis
The sound most echoed in people’s mind when hearing fully machine-generated
speech is similar to that of the synthesized voice of the famous physicist Stephen
Hawking. With today’s technology, this is not far from what purely machine-
generated speech sounds like. What we refer to as “pure” or “fully machine-
generated” speech synthesis in this text simply refers to speech synthesis that
does not utilize concatenation of prerecorded voice segments. This type of speech
synthesis typically costs less because there is no need for the voice talent or the
licensing fees that go along with the voice talent. However, the quality of the final
delivered product is considerably lower than speech synthesis by concatenation.
Though today’s speech-synthesis engines are getting better and better at synthe-
sizing speech in this way, they are still several years away from delivering solutions
that rival speech synthesis by concatenation.

7.5.3 Speech-Synthesis Languages and Tools
The same categories that we used in the taxonomy of tool types for voice recog-
nition apply to speech-synthesis tools. As we previously saw, JSAPI already has a
section of its APIs dedicated to speech synthesis. Let us look at SSML, the W3C
standard for writing text-to-speech applications using XML.

SSML
SSML is another piece of the puzzle in building VUIs based on voice browser
technologies. SSML gives us the ability to interface with speech-synthesis engines
provided by various vendors in a uniform way to facilitate portability. SSML is
another one of the W3C standards and is based on JSML, the JSpeech (Java Speech)
Synthesis Markup Language. SSML is a bit more comprehensive in terms of the
problems that it tries to tackle as well as being less coupled to Java as a platform
(and therefore being platform neutral).

SSML is designed with the following basic principles in mind:

1. SSML is an XML-based lnguage. Not only is this valuable in terms of providing a
standard textual parsing mechanism, but it uses the capability of XML to present
structured data to mimic the structure in written language (words, sentences,
paragraphs, etc.).

2. Text normalization is provided. Text normalization is the ability to tell the sys-
tem to pronounce 40# as “forty pounds” and not “forty number sign.” Text
normalization is implemented through the use of XML tags.

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

486 VUIs AND MOBILE APPLICATIONS

3. SSML supports pronunciation specification using phonemes. Phonemes are those
strange-looking characters used in the dictionary to show how something is
pronounced. A phoneme is a basic unit of sound in language [SSML 2002].

4. It has the ability to specify some of the qualities of speech. The SSML specification
refers to the ability of changing the pitch, timing, speaking rate, and a variety of
other features that make machine-generated pronunciations more humanlike,
such as prosody. SSML was designed with the goal of providing the facilities to
specify such qualities of speech.

5. It has the ability to integrate audio into the generated output. Many platforms have
special functionality in producing more humanlike speech. SSML provides a
hook for such functionality so that if some of the audio is produced by func-
tionality outside of SSML it can be integrated. This requirement also provides
for implementation of concatenative speech synthesis (to be discussed later in
this chapter).

6. It can apply styling in a modular manner. With Web-based GUIs, we have the
ability to apply CSS to modularize the formatting and look-and-feel. One of the
considerations in design of SSML was the ability to apply ACSS (which we will
look at in the next section) to modularize the “sound-and-feel” of the speech
being generated by the speech-synthesis system. An example may be generating
speech with a British accent for users of a given system in England as opposed
to generating speech with an American accent for users of a given system in the
United States.

Now, let us jump into the SSML syntax.

SSML Syntax
As we mentioned, SSML is an XML-based syntax. Table 7.7 outlines the SSML
tags.

Now, let us look at a sample SSML document that reads some directions to the
user in Figure 7.31.

Note that we have wrapped various fragments of text within the <sentence>
</sentence> tags. This is not necessary but may help in enabling some speech-
synthesis systems to apply the right prosody. SSML is a new standard. Although it
is not pervasively implemented among the text-to-speech vendors, more and more
vendors are moving toward offering it as a standard interface to their systems.

SSML allows us to define speech content to be played back to the user; in
a way, it is like HTML or other markup languages used for text and graphical
content. As in the case of those markup languages, we can separate the concerns
of formatting and content by creating style sheets. This is the purpose of ACSS,
the Aural Cascading Style Sheets.

Cascading Style Sheets for Aural Interfaces
The idea of cascading style sheets began in abstracting the look-and-feel of Web
pages away from their content. This helped with reducing development time as
well as maintaining consistency across many documents. In the late 1990s, the
W3C began an effort to create Aural Cascading Style Sheets to implement an

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

TA
B

LE
7
.7

.
S

S
M

L
S

yn
ta

x
Ta

gs

Ta
g

N
am

e
A

tt
ri

bu
te

s
D

efi
n

it
io

n

<
sp

ea
k>

xm
l:l

an
g,

ve
rs

io
n

,
xm

ln
s

T
h

is
is

th
e

ro
ot

at
tr

ib
u

te
of

an
y

SS
M

L
do

cu
m

en
t.

It
sp

ec
ifi

es
th

at
an

yt
h

in
g

en
cl

os
ed

w
it

h
th

e
ta

gs
is

to
be

co
n

ve
rt

ed
to

sp
ee

ch
by

th
e

sp
ee

ch
-s

yn
th

es
is

en
gi

n
e.

T
h

e
la

n
gu

ag
e

at
tr

ib
u

te
(x

m
l:n

s)
al

lo
w

s
fo

r
in

te
rn

at
io

n
al

iz
at

io
n

an
d

de
al

in
g

w
it

h
m

u
lt

ip
le

la
n

gu
ag

es
.

T
h

e
ve

rs
io

n
at

tr
ib

u
te

ex
is

ts
to

sp
ec

if
y

th
e

ve
rs

io
n

of
th

e
SS

M
L

X
M

L
Sc

h
em

a
u

se
d

fo
r

va
li

da
ti

n
g

th
e

do
cu

m
en

t.
T

h
e

xm
ln

s
at

tr
ib

u
te

po
in

ts
to

th
e

do
cu

m
en

t
sp

ec
if

yi
n

g
th

e
sc

h
em

a
sp

ec
ifi

ed
th

ro
u

gh
an

y
va

li
d

U
R

I
(e

.g
.,

h
tt

p:
//

w
w

w
.w

3.
or

g/
20

01
/1

0/
sy

n
th

es
is

).
<

pa
ra

gr
ap

h
>

xm
l:l

an
g

T
h

is
ta

g
m

im
ic

s
th

e
de

fi
n

it
io

n
of

a
pa

ra
gr

ap
h

.T
h

ou
gh

th
e

la
n

gu
ag

e
ca

n
be

sp
ec

ifi
ed

pe
r

pa
ra

gr
ap

h
an

d
se

n
te

n
ce

,i
t

is
n

ot
a

fe
at

u
re

re
qu

ir
ed

of
th

e
sp

ee
ch

-s
yn

th
es

is
pl

at
fo

rm
s

an
d,

th
er

ef
or

e,
n

ot
re

co
m

m
en

de
d

w
h

en
po

rt
ab

il
it

y
is

an
is

su
e.

<
se

n
te

n
ce

>
xm

l:l
an

g
Si

m
il

ar
to

th
e

<
pa

ra
gr

ap
h
>

ta
g,

th
is

ta
g

de
fi

n
es

th
e

bo
u

n
da

ri
es

on
te

xt
u

al
st

ru
ct

u
re

,i
n

th
is

ca
se

se
n

te
n

ce
s.

<
sa

y-
as

>
ty

pe
T

h
is

at
tr

ib
u

te
s

al
lo

w
s

u
s

to
sp

ec
if

y
a

pr
on

u
n

ci
at

io
n

fo
rm

at
by

th
e

ty
pe

at
tr

ib
u

te
.T

h
es

e
“t

yp
es

”
of

pr
on

u
n

ci
at

io
n

s
ca

n
be

li
m

it
ed

to
th

os
e

sp
ec

ifi
ed

by
SS

M
L

or
ca

n
be

cu
st

om
ty

pe
s.

F
or

po
rt

ab
il

it
y,

w
e

re
co

m
m

en
d

th
at

th
ei

r
u

se
be

li
m

it
ed

to
th

os
e

ty
pe

s
sp

ec
ifi

ed
by

th
e

SS
M

L
Sc

h
em

a.
T

h
e

fo
ll

ow
in

g
ty

pe
s

ar
e

sp
ec

ifi
ed

fo
r
<

sa
y-

as
>

by
SS

M
L

:
1.

ac
ro

ny
m

—
T

h
e

te
xt

en
cl

os
ed

by
<

sa
y-

as
>

an
d

<
/s

ay
-a

s>
is

to
be

tr
ea

te
d

as
an

ac
ro

n
ym

an
d

pr
on

ou
n

ce
d

by
it

s
fu

ll
pr

on
u

n
ci

at
io

n
.F

or
ex

am
pl

e,
if

th
e

te
xt

en
cl

os
ed

is
SS

M
L

,i
t

is
to

be
pr

on
ou

n
ce

d
as

“S
pe

ec
h

Sy
n

th
es

is
M

ar
ku

p
L

an
gu

ag
e.

”
2.

sp
el

l-
ou

t—
T

h
e

te
xt

en
cl

os
ed

by
<

sa
y-

as
>

an
d

<
/s

ay
-a

s>
ta

gs
is

to
be

pr
on

ou
n

ce
d

as
a

se
ri

es
of

le
tt

er
s.

T
h

is
ta

g
is

re
al

ly
th

e
op

po
si

te
of

th
e

ac
ro

n
ym

ta
g.

T
h

is
ta

g
is

u
se

d
if

w
e

w
an

t
th

e
ac

ro
n

ym
(o

r
ot

h
er

te
xt

)
pr

on
ou

n
ce

d
by

th
e

le
tt

er
s

th
at

m
ak

e
it

u
p.

F
or

ex
am

pl
e,

if
th

e
te

xt
en

cl
os

ed
is

SS
M

L
,i

t
is

to
be

pr
on

ou
n

ce
d

as
“S

-S
-M

-L
.”

(c
on

ti
nu

ed
)

487

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

TA
B

LE
7
.7

(c
on

ti
n

u
e

d
)

Ta
g

N
am

e
A

tt
ri

bu
te

s
D

efi
n

it
io

n

3.
nu

m
be

r:
or

di
na

l—
T

h
is

im
pl

ie
s

th
at

th
e

te
xt

en
cl

os
ed

w
it

h
in

th
e

<
sa

y-
as

>
an

d
<

/s
ay

-a
s>

ta
gs

is
a

n
u

m
be

r
an

d
is

to
be

pr
on

ou
n

ce
d

as
an

“o
rd

in
al

.”
O

rd
in

al
pr

on
u

n
ci

at
io

n
s

ar
e

pr
on

u
n

ci
at

io
n

s
su

ch
as

“fi
ft

ee
n

th
”

or
“f

or
ty

-s
ec

on
d.

”
4.

nu
m

be
r:

ca
rd

in
al

—
T

h
is

im
pl

ie
s

th
at

th
e

te
xt

en
cl

os
ed

w
it

h
in

th
e

<
sa

y-
as

>
an

d
<

/s
ay

-a
s>

ta
gs

is
to

be
pr

on
ou

n
ce

d
as

a
“c

ar
di

n
al

.”
E

xa
m

pl
es

of
ca

rd
in

al
pr

on
u

n
ci

at
io

n
s

ar
e

“t
w

en
ty

-s
ev

en
”

or
“n

in
e.

”
5.

nu
m

be
r:

di
gi

t
—

If
th

e
n

u
m

be
r

en
cl

os
ed

w
it

h
in

th
e

<
sa

y-
as

>
an

d
<

/s
ay

-a
s>

ta
gs

ar
e

to
be

pr
on

ou
n

ce
d

as
th

e
in

di
vi

du
al

di
gi

ts
th

at
m

ak
e

th
em

u
p,

u
se

th
is

ty
pe

.E
xa

m
pl

es
m

ay
be

“fi
ve

fi
ve

fi
ve

on
e

tw
o

on
e

tw
o”

if
th

e
te

xt
en

cl
os

ed
is

55
5–

12
12

.
6.

da
te

:[
sp

ec
ifi

ed
fo

rm
at

]—
P

ro
n

u
n

ci
at

io
n

of
da

te
s

m
ay

be
sp

ec
ifi

ed
in

a
va

ri
et

y
of

w
ay

s,
de

pe
n

di
n

g
on

w
h

et
h

er
th

e
da

y,
m

on
th

,y
ea

r,
or

an
y

co
m

bi
n

at
io

n
th

er
eo

fi
s

to
be

u
se

d
in

th
e

pr
on

u
n

ci
at

io
n

.T
h

e
[s

pe
ci

fi
ed

fo
rm

at
]

ca
n

be
re

pl
ac

ed
by

‘m
’f

or
m

on
th

,‘
d’

fo
r

da
y,

or
‘y

’f
or

ye
ar

.F
or

ex
am

pl
e,

if
w

e
w

an
t

to
pr

od
u

ce
th

e
pr

on
u

n
ci

at
io

n
“M

ar
ch

12
,1

97
2”

w
e

sp
ec

if
y

th
e

fo
rm

at
as

da
te

:m
dy

.A
n

y
pe

rm
u

ta
ti

on
of

th
e

th
re

e
is

an
ac

ce
pt

ab
le

da
te

fo
rm

at
.

7.
ti

m
e:

[s
pe

ci
fie

d
fo

rm
at

]—
L

ik
e

da
te

s,
w

e
m

ay
sp

ec
if

y
fo

rm
at

ti
n

g
fo

r
ti

m
e

u
si

n
g

th
e

ke
ys

‘h
’f

or
h

ou
r,

‘m
’f

or
m

in
u

te
s,

an
d

‘s
’f

or
se

co
n

ds
.H

ow
ev

er
,u

n
li

ke
da

te
,t

h
e

‘h
’m

u
st

al
w

ay
s

be
sp

ec
ifi

ed
an

d
‘m

’m
u

st
be

sp
ec

ifi
ed

if
‘s

’i
s

sp
ec

ifi
ed

.I
n

ot
h

er
w

or
ds

,t
im

e
m

u
st

be
pr

on
ou

n
ce

d
in

de
cr

ea
si

n
g

u
n

it
s

w
it

h
th

e
la

rg
er

u
n

it
s

al
w

ay
s

pr
on

ou
n

ce
d

fi
rs

t.
W

e
m

ay
,f

or
ex

am
pl

e,
h

av
e

ti
m

e:
h

m
bu

t
n

ot
ti

m
e:

m
s

n
or

ti
m

e:
m

h
.

8.
du

ra
ti

on
:[

sp
ec

ifi
ed

fo
rm

at
]—

T
h

e
sa

m
e

u
n

it
s

as
ti

m
e

sp
ec

ifi
ca

ti
on

s
ar

e
u

se
d

an
d

al
th

ou
gh

th
e

or
de

r
of

la
rg

er
to

sm
al

le
r

m
u

st
be

pr
es

er
ve

d
li

ke
ti

m
e,

it
is

n
ot

re
qu

ir
ed

to
h

av
e

th
e

la
rg

er
u

n
it

s.
F

or
ex

am
pl

e,
ti

m
e:

h
m

an
d

ti
m

e:
m

s
ar

e
bo

th
va

li
d

w
h

er
as

ti
m

e:
m

h
is

n
ot

.T
h

e
pr

on
u

n
ci

at
io

n
of

du
ra

ti
on

an
d

ti
m

e
ar

e
di

ff
er

en
t

in
th

at
du

ra
ti

on
s

ar
e

pr
on

ou
n

ce
d

w
it

h
ti

m
e

u
n

it
de

li
m

it
er

s
su

ch
as

“o
n

e
h

ou
r,

tw
en

ty
m

in
u

te
s,

an
d

th
ir

ty
se

co
n

ds
”

w
h

er
ea

s
ti

m
es

ar
e

pr
on

ou
n

ce
d

w
it

h
du

ra
ti

on
u

n
it

de
li

m
it

er
s

su
ch

as
“t

w
o

th
ir

ty
-fi

ve
fi

ft
y-

fi
ve

se
co

n
ds

pm
.”

488

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

9.
cu

rr
en

cy
—

If
th

e
te

xt
en

cl
os

ed
w

it
h

in
th

e
<

sa
y-

as
>

an
d

<
/s

ay
-a

s>
ta

gs
re

fe
rs

to
a

m
on

et
ar

y
qu

an
ti

ty
,f

or
ex

am
pl

e
$2

5.
67

,i
t

is
to

be
pr

on
ou

n
ce

d
as

su
ch

(t
w

en
ty

-fi
ve

do
ll

ar
s

an
d

si
xt

y-
se

ve
n

ce
n

ts
).

10
.

ne
t:[

Sp
ec

ifi
ed

Ty
pe

of
In

te
rn

et
A

dd
re

ss
]—

T
h

e
te

xt
en

cl
os

ed
w

it
h

in
th

e
<

sa
y-

as
>

an
d

<
/s

ay
-a

s>
ta

gs
is

to
be

pr
on

ou
n

ce
d

as
an

In
te

rn
et

ad
dr

es
s.

C
u

rr
en

tl
y

su
pp

or
t

fo
r

tw
o

ty
pe

s
ar

e
pr

ov
id

ed
([

Sp
ec

ifi
ed

Ty
pe

of
In

te
rn

et
A

dd
re

ss
])

:n
et

:e
m

ai
la

n
d

n
et

:u
ri

.
11

.
na

m
e—

T
h

is
ty

pe
ex

is
ts

st
ri

ct
ly

to
as

si
st

th
e

sp
ee

ch
-s

yn
th

es
is

en
gi

n
e

in
pu

tt
in

g
th

e
ri

gh
t

pr
on

u
n

ci
at

io
n

ru
le

s
on

pr
op

er
n

am
es

su
ch

as
n

am
es

of
co

m
pa

n
ie

s,
pe

rs
on

s,
et

c.
12

.
te

le
ph

on
e—

sp
ec

ia
lf

or
m

at
ti

n
g

m
ay

be
pr

ov
id

ed
fo

r
pr

on
ou

n
ci

n
g

ph
on

e
n

u
m

be
rs

.S
et

ti
n

g
th

e
ty

pe
at

tr
ib

u
te

to
te

le
ph

on
e

in
st

ru
ct

s
th

e
sp

ee
ch

-s
yn

th
es

is
en

gi
n

e
to

ap
pl

y
th

e
sp

ec
ia

l
fo

rm
at

ti
n

g
to

th
e

te
xt

en
cl

os
ed

w
it

h
in

th
e

<
sa

y-
as

>
<

/s
ay

-a
s>

ta
gs

.
13

.
m

ea
su

re
—

Sp
ec

ia
lf

or
m

at
ti

n
g

m
ay

be
pr

ov
id

ed
fo

r
pr

on
ou

n
ci

n
g

m
ea

su
re

m
en

ts
su

ch
as

w
ei

gh
ts

,l
en

gt
h

s,
an

d
ot

h
er

s.
A

pp
ly

in
g

th
is

ty
pe

ca
u

se
s

th
e

ac
ti

va
ti

on
of

th
os

e
sp

ec
ia

l
fo

rm
at

s.
F

or
ex

am
pl

e,
w

e
m

ay
w

an
t

“5
4

m
”

pr
on

ou
n

ce
d

as
“fi

ft
y-

fo
u

r
m

et
er

s.
”

<
ph

on
em

e>
ph

,a
lp

h
ab

et
T

h
is

el
em

en
t

pr
ov

id
es

a
w

ay
to

te
ll

th
e

sp
ee

ch
-s

yn
th

es
is

en
gi

n
e

to
pr

on
ou

n
ce

a
pa

rt
ic

u
la

r
pi

ec
e

of
te

xt
in

a
sp

ec
ifi

c
w

ay
.W

h
er

ea
s

th
e

pr
on

u
n

ci
at

io
n

is
in

cl
u

de
d

in
th

e
ph

at
tr

ib
u

te
,

th
e

te
xt

to
be

pr
on

ou
n

ce
d

is
en

cl
os

ed
w

it
h

in
th

e
<

ph
on

em
e>

<
/p

h
on

em
e>

ta
gs

,a
n

d
th

e
al

ph
ab

et
at

tr
ib

u
te

in
di

ca
te

s
w

h
at

ch
ar

ac
te

r
st

an
da

rd
is

u
se

d
to

sp
ec

if
y

th
e

ph
on

em
e.

T
h

e
In

te
rn

at
io

n
al

P
h

on
et

ic
St

an
da

rd
(I

PA
)

is
th

e
al

ph
ab

et
se

t
u

se
d

by
de

fa
u

lt
,b

u
t

w
h

at
ev

er
th

e
de

si
re

d
al

ph
ab

et
is

m
ay

be
sp

ec
ifi

ed
.B

ec
au

se
IP

A
ch

ar
ac

te
rs

ar
e

cr
yp

ti
c,

th
e

W
3C

is
w

or
ki

n
g

to
w

ar
d

co
m

in
g

u
p

w
it

h
an

ea
si

ly
u

n
de

rs
ta

n
da

bl
e

al
ph

ab
et

fo
r

re
pr

es
en

ti
n

g
th

e
pr

on
u

n
ci

at
io

n
of

ph
on

em
es

.

(c
on

ti
nu

ed
)

489

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

TA
B

LE
7
.7

(c
on

ti
n

u
e

d
)

Ta
g

N
am

e
A

tt
ri

bu
te

s
D

efi
n

it
io

n

<
su

b>
al

ia
s

T
h

e
te

xt
en

cl
os

ed
w

it
h

in
th

e
<

su
b>

<
/s

u
b>

ta
gs

co
n

ta
in

s
th

e
w

ri
tt

en
te

xt
to

be
di

sp
la

ye
d

an
d

th
e

al
ia

s
at

tr
ib

u
te

of
th

e
ta

g
co

n
ta

in
s

th
e

te
xt

fo
r

th
e

pr
on

u
n

ci
at

io
n

of
th

e
te

xt
.A

s
w

e
w

il
ls

ee
la

te
r,

it
is

cr
u

ci
al

n
ot

to
ov

er
u

se
or

m
is

u
se

th
is

ta
g

as
w

e
w

il
lb

e
ge

n
er

at
in

g
V

U
Is

ba
se

d
on

a
sp

ec
ia

li
za

ti
on

of
a

ge
n

er
ic

u
se

r
in

te
rf

ac
e.

A
s

yo
u

n
ot

ed
in

C
h

ap
te

r
6,

w
e

di
d

th
e

sa
m

e
w

it
h

gr
ap

h
ic

al
an

d
te

xt
u

al
u

se
r

in
te

rf
ac

es
.G

en
er

at
in

g
V

U
Is

fr
om

a
te

xt
u

al
or

G
U

I
th

at
h

as
al

re
ad

y
be

en
sp

ec
ia

li
ze

d
is

ty
pi

ca
ll

y
an

ar
ch

it
ec

tu
ra

lm
is

ta
ke

u
n

le
ss

th
er

e
ar

e
so

m
e

ex
tr

ao
rd

in
ar

y
ci

rc
u

m
st

an
ce

s.
<

vo
ic

e>
xm

l:l
an

g,
ge

n
de

r,
ag

e,
va

ri
an

t,
n

am
e

T
h

is
el

em
en

t
is

u
se

d
to

sp
ec

if
y

ch
an

ge
in

th
e

“s
ou

n
d-

an
d-

fe
el

”
of

th
e

sp
ee

ch
ge

n
er

at
ed

by
th

e
sp

ee
ch

-s
yn

th
es

is
en

gi
n

e.
T

h
is

ta
g

is
ve

ry
u

se
fu

li
n

de
li

ve
ri

n
g

th
e

so
u

n
d

th
at

a
gi

ve
n

u
se

r
m

ig
h

t
pr

ef
er

ba
se

d
on

h
is

or
h

er
pr

ofi
le

.
T

h
e

xm
l:l

an
g

el
em

en
t,

as
be

fo
re

,s
pe

ci
fi

es
th

e
la

n
gu

ag
e

to
be

u
se

d;
be

ve
ry

ca
re

fu
li

n
th

e
u

sa
ge

of
th

is
at

tr
ib

u
te

as
it

s
im

pl
em

en
ta

ti
on

is
op

ti
on

al
an

d
yo

u
ar

e
n

ev
er

gu
ar

an
te

ed
of

th
e

gr
an

u
la

ri
ty

of
in

te
rn

at
io

n
al

iz
at

io
n

im
pl

em
en

ta
ti

on
by

th
e

sp
ee

ch
-s

yn
th

es
is

en
gi

n
e

th
at

yo
u

ar
e

u
si

n
g.

L
et

u
s

go
th

ro
u

gh
th

e
ot

h
er

at
tr

ib
u

te
s:

1.
ge

nd
er

:T
h

e
va

lu
es

th
at

ca
n

be
as

si
gn

ed
to

th
is

at
tr

ib
u

te
ar

e
m

al
e,

fe
m

al
e,

an
d

n
eu

tr
al

.A
s

it
s

n
am

e
su

gg
es

ts
,t

h
e

ge
n

de
r

at
tr

ib
u

te
al

lo
w

s
u

s
to

sp
ec

if
y

w
h

et
h

er
th

e
ge

n
er

at
ed

sp
ee

ch
so

u
n

ds
li

ke
a

m
al

e,
so

u
n

ds
li

ke
a

fe
m

al
e,

or
is

n
eu

tr
al

.T
h

is
at

tr
ib

u
te

is
u

se
fu

lw
h

en
de

al
in

g
w

it
h

a
di

ve
rs

e
u

se
r

ba
se

as
u

se
rs

ty
pi

ca
ll

y
fe

el
m

or
e

co
m

fo
rt

ab
le

an
d

at
ea

se
co

m
m

u
n

ic
at

in
g

w
it

h
a

fe
m

al
e

vo
ic

e
w

h
er

ea
s

m
al

e
vo

ic
es

co
m

m
u

n
ic

at
e

st
er

n
n

es
s

an
d

cl
ar

it
y

in
ap

pl
ic

at
io

n
s

th
at

m
ay

su
it

su
ch

n
ee

ds
.

2.
ag

e:
L

ik
e

ge
n

de
r,

w
h

et
h

er
de

al
in

g
w

it
h

co
n

ca
te

n
at

ed
sp

ee
ch

or
ge

n
er

at
ed

sp
ee

ch
,t

h
e

pr
od

u
ce

d
vo

ic
e

ca
n

h
av

e
qu

al
it

ie
s

si
m

il
ar

to
th

at
of

a
pe

rs
on

of
a

pa
rt

ic
u

la
r

ag
e.

T
h

is
at

tr
ib

u
te

h
el

ps
sp

ec
if

y,
as

an
in

te
ge

r
n

u
m

be
r,

th
e

ag
e

of
a

h
yp

ot
h

et
ic

al
pe

rs
on

to
w

h
os

e
vo

ic
e

w
ou

ld
be

cl
os

es
t

to
th

e
pr

od
u

ce
d

sp
ee

ch
.

490

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

3.
va

ri
an

t:
If

th
er

e
ar

e
se

ve
ra

lv
ar

ia
ti

on
s

of
ea

ch
of

th
e

ot
h

er
at

tr
ib

u
te

s
(g

en
de

r,
ag

e,
et

c.
)

m
ad

e
av

ai
la

bl
e

by
th

e
sp

ee
ch

-s
yn

th
es

is
en

gi
n

e,
th

e
va

ri
an

t
at

tr
ib

u
te

al
lo

w
s

u
s

to
sp

ec
if

y
w

h
ic

h
on

e
to

u
se

.F
or

ex
am

pl
e,

if
th

er
e

ar
e

tw
o

po
ss

ib
le

va
ri

at
io

n
s

of
a

th
ir

ty
-fi

ve
-y

ea
r-

ol
d

fe
m

al
e

vo
ic

e
m

ad
e

av
ai

la
bl

e,
w

e
ca

n
fi

rs
t

se
le

ct
va

ri
an

t
1

an
d,

if
th

e
u

se
r

h
as

a
to

u
gh

ti
m

e
u

n
de

rs
ta

n
di

n
g

h
er

,s
w

it
ch

to
va

ri
an

t
2.

T
h

e
va

ri
an

t
at

tr
ib

u
te

m
u

st
be

an
in

te
ge

r.
4.

na
m

e:
M

or
e

so
ph

is
ti

ca
te

d
u

se
r

in
te

rf
ac

es
cr

ea
te

en
ti

re
pe

rs
on

as
to

em
u

la
te

re
al

h
u

m
an

be
in

gs
.T

h
e

n
am

e
at

tr
ib

u
te

pr
ov

id
es

a
h

oo
k

in
to

su
ch

pe
rs

on
as

.E
ac

h
pe

rs
on

a
ca

n
h

av
e

a
pa

rt
ic

u
la

r
ty

pe
of

pr
os

od
y,

as
w

el
la

s
ot

h
er

qu
al

it
ie

s,
as

so
ci

at
ed

w
it

h
it

s
vo

ic
e.

<
em

ph
as

is
>

le
ve

l
Ju

st
as

in
G

U
Is

,t
h

er
e

ar
e

se
gm

en
ts

of
th

e
in

fo
rm

at
io

n
co

m
m

u
n

ic
at

ed
to

th
e

u
se

r
th

at
m

ay
be

m
or

e
im

po
rt

an
t

th
an

ot
h

er
s.

In
SS

M
L

,t
h

es
e

se
ct

io
n

s
ca

n
be

in
cl

u
de

d
w

it
h

in
th

e
<

em
ph

as
is

>
<

/e
m

ph
as

is
>

ta
gs

.T
h

e
le

ve
la

tt
ri

bu
te

al
lo

w
s

u
s

to
sp

ec
if

y
h

ow
em

ph
as

iz
ed

a
se

ct
io

n
of

co
n

te
n

t
be

co
m

es
w

h
en

co
n

ve
rt

ed
to

sp
ee

ch
.T

h
e

le
ve

la
tt

ri
bu

te
ca

n
be

se
t

to
st

ro
ng

,m
od

er
at

e,
re

du
ce

d,
an

d
no

ne
.T

h
e

fi
rs

t
th

re
e

ar
e

h
an

dl
ed

by
th

e
sp

ee
ch

-s
yn

th
es

is
en

gi
n

e,
pr

ef
er

ab
ly

in
a

la
n

gu
ag

e-
de

pe
n

de
n

t
m

an
n

er
,t

o
em

ph
as

iz
e

or
de

em
ph

as
iz

e
pa

rt
ic

u
la

r
se

gm
en

ts
of

sp
ee

ch
.S

et
ti

n
g

th
e

le
ve

la
tt

ri
bu

te
to

“n
on

e”
al

lo
w

s
on

e
to

re
m

ov
e

em
ph

as
is

fr
om

a
sm

al
ls

ec
ti

on
of

te
xt

th
at

is
a

se
gm

en
t

of
a

bi
gg

er
te

xt
po

rt
io

n
th

at
is

to
be

em
ph

as
iz

ed
.I

n
ot

h
er

w
or

ds
,“

n
on

e”
w

or
ks

li
ke

n
eg

at
iv

e
lo

gi
c.

<
br

ea
k>

si
ze

,t
im

e
T

h
is

ta
g

sp
ec

ifi
es

pa
u

se
s

in
sp

ee
ch

th
at

ca
n

be
co

n
si

de
re

d
ro

u
gh

ly
eq

u
iv

al
en

t
to

ph
ys

ic
al

sp
ac

in
g

(s
pa

ce
s,

ta
bs

,c
ar

ri
ag

e
re

tu
rn

s,
et

c.
)

in
gr

ap
h

ic
al

re
tu

rn
in

te
rf

ac
es

.T
h

e
si

ze
at

tr
ib

u
te

al
lo

w
s

u
s

to
sp

ec
if

y
a

re
la

ti
ve

le
n

gt
h

(r
es

tr
ic

te
d

to
no

ne
,s

m
al

l,
m

ed
iu

m
,a

n
d

la
rg

e)
;t

h
e

ti
m

e
at

tr
ib

u
te

al
lo

w
s

u
s

to
sp

ec
if

y
an

ex
ac

t
pe

ri
od

of
ti

m
e

in
se

co
n

ds
or

m
il

li
se

co
n

ds
(s

u
ch

as
ti

m
e

=
“2

s”
or

ti
m

e
=

“4
0m

s”
).

<
pr

os
od

y>
pi

tc
h

,c
on

to
u

r,
ra

n
ge

,
ra

te
,d

u
ra

ti
on

,
vo

lu
m

e

T
h

is
el

em
en

t
ca

n
w

ra
p

ar
ou

n
d

th
e

ot
h

er
el

em
en

ts
(b

u
t

n
ot

th
e

ro
ot

el
em

en
t

of
sp

ee
ch

)
to

sp
ec

if
y

fi
n

e-
tu

n
ed

at
tr

ib
u

te
s

of
th

e
so

u
n

d-
an

d
fe

el
of

th
e

sp
ee

ch
sy

n
th

es
iz

ed
.T

h
e

at
tr

ib
u

te
s

th
at

al
lo

w
u

s
to

co
n

tr
ol

pr
os

od
y

ar
e

as
fo

ll
ow

s:

(c
on

ti
nu

ed
)

491

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

TA
B

LE
7
.7

(c
on

ti
n

u
e

d
)

Ta
g

N
am

e
A

tt
ri

bu
te

s
D

efi
n

it
io

n

1.
co

nt
ou

r:
C

on
to

u
r,

al
so

kn
ow

n
as

th
e

pi
tc

h
co

n
to

u
r,

sp
ec

ifi
es

h
ow

th
e

pi
tc

h
ch

an
ge

s
ov

er
a

pa
rt

ic
u

la
r

sp
ee

ch
se

gm
en

t.
In

a
w

ay
,i

f
pi

tc
h

is
gr

ap
h

ed
vs

.t
im

e,
co

n
to

u
r

is
th

e
fi

rs
t

de
ri

va
ti

ve
of

th
e

cu
rv

e.
C

on
to

u
r

is
sp

ec
ifi

ed
as

se
ts

of
(i

nt
er

va
l,

ta
rg

et
),

w
h

er
e

in
te

rv
al

is
sp

ec
ifi

ed
as

a
pe

rc
en

ta
ge

of
th

e
du

ra
ti

on
(b

et
w

ee
n

0
an

d
10

0%
)

an
d

ta
rg

et
is

th
e

ab
so

lu
te

or
re

la
ti

ve
va

lu
e

of
th

e
pi

tc
h

in
cr

ea
se

or
de

cr
ea

se
.

2.
pi

tc
h:

P
it

ch
m

ay
be

sp
ec

ifi
ed

in
h

er
tz

or
as

a
re

la
ti

ve
va

lu
e

to
be

as
si

gn
ed

lo
w

,m
ed

iu
m

,
hi

gh
,o

r
de

fa
ul

t.
It

m
ay

al
so

be
sp

ec
ifi

ed
as

a
pe

rc
en

ta
ge

of
th

e
ra

n
ge

ac
co

m
m

od
at

ed
by

th
e

sp
ee

ch
-s

yn
th

es
is

en
gi

n
e.

3.
ra

ng
e:

T
h

e
ra

n
ge

of
al

lo
w

ab
le

pi
tc

h
es

ca
n

be
sp

ec
ifi

ed
in

h
er

tz
or

in
a

re
la

ti
ve

m
an

n
er

u
si

n
g

m
ed

iu
m

,h
ig

h,
lo

w
,o

r
de

fa
ul

t.
T

h
is

ra
n

ge
is

su
bs

eq
u

en
tl

y
u

se
d

by
ot

h
er

re
la

ti
ve

m
ea

su
re

m
en

ts
fo

r
th

e
ot

h
er

at
tr

ib
u

te
s

re
fe

rr
in

g
to

th
e

pi
tc

h
.

3.
ra

te
:T

h
is

at
tr

ib
u

te
de

te
rm

in
es

h
ow

m
an

y
w

or
ds

pe
r

m
in

u
te

ar
e

pr
on

ou
n

ce
d

by
th

e
sp

ee
ch

-s
yn

th
es

is
en

gi
n

e.
To

sp
ec

if
y

a
re

la
ti

ve
ra

te
,s

lo
w

,f
as

t,
m

ed
iu

m
,a

n
d

de
fa

ul
t

ca
n

be
u

se
d.

5.
du

ra
ti

on
:T

h
e

du
ra

ti
on

,i
n

se
co

n
ds

or
m

il
li

se
co

n
ds

,i
s

h
ow

lo
n

g
th

e
te

xt
en

cl
os

ed
w

it
h

in
th

e
<

pr
os

od
y>

<
/p

ro
so

dy
>

ta
gs

ta
ke

s
to

pr
on

ou
n

ce
.

6.
vo

lu
m

e:
T

h
e

vo
lu

m
e

of
th

e
sp

ee
ch

to
be

ge
n

er
at

ed
w

it
h

in
th

e
ta

gs
ca

n
be

sp
ec

ifi
ed

in
a

re
la

ti
ve

m
an

n
er

(d
ef

au
lt

,s
il

en
t,

so
ft

,m
ed

iu
m

,a
n

d
lo

ud
)

or
as

a
fl

oa
ti

n
g-

po
in

t
n

u
m

be
r

fr
om

0.
00

to
10

0.
00

.
<

au
di

o>
sr

c
T

h
is

el
em

en
t

is
pr

ov
id

ed
to

al
lo

w
u

s
to

cr
ea

te
sp

ee
ch

ou
tp

u
t

by
co

n
ca

te
n

at
io

n
of

pr
er

ec
or

de
d

au
di

o.
T

h
e

sr
c

at
tr

ib
u

te
is

u
se

d
to

po
in

t
to

th
e

so
u

rc
e

of
au

di
o

(e
.g

.,
sr

c=
“h

el
lo

w
or

ld
.w

av
”)

;t
h

e
co

n
te

n
t

w
it

h
in

th
e

<
au

di
o>

<
/a

u
di

o>
ta

gs
is

re
pl

ac
ed

by
th

e
co

n
te

n
ts

of
th

e
au

di
o

fi
le

w
h

en
sp

ee
ch

is
sy

n
th

es
iz

ed
.

<
m

ar
k>

n
am

e
T

h
is

ta
g

is
u

se
d

to
cr

ea
te

m
ar

ke
rs

w
it

h
in

th
e

SS
M

L
do

cu
m

en
t.

T
h

es
e

m
ar

ke
rs

ca
n

be
u

se
d

by
th

e
sp

ee
ch

-s
yn

th
es

is
en

gi
n

e
or

by
th

e
ap

pl
ic

at
io

n
.F

or
ex

am
pl

e,
if

w
e

w
an

t
a

pa
rt

ic
u

la
r

se
ct

io
n

re
pe

at
ed

,a
m

ar
ke

r
ca

n
be

u
se

d
to

m
ar

k
se

gm
en

ts
w

h
er

e
th

e
re

pe
ti

ti
on

se
qu

en
ce

m
ay

be
gi

n
.

492

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.5 Text-to-Speech Technologies 493

<?xml version="1.0" encoding="ISO-8859-1"?>

<speak version="1.0" xml:lang="en-US" xmlns="http://www.w3.

org/2001/10/synthesis">

<paragraph>

<voice gender="female" age="35">

<say-as type="name"> Cienecs, Inc. </say-as>

<sentence>is located at </sentence>

<say-as type="address">1906 Pine Street, Huntington

Beach, California 92648</say-as>

<sentence>To arrive at </sentence>

<say-as type="name"> Cienecs </say-as>

<sentence>from Huntington Beach, please follow these

directions:</sentence>

<!---The actual directions would be here -->

<sentence>The duration of your trip will be

approximately</sentence>

<say-as type="hms">2:25:34</say-as>

<sentence>If you have any questions regarding the

services offered by</sentence>

<say-as type="name">Cinenecs, Inc.</say-as>

<sentence>please e-mail us at</sentence>

<say-as type="net:email">rbfar@cienecs.com</say-as>

</voice>

</paragraph>

</speak>

FIGURE 7.31. SSML Document for Pronouncing Simple Directions.

analogous technology for speech-based content. However, as W3C moved toward
standards that treated multiple user interfaces and channels, it became obvious
that ACSS needed to be integrated into a bigger picture of styling that treated both
aural and visual contents. Therefore, ACSS has been integrated into the Cascading
Style Sheets 2 (CSS 2).

Before we go any further, it should be noted that because SSML is an XML-based
technology, we can use XSLs for styling. The trade-off between using XSLs for for-
matting of aural content instead of CSS 2 is that XSL implementation is more
complex. Most voice browser vendors elect to implement CSS and not XSL. If
XSLs are to be used for formatting, the application developer must build the
proper layering mechanism using some XSL transformation engine such as Xalan.
Just like GUI browsers, VUI browsers typically do not implement XSLs as a for-
matting mechanism for the client side (though in the case of aural user interfaces,
the client side typically means applications that run on servers). So, if we de-
cided to use XSLs, we would need to feed a finalized SSML to the voice browser.
In other words, whereas most voice browsers will probably know how to bind
CSS 2 and SSML documents together to produce a resulting SSML document, they
do not know how to use XSL to do this. Of course, to build a complex multimodal
application, we should avoid the antipattern of trying to use the same tool for

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

494 VUIs AND MOBILE APPLICATIONS

all problems and use both CSS and XSL to produce the final document in an
appropriate manner. We will discuss this further in Chapter 8.

CSS syntax is simple. Things called “Properties” are specified and can be ap-
plied to elements within the document to which the CSS is being applied. This is
accomplished through things called Rules. Rules are specified as follows:

PropertyName {Value, Initial, Applies to, Inherited,

Percentages, Media}

PropertyName is a selector. Selectors are the method by which the browser knows
what elements to apply the rule to. Selectors can be specific types or expressed
as an expression that defines a regular-expression-type syntax for finding what
elements to apply the rule to. The other parameters are used to specify a value for
the various attributes of a selected element.

We will not go through the syntax of CSS 2 or ACSS here as it is readily available
on the W3C site and because there are no complex concepts introduced that we
have not already covered. However, it is good to look at the taxonomy that the
ACSS specify. Namely, the selectors can be one of the following:

1. Volume: This allows us to adjust the volume of aural output from the system
to the user.

2. Speak: This is the text to be converted to voice through Text-To-Speech (TTS).
3. Pause-Before: This allows us to pause before rendering an aural element.
4. Pause-After: This allows us to pause after rendering an aural element.
5. Pause: This allows us to pause a specified amount of time.
6. Cue-Before: This allows us to play back an auditory icon before an aural

element.
7. Cue-After: This allows us to play back an auditory icon after an aural element.
8. Play-During: This allows us to play background audio while an element is

playing.
9. Speech-Rate: This element exists to specify how many words per minute are

pronounced.
10. Voice-Family: Think of this attribute as your “aural font.” This attribute is only

applicable if multiple voices are provided by the underlying voice platform
(such as male, female, young, old, etc.).

11. Pitch: This allows us to specify the average pitch of the aural element. This
is applicable when dealing with pure machine-generated speech synthesis or
filtered concatenated synthesis.

12. Pitch-Range: As we mentioned when discussing the qualities of speech, human
speech has an upper bound and a lower bound frequency for speech. Pitch-
Range is used to specify these boundaries.

13. Stress: This allows us to stress different aural elements (or words if TTS is
used) while outputting voice to the user.

14. Richness: This allows us to specify how “rich” the voice is. This is not the
volume of the voice. Rather, it depends on the number of frequencies projected
by the voice (thereby called richness).

15. Speak-Punctuation: This allows us to specify whether a punctuation mark is
pronounced by its name (such as the “;”, which is pronounced semicolon)

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

7.5 Text-to-Speech Technologies 495

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">

<body>

<par>

<ref src="GetAddress.html" begin="0s" />

<ref src="address.ssml" begin="1s"/>

</par>

</body>

</smil>

FIGURE 7.32. SMIL Document Using the SSML Document in Figure 7.31.

or whether it is used to determine accents of other words throughout the
playback.

16. Speak-Numeral: This allows us to specify the pronunciation of numbers.

CSS 2 Aural Style Sheets are not very pervasive among the voice browsers; however,
there is some current effort to provide for CSS 2 Aural Style Sheets (or equivalent
styling technologies for VUI markup languages) in voice browsers.

Interoperability with SMIL and CCML
You may have already wondered how one integrates the content coming from a
text-to-speech synthesis engine with other content and input from the user. One
of the tools in integrating the various types of markup content offered by W3C is
SMIL. We will discuss SMIL in detail in Chapter 8, but for now let us introduce
a quick example of what a SMIL document may look like. The document in Fig-
ure 7.32 provides us with driving directions.

We are not going to discuss the SMIL syntax at this point, but it should be clear
that integrating an SSML document into an SMIL document is fairly simple.

When it comes to integration with CCML, SSML should be used within VXML.
So, we integrate SSML into CCML using the SSML document as a part of a VXML
document whose dialogue browser can communicate with our CCML container.

7.5.4 Voice Portlets
If you recall, we discussed the idea of user interface components in Chapter 5.
Portlets are simply independent user interface components that can be used to
create portals. Portals have been a concept promulgated by the Internet and Web
sites such as Yahoo! and others that provide a one-stop shop for information. As
the Internet evolved, these Web sites began allowing users to customize their user
interface to access the site through putting together components that provided
independent pieces of information. These components became popular and are
now referred to as portlets. As you may imagine, this concept is one that was
conceived within the confines of GUIs.

Nonetheless, we can apply the same concepts to VUIs. A voice portlet is simply
an independent dialogue, encapsulating a set of voice interactions, that can be put

P1: KIC/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c07 CB752-B’Far-v3 May 5, 2005 10:54

496 VUIs AND MOBILE APPLICATIONS

together with other voice portlets to create a voice portal. The key in designing
and implementing voice portlets is the same as for their GUI counterparts:

1. A voice portlet must be designed to avoid dependencies on voice interactions
not encapsulated in its implementation.

2. A voice portlet must be designed to implicitly create dependencies on it by other
voice portlets or any voice interaction outside of the voice portlet.

3. A voice portlet must be designed to allow for easy integration with other portlets
to produce a voice portal.

The first thing we need for creating voice portlets is a platform-neutral framework
tool such as JSAPI or VXML. Also, because portlets have traditionally been defined
as components that are made using markup languages, we narrow our choice down
to VXML.

We do not recommend that as a developer you develop your own voice por-
tal framework. Most major vendors of voice recognition and speech-synthesis
products provide a framework to build basic portal functionality. For example,
Nuance“s product is Voyager. Voyager provides a framework for building portal
modules such as news, weather, etc. Voyager and its competitive products are
shipped with a prebuilt set of voice portlets that provide some basic functionality
(such as driving directions).

7.6 SUMMARY

Before moving on to the next chapter where we learn how to mix modes, channels,
and interfaces to build dynamic mobile applications, let us review what we learned
in this chapter and see how we can apply it to build real mobile applications.

We started the chapter by learning about the basics of VUIs, the core technolo-
gies required to build a VUI, and the taxonomy of the tools available to build VUIs.
Next, we looked at JSAPI and VXML, respectively a Java API and an XML applica-
tion for creating VUIs, as examples of the existing tools. We also saw that most of
today’s VUIs are primarily designed for telephony systems and, therefore, looked
at CCML and JTAPI as two methods of building VUI application that involve call
control. We then saw how we could use UML to model voice applications.

Later in the chapter we took a step back and looked at some principles that
we should apply in building good VUIs. We recommend that the reader study
designing VUIs in more detail if they are to be used for a mobile application. Our
attempt here was to take a quick survey of the technologies and tools used and
to learn how to build a simple VUI. The best mobile applications are typically
mutichannel and multimodal, allowing the users to access the system through any
channel desired and in any chosen media format. VUIs are only one piece of the
puzzle.

Now that we have learned about mobile VUIs and GUIs, let us move on to
discuss mobile multichannel and multimodal user interfaces.

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

CHAPTER 8

Multichannel and
Multimodal User Interfaces

Seek first God’s Kingdom, that is, become like the lilies and the birds, become
perfectly silent. Then shall the rest be added to you.

Søren Kierkegaard

8.1 INTRODUCTION

We have thus far discussed user interfaces in some detail. We have seen that,
depending on the function of the mobile application, we may want to interact
with the user through audio, a traditional GUI, or a combination thereof. We have
also seen that, because of the wide variety of capabilities among mobile devices
and the proliferation of the platforms, there are a great number of user interfaces
that we may have to implement for a given application. Although we have looked
at mobile GUIs and then VUIs individually, we have not looked at the discipline
of building applications that may use more than one channel of communication
with the network or interact with the user through more than one mode of their
user interface. This is what we will be discussing in this chapter.

First, let us define what multichannel and multimodal mean for these two terms
have been incorrectly used widely in the literature on mobile computing. To start,
remember that multimodal and multichannel are not the same thing. Multichannel
may have two different meanings. First, it can be used to imply a user interface
that establishes more than one communication channel to the user. For example,
a user interface may present an audio and a video channel to the user. It can also be
used to refer to the number of different types of channels that a networked mobile

497

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

498 MULTICHANNEL AND MULTIMODAL USER INTERFACES

application uses to reach other nodes on the network: If there is more than one
channel—for example, a PSTN channel and a TCP/IP channel—the application is
a multichannel application.

Multimodality refers to the number of ways a user interface for an application
may be presented. Hence, an application that only has a GUI but makes this GUI
available to Palm devices as well as Windows-based desktops is a multimodal
application. Multimodality is a superset of the first definition of multichannel we
discussed (where multichannel refers to the number of channels of communication
between the computing apparatus and the user).

Within the context of this text, we will use the term “multichannel” to refer to
the number of channels established between a networked mobile application and
the other participants in the network. We will use the term “multimodal” to refer
to applications with user interfaces that have multiple methods of presenting the
output to the user and receiving input from the user.

Next, we need to define what “modalities” or “modes” are in and of themselves.
Obviously, there are many ways to define them, but we will choose the defini-
tion used by UTMS [UTMS P1104 2002], which defines five main modes based
on the human senses (audio, vision, touch, smell, and taste). To date, the three
major modes that are important in communicating with computing devices are
audio, vision, and touch. Within the context of this text, we will define modalities
or modes to be the unique variations of these three communication methods as
implemented by the computing system. For example, a monitor provides a visual
modality whereas a three-dimensional hologram provides a different visual modal-
ity. Likewise, DTMF input to a phone provides one form of audio-based modality
whereas voice recognition offers another modality.

It is equally as important to distinguish between multimedia and multimodal.
Multimedia refers to the content presented to a user; it is purely a term applicable
to the output channel of the user interface.

Our focus in this chapter will be to first see the problem set associated with
building multimodal and multichannel applications and then move on to some
techniques and tools that help us deliver solutions to these problems. In the pro-
cess, we also hope that the examples will show the reader why we want to introduce
multimodality and multichannel properties to mobile applications. We will dis-
cuss multimodal architectures, tools for multimodal user interface development,
the relevance of multimodality to mobile application development, and how we
can use UML to help us develop multimodal applications.

Before we delve into the design concerns of multimodal and multichannel ap-
plications, let us look at the mobile user’s “user experience.” Improving the user
experience is largely the intent of multimodality.

8.1.1 Multimodality, the User Experience, and Usage Context
Why do we need multimodal applications? The answer is simple: to make the
application more convenient to use given the condition of the mobile user and the
dimensions of mobility. By default, all human communication behavior is multi-
modal; people are known to gesture even during telephone conversations, despite
the fact that they know that the other interlocutor cannot see these gestures [UTMS

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.1 Introduction 499

P1104 2002]. Obviously, one of our goals in building any type of user interface,
not just mobile ones, is to get as close to the natural state of human-to-human com-
munication for human-to-computer interactions. Such considerations are what
form the user experience.

But what are the critical factors that affect the user experience of the mobile
user?

The answer to this question brings us to fields that are orthogonal to mobile
computing; nevertheless, they play an important role in building well-designed
and well-implemented mobile applications. In addition to the mobile condition of
the user and the dimensions of mobility we have discussed repeatedly in this text,
contextual and environmental factors are two factors that spur the use of multiple
types of channels in communicating with the user, thereby making multimodal
development that much more important.

1. Context-Aware Computing: We have talked about the mobile condition of the
user, which describes those added dimensions that affect the user’s state of being
while interacting with the mobile application. However, there also the context
in which the user is using any computing application, be it mobile or not. This
context adds meaning to when, where, and how the user interacts with the com-
puting application and gives a different meaning to the individual interactions.
Much of the context is defined by the domain: What is the problem that the
application is trying to solve (commerce, navigation, game, etc.)? Users typi-
cally think of context-aware applications as “smarter” (if they are well designed).
What this translates to is a better usage experience by the user.

2. Environmental Factors: We know that our target users are mobile. We also un-
derstand that the dimensions of mobility distinguish the design and implemen-
tation of mobile applications from their stationary counterparts. Environmental
conditions can further complicate the problem. For example, an application that
is to be used in a rugged environment with low visibility may have additional
requirements when it comes to the user interface.

To evaluate the user’s experience with a mobile application, we suggest utilizing
techniques that analyze the user’s response iteratively throughout the develop-
ment process. Consolvo and Walker outline such a technique in their Experience
Sampling Method (ESM), which is borrowed from the field of psychology alerts
[Consolvo and Walker 2003]. Essentially, participants fill out several brief ques-
tionnaires every day by responding to a questionnaire. In their study, Consolvo and
Walker define a technique by which to acquire information about the experience
of the mobile user instead of defining what and how to acquire from the user. In
other words, they define a “metatechnique” for gathering information from the
users. This is very valuable because it can be applied to any mobile application
regardless of the context and the environment. Other variables such as the domain
of the application, the context of its usage, and the environment of its usage can
then be used to further refine the information-gathering process and to define the
actual questions that the users are asked.

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

500 MULTICHANNEL AND MULTIMODAL USER INTERFACES

To apply this technique to mobile applications, Consolvo and Walker introduce
the concepts of alerting, delivering, and capturing. Delivery and capturing refer to
how the questionnaire is presented to the user and how the answers are collected;
alerting provides a method for seeing user responses to what we have referred
to as an active interaction in this text. Consolvo and Walker use PDAs to collect
their data from the user in their study. Because the user is mobile, he or she uses
the PDA to answer the questionnaire whether prompted by an alert or otherwise.
The great advantage that this technique offers, for mobile applications, is that the
user’s experience can be captured at the moment when he or she is mobile and
interacting with the mobile application.

So, how does all of this help us? To build good mobile applications, we need to
build as good of a user interface as we possibly can. Remember, once again, the
condition of the mobile user (the lack of focus, etc.). However, simply building
a multimodal interface does not mean that we are building a good interface. In
fact, introducing multimodality can decrease the efficiency and worsen the usage
experience of an application, particularly if not done prudently. To know how and
when to use multimodality (for example, which interactions are better presented
in audio than visually), we need to understand more than the domain. We need
to understand the context in which the mobile application is used by a mobile
user and the various environments in which it may be used. ESM as specified
by Consolvo and Walker give us a scientifically valid way of collecting data that
leads to the right decisions. ESM is an ecologically valid user study technique that
provides the opportunity for collecting quantitative and qualitative data [Consolvo
and Walker]. (Ecologically valid means that the technique is verified to be valid in
the environment in which it is being used.) In this way, we can collect information
from the user, while the user is mobile, on whether we are effectively using a
multimodal user interface to interact with him or her.

There continue to be more techniques that help in defining discrete methods of
quantifying user’s experience and thereby optimizing that experience, especially in
mobile computing. What we have mentioned here is simply an example. Whereas
there are many ways to improve the user’s experience with multimodality, it is
equally as important to know when not to use a particular modality. For example,
Dahl [Dahl 2003] identifies privacy, fear of disturbing others, costs, and accuracy as
some of the hurdles in using speech for multimodal applications. So, for example,
if the user is to enter a password into the system (privacy) we do not want him
or her to have to say this password in an environment where the password may
be heard. Conversely, voice may be used as a voiceprint to identify the user. So
when it comes to mutimodality, usability becomes a twofold study: First, we have
to see the usability aspects of every individual modality being used in a set of
interactions and then we have to look at the interplay of these modalities as
one contiguous stream of information being exchanged between the user and the
system.

Our ability as application developers to deliver a very friendly user interface to
the end user is constricted by the limitations of our tools for development and the
underlying infrastructure for which we develop our mobile application. So, next
we will look at this infrastructure.

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.1 Introduction 501

8.1.2 Multimodality, Multichannel Communication with the
Network, and Network Infrastructures
Once we get past deciding how and when to use multimodality to build our
application (at least the first phase of it as this should ideally be an iterative
process), we need to implement it! This is where we start hitting some roadblocks.
As we have seen, most mobile devices are resource-starved. This means that there is
typically some bottleneck in network communication, CPU, permanent storage,
memory, or some other capability of the device. Implementing multimodality-
related features, not unlike any other feature that we may wish to build into the
mobile application, requires CPU, storage space, memory, and other resources. So,
multimodality is not always desirable or possible based on the amount of resources
on the device. For example, communicating with the user with an audio and a
visual channel may make the application exceed the amount of memory available
on the device or drain the power too quickly.

Once we get past the device, if it is capable of rendering a multimodal user
interface that we desire for our particular application, we need to see whether
the underlying network supports all the communication channels we need for
the various modes. Fortunately, here, we typically only have to worry about three
different types of channels: data, audio, and video. Unfortunately, there are vari-
ants of each channel as standardization has not limited them to a manageable
number.

For data, the world is a bit clearer: TCP/IP is dominant. But TCP/IP’s dominance
is primarily because of its dominance in wired networks not because it is specially
well suited for wireless networks. With mobile IP (IPv6), which we will look at later
in this text, we find a more suitable data channel for wirelessly connected mobile
devices. PDAs have traditionally been limited to a data channel. Cell phones,
however, have most recently offered data through WAP along with the mainstay
of providing voice access.

With GSM and any cellular system prior to GSM, there is only one channel
to the mobile device. This channel may be used to provide voice or data, but
not both at the same time. In this sense, we can write a multimodal application
for these networks that provides access to one channel at a time but not both
simultaneously. There is no provisions for video as the limited bandwidth precludes
having a meaningful video feed. Moreover, the switchover between voice and data
is typically very clunky because the handshake between the network and the device
to establish a voice or a data connection takes a finite amount of time, making it
difficult to produce a seamless application.

General Packet Radio Service (GPRS) is the first type of network that enables
multiple channels to exist simultaneously. The two predominant network tech-
nologies are TDMA and CDMA. Currently, on the CDMA side, the BREW develop-
ment platform provides an integrated, but closed, programming environment for
third-party developers. BREW offers the infrastructure and bandwidth for multi-
ple channels. Several companies have already begun to implement VoIP on top of
the TCP/IP connection provided in BREW. VoIP allows us to use the same type of
channel, namely an IP-based channel, to transmit both voice and data. CDMA2000
and WCDMA will provide enough bandwidth to make it possible to address the

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

502 MULTICHANNEL AND MULTIMODAL USER INTERFACES

problem of streaming video over the long-range wireless connection, but these
networks have not yet been deployed in any significant capacity.

Furthermore, WLANs (wireless LANs) such as WIFI (wireless fidelity, further
described in later chapters) and Bluetooth are becoming more and more pervasive,
thereby offering high-bandwidth access to the network through IP-based technolo-
gies. Although it will be a long time until long-range wireless technologies will
offer comparable bandwidth to WLANs, WLANs can be used today as a method
of connectivity that provides enough bandwidth for not only voice and data but
also for real-time video streaming.

Let us not forget about the device. More and more, PDAs and phones are con-
verging into one device. A good example is the Handspring Treo. With a telephony
channel and a data channel available, the only barrier to writing multimodal ap-
plications that offer voice and data access simultaneously remains the underlying
network and a mobile device operating system that can handle these multiple
channels.

In the very near future, perhaps by the time you are reading this text, most
mobile platforms and networks will offer data and voice channels that may be
accessed simultaneously. To author applications that have no limitations on the
user interface you can use and the kind of data that can be presented or collected
from the user, improvements must be made in QOS and bandwidths of the long-
range wireless networks. Additionally, devices will need to become more powerful.

In this chapter we will disregard such infrastructure limitations that apply to
the process of developing a mobile application, but keep in mind that what you
can do is limited by the infrastructure on top of which you are authoring your
application. We will address most concerns at a high level so that you can take
these notions and concepts and apply them to whatever infrastructure is available
at the time of developing your application. One of the most important taxonomies
that allow us to organize ideas about multimodality are the types of multimodal
content and interactions. This is what we will look at next.

8.1.3 Types of Multimodality
We discussed taxonomy of user interfaces, user interface components, and mobile
application development concerns in Chapter 5. We then defined multimodality
and looked at developing graphical and aural user interfaces. Now, let us further
define some abstractions and taxonomies that help us in handling the problem of
multimodality.

As we defined in Chapter 5, user interfaces establish channels of communica-
tion to the user. There are input and output channels depending on whether the
channel can present information to the user, obtain information from the user, or
do both. Multimodality, then, is the use of two or more channels. What we define is
as Wahlster [Wahlster 2003] defines the notion of symmetric and asymmetric mul-
timodality. Symmetric multimodality means that all input modes (speech, gesture,
facial expression, etc.) are also available for output, and vice versa; a dialogue
system with symmetric multimodality must understand and represent not only
the user’s multimodal input but also its own multimodal output. Furthermore,
we borrow from our discussion of natural language, mixed-initiative, and directed

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.1 Introduction 503

dialogue in VUI development and extend it to development of multimodal appli-
cations. Multimodal user interfaces are a superset of VUIs; therefore, they may be
able to communicate with the user in any of these modes (see Chapters 5 and 7 for
an in-depth discussion of natural language, mixed-mode, and directed-dialogue
interactions with the user).

The goal of most user interface research efforts today is to move user inter-
faces toward a more natural and symmetric multimodal environment. However,
the limited capabilities of mobile devices, limitations of the existing wireless net-
works, and other factors discussed in this text make it very difficult if not impos-
sible to build natural and symmetric multimodal user interfaces. It is even very
difficult to build just a symmetric multimodal (directed-dialogue interactions)
or a natural asymmetric interface. Building symmetric multimodality is difficult
because most user interface channel types have been designed to do either in-
put or output but not both (voice being an exception). For example, whereas
the monitor is used to display visual information, the keyboard and the mouse
are used to enter information into the system. This comprises an asymmetric
channel.

A touch-screen comprises a symmetric channel. Obviously, at some point in
the internal implementation of the interface channel, be it hardware or software,
things are not symmetric: The mechanism used to light up the pixels on the screen
is different than the mechanism that collects the user’s touch on the screen. Also,
we could say that touch-screens are not symmetric because the tactile sense is
also used (in addition to the visual output and the need for visual inspection of
the screen to enter input). However, we are only concerned with symmetry at the
layer where the user interacts with the system. In this case, this is the display. And,
hopefully, this is also shown as a symmetrical software interface (API, etc.) to the
user interface channel.

We can also recognize the type of multimodality applicable by recognizing the
type of input. The input side of the equation is typically much more complex in
any interface system, particularly a multimodal system, whereas the variables in
producing the proper multimodal output are more well known and more easily
controllable. So, the complexity of a multimodal user interface depends largely
on the number and type of input channels. Niklfeld, Finan, and Pucher rec-
ognize the following by leveraging work from the W3C [Niklfeld, Finan, and
Pucher]:

1. Sequential multimodal input is the simplest type, where at each step of the
interaction, either one or the other input modality is active, but never more
than one simultaneously.

2. Uncoordinated, simultaneous multimodal input allows concurrent activation of
more than one modality. However, should the user provide input on more
than one modality, this information is not integrated but will be processed in
isolation, in random order.

3. Coordinated, simultaneous multimodal input fully exploits multimodality, provid-
ing for the integration of complementary input signals from different modalities
into a joint event, based on timestamping.

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

504 MULTICHANNEL AND MULTIMODAL USER INTERFACES

Most of what is available today supports only the first type of multimodality out-
lined here, namely sequential multimodality. Most mobile devices (PDAs, WAP
phones, etc.) run simple operating systems that are single threaded (or single
process) and are only able to present one mode at a time to the user. Once the de-
vices, operating systems, and networks support, respectively, modalities, multiple
processes, and channels of communication, we need a tool to write applications
that allow us to specify the coordination (temporal, spatial, etc.) of the various
modalities. We will be discussing SMIL later in this chapter as such a tool.

Another rather obvious method by which we can create a type of system for
multimodality is to recognize the various groupings of the individual modalities
that make up a particular implementation of a multimodal interface. For exam-
ple, we can say that voice and text combine to make one modality or that voice
in a GUI can combine to make another modality (in fact, this is how W3C’s
XHTML + Voice (X + V) standard defines multimodality). This way of typing
multimodality is obvious and somewhat insignificant as new types of multimodal-
ity surface everyday owing to continuing advances and innovations in creating
new devices and dependent user-interface types, which in turn give rise to new
modalities.

Oviatt [Oviatt, Jacko, and Sears 2002] provides us with additional taxonomy
of input modes by distinguishing active from passive input modes. Active input
modes are ones that are deployed by the user intentionally as an explicit command
to the computer system (e.g., speech); passive input modes refer to naturally
occurring user behavior or actions that are recognized by a computer (e.g., facial
expressions and manual gestures).

The final taxonomy of multimodality may be based on the type of interactions
between the user and the user interface. Bernsen [Bernsen 2002] introduces a tax-
onomy of interaction types for multimodal user interfaces based on the character-
istics of interactions through individual modalities and a collection of modalities.
This taxonomy is multidimensional. First, he defines atomic and composite modal-
ities. As the names imply, atomic modalities are those modalities that cannot be
decomposed into a combination of other modalities without losing their mean-
ing. Composite modalities can be defined completely by the nature of the atomic
modalities that make them up. The other dimensions are linguistic/nonlinguistic,
analog/nonanalog, arbitrary/nonarbitrary, and static/dynamic. Linguistic represen-
tations are based on existing syntactic–semantic–pragmatic systems of meaning;
linguistic representations such as speech and text can somehow represent any-
thing, and one might therefore wonder why we need any other kind of modality
for representing information [Bernsen 2002]. Basically, Bernsen is referring to the
use of natural language versus mixed-initiative versus directed-dialogue forms of
communicating with the system. It is obvious that using natural language is the
ideal solution, but because of technology limitations, we have to use other forms,
some of which may fall within the nonlinguistic category. The distinction between
nonarbitrary and arbitrary representations marks the difference between repre-
sentations that, to perform the representational function, rely on already existing
systems of meaning and representations that do not [Bernsen 2002]. Clearly, the
user interface functions better when it is built on nonarbitrary representations, at

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.1 Introduction 505

least as defined by a typical user. For example, if the typical user expects to both
hear and see a confirmation message at the end of some financial transaction with
the user interface, and this is how we design our user interface, then we are abid-
ing by nonarbitrary representation. Analog representations are also often referred
to as iconic representations. Although all of this may seem overly theoretical, it
provides us with a general framework for thinking about the different types of
things that make up multimodal interactions with the user interface.

8.1.4 Usability-Centered Usage of Multimodality
As with any technology, engineering technique, algorithm, methodology, architec-
ture, or any tool in our toolsmith bag of software engineering, it is important that
we do not use multimodality for the sake of using multimodality or for the sake
of making a “cool” application. The point of building multimodal user interfaces
is to improve the usability of an application.

However, multimodal user interfaces are a relatively new technology. Under-
standing usability issues is something that comes about after years of maturity
and deployment experience for a particular technology. Because of this it is neither
possible nor in the scope of this text to outline all possible uses of multimodality.
In this section, we will simply outline the following examples of good uses for
multimodality:

1. Most of the readers of this text should be familiar with usage of DTMF to
disambiguate unrecognizable speech input. Multimodality can serve as a gen-
eral disambiguation mechanism for those systems whose primary interface is
through voice but that also allow for other types of data entry. A voice recog-
nition system augmented with DTMF is an example of this. Another example
could be a VUI accessed through a cell phone that allows for disambiguation
through a text-based user interface (WAP, J2ME, etc.). In a study that includes
surveys of the users’ various responses to multimodality as the disambiguation
mechanism for a VUI, Oviatt [Oviatt 2002] shows that this strategy can be quite
effective. Furthermore, this same study generalizes more to say that multimodal
architectures can stabilize error-prone recognition technologies, such as speech
input, to yield substantial improvements in robustness. In other words, not only
can this technique be specifically used in the case of VUIs, but we can use multi-
modality as a general way of helping the user and the system lower the number
of mistakes in the communication.

2. Not only does multimodality offer a set of user interface–based solutions to the
problems introduced by the dimensions of mobility and the mobile condition of
the user but it also enables us to build user interfaces that are inherently more
adaptive to a wider audience, members of which have varying expectations
and preferences when dealing with computing systems. A flexible multimodal
interface offers users the freedom to use a combination of modalities, or to
switch to a better-suited modality, depending on the specifics of their abilities
and preferences, the task at hand, or the usage conditions [Oviatt 2000].

3. Multimodal user interfaces are extremely useful when dealing with disabled,
novice, or young users who either are unable to or do not have the knowledge

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

506 MULTICHANNEL AND MULTIMODAL USER INTERFACES

to operate a GUI. Multimodality is more natural to humans; therefore, they
present a way of communicating with a human that reduces the possibility of
input error.

4. Simultaneous multimodality (to be defined later) provides a higher bandwidth
from the user to the computing system: There are more channels to input
information into the system so we can do it faster. In some cases, we can also use
simultaneous multimodality for output to the user, though there are limitations
imposed by the human brain’s ability to process multiple inputs. Cheyer and
Julia, for example, show us how to use multimodality in combining aural and
visual input and output for using maps [Cheyer and Julia 1995].

Multimodality lends itself particularly well to providing avenues to create solutions
that deal with the mobile condition of the user. This is why it is particularly
important to us. In conjunction with the aforementioned taxonomy, Pinhanez and
colleagues recognize six different dimensions in which a visible display can be
measured; [Pinhanez et al. 2003]:

1. Maximum Width: We can think of this as the maximum amount of information
we can put into one temporal frame. For example, in the aural world, this could
be words per minute.

2. Portability: This aspect measures the convenience of use of user interface (e.g.,
the weight of the device based on its screen size, keyboard, etc.).

3. Ubiquity: How available is the user interface? Does one have to have a very
expensive device to access the system or is it accessible through just about any
device, even the plain old telephone?

4. Saliency: This has to do with the condition of the mobile user that we mentioned
in Chapter 1. Saliency indicates how well the application can interact with the
user considering that the user is not focused on the task of computing.

5. Simultaneity: This is not the same as simultaneous multimodality. Simultaneity
refers to how many different users can be accessing the application simultane-
ously, collaboratively, or individually. For example, many users can hear from
a speaker phone or see a presentation on a projector screen whereas fewer can
hear from a headset (just one) or see a presentation on a laptop screen (just a
few).

6. Privacy: This quality determines how much control we have over making vari-
ous pieces of user information private.

These dimensions can be extended to other modalities.

8.2 MODELING MULTICHANNEL AND MULTIMODAL
APPLICATIONS WITH UML

As has been our convention in this text, we will now look at modeling multimodal
user interfaces with UML. The value of doing so is, once again, to provide a con-
sistent technique to design and document our system. There are, of course, many

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.2 Modeling Multichannel and Multimodal Applications with UML 507

aspects to multimodal user interfaces. These various aspects include the multi-
media content, the handling and management of the content, synchronization of
the various types of content, and specifying various ways to create composites of
single-mode content. Because each of these domains constitutes a different prob-
lem set, we need different UML extensions to represent each specific domain. As
we have done with other extensions in this text, we will be leveraging works by
various academics and commercial organizations.

We have already looked at Nunes’ UML extensions, which we have used as our
main guiding light in modeling user interface extensions to UML. We recommend
continuing usage of these extensions to represent user interfaces and their inter-
actions with the user. Whereas we can use Nunes’ Wisdom extensions to represent
many aspects of multimodality, as is popular in UML, we can introduce other di-
agrams to show some of the same properties (and some additional properties) of
multimodal systems.

Mandel, Koch, and Maier attack a portion of our problem in their paper “Ex-
tending UML to Model Hypermedia and Distributed Systems” [Mandel, Koch, and
Maier 1999]. They begin with modeling distribution of an application based on
the client–server architecture and creating a UML class diagram, relying on the
YAON (yet another object notation) approach to distribution of applications. This
is outside of the scope of our discussion. Next, they treat the so-called hypermedia
system, which is defined to be a system that supports text, images, sounds, video,
and hypertext and is specific to the Web. UML is extended with navigational mod-
eling features (i.e., a graphic notation added to UML) to describe which objects
are going to be visited (and how) and in which contexts; in addition, an abstract
user interface is given [Mandel, Koch, and Maier 1999]. Here, they leverage the
OOHDM (Object-Oriented Hypermedia Design Method).

Mandel, Koch, and Maier use abstract data views to basically represent the two-
dimensional spatial layout of a GUI. This is essentially a functional mockup of
the user interface for GUIs. Next, they introduce configuration diagrams; these
diagrams can be quite useful in representing properties of multimodal user inter-
faces. They have the following characteristics:

1. They show the composite structure and composite behavior of the user interface
as well as showing the inputs and outputs into a user interface.

2. They also show, at a very high granularity level, the relationship between user
interface components and non-user-interface components in the system.

3. They are describable, with UML metamodeling, as a real UML extension.

Figure 8.1 shows a configuration diagram for a basic two-mode user interface that
uses voice and keyboard/monitor system for its inputs and outputs. The big advan-
tage here is that we can model relationships between large-grained user interface
components and large-grained back-end components. Some of these components
may be those that perform business logic, but others may be components needed
to provide the necessary functionality for a certain type of modality. For example,
we can model transcoding components or voice recognition components.

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

508 MULTICHANNEL AND MULTIMODAL USER INTERFACES

Textual Data Entry

Aural Navigation
 Previous

Microphone

Speaker

Keyboard

Monitor

Next

FIGURE 8.1.

Next, Mandel and colleagues introduce an improved version of ADVcharts to
provide a visual schema for the specification of the dynamic aspects of the user in-
terface [Mandel, Koch, and Maier 1999]. Normal ADVcharts provide functionality
similar to mockups but also include information such as that of state diagrams.
So, in a way, they allow us to model the state of the user interface as the user inter-
acts with it. The morphed version of ADVcharts by Mandel and colleagues adds
some abstractions to provide for representation of multimedia content as shown
in Table 8.1.

Note that to use these abstractions in UML, we need to express them with
a metamodel. Mandel et al. do not specify a metamodel for these abstractions;
however, we have outlined all of the properties and constraints that would define
the classifiers that, in turn, define the appropriate stereotypes.

There are two other abstractions that we do not need: applications and system
events. Depending on what type of UML diagram we use, these abstractions exist
in one form or another. The important thing to note here is that Mandel et al.
have defined these abstractions with some bias toward the WWW as the central
content repository. This assumption is not necessarily a bad one since the Web
is indeed the largest repository of textual and visual content today so that it is
not a far-reaching interpolation to assume that it will be the largest repository
of multimodal content as well. However, the content in the mobile system that
you deploy may or may not be founded on Web-based technologies; so, keep this
assumption in mind. Also, note that one of the biggest reasons that we selected
this particular approach to extending UML for multimedia content is that Mandel
et al. rely on proven taxonomies of multimodal content as opposed to creating
their own, thereby risking simply making errors in their taxonomy or creating
impedance mismatch with other existing taxonomies.

Works by Hausmann, Sauer, Heckel, and Engles use UML and its extensions
to model multimedia content (which is typically synonymous to multimodal con-
tent). These extensions are called the Object-Oriented Modeling of Multimedia
Applications (OMMMA). There are three basic stereotypes in OMMMA as shown
in Table 8.2.

As you may note, the OMMMA model is somewhat biased toward the MVC
design pattern. However, as we mentioned in previous chapters, MVC and PAC
are closely related and the same principles introduced by Sauer can be applied to

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.2 Modeling Multichannel and Multimodal Applications with UML 509

TABLE 8.1. Hypermedia Extensions for ADVcharts by Mandel, Koch,
and Maier

Abstraction Iconic
Name Description Representation

User Input This abstraction is created to show the
data items that the user gives the
system. You can think of these as
form fields. Though, per Mandel
et al.’s specifications, these are data
items that are requested from the
user and there is nothing that keeps
us from using this abstraction for
natural-language or mixed-initiative
input modeling.

InputName

FieldName1
FieldName2

Anchors Anchors are the starting points of the
navigation [Mandel, Koch, and Maier
1999]. You can think of them as the
initial state of a UML state diagram or
a UML sequence diagram. This is
largely a concept from the design and
implementation of HTTP and HTML.
Anchors are a navigational tool in
HTML

AnchorName

Collections This abstraction is basically created to
indicate that some composition of the
other abstractions is itself a valid
abstraction; for example, a viewable
table may be recognized as a
collection.

CollectionName

∗Object 1
∗Object 2

Sound This abstraction provides a method to
represent sound being played back to
the user. It is thus an abstraction for
an audio output channel. There are
two forms of specialized sound
abstractions, a sound that starts once
the container that holds it is
navigated to (for example, the Web
page that is to present the audio) and
a repeating sound (for example, a
background music audio that plays at
some specified interval). The first is
indicated with a triangle inside the
sound icon and the second has a loop
above it.

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

510 MULTICHANNEL AND MULTIMODAL USER INTERFACES

TABLE 8.2. Basic OMMMA Stereotypes

Stereotype Description

Presentation This stereotype represents the encapsulation of the job of
those objects that are responsible for rendering the content,
through the relevant channels, to the user. These objects are
responsible for determining things like the position of a
certain icon on the screen, when a sound should be heard,
and other temporal and spatial properties of the user
interface.

Media This stereotype represents an encapsulation of the content. For
example, we could have an Audio class (which could be
further specialized) or a VisualText class. We can model the
commonalities and differences among various media
content types using inheritance, aggregation, and more
complex design patterns.

Application This stereotype represents the abstraction of the link between
the business logic components and the rest of the system.
Application objects can be seen roughly as the equivalent of
the model portion of MVC (discussed in earlier chapters).

PAC as well as to MVC (with little modifications in the definition of the stereotypes
so that they fit the PAC design pattern a little better). An important point is that
OMMMA models multimedia content and not multimodality as a whole. So, it
is much better suited for representing and modeling the behavior of the system
output while presenting the content and the nature of the content itself than it is
to representing user input to the system through various modalities.

Temporal relationships between elements of media presentations are the key
characteristics of multimedia applications; the behavioral model of an interactive
multimedia application has to account for both the timed and synchronized ren-
dering of predefined scenes and the alteration of the course of presentation caused
by user interaction [Hausmann, Heckel, and Sauer 2002]. So, based on the nature
of the multimedia content and the defined UML stereotypes, multimedia sequence
diagrams are introduced.

As we saw in previous chapters, sequence diagrams are the best tool in UML
to show temporal interactions among the various components and objects in the
system. This is precisely why the sequence diagrams are extended. Hausmann,
Heckel, and Sauer first introduce a collection of theorems and then lay out a method
by which to specify what they refer to as dynamic metamodeling, where they specify
rules instead of static relationships in their metamodels. (The details of these
techniques lie outside the scope of our discussion.) Then, they use this technique
to extend sequence diagrams for representing the properties of multimedia content.
For their icons and detailed stereotypes, they use stereotypes very similar to those
of Mandel, Koch, and Maier. Specifically, they too use the trapezoid-like shape (the
symbol typically used to indicate a speaker on audio-enabled devices) to indicate

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.2 Modeling Multichannel and Multimodal Applications with UML 511

KNMn: MusicSheet KNMa: MusiPiece Highlight: Marker Sym42n: MusicSheet Sym42a: MusicPiece

T[s]

0

[MTitle
==

Mozart1]

[MTitle
==

Mozart2]

L R L R

HBox1

HBox2

HBox3

HBox4

ImageVideoBox

<
K

N
M

g:
G

ra
ph

ic
s>

<
S

ym
42

g:
G

ra
ph

ic
s>

<
S

ym
42

tr
ac

k:
A

ud
io

>

<
K

N
M

tr
ac

k:
A

ud
io

>

max 0.5
max 0.2

0:35

0:35

0:35

0:25

0:25 ImageVideoBox

FIGURE 8.2. Example of an OMMMA Sequence Diagram [Sauer and Engles].

audio media. Sauer and Engles have also added markers and a Y axis on the side of
the sequence diagram to more exactly indicate the time constraints on presenting
the various types of media [Sauer and Engles 1999].

Figure 8.2 shows an example of an OMMMA sequence diagram.
This brings us to the end of our discussion of UML extensions that address

multimodality. It is important to keep in mind that UML, even without these
extensions, is of great value when developing multimodal applications. Let us see
how and why.

8.2.1 Using Basic UML Diagrams to Describe
Multimodal Applications
Since Chapter 5, we have introduced a series of UML extensions that will allow
you to use UML to facilitate developing your mobile applications. Keep in mind
that even using UML without any extensions specifically designed for mobility
is still very useful in mobile application development. Many mobile application
problems are identical to those for stationary applications and those types of prob-
lems can be modeled with UML without the need for extensions. For example,
we can continue to use class diagrams to represent the internal implementation
of our application, interaction diagrams to represent the interactions among the
various components and objects in the system, and component diagrams to show
the large-grained distribution of responsibility among the components that make
up our mobile application.

You should be reminded that we do not form UML profiles on purpose. Based
on our discussion in Chapter 4, all of the extensions that we introduce are meant
to address some specific problem with mobile computing. It is also not the place

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

512 MULTICHANNEL AND MULTIMODAL USER INTERFACES

of this text to decide how a profile is defined. Though many professionals and
academics have created very relevant and useful extensions to UML for addressing
problems associated with mobility and mobile applications, there is no standard
aggregate of these extensions in the form of profiles. Indeed, it is not the place
of this text to specify such profiles. Therefore, there are two options, collect the
set of extensions that your project needs and use those. Alternatively, profiles will
organically form over time. Extending the functionality of the better UML tools in
the marketplace, such as has been done with Object Domain’s UML tool, is fairly
trivial. So, selecting and implementing the extensions for your project will be well
worth it.

Of particular importance are the interaction diagrams. Multimodality compli-
cates the representation of user interactions with the system. In fact, this is where
the bulk of complexity is introduced to the modeling and requirements gathering
process. This is where interaction diagrams (sequence and collaboration diagrams)
become crucial. Sequence diagrams, particularly, provide us with the appropriate
tools to model the temporal properties of the interface and the timing relationships
among the various channels.

Along the same line of thought, note that we introduce the following series
of extensions in this text that can enhance the modeling of multimodal user
interfaces:

1. In Chapter 10, we introduce Use Case Maps (UCMs). These can be used to
model the multichannel infrastructure that allows multimodality (channels be-
ing defined as the various ways the device can connect to the network). UCMs
are very similar to activity diagrams, but they are more useful in modeling
channels and the temporal behavior of the channels.

2. In Chapter 6, we introduced Nune’s Wisdom extensions; these lie at the heart
of our approach in using UML to model user interfaces.

In typical stationary applications, the majority of the complexity of the application
resides in implementing some business logic. However, this is not the case in most
mobile applications. The complexity of design and implementation of most mo-
bile applications involves dealing with the dimensions of mobility. (This is not to
say that the business logic complexity is reduced; it is simply that the complexity
of dealing with the dimensions of mobility is of higher order qualitatively and
quantitatively.) When dealing with mobile applications, the user interface imple-
mentation, and particularly multimodality, is one of the most complex aspects of
design and implementation. Therefore, not only do we need UML extensions, but
we also need a new way to use UML, a new UML process. The typical UML-based
development processes do not take into account the special needs of mobile ap-
plications (the dimensions of mobility). Therefore, they tend to neglect to address
the complexities of multimodal user interfaces. For mobile applications, it is typ-
ically beneficial to choose a development process that is biased toward addressing
the complexities of the user interface, such as that of Nunes’ Wisdom or UWE
(UML Extensions for Web Applications) [Hennicker and Koch 2001]. The UWE
builds on the Wisdom approach, and though it is biased toward Web development

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.3 Multimodal Content 513

(which is not inherently multimodal), it offers some valuable lessons on a devel-
opment process that is very much biased toward solving the complexities of the
user interface.

Finally, there is something to be said about UML not being sufficient, in its
current form, to represent multimodality altogether because UML itself is a visual
only and that visual representation of aural, tactile, or other physical input/output
techniques into computing systems contains an inherent loss of information. This
is in addition to the inherent lossiness of any model: There is a loss of information
in representing something without a full replication of all of its being. Of course,
the solutions to this are not within the reality of application development tools
within the near future.

8.3 MULTIMODAL CONTENT

One of the current points of contention in standards for multimodal user interfaces
surrounds the creation and storage of multimodal content. SMIL gives us a standard
for synchronizing different types of single-mode and single-channel content; it is
a fairly well established standard. However, there are competing standards that
address the composition of various media-specific content and other competing
standards to describe user interactions with the system through multiple channels.

There are two approaches here. Some build on existing standards by mixing and
matching the appropriate standards. For example Flach and Courvoisier [Flach
and Courvoisier 2001] create a content repository by using tools for administering
and analyzing the given information sources using RDF and use XSLT to specify
various ways to combine them. Similarly, W3C’s X + V working group com-
bines XHTML and VXML to create dual-channel multimodality with providing
XHTML that can be rendered by browsers and VXML that allows us to outline voice
interactions.

Others make the argument that the existing standards were not designed for
dealing with multimodal user interfaces or multimodal content and that new tech-
niques are needed. These folks have spurred on various efforts, standard or pro-
prietary, such as SmarkKom’s M3L language.

The advantage of the latter approach is obvious in that it allows us to address
problems specific to multimodal content canonically. However, there are several
disadvantages too. First, creating a new syntax based on a multimodal way of
thinking invariably means that we have to do a lot of work to convert or inte-
grate existing content and user interfaces into the new syntactical paradigm. This
mapping is certainly not going to be a linear and easily recognized deterministic
mapping so it will take a considerable amount of programmatic or manual work
to convert existing content to the desired content. There is also the problem that
the existing standards have been well thought out and have matured; the same
certainly could not be said of any emerging standard on multimodality.

Various solutions falling into one category or another spark “religious” debates
on what is the best technology or whether we are creating a high-level architecture
or selecting the syntax of the stored content. So, instead of focusing on which

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

514 MULTICHANNEL AND MULTIMODAL USER INTERFACES

technology is better, we will outline the requirements that tools and technologies
built for multimodal content must support.

Bunt and Romary [Bunt and Romary 2002] give this topic—the requirements for
tools and technologies for multimodal content—a complete and proper treatment.
Namely, Bunt and Romary specify that any tool that we select to represent multi-
modality architecturally and syntactically must be expressively and semantically
adequate. The former means that the tool (syntax, architecture, etc.) should be
able to represent the properties and features of multimodal content appropriately.
Semantic adequacy means that the representation structures should themselves
have a formal semantics; that is, their definition should provide a rigorous basis
for reasoning (whether deductive, statistical, in the form of plan operators, or oth-
erwise) [Bunt and Romary 2002]. After specifying these two general guidelines,
Bunt and Romary give us three more properties that this tool (or collection of
tools) should posses:

1. Incrementality: It should provide a mechanism for creating composite multi-
modal content from atomic elements that may be single mode or multimodal.
Because we want to provide the maximum amount of freedom to the systems
that process the multimodal content, the tools should be able to represent the
content so that we can represent any of the multiple modes.

2. Uniformity: Though there are different types of input and output (e.g., text and
voice) and different types of input and output channels (e.g., keyboards and
speakers), the tools that represent multimodal content should represent these
different types of input and output in the same manner.

3. Underspecification and Partiality: This basically refers to the concept that we
have called a “generic user interface” in this text. What is recommended is that
the tool allows us to specify as little as possible in the way of the semantic
meaning of the information and also provide for a way to disambiguate the
user’s input.

All of this may seem overly theoretical, but indeed, we need this level of discipline.
Multimodality is a complex problem as it is a composition of two or more sets of
problems associated with two or more modes of presentation. In a way, what Bunt
and Romary are specifying as the properties of the tools used for authoring and
presenting mutlimodal content are some of the properties of linearly deterministic
and causal control systems. They are specifying that the tools should allow us to
create multimodal content so that we can take content apart, put the pieces back
together, decompose various pieces, and enable the individual pieces to be used.
The tool should be able to represent the compositional nature of the content,
to do this generically, to allow specialization, and to do this while preserving
the integrity of the single modal content so that if one or more of the channels
are not presentable, we do not run into a problem. As a side note, if you think
back to Chapter 5 where we had an in-depth discussion of XForms, you can see
that XForms meet all of the qualifications specified here as a tool for multimodal
content.

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.3 Multimodal Content 515

By contrast, the W3C X + V effort essentially combines VXML and XHTML for
multimodality. The advantage to this approach is that it is practical. Both VXML
and XHTML are proven technologies that have been around for a while; they are
fairly mature. The disadvantages are many. First, this solution is very biased to the
thin-client, browser-based architecture. Although this model works great for basic
Web content, it is not very versatile. Second, VXML and XHTML taxonomies were
developed separately and therefore show some obvious inherent differences that
cause problems when you are trying to fuse them together in your multimodal
application (whether the framework does this or your application does it, there
is an impedance mismatch in the way things are defined). VXML is the browser-
based solution for a dialogue manager–based UIM (which is grammar based)
whereas XHTML is designed for browsers (typically State Machine or event based).
Meanwhile, X + V gives us a good path for implementing a server-side-only
solution using technologies that are currently fully mature and commercially
available.

8.3.1 X + V
X + V stands for XHTML and VXML. X + V is an interim technology: Its use
will be limited and only relevant to the duration of migration of content from
XHTML/HTML and VXML content to truly multimodal content represented in a
markup language designed with the needs of multimodality.

The benefits of X + V are that both technologies are rather proved and that
implementation of a multimodal interface can be done with relative speed. The
problems with X + V are multifold. First, it assumes that we can tie together
VXML, a language designed for representing VUIs, and XHTML, the younger but
more mature sibling of HTML designed for visual user interfaces, and come up
with a multimodal interface. Obviously this is a flawed assumption as it neglects
the contextual and semantic information shared among various modalities in in-
teracting with the user. Second, it forces a thin-client/browsing model that is not
easily implemented or intuitive. Most VXML implementations are designed for
server-side interpretations whereas XHTML implementationss are designed for
interpretation on the client side. Besides, as we have seen throughout this text, the
thin-client model should not be used for every application. In many instances, it
is not suitable.

8.3.2 M3L
The M3L, yet another acronym for the Multimodal Markup Language, has been
created for SmartKom. SmartKom is a multimodal dialogue system that combines
speech, gesture, and facial expressions for input and output; it provides anthro-
pomorphic and effective user interface through its personification of an interface
agent [Wahlster et al. 1998].

In addition to SmartKom, there is some limited commercial support for M3L
such as the KMMP platform provided by Kirusa, a multimodal platform company
in the United States. M3L tackles more than just our problem of multimodal user
interfaces for mobile computing. It addresses some issues specific to using gestures
(like pointing, smiling, etc.) as input and output channels and outlines a syntax

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

516 MULTICHANNEL AND MULTIMODAL USER INTERFACES

....

<intentionLattice>

<hypothesisSequence>

....

</hypothesisSequence>

</intentionLattice>

....

<presentationTask>

<presentationGoal>

<presentationContent>

<abstractPresentationContent>

</abstractPresentationContent>

<panelElement>

</panelElement>

</presentationContent>

</presentationGoal>

</presentationTask>

<gestureAnalysis>

.....

<type>tarrying</type>

<referencedObjects>

....

</referencedObjects>

</gestureAnalysis>

FIGURE 8.3. Sections of an M3L Document.

for representing them along with the textual and aural modalities that we typically
discuss when talking about multimodal user interfaces. M3L’s syntax is fairly large
so we refer you to the SmartKom Web site (http://www.smartkom.org) for further
research on this topic. M3L builds on top of RDF and XML. Figure 8.3 shows a
code sample of what some sections of an M3L document may look like.

M3L makes a great attempt at not only representing the various aspects of
multimodality but also at representing the semantics of multimodal user interfaces.
M3L does address the temporal behavior of multimodal content and multimodal
interactions, which is the largest part of the problem in specifying multimodality
syntactically.

8.3.3 MML
There are now many different markup languages presented by different entities
called Multimodal Markup Language with various acronyms; we have already
looked at M3L. As far as we are concerned, MML is the Multimodal Markup Lan-
guage as introduced by Rossler, Sienel, Wajda, Hoffmann, and Kostrzewa [Rossler
et al.]. In somewhat of a similar approach to X + V, MML combines HTML and

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.3 Multimodal Content 517

TABLE 8.3. MML Tags

Tag Name Description

modalityOut This tag shows the modality of the element and its treatment
for output presentation by various channels.

modalityIn This tag encapsulates the information needed for processing of
various types of input coming in from the different
channels.

production This tag is specific to speech synthesis (TTS). It encapsulates
the information needed to produce the appropriate quality
of speech (see Chapter 7) such as pitch, rate, etc.

Timing This tag allows us to specify the temporal sequence of how
various information such as text and audio are rendered
(output).

BargeIn This tag lets us specify if the user should be able to interrupt
the presentation of multimodal information. (On a visual
screen, this could be pressing the stop button on a browser
whereas it is a simple interruption of audio played by the
system through audio input in a VUI.)

initiative This tag lets us specify if our dialogue is in mixed-initiative or
directed mode.

VXML as a recognition of their pervasiveness. But it also tries to fill in the funda-
mental holes in addressing the issues with multimodality in providing some tags
that provide metainformation about modalities and their fusion. These additional
tags are listed in Table 8.3.

At present, MML is not very well formed nor is there much published infor-
mation about it. Consequently, it is more of an academic study. The interesting
thing about it (and the reason we are mentioning it here) is the approach: Take
existing markup languages and fill in the gaps with metatags. Note also that these
few metatags enable specification of how natural the communication between the
user and the user interface is through each modality (natural, mixed initiative, and
directed dialogue) and inherently specify a dialogue-based approach to the UIM.

8.3.4 EMMA
Extensible Multimodal Annotation Markup Language (EMMA) is a standard being
worked on by W3C, in the draft stage at the time of authoring this text, that
addresses Web access through multimodal user interfaces. The conceptual design
of EMMA takes after some of the other W3C user interface standards such as
VXML, XHTML, and XForms. First, EMMA is naturally XML based. Next, EMMA
defines metadata, which encapsulates information about the document, a data
model, which defines what type of data can be instantiated, by the browser of the
document, and instance data, which encapsulates things like the actual data, text,
and pointers to files to be presented. This separation is a very good thing. As in the
case of XForms, the structure of what should be presented and the actual instance

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

518 MULTICHANNEL AND MULTIMODAL USER INTERFACES

data are bound at run time so it is up to the user agent to decide how to manifest
modalities. This allows us to have user agents that have different capability levels
without the necessity of additional instructions. Obviously this is a problem in the
mobile world because of platform proliferation.

The creators of EMMA have also recognized something else that is crucial to
multimodal interfaces: the semantic and contextual meaning of things. In the
current draft of EMMA, it is proposed that RDF be used for representation of
semantic and contextual data about multimodal content. In addition, EMMA is
designed to fit into “fusion” or “integration” of modalities, subjects we will look
at later in this chapter. Table 8.4 lists at a subset of general syntax tags that make
up an EMMA document.

EMMA takes us a significant step forward in defining a sufficient syntax for
specifying multimodal interactions, but it has some way to go to be perfect. For
example, the version whose draft specifications are published at the time of au-
thoring this text specify no method of outlining an interpretation that relies on two
or more modalities simultaneously. An example of this could be a user touching
a touch-screen pad and saying “delete this one.” To interpret the action, we need
to know what “this one” means, but this means that we have to know what else
the user is doing at the same time. Though we can use some elements such as
one-of, sequence, and group to bundle interpretations, the syntax falls short in
allowing us to specify coordinated and simultaneous multimodality.

8.3.5 MPML
Multimodal Presentation Markup Language (MPML), designed by a team at
Ishizuka Laboratories in Japan, is a well-defined XML-based language that allows
for the specification of dialogue-based interactions for a multimodal user interface.
At present, MPML is at version 3.0. This version has well-defined tags that identify
the temporal properties of multimodal content to be played back as well as some
semantic and contextual information about the user and the multimodal content.
Table 8.5 shows a summary of the tags that define MPML 3.0.

Note that there is no “action” tag. Rather, actions are a category of tags that
are atomic and cause some sort of an action by the system. Included are WAIT,
EXECUTE, EMOTION, CONSULT, PAUSE, PLAY, SPEAK, and THINK. For a
better understanding of the MPML syntax, we refer you to the references used
here as well as the University of Tokyo Computer Science Department Web site
(http://www.is.s.u-tokyo.ac.jp).

MPML’s big advantage over the other languages that we have mentioned here is
its maturity. It also pays special attention to the contextual information surround-
ing the dialogue-based interactions between the user and the system. Most notably,
it treats multimodal interactions in terms of scenes of interactions between the
user and the system that have emotional, contextual, and temporal properties.
However, MPML also has some significant downfalls.

First, there is no organized metamodel or principles (at least that are mentioned
through the public materials released on MPML 3.0) in the design of the language.
Second, there is not enough separation of concerns between those of generic user
interface design and those of multimodal user interface design. It is important to

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

TA
B

LE
8
.4

.
S

o
m

e
E
M

M
A

Ta
gs

Ta
g

D
es

cr
ip

ti
on

<
em

m
a:

em
m

a>
at

tr
ib

u
te

s:
ve

rs
io

n
(r

eq
u

ir
ed

),
xm

ln
s:

em
m

a
(r

eq
u

ir
ed

),
xm

ln
s:

rd
f

(r
eq

u
ir

ed
);

ot
h

er
n

am
es

pa
ce

s
ca

n
be

op
ti

on
al

ly
ad

de
d

as
at

tr
ib

u
te

s
if

th
ey

ar
e

u
se

d
w

it
h

in
th

e
do

cu
m

en
t

N
ot

e
th

at
w

e
h

av
e

ex
pl

ic
it

ly
sp

ec
ifi

ed
th

e
n

am
es

pa
ce

,w
h

ic
h

is
E

M
M

A
.T

h
is

ta
g

en
ca

ps
u

la
te

s
th

e
se

ct
io

n
of

th
e

X
M

L
do

cu
m

en
t

de
sc

ri
be

d
by

E
M

M
A

.B
ec

au
se

E
M

M
A

is
de

fi
n

ed
in

X
M

L
an

d
ca

n
be

de
sc

ri
be

d
by

an
X

M
L

sc
h

em
a,

w
e

ca
n

h
av

e
an

E
M

M
A

do
cu

m
en

t
on

it
s

ow
n

or
w

e
ca

n
h

av
e

a
se

ct
io

n
of

a
do

cu
m

en
t

de
fi

n
ed

by
E

M
M

A
ta

gs
an

d
ot

h
er

se
ct

io
n

(s
)

de
sc

ri
be

d
by

so
m

e
ot

h
er

sy
n

ta
x

de
sc

ri
be

d
by

an
ot

h
er

va
li

d
X

M
L

n
am

es
pa

ce
/l

an
gu

ag
e.

<
em

m
a:

in
te

rp
re

ta
ti

on
>

at
tr

ib
u

te
s:

id
T

h
is

ta
g

en
ca

ps
u

la
te

s
th

e
h

an
dl

in
g

of
a

si
n

gl
e

m
od

al
it

y
de

al
t

w
it

h
th

ro
u

gh
so

m
e

X
M

L
-b

as
ed

sy
n

ta
x.

B
as

ic
al

ly
,t

h
is

ta
g

w
ra

ps
ar

ou
n

d
a

gr
am

m
ar

th
at

de
fi

n
es

w
h

at
va

lu
es

ar
e

ex
pe

ct
ed

fr
om

th
e

at
om

ic
di

al
og

u
e

ta
ki

n
g

pl
ac

e
be

tw
ee

n
th

e
u

se
r

an
d

th
e

u
se

r
in

te
rf

ac
e

th
ro

u
gh

a
sp

ec
ifi

c
m

od
al

it
y.

T
h

is
el

em
en

t
h

as
on

e
at

tr
ib

u
te

,i
d,

w
h

os
e

u
n

iq
u

en
es

s
is

en
fo

rc
ed

fo
r

a
va

li
d

E
M

M
A

do
cu

m
en

t.

<
em

m
a:

on
e-

of
>

at
tr

ib
u

te
:i

d
T

h
is

el
em

en
t

en
ca

ps
u

la
te

s
on

e
or

m
or

e
in

te
rp

re
ta

ti
on

el
em

en
ts

an
d

sp
ec

ifi
es

th
at

an
at

om
ic

di
al

og
u

e
be

tw
ee

n
a

u
se

r
an

d
th

e
u

se
r

in
te

rf
ac

e
ca

n
h

av
e

on
ly

on
e

in
te

rp
re

ta
ti

on
ou

t
of

th
e

po
ss

ib
le

op
ti

on
s.

L
ik

e
th

e
in

te
rp

re
ta

ti
on

el
em

en
t,

th
is

el
em

en
t

h
as

an
id

at
tr

ib
u

te
w

h
os

e
u

n
iq

u
en

es
s

m
u

st
be

en
fo

rc
ed

.T
h

is
ta

g
an

d
th

e
se

qu
en

ce
an

d
gr

ou
p

ta
gs

de
sc

ri
be

d
in

th
e

fo
ll

ow
in

g
ar

e
re

fe
rr

ed
to

as
“i

n
te

rp
re

ta
ti

on
co

n
ta

in
er

s”
be

ca
u

se
th

ey
w

ra
p

ar
ou

n
d

on
e

or
m

or
e

in
te

rp
re

ta
ti

on
s.

T
h

ey
ca

n
al

so
be

n
es

te
d;

in
ot

h
er

w
or

ds
,i

n
te

rp
re

ta
ti

on
co

n
ta

in
er

s
ca

n
in

cl
u

de
ot

h
er

in
te

rp
re

ta
ti

on
co

n
ta

in
er

s.

<
em

m
a:

m
od

el
>

T
h

is
is

an
op

ti
on

al
el

em
en

t
th

at
m

ay
be

u
se

d
to

pr
ov

id
e

co
n

st
ra

in
ts

on
th

e
m

od
el

(s
tr

u
ct

u
re

an
d

co
n

te
n

t
of

th
e

in
st

an
ce

da
ta

).
N

ot
e

th
at

th
e

de
fi

n
it

io
n

s
of

st
ru

ct
u

re
,m

od
el

,a
n

d
in

st
an

ce
da

ta
in

E
M

M
A

ar
e

ve
ry

si
m

il
ar

to
th

os
e

of
X

F
or

m
s.

T
h

is
ta

g
ca

n
be

u
se

d
w

it
h

in
th

e
in

te
rp

re
ta

ti
on

ta
g,

an
y

gr
ou

pi
n

gs
of

in
te

rp
re

ta
ti

on
ta

gs
su

ch
as

on
e-

of
,o

r
w

it
h

in
a

se
m

an
ti

c
de

fi
n

it
io

n
of

th
e

do
cu

m
en

t
en

ca
ps

u
la

te
d

w
it

h
in

an
R

D
F

se
gm

en
t

in
th

e
E

M
M

A

(c
on

ti
nu

ed
)

519

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

TA
B

LE
8
.4

(c
on

ti
n

u
e

d
)

Ta
g

D
es

cr
ip

ti
on

do
cu

m
en

t.
T

h
is

at
tr

ib
u

te
po

in
ts

to
a

va
li

d
U

R
I,

w
h

ic
h

in
tu

rn
h

as
th

e
ru

le
s

u
se

d
by

th
e

do
cu

m
en

t
br

ow
se

r
to

en
fo

rc
e

th
e

co
n

st
ra

in
ts

.

<
em

m
a:

se
qu

en
ce

>
T

h
is

ta
g

in
cl

u
de

s
ot

h
er

in
te

rp
re

ta
ti

on
s

or
in

te
rp

re
ta

ti
on

co
n

ta
in

er
s

th
at

sh
ou

ld
be

pr
oc

es
se

d
in

a
se

qu
en

ti
al

m
an

n
er

(t
im

ew
is

e)
.

<
em

m
a:

gr
ou

p>
T

h
is

ta
g

w
ra

ps
ar

ou
n

d
m

u
lt

ip
le

in
te

rp
re

ta
ti

on
ta

gs
.I

t
al

lo
w

s
u

s
to

gr
ou

p
a

se
t

of
gr

am
m

ar
s.

<
em

m
a:

to
ke

n
s>

T
h

is
ta

g
al

lo
w

s
u

s
to

sp
ec

if
y

th
e

in
pu

t
to

ke
n

s
re

la
te

d
to

an
y

in
pu

t
to

th
e

sy
st

em
th

ro
u

gh
an

y
si

n
gl

e
m

od
al

it
y

or
a

gr
ou

p
of

m
od

al
it

ie
s.

T
h

es
e

to
ke

n
s

ar
e

ve
ry

si
m

il
ar

to
th

e
to

ke
n

s
th

at
w

e
de

fi
n

ed
in

C
h

ap
te

r
7

fo
r

V
U

Is
.A

ga
in

,b
ec

au
se

th
e

ap
pr

oa
ch

is
di

al
og

u
e

an
d

gr
am

m
ar

dr
iv

en
,a

gr
am

m
ar

is
sp

ec
ifi

ed
to

be
m

at
ch

ed
w

it
h

an
y

in
pu

t
gi

ve
n

by
th

e
u

se
r.

T
h

e
to

ke
n

s
ar

e
th

os
e

va
ri

ab
le

s
of

in
te

re
st

th
at

w
e

ar
e

tr
yi

n
g

to
fi

ll
.T

h
ey

m
ay

be
ob

ta
in

ed
th

ro
u

gh
di

re
ct

ed
-d

ia
lo

gu
e,

m
ix

ed
-i

n
it

ia
ti

ve
,o

r
n

at
u

ra
ll

an
gu

ag
e

in
te

ra
ct

io
n

s
w

it
h

th
e

u
se

r.

<
em

m
a:

pr
oc

es
s>

T
h

is
ta

g
sp

ec
ifi

es
h

ow
th

e
in

te
rp

re
ta

ti
on

w
as

ge
n

er
at

ed
an

d
po

in
ts

to
a

U
R

I.
T

h
e

pr
oc

es
s

of
ob

ta
in

in
g

th
e

in
te

rp
re

ta
ti

on
de

pe
n

ds
on

th
e

m
od

al
it

y
an

d
ch

an
n

el
of

th
e

in
pu

t.
F

or
ex

am
pl

e,
a

pr
oc

es
s

m
ay

po
in

t
to

a
U

R
I

w
h

er
e

th
e

sp
ee

ch
-r

ec
og

n
it

io
n

pr
oc

es
s

is
de

fi
n

ed
by

a
gr

am
m

ar
,a

sp
ee

ch
-r

ec
og

n
it

io
n

en
gi

n
e,

an
d

th
e

ot
h

er
co

m
po

n
en

ts
n

ec
es

sa
ry

to
in

te
rp

re
t

u
se

r
in

pu
t.

T
h

is
ta

g
ca

n
be

in
cl

u
de

d
w

it
h

in
th

e
R

D
F

se
ct

io
n

of
an

E
M

M
A

do
cu

m
en

t
or

in
li

n
e

w
it

h
th

e
in

di
vi

du
al

in
te

rp
re

ta
ti

on
s.

W
h

en
u

se
d

in
li

n
e,

it
be

co
m

es
an

at
tr

ib
u

te
of

th
e

in
te

rp
re

ta
ti

on
el

em
en

t.
T

h
er

e
ar

e
tw

o
ad

va
n

ta
ge

s
in

pu
tt

in
g

th
e

pr
oc

es
s

in
fo

rm
at

io
n

in
th

e
R

D
F

se
ct

io
n

of
th

e
do

cu
m

en
t.

F
ir

st
,b

y
u

si
n

g
R

D
F

to
po

in
t

to
th

e
pr

oc
es

s,
E

M
M

A
re

m
ai

n
s

de
co

u
pl

ed
fr

om
th

e
sp

ec
ifi

c
pr

oc
es

se
s.

Se
co

n
d,

R
D

F
al

lo
w

s
fo

r
a

se
m

an
ti

ca
ll

y
or

ga
n

iz
ed

w
ay

of
li

n
ki

n
g

th
e

E
M

M
A

do
cu

m
en

t
to

th
e

pr
oc

es
se

s
by

w
h

ic
h

th
e

in
te

rp
re

ta
ti

on
of

th
e

u
se

r
in

pu
t

is
do

n
e.

520

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

<
em

m
a:

n
o-

in
pu

t>
O

n
ce

ag
ai

n
,t

h
is

is
a

pa
ge

ta
ke

n
ou

t
of

V
U

I
de

si
gn

.B
ec

au
se

th
e

u
se

r
m

ay
n

ot
an

sw
er

to
a

qu
es

ti
on

du
ri

n
g

a
di

re
ct

ed
di

al
og

u
e

or
a

m
ix

ed
-i

n
it

ia
ti

ve
in

te
ra

ct
io

n
or

th
e

an
sw

er
m

ay
n

ot
be

“r
ec

og
n

iz
ab

le
”

(o
w

in
g

to
pr

ob
le

m
s

w
it

h
th

e
in

pu
t

ch
an

n
el

su
ch

as
a

fa
u

lt
y

to
u

ch
-s

cr
ee

n
or

to
o

m
u

ch
ba

ck
gr

ou
n

d
n

oi
se

fo
r

vo
ic

e
in

pu
t)

,t
h

is
ta

g
al

lo
w

s
u

s
to

sp
ec

if
y

w
h

at
to

do
w

h
en

th
er

e
is

n
o

in
pu

t.
O

n
ce

ag
ai

n
,w

e
ca

n
u

se
th

is
ta

g
in

li
n

e
w

h
il

e
sp

ec
if

yi
n

g
in

te
rp

re
ta

ti
on

s
as

an
at

tr
ib

u
te

of
th

e
in

te
rp

re
ta

ti
on

ta
g

or
in

th
e

R
D

F
se

ct
io

n
of

th
e

E
M

M
A

do
cu

m
en

t.

<
em

m
a:

u
n

in
te

rp
re

te
d>

T
h

is
ta

g
is

id
en

ti
ca

lt
o

th
e

n
o-

in
pu

t
ta

g
in

de
fi

n
it

io
n

an
d

ap
pl

ic
at

io
n

ex
ce

pt
fo

r
on

e
th

in
g:

W
h

er
ea

s
n

o-
in

pu
t

m
ea

n
s

th
at

th
e

sy
st

em
re

ce
iv

ed
n

ot
h

in
g

th
at

it
re

co
gn

iz
ed

as
in

pu
t,

u
n

in
te

rp
re

te
d

m
ea

n
s

th
at

th
e

sy
st

em
re

ce
iv

ed
so

m
et

h
in

g
th

at
it

re
co

gn
iz

ed
as

in
pu

t
bu

t
th

at
it

co
u

ld
n

ot
in

te
rp

re
t

th
is

in
pu

t.
L

et
u

s
u

se
gr

af
fit

i(
al

so
ca

ll
ed

“i
n

k”
)

in
pu

t
to

th
e

sy
st

em
.T

h
e

gr
af

fi
ti

pa
d

m
ay

be
de

si
gn

ed
to

ig
n

or
e

al
lm

ar
ks

th
at

ar
e

m
ad

e
at

a
ve

ry
h

ig
h

sp
ee

d
an

d
re

ga
rd

th
em

as
a

sh
ak

y
h

an
d.

So
,i

f
yo

u
dr

aw
a

li
n

e
ve

ry
qu

ic
kl

y
ac

ro
ss

th
e

pa
d,

th
e

sy
st

em
w

il
ls

ee
th

is
as

n
o

in
pu

t.
H

ow
ev

er
,i

f
th

e
sy

st
em

re
qu

es
ts

th
at

th
e

u
se

r
in

pu
t

h
is

or
h

er
fu

ll
n

am
e

an
d

th
e

u
se

r
en

te
rs

a
si

gn
at

u
re

in
st

ea
d,

th
e

sy
st

em
ca

n
n

ot
in

te
rp

re
t

th
e

in
pu

t
be

ca
u

se
th

e
gr

af
fi

ti
in

pu
t

is
n

ot
gi

ve
n

in
a

re
co

gn
iz

ab
le

fo
rm

at
.T

h
is

se
co

n
d

ca
se

is
th

e
u

n
in

te
rp

re
te

d
ca

se
.

521

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

TA
B

LE
8
.5

.
M

P
M

L
Ta

gs

Ta
gs

D
es

cr
ip

ti
on

<
M

P
M

L
>

T
h

is
ta

g
is

th
e

ro
ot

do
cu

m
en

t
ta

g
fo

r
an

M
P

M
L

do
cu

m
en

t.

<
H

E
A

D
>

T
h

is
ta

g
ta

ke
s

af
te

r
th

e
h

ea
de

r
ta

g
in

H
T

M
L

:I
t

al
lo

w
s

th
e

de
ve

lo
pe

r
to

sp
ec

if
y

da
ta

ab
ou

t
th

e
do

cu
m

en
t.

T
h

e
ta

gs
M

E
TA

,T
IT

L
E

,A
G

E
N

T,
an

d
SP

O
T

m
ay

be
in

cl
u

de
d

w
it

h
in

th
e

H
E

A
D

ta
g.

T
h

e
ta

gs
M

E
TA

,A
G

E
N

T,
an

d
SP

O
T

m
ay

be
re

pe
at

ed
m

u
lt

ip
le

ti
m

es
.T

h
e

ta
g

T
IT

L
E

is
op

ti
on

al
an

d
ca

n
on

ly
ex

is
t

on
e

ti
m

e
fo

r
a

va
li

d
M

P
M

L
do

cu
m

en
t.

<
M

E
TA

>

at
tr

ib
u

te
s:

id
,n

am
e,

de
sc

ri
pt

io
n

,
co

n
te

n
t,

ch
ar

se
t,

h
tt

p-
eq

u
iv

,
sc

h
em

e,
la

n
g,

di
r

T
h

is
ta

g
al

lo
w

s
u

s
to

sp
ec

if
y

m
et

ad
at

a
ab

ou
t

th
e

do
cu

m
en

t.
A

s
ca

n
be

se
en

fr
om

th
e

at
tr

ib
u

te
s,

it
is

ve
ry

si
m

il
ar

to
th

e
H

T
M

L
m

et
a

ta
g

an
d

is
de

si
gn

ed
to

sp
ec

if
y

in
fo

rm
at

io
n

su
ch

as
th

e
au

th
or

of
th

e
do

cu
m

en
t,

th
e

ch
ar

ac
te

r
se

t
u

se
d

in
th

e
do

cu
m

en
t,

an
d

ot
h

er
st

an
da

rd
X

M
L

at
tr

ib
u

te
s.

<
T

IT
L

E
>

T
h

is
ta

g
ca

n
on

ly
ex

is
t

on
ce

,w
it

h
in

th
e

<
H

E
A

D
>

<
/H

E
A

D
>

ta
gs

.I
t

is
ro

u
gh

ly
eq

u
iv

al
en

t
to

th
e

H
T

M
L
<

T
IT

L
E
>

ta
g

in
it

s
fu

n
ct

io
n

al
it

y
an

d
h

as
n

o
at

tr
ib

u
te

s.

<
A

G
E

N
T
>

at
tr

ib
u

te
s:

id
,n

am
e,

de
sc

ri
pt

io
n

,
sy

st
em

,c
h

ar
ac

te
r,

sp
or

t,
lo

ca
ti

on
,x

,y
,v

oi
ce

,
ag

re
ea

bl
en

es
s,

ac
ti

vi
ty

T
h

is
el

em
en

t
al

lo
w

s
u

s
to

sp
ec

if
y

sy
st

em
or

u
se

r
ag

en
ts

.F
or

ex
am

pl
e,

w
e

ca
n

de
fi

n
e

an
au

to
n

om
ou

s
co

m
po

n
en

t
th

at
pr

oc
es

se
s

th
e

u
se

r’s
sp

ee
ch

in
pu

t
as

th
e

“V
oi

ce
R

ec
og

n
it

io
n

A
ge

n
t.

”

<
SC

E
N

E
>

at
tr

ib
u

te
s:

id
,n

am
e,

de
sc

ri
pt

io
n

,
ag

en
ts

T
h

is
ta

g
de

fi
n

es
a

sc
en

e;
a

sc
en

e
is

u
se

d
to

st
ru

ct
u

re
th

e
pr

es
en

ta
ti

on
(a

s
in

a
th

ea
te

r)
an

d
de

ci
de

s
w

h
ic

h
ag

en
ts

ar
e

vi
si

bl
e

[S
yl

va
in

20
01

].
Sc

en
es

ar
e

br
ok

en
do

w
n

in
to

a
se

t
of

se
qu

en
ti

al
ac

ti
on

s,
a

se
t

of
pa

ra
ll

el
ac

ti
on

s,
m

oo
ds

,a
ct

io
n

s,
an

d
pa

ge
s.

Sc
en

es
ca

n
al

so
be

n
es

te
d.

<
SE

Q
>

at
tr

ib
u

te
s:

id
,n

am
e,

de
sc

ri
pt

io
n

,
ag

en
ts

T
h

is
ta

g
pr

ov
id

es
a

m
et

h
od

by
w

h
ic

h
to

gr
ou

p
a

se
t

of
ac

ti
on

s
to

ge
th

er
th

at
sh

ou
ld

be
ex

ec
u

te
d

se
qu

en
ti

al
ly

,b
as

ed
on

th
e

or
de

r
of

th
ei

r
ap

pe
ar

an
ce

w
it

h
in

th
e

ta
g.

A
se

qu
en

ce
of

ac
ti

on
s

is
id

en
ti

fi
ed

by
a

u
n

iq
u

e
id

,c
an

h
av

e
a

n
am

e
an

d
a

de
sc

ri
pt

io
n

,a
n

d
ca

n
be

as
si

gn
ed

a
pr

oc
es

si
n

g
ag

en
t.

Se
qu

en
ce

s
ca

n
n

es
t

ot
h

er
se

qu
en

ce
s,

sc
en

es
,p

ar
al

le
la

ct
io

n
s,

m
oo

ds
,p

ag
es

,a
n

d
ot

h
er

ac
ti

on
s.

522

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

<
PA

R
>

at
tr

ib
u

te
s:

id
,n

am
e,

de
sc

ri
pt

io
n

T
h

is
ta

g
an

d
th

e
SE

Q
ar

e
in

sp
ir

ed
by

SM
IL

.T
h

is
ta

g
pr

ov
id

es
a

m
et

h
od

by
w

h
ic

h
w

e
ca

n
sp

ec
if

y
co

n
cu

rr
en

t
ex

ec
u

ti
on

of
a

se
t

of
ac

ti
on

s.
It

is
im

po
rt

an
t

to
ke

ep
in

m
in

d
th

at
w

e
ca

n
on

ly
gu

ar
an

te
e

th
e

co
n

cu
rr

en
t

st
ar

t
of

th
e

ac
ti

on
s.

T
h

e
en

d
of

th
e

ac
ti

on
de

pe
n

ds
on

th
e

du
ra

ti
on

of
th

e
m

ed
ia

as
it

is
be

in
g

pr
oc

es
se

d
by

th
e

ag
en

t.

<
M

O
O

D
>

at
tr

ib
u

te
s:

id
,n

am
e,

de
sc

ri
pt

io
n

,
as

si
gn

T
h

is
ta

g
de

fi
n

es
th

e
m

oo
d

of
th

e
ag

en
ts

;w
it

h
n

o
m

oo
d

ta
g,

th
e

ag
en

ts
h

av
e

n
eu

tr
al

m
oo

d
[S

yl
va

in
20

01
].

T
h

e
“m

oo
d”

of
th

e
ag

en
t

ca
n

be
u

se
d

du
ri

n
g

th
e

ge
n

er
at

io
n

of
ou

tp
u

t
to

th
e

u
se

r
(b

ac
kg

ro
u

n
d

co
lo

rs
,t

on
e

of
sy

n
th

es
iz

ed
vo

ic
e,

et
c.

)
an

d
in

th
e

in
te

rp
re

ta
ti

on
of

th
e

in
co

m
in

g
in

pu
t.

T
h

e
as

si
gn

at
tr

ib
u

te
is

u
se

d
to

se
t

th
e

m
oo

d
of

a
sp

ec
ifi

c
ag

en
t.

<
E

M
O

T
IO

N
>

If
th

e
sy

st
em

is
ab

le
to

de
te

rm
in

e
th

e
em

ot
io

n
al

st
at

e
of

th
e

u
se

r
(t

h
ro

u
gh

m
ea

su
ri

n
g

th
e

u
se

r’s
in

pu
t

st
yl

es
su

ch
as

h
is

/h
er

vo
ic

e,
sp

ee
d

of
en

tr
y

th
ro

u
gh

a
ke

yb
oa

rd
,e

tc
.)

,i
t

m
ay

be
u

se
fu

lt
o

sp
ec

if
y

re
ac

ti
on

s,
by

th
e

ag
en

t,
to

ea
ch

on
e

of
th

es
e

em
ot

io
n

s.

<
E

X
E

C
U

T
E
>

at
tr

ib
u

te
s:

id
,n

am
e,

de
sc

ri
pt

io
n

,
ta

rg
et

T
h

is
ta

g
is

de
si

gn
ed

to
pr

ov
id

e
a

h
oo

k
in

to
ex

ec
u

ti
n

g
Ja

va
Sc

ri
pt

.T
h

e
ta

rg
et

ta
g

is
se

t
to

th
e

n
am

e
of

th
e

Ja
va

Sc
ri

pt
fu

n
ct

io
n

to
be

ex
ec

u
te

d.

<
W

A
IT

>

at
tr

ib
u

te
s:

id
,n

am
e,

de
sc

ri
pt

io
n

,
ta

rg
et

T
h

is
ta

g
si

m
pl

y
ca

u
se

s
a

w
ai

t
ti

m
e

u
n

ti
ls

om
e

Ja
va

Sc
ri

pt
va

ri
ab

le
,s

pe
ci

fi
ed

by
th

e
ta

rg
et

at
tr

ib
u

te
of

th
is

ta
g.

<
C

O
N

SU
LT

>
T

h
is

ta
g

pr
ov

id
es

fo
r

co
n

di
ti

on
al

lo
gi

c.
T

h
e

im
pl

em
en

ta
ti

on
is

si
m

il
ar

to
a

sw
it

ch
st

at
em

en
t

in
Ja

va
.A

va
ri

ab
le

is
sp

ec
ifi

ed
to

be
te

st
ed

an
d

th
e

te
st

ca
se

s
ar

e
sp

ec
ifi

ed
.W

h
en

th
e

va
ri

ab
le

(d
efi

n
ed

by
Ja

va
Sc

ri
pt

)
sa

ti
sfi

es
so

m
e

sp
ec

ifi
ed

va
lu

e,
th

en
w

e
ca

n
pe

rf
or

m
so

m
e

lo
gi

c.

<
T

E
ST

>
T

h
is

ta
g

is
u

se
d

(s
im

il
ar

to
th

e
ca

se
st

at
em

en
t

in
Ja

va
)

w
it

h
in

th
e

C
O

N
SU

LT
ta

g
to

sp
ec

if
y

th
e

in
di

vi
du

al
te

st
ca

se
s

w
it

h
in

th
e

C
O

N
SU

LT
ta

g
(w

h
ic

h
as

w
e

m
en

ti
on

ed
w

or
ks

li
ke

a
sw

it
ch

st
at

em
en

t)
.W

e
ca

n
sp

ec
if

y
a

se
qu

en
ce

of
ac

ti
on

s
to

be
pe

rf
or

m
ed

,w
it

h
in

th
is

ta
g,

th
ro

u
gh

th
e

u
se

of
th

e
SE

Q
ta

g.

(c
on

ti
nu

ed
)

523

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

TA
B

LE
8
.5

(c
on

ti
n

u
e

d
)

Ta
gs

D
es

cr
ip

ti
on

<
PA

U
SE

>

at
tr

ib
u

te
s:

id
,n

am
e,

de
sc

ri
pt

io
n

,
pa

u
se

T
h

is
ta

g
si

m
pl

y
ca

u
se

s
an

u
n

co
n

di
ti

on
al

pa
u

se
sp

ec
ifi

ed
in

m
il

li
se

co
n

ds
(t

h
ro

u
gh

th
e

pa
u

se
at

tr
ib

u
te

).

<
M

O
V

E
>

at
tr

ib
u

te
s:

id
,n

am
e,

de
sc

ri
pt

io
n

,
sp

ot
,a

ge
n

t

T
h

is
ta

g
is

so
m

ew
h

at
sp

ec
ifi

c
to

u
sa

ge
in

vi
su

al
u

se
r

in
te

rf
ac

es
(G

U
Is

,t
ex

t-
ba

se
d

in
te

rf
ac

es
,e

tc
.)

an
d

sp
ec

ifi
es

th
e

ar
ea

of
th

e
sc

re
en

to
be

pr
oc

es
se

d
by

th
e

ag
en

t.

<
P

L
AY

>

at
tr

ib
u

te
s:

id
,n

am
e,

de
sc

ri
pt

io
n

,
ag

en
t,

ac
t

T
h

is
ta

g
al

lo
w

s
u

s
to

ki
ck

of
f

th
e

pl
ay

ba
ck

of
so

m
e

pr
er

ec
or

de
d

m
ed

ia
su

ch
as

au
di

o,
an

im
at

io
n

,
et

c.
T

h
e

ac
t

at
tr

ib
u

te
al

lo
w

s
u

s
to

sp
ec

if
y

a
m

oo
d

fo
r

th
e

pl
ay

ba
ck

th
at

ca
n

be
u

se
d

by
th

e
ag

en
t

to
ap

pl
y

to
th

e
m

ed
ia

be
in

g
pl

ay
ed

ba
ck

.

<
T

H
IN

K
>

at
tr

ib
u

te
s:

id
,n

am
e,

de
sc

ri
pt

io
n

,
ag

en
t.

T
h

is
ta

g
is

so
m

ew
h

at
of

an
an

om
al

y
an

d
is

u
se

d
to

re
pr

es
en

t
th

e
sy

st
em

or
th

e
u

se
r

“t
h

in
ki

n
g.

”
T

h
e

im
pl

em
en

ta
ti

on
of

th
is

ta
g

m
ay

be
a

bu
bb

le
-u

p
“t

h
in

k”
in

a
G

U
I

or
a

di
st

in
ct

vo
ic

e
fo

r
a

th
ou

gh
t

ba
ck

gr
ou

n
d.

<
SP

E
A

K
>

at
tr

ib
u

te
s:

id
,n

am
e,

de
sc

ri
pt

io
n

,
ag

en
t.

T
h

is
ta

g
al

lo
w

s
u

s
to

sp
ec

if
y

w
h

en
th

e
ag

en
t

sh
ou

ld
“s

pe
ak

”;
th

is
m

ay
m

ea
n

sp
ee

ch
sy

n
th

es
is

,
pl

ay
ba

ck
of

pr
er

ec
or

de
d

au
di

o,
et

c.
T

h
is

ta
g

ca
n

in
cl

u
de

em
ot

io
n

s,
br

ea
ks

,a
n

d
te

xt
.T

h
e

te
xt

in
cl

u
de

d
m

ay
be

u
se

d
by

th
e

sp
ee

ch
-s

yn
th

es
is

en
gi

n
e

to
pr

od
u

ce
au

di
o,

th
e

em
ot

io
n

s
ca

n
be

u
se

d
to

ch
an

ge
th

e
qu

al
it

y
(t

on
e,

pi
tc

h
,e

tc
.)

of
th

e
vo

ic
e,

an
d

th
e

br
ea

ks
al

lo
w

u
s

to
di

vi
de

sp
ee

ch
se

gm
en

ts
.

<
N

B
>

at
tr

ib
u

te
s:

id
,n

am
e,

de
sc

ri
pt

io
n

,
ag

en
t

T
h

is
ta

g
al

lo
w

s
u

s
to

cr
ea

te
lo

gi
ca

lb
re

ak
s

w
it

h
in

th
e

co
n

te
n

ts
of

ot
h

er
el

em
en

ts
.F

or
ex

am
pl

e,
th

is
co

u
ld

be
a

n
ew

pa
ra

gr
ap

h
in

a
te

xt
u

al
in

te
rp

re
ta

ti
on

or
a

ch
an

ge
of

in
fl

ec
ti

on
at

th
e

en
d

of
th

e
se

n
te

n
ce

an
d

a
pa

u
se

fo
r

an
au

ra
lu

se
r

in
te

rf
ac

e.

<
T

X
T
>

id
,n

am
e,

de
sc

ri
pt

io
n

,a
ge

n
t

U
se

d
w

it
h

in
ot

h
er

ta
gs

,t
h

is
ta

g
al

lo
w

s
u

s
to

sp
ec

if
y

te
xt

th
at

is
u

se
d

by
th

e
ot

h
er

ta
gs

(s
u

ch
as

th
e

SP
E

A
K

ta
g)

.

<
A

SK
>

T
h

is
ta

g
al

lo
w

s
u

s
to

pr
om

pt
th

e
u

se
r

th
at

w
e

n
ee

d
so

m
e

so
rt

of
in

pu
t.

<
C

H
O

IC
E
>

T
h

is
ta

g
al

lo
w

s
u

s
to

sp
ec

if
y

si
n

gl
e

or
m

u
lt

ip
le

ch
oi

ce
s

to
be

se
le

ct
ed

by
th

e
u

se
r.

524

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.3 Multimodal Content 525

note that what we learned in Chapter 5 in designing generic interfaces is orthogonal
to concerns of multimodality. What we ideally need is a language that provides
for a specialization mechanism that takes generic content and specializes and also
provides a mechanism for specifying the treatment of individual modalities and
the fusion/fission of those modalities.

8.3.6 MMIL
The Multimodal Interface Language (MMIL), proposed by Kumar and Romary,
focuses on specifying an interface among the various components of a multimodal
architecture, specifically one that leverages multimodal integration and dialogue-
based user interactions (both of which will be discussed later in this chapter).
MMIL contains both generic descriptors related to dialogue management, com-
prising general interaction concepts used within the system, and domain-specific
descriptors related to the multimedia application dealt with in the project [Kumar
and Romary 2003]. It should be noted that the authors of MMIL designed MMIL
to serve a general purpose; however, the process of developing MMIL primarily
involved designing exchange formats among modules in the MIMM project, which
is an application of a multimodal interface to a jukebox (a project whose intention
is primarily research oriented in delivering a better understanding of multimodal
user interfaces through the building of a real-life application). Of course, like other
multimodal languages that we have introduced, MMIL is XML based also.

To define an interface language among various components of a multimodal
user interface we first have to assume some standard roles for each one of these
components. These roles then tell us what function each component performs;
this leaves us to derive the appropriate interface standards among the various
components. To do this Kumar and Romary recognized six types of so-called
information streams: word and phoneme lattice, dependency representation forest,
dependency representation, word/phoneme sequence, visual-haptic semantic represen-
tation, and graphic-haptic layout. This taxonomy identifies, respectively, speech or
speechlike input that can be broken into distinguishable parts with start and end
points (with lattice referring to all of the connected starting and end points); the
lattice and semantic information regarding interdependencies among the members
of the lattice; dependencies to other modalities such as visual and haptic input;
the synthesis of visual, aural, and haptic output; spatial placement of visual-haptic
components; and GUI output to the user.

Based on what you have seen so far, you must have realized that MMIL is very
well thought out. Another place where this foresight is shown is in the specification
of a metamodel, represented in UML, for the domain (multimodality and the
components of a multimodal architecture) before the syntax was created. Figure 8.4
shows this metamodel. Based on this metamodel an XML-based syntax is created
with the structural tags listed in Table 8.6.

Kumar and Romary aptly recognize the fact that how we specify this element
and the other elements in the event element largely depends on how we define the
modalities within our system and design our architecture to allow us to build the
components to provide the functionality for these modalities. So, although they
introduce some possible tags, they also recognize that further formal specification

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

526 MULTICHANNEL AND MULTIMODAL USER INTERFACES

TABLE 8.6. MMIL Metamodel Structural Tags

Tag Description

<mmilComponent>
attributes: id

This element corresponds to the MMIL level class in
Figure 8.4. It wraps around the other elements that
specify the details of the component interface. As
can be seen in the diagram, an MMIL level can have
events and participants. Participants are defined as
the users who interact with the system and events
are input and output into the user interface. The id
attribute must have a unique value that identifies
this element uniquely. This same attribute is used
throughout the main structure of an MMIL
document (four tags) for unique identification.

<event> Events are characterized temporally. Events can have
other events or time levels (represented by the
tempSpan tag) because the specification of the user
input and output in MMIL revolves around the
temporal nature of the input and output.

<participant> This tag allows us to include information about the
user.

<tempSpan> This element represents the time level. The startPoint
attribute specifies when the event begins, the
duration specifies how long it lasts, and the end
point specifies when it stops (only one of duration or
end point must be specified).

0..*

0..*

Association
dependency

Association
dependency

Association

dependency

Association

dependency

Association

dependency

Struct Node

LevelName :
NMTOKEN

MMIL Level

LevelName:
MMIL

1..1 0..*

0..*

1..1
1..1

0..*

0..*
1..1

0..*

1..1
1..1

Event Level Time Level Participant Level

LevelName:
Event

LevelName:
Time

LevelName:
Participant

Association
dependency

Association
dependency

1..1

FIGURE 8.4. UML Diagram of the MMIL Metamodel [Kumar and Romary].

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.3 Multimodal Content 527

TABLE 8.7. Additional Tags for Outlining Specific Modalities

Tag Description

<evtType> This is an element included within the event tag
that allows us to specify the type of modality as
applicable to our architecture. For example, we
can specify “speak” as the value of the event type
or “telephonySpeech” to be the value of our event
type. The former allows us to specify an event
type for all incoming speech whereas the latter
allows us to specify an event type that applies
only to speech received through telephony.

<dialogueAct> As its name indicates, this tag allows us to specify
what type of action was taken by the participant
or the system. An example of a value could be
“request” where the user is asking the system for
something.

<addressee>
attribute: target

This tag is used to specify who the user is
addressing. This could be useful, for example, if
the user is speaking to someone else at the same
time as using a telephone to speak to the system.

<speaker>
attribute: target

This attribute allows us to specify how this event
applies to the various incoming input. For
example, we may have multiple users using the
system at the same time. The target attribute, like
the addressee, allows us to point to a specific
participant.

<relation>

attributes: type,
source, target

This tag allows us to relate the various events
together by specifying a temporal relationship
among them. When events are nested within
events, the type attribute specifies if an event is
the starting or the ending event, the source
attribute specifies what the parent event is, and
the target attribute specifies the child event.

of the language takes agreement between the standard bodies and the development
community. Let us look at some tags that they specify (see Table 8.7).

Once again, please keep in mind that this second set of tags is just a sample that
can be built on top of the metamodel based on the architecture and definitions of
the domain.

Kumar and Romary do so many things just right! Before they set out to build a
language to represent multimodality, they created a framework of rules. They also
recognized the importance of specifying interfaces for interoperable components
that handle various parts of a multimodal system. Unfortunately, MMIL’s only
small downfall is that it is extremely biased toward dealing with multimodality in
terms and notions of handling speech. The model used to identify the component

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

528 MULTICHANNEL AND MULTIMODAL USER INTERFACES

types neglects to recognize the importance of other forms of input such as graffiti.
MMIL seems to be the most well-thought-out representation of multimodality out
of all the tools and languages mentioned and researched here. MMIL is expressive,
semantically adequate, incremental, extensible, uniform, open, and underspeci-
fied. We see the same approach in MMIL’s design in these principles as well as its
metamodel as seen in HTTP in REST.

Nevertheless, it still has a long way to go before becoming something sufficient
for representing features of multimodality without bias toward any particular type
of user interface.

8.3.7 InkML
InkML (Ink Markup Language) is an effort by the W3C multimodal interaction
working group to create a markup language for supporting text entry through a
digital pad and a styluslike device. The idea of InkML is to allow us to create
graphical and text-based user interfaces that can be used just like pen and paper.
Although InkML is not specifically designed for multimodality, it is a significant
markup language for developing multimodal user interfaces.

As Larson [Larson 2003] points out, InkML is a great complement to VXML:
Noisy environments, areas that require privacy, and meetings are some of the
examples where a pen-based user interface offers a good alternative to voice.
Like VXML, XHTML, and various other markup languages designed to represent
different modalities, InkML can be included within a multimodal markup language
that allows usage of other markup languages (a document that points to multiple
namespaces and validates against a schema or DTD that allows inclusion of other
markup languages). At present, InkML is in draft stages; we refer you to the W3C
site for syntactical specifics on this language.

8.3.8 CUIML
CUIML, the Cooperative User Interfaces Markup Language, is developed by Sandor
and Reicher as an extension to UIML, which we previously discussed in Chap-
ter 5 and 6. The interesting thing about CUIML is that it ties in the concept of
generic user interfaces with the concept of multimodal user interfaces. As we
have mentioned previously in this chapter, these two concepts are orthogonal.
Whereas generic user interfaces allow us to outline content and interactions in a
generic matter and then specialize them, multimodal user interfaces are about the
way the various modalities combine and interact together to deliver meaning and
functionality to the user. Because CUIML’s syntax is based on UIML, we will defer
a detailed discussion of the syntax to Chapters 5 and 6, as well as the reference
paper. Figure 8.5 shows the general approach in the design of CUIML; namely,
CUIML relies on extension of the MVC design pattern. To achieve faster response
times, changes to the View should be done by the Manipulator instead of render-
ing new CUIML descriptions according to the View. Views described by markup
languages can be accessed by the DOM [Sandor and Reicher 2001].

The work of Sandor and Reicher on CUIML is important not because they
introduced yet another markup language, but because they introduce a useful
design pattern that allows us to tie in a layered approach in specialization of

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.3 Multimodal Content 529

FIGURE 8.5. Design and Usage of CUIML [Sandor and Reicher 2001].

user interfaces to building multimodal interfaces. Their design pattern outlines
a technique for specializing generic user interfaces into multimodal interfaces.
Furthermore, they build on an existing technology for generic user interfaces,
namely UIML, and extend a proved design pattern to address possible performance

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

530 MULTICHANNEL AND MULTIMODAL USER INTERFACES

Symbian

CDMA
CDMA

TDMA

TDMA

TDMA

PDA J2ME

Wired
TCP/IP

Desktop PC

802.11

T
C

P
/IP

Laptop

WAP Phone

BREW Phone

Windows CEInternet/Private
Network

FIGURE 8.6. Channels, Modalities, Devices, and Content Delivery to the Mobile Device.

problems in temporal synchronization of various modalities in a multimodal user
interface.

8.3.9 Delivering Multimodality through Use of
Markup Languages
So far, we have looked at a variety of markup languages that allow us to represent
multimodal content. Some even make an attempt at representing the behavioral
nature of multimodality. But how do we use this multimodal content to delivery
multimodality? Figure 8.6 shows some examples of different devices using differ-
ent channels to communicate with one another. Content-based markup languages
have historically been processed by some form of browser. Because the most pop-
ular of the early markup languages is HTML, most markup languages are inspired
by some sort of client–server frame of mind that assumes there is a browser that
executes the instructions in the document after the document is downloaded. So,
where is our browser? Or do we have a browser at all?

As we mentioned in the previous sections, X + V and similar efforts look at the
world in this way: They try to fit everything into the browser-based thin-client
model. However, many modern markup languages have evolved to be more than
their parents (e.g., HTML). A markup language such as MMIL or others can be
parsed into a DOM that drives a programmatic model. This lets us think of the
document as the initial state of a State Machine along with the instructions that
tell us how to transition from one state to another based on external events. In
fact, this is precisely the fundamental thought behind what XForms, MMIL, and
others base the separation of instance data, structure, and events on. So, what does
all of this mean in the real world?

The markup language has to be interpreted at some point to cause some action.
This means that some program, residing on the mobile device or some other part of

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.3 Multimodal Content 531

the network that it is connected to (e.g., servers) needs to interpret the document.
Where this interpretation is done depends on two factors: the implementation of
the communication channels (voice, text, video, etc.) and the architecture selected
for the application. The implementation of the communication channel itself de-
pends on two factors: 1. what the platform offers (the combination of the device,
operating system, development environment; for example, J2ME running on a
Symbian operating system on a Nokia device) and 2. what the network allows us
to do, with each specific carrier offering its own implementation of each channel
(video, audio, data, etc.) on its network infrastructure.

As application developers, we do not have much say in what the networks
or platform manufacturers do. However, we should be familiar with the offer-
ings of each platform. In this way, let us review platform offerings in the way of
multimodality:

1. Java: Currently, Java remains the most pervasive client-side application devel-
opment platform for mobile applications (not counting markup languages such
as WML because the capabilities of a markup language are inherently consid-
erably less than a programming language). Furthermore, it also offers the most
contiguous development environment with significant standardization on var-
ious APIs that are important to multimodality, such as dealing with various
types of media (Java Media Framework), distributed application development
(servlets, RMI [Java Remote Method Invocation], etc.), and a variety of other
technologies that are crucial to developing multimodal applications. As we saw
in previous chapters, Java on a mobile device may mean either J2SE or J2ME.
Whereas the former allows for implementation of multimodality, it is designed
for devices that have a significant amount of resources (processing power, stor-
age, etc.). Currently, most mobile devices that can host J2SE are very expensive.
Unfortunately, J2ME, which is the part of Java designed for less powerful de-
vices, does not explicitly provide support for multimodality on mobile devices
(we are referring to the CLDC and MIDP 2.0 here). However, pieces of the
puzzle are offered. Although MIDP 2.0 provides a basic framework for net-
work connectivity, MMAP (Mobile Media Specifications) provides a framework
for dealing with multimodal content, and several other APIs deal with other
aspects of mobile applications, there are no standard APIs for coordinating dif-
ferent modalities, synchronizing various communication channels, or handling
multiple communication channels simultaneously (if made available by the op-
erating system, device, and network). Therefore, Java still has some significant
milestones to achieve for delivering a platform for multimodal user interfaces
on mobile devices.

2. BREW: Of all the tools that we have discussed, BREW and Symbian provide the
most true support for multimodality. The main reason for this is that BREW 2.0
provides a TCP/IP-based connection that takes advantage of the robustness of
CDMA networks. Specifically, it is possible to stream any data over a TCP con-
nection. The reliability of the connection is another issue. QOS and bandwidth
of most CDMA networks are still not at levels that enable us to stream media with
high-bandwidth requirements reliably (keep in mind that bandwidth and QOS,

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

532 MULTICHANNEL AND MULTIMODAL USER INTERFACES

though related, are not the same thing). However, with WCDMA, CDMA2000,
and the various other advanced CDMA networks (to be discussed more closely
later in this text), BREW provides a robust platform for developing multimodal
applications. Though there is currently no true multithreading support for de-
livery of coordinated simultaneous multimodality, there is no virtual machine
in BREW and the application is written in the C language so there is plenty of
room for performance optimization. The higher bandwidth delivered by CDMA
networks coupled with the robust programming environment allow us to build
coordinated multimodality (not simultaneous coordinated multimodality) with
BREW.

3. Microsoft: Like the Java platform, Microsoft has a variety of solutions for the
mobile market. Included are the so-called Stinger platform and Windows CE.
These platforms range from the very proprietary smart phones to the more open
Windows CE running on PDAs such as the Compaq Pocket PC. The only way
of implementing multimodality, at present, with the Microsoft platform on a
mobile device is on the higher end hybrid phone–PDA devices running Win-
dows CE. Such devices provide a telephony API as well as a data call API. Even
in those cases, there is no support for simultaneous coordinated multimodality
because multithreading models (thus far) are cooperative. The data channels
provided are not as robust as those provided by BREW and the APIs are not as
open or prolific as J2ME CLDC and supporting APIs.

4. Symbian: As we mentioned previously, Symbian and BREW are currently the two
most advanced and prevalent mobile development platforms for multimodality.
Like BREW, Symbian offers an advanced communication API. Whereas BREW’s
APIs are implemented and optimized for communication over a CDMA net-
work, Symbian’s communication APIs are designed and optimized for GPRS
and similar standards that sit on top of slightly lower layer base communica-
tion protocols of CDMA and TDMA. Symbian devices also benefit in being able
to use GSM. Symbian is unique in that it offers an extensive set of Java-based
functionality with Personal Java in addition to the native C/C++-based API.
In this way, it is far more robust than the other platforms. Currently, there is
support for JavaPhone 1.0, the Java Telephony API, and Java APIs for a variety
of communication protocols such as UDP, SMS, serial port, and infrared. In
this way, Symbian offers a very robust framework for developing multimodal
applications.

5. WAP: The collection of the WTAI agent providing telephony access on mobile
devices and WML allows WAP developers to have multiple modes, but it does
not guarantee coordination nor does it provide simultaneous access to chan-
nels. WAP 1.x was the first platform to deliver multimodality in that it enabled
developers to access the telephony agent on the phone to make phone calls.
The implementation of most of the WTAI functionality was very poor in the
initial releases of WAP so it inhibited developers greatly. However, things have
improved with WAP 2.x browser releases. WAP provides a multimodal solu-
tion that recognizes the pervasiveness of the phone channel (e.g., PSTN) as
the primary means of delivering voice to the user. By providing access to the
telephony channel, the user can interact with the text-based browser, select an

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.3 Multimodal Content 533

option that causes an outbound phone call, and, upon termination of the phone
call, return to the browser. The unfortunate part is that the user cannot use the
browser while the phone call is in session. Hence, not only does WAP fail to
deliver coordinated or simultaneous coordinated multimodality, but there are
some latencies in switching modalities from the textual mode to the voice mode
and back.

What we just looked at were the software platforms, but what about the devices?
There are typically three key device categories when it comes to multimodality:
legacy, transitory, and next generation.

1. Legacy: Most mobile devices built before year 2000 have very little or no sup-
port for multimodality. Such legacy mobile devices are very limited in their
processing power and functionality and are built on operating systems and hard-
ware that is outdated and is unable to take full advantage of modern wireless
networks.

2. Transitory: These are devices such as WAP phones and some PDAs that allow
minimal amount of control over the various channels and modalities. For ex-
ample, in WAP 1.x, we can make an outbound phone call and establish a voice
channel, but there is no concept of simultaneous multimodality. Most of these
devices have been distributed in the marketplace after year 2000. The limita-
tions on these devices are due to the resources on the device as well as the
communications protocols for which they are designed to communicate (WAP,
TDMA, etc.).

3. Next Generation: These devices are built on a hardware architecture that is de-
signed to deliver coordinated and simultaneous access to multiple channels.
The fact is that if the hardware platform does not support a feature, the soft-
ware sitting on top of it cannot build on the nonexisting feature! This is the
case with many of the devices today. New devices supporting key hardware
technologies such as the Intel PCA architecture, ARM/StrongARM technolo-
gies, and other hardware architectures specifically designed for mobile devices
will allow the application developers to design applications that support si-
multaneous multimodality. The newer and more advanced mobile operating
systems such as Symbian OS 7 and Palm OS 5 will play a major role in this as
well. Because most application developers will be writing their applications
on top of some mobile operating system, it is crucial that the operating sys-
tem provide asynchronous I/O and other required mechanisms for providing
simultaneous and coordinated multimodality (if supported by the hardware).

The user interface is ultimately rendered at the mobile device itself. Consequently,
the mobile device and its network connectivity are typically the two factors that be-
come the biggest barriers in implementing any potential multimodal functionality.

8.3.10 Delivering Video to Mobile Devices
Streaming video is a higher level of multimodality than integrated pictures: It is
a sequence of pictures accompanied with a particular timing (typically uniform

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

534 MULTICHANNEL AND MULTIMODAL USER INTERFACES

throughout the sequence) and possibly accompanied, and synchronized, with
some audio. As we have discussed several times throughout this text, mobile
devices are limited in their capabilities because of their small size. Furthermore,
within the near future of release of this text, long-range wireless networks will
not be able to deliver ample bandwidth for a free-flow usage of video streaming.
So, to deliver video to the mobile device, we need to use creative techniques to
compress the data to get it to the mobile device and then replay it based on the
available display capabilities of the mobile device.

There are two points of concern with video content: its format and the method
by which it is delivered to the mobile device. Most preexisting digital video content
on the Internet, and elsewhere, is exchanged in the formats specified by the Moving
Pictures Expert Group (MPEG). To date, there is no prevailing streaming format
and the market is dominated by formats from Real Networks, Microsoft, MMS
vendors such as Nokia and Ericsson, and a series of other proprietary solutions.

We have discussed MMS first when we looked at WAP in Chapter 2 and then
when we looked at visual user interfaces in Chapter 6. MMS is interesting because
it provides an application layer channel for multimedia content. Though this does
not mean that MMS makes multimodality possible, it does mean that it facilitates
the task of the developers. Having said this, let us enumerate some of the major
characteristics of the MMS architecture:

1. MMS Context: The context is the collection of information shared between two
points during an MMS session that is required for the two to send and receive
MMS messages.

2. Virtual Manufacturing Device (VMD): The VMD is the MMS object that has at
least one network-visible address [Falk and Robbins 1997].

3. CRUD Operations: There are a set of operations (Create, Get, Set, and Delete)
that respectively allow for the so-called CRUD (create, read, update, and delete)
operations on MMS objects.

4. Events: Events are used by the carrier network to determine the state and han-
dling of messages. There are three types of event-based objects: Event Condition,
Event Action, and Event Enrollment.

5. Semaphore: This is the same concept as a UNIX semaphore. Semaphores are
basically values that can be read and changed by various processes to coordinate
activities, such as resource use, among them.

6. File: MMS provides a mechanism for transferring a complete file.

There is much more to the MMS architecture components, but the aforementioned
are the main components. The MMS server is part of the WAP infrastructure in the
back end. The MMS client resides on the mobile device. The WAP 2.x infrastructure
supporting MMS acts as a proxy between the MMS peers as MMS is intended to
act as a peer-to-peer system (though a message has to go through considerable
handling in the network infrastructure). Developing an MMS infrastructure is a
fairly complex task so it is not something that the software application developer
can do on his or her own. The best thing about MMS is that the infrastructure
is there and all that the developer needs to do is create an application that can

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.3 Multimodal Content 535

interface with the MMS infrastructure. This may include servers that provide the
appropriate content and a client running on the mobile device (J2ME, BREW,
etc.).

MMS content is largely based on a subset of SMIL. Typically, devices can record
data (through a phone camera and the phone speaker for example) and send it
to some network node through a standard or proprietary mechanism. Alterna-
tively, the content may be recorded. Either way, the content must be translated to
something consumable by an MMS-enabled client, which means something that
can understand SMIL. Formats for audio include audio/x-amr, audio/x-wav, and
others. Formats for graphics include JPEG, Progressive JPEG, WBMP, and others.
Binding is done at the MMS client using the SMIL document.

MMS provides two things that are useful for multimodal user interface: 1. an
infrastructure that supports multimodal content and 2. a standard for multimodal
messaging. Nonetheless, it is crucial to keep in mind that MMS is asynchronous.
This means that you cannot design a multimodal user interface using MMS. How-
ever, you can use the MMS messaging format to send your content back and forth
and the MMS support on your device to get the input from the user (video and
audio).

Returning to our discussion of the video content type, we may be delivering
video that has been prerecorded or stream video in real time. The task becomes sig-
nificantly easier when dealing with prerecorded video, audio, or any other type of
content. The requirements for the QOS are considerably higher for streaming real-
time content than they are for preexisting content. We also have to build special
features into the application such as buffering and skipping if we are considering a
real-time solution. Though this is a piece of the mobile application to be “bought”
rather than “built,” there are always the development costs of integration and the
resources that are taken up by the modules that must implement these special fea-
tures for streaming. So, streaming is inherently more difficult, and therefore more
costly, than replay of batch video. Another problem that should not go unnoticed
is that video typically increases power consumption by orders of magnitude. First
there is the fact that it typically must be decompressed (because compression is
required to use the bandwidth more efficiently) and then displayed, which takes
turning many pixels on and off or changing the colors (leading to more power
consumption than just leaving the same picture up on the screen).

Current technologies transmit video at about 4 to 7 frames per second; however,
efforts such as those at the University of California at San Diego are on their way
to increase this to at least 15 frames per second (of good quality video) [Paulson
2003]. In this section, we will look at pictograms, MMS, and Enhanced Messaging
Services (EMS) as existing technologies for doing this. Currently, MMS is the only
standard designed that addresses specific issues with the delivery of video to a
mobile device with a weak connection to the network.

Whereas most video content may exist in MPEG format, or at least be convertible
to an MPEG format, the carriers, the networks that they deploy, and many mobile
devices that are distributed to the consumers support other proprietary or open
formats specially designed with additional compression or accountability for QOS
problems. Additional software techniques and architectural solutions have been

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

536 MULTICHANNEL AND MULTIMODAL USER INTERFACES

designed to combat these problems. For example, Yu and colleagues [Yu et al.
2003] outline a technique by which compression and decompression of video
may be done in stages. This is particularly useful in mobile computing as we can
distribute the compression and decompression across the various components of
the system (the servers, the mobile device, proxies, etc.) to accommodate all of the
required platforms. The technique developed by Microsoft researches [Yu et al.]
and similar techniques are useful because they layer the video content and the
processing of it (compression, etc.) so that, depending on the type of device used,
we may need to use one, two, three, or n layers of processing corresponding with
the capabilities of the device and the wireless connection with which it reaches
the rest of the network. This technique is useful even if we stay with MPEG: We
can determine the number of colors and the resolution of the image at run time
while serving a content to a particular device.

This gives us the perfect segue way to the processing of dynamic and static
content through multiple stages (as in the case of layered processing of video).
Throughout this text, we have referred to Cocoon, an Apache project, as a tool
that can help us with various aspects of mobile application development. One of
those tasks that it allows us to do conveniently is to create a “pipelining” process
through which we break down the processing of content into sequential stages.

8.3.11 Cocoon
We have mentioned Cocoon, in passing, or as an example of a server-side frame-
work used for user-interface-independent development. In this section, we will
delve more into how Cocoon works and write some simple applications for it.
Before we go any further, let us look at a brief history of Cocoon.

Cocoon was started as a simple Java servlet, in 1999, that allowed XSL trans-
formations and some minor additions for creation of rules for when and how
to perform these transformations. Stafano Mazzochio was the original author of
Cocoon, an Apache project. Today, there are dozens of contributors in the core
team including several renowned software engineers. Since its inception, Cocoon
has grown by leaps and bounds and has become one of the most popular frame-
works for building server-side applications that require publishing to a variety of
user interfaces. Cocoon is at its 2.x version at the time this text is being written.

Brett Mclaughlin, now one of the contributors to the Cocoon project, in his
book Java and XML, gives a very good introduction to Cocoon 1.x [McLaughlin
2000]. For those users interested in using the 1.x version of Cocoon, in addition
to the documentation at the Apache Web site, this is perhaps the best reference
available. However, Cocoon 2.0 was radically redesigned as there were some scal-
ing issues with large documents for Cocoon version 1.x. Version 1.x of Cocoon
operated on XML documents exclusively with a DOM that was loaded into mem-
ory. Although this is not problematic for small documents (and, in fact, could
have some performance advantages because disk I/O can be slow), it introduced
problems with larger documents. The Cocoon 2.x design also lends itself to bet-
ter separation of various interface concerns, which, as previously seen, is one of
the main concerns of mobile application development. Historically, the features of
Cocoon 1.x were the first of their kind but it was not until version 2.x that Cocoon

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.3 Multimodal Content 537

became a commercial-grade product with improved architecture. We recommend
the Cocoon Developer’s Handbook by Moczar and Aston [Moczar and Aston 2002]
for learning Cocoon 2.x.

Here are some recommendations in working with Cocoon before you start
using it:

1. Read the log files when you run into problems. The error pages that you will get
back will often be difficult to understand and cryptic. This is understandable,
and even somewhat unavoidable, as there are many layers of processing. By
the time an error is actually displayed, its real cause may be buried deep inside
Cocoon. Nonetheless, the log files are an excellent source of finding the root of
the problem. There are several log files.

2. If you are used to using IDEs to develop, you will need to brush up on your
manual coding skills and begin to be more thorough. None of the popular IDEs
support Cocoon’s XSPs at this time. The byproduct of this is that writing XSP
pages is similar to writing JSPs several years ago when there were no tools for
rapid JSP development. Most of today’s Java-based IDEs allow for color coding
of JSPs just as they do for regular Java. Some, such as JBuilder, can even compile
these JSPs. You will not have such luck with XSPs unless you are out to write
your own compiler or retrofit the various compilation components that come
with Cocoon into an IDE. (If you try to do that, you either have too much time or
are too advanced to be reading this part of the textbook!)

3. Cocoon is an open-source project. If you find a bug, report it. Most open-source
projects use their users as their quality assurance team, so it is the responsibility
of the users to inform the developers of problems or bugs.

4. Use the latest release version of Cocoon that you can use. Although there are
beta versions available too, we do not recommend using beta versions of any
open-source project for learning purposes. Once you have become more familiar
with Cocoon, then you can venture into the beta versions.

With this said, keep in mind that since the inception of Cocoon, many commercial
products have started copying some of the concepts and delivering commercial-
grade software. Product selection for your project is up to you. We have simply
chosen Cocoon because it is open source, it was the first of its kind, and it includes
all the necessary concepts we want to convey to the reader.

In Chapter 2, we took a good look at the Cocoon 2.x architecture and its usage
in creating user interfaces for multiple devices as a publishing framework. Now,
we are going to see how Cocoon helps us in creating multimodal user interfaces.

Cocoon and Multimodality
The most important feature that Cocoon offers the mobile developer is a clean
architecture for creation and specialization of generic user interfaces. When it
comes to multimodality, Cocoon is useful because of the following:

1. It provides a well-designed infrastructure for building a fusion/fission engine.
We will look at various architectures for multimodal systems in Section 8.4. You

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

538 MULTICHANNEL AND MULTIMODAL USER INTERFACES

POTS-to-HTTP
Proxy

WAP-to-HTTP
Proxy

UDP-to-HTTP
Proxy

Cocoon

POTS

WAP

BEEP

FIGURE 8.7. Extending Cocoon to Provide Non-HTTP Communication Channels.

will see that the core of the frameworks that enable us to deliver multimodality
is an engine that allows binding of the various content in different modalities
delivered through a variety of channels as well as temporal coordination of
actions between the different channels. Cocoon does not provide a complete
fusion/fission engine. However, it does provide us with the component frame-
work to make it into one. It provides a mechanism for pipelined XML trans-
formations, content aggregation, and publishing the content. Unfortunately,
Cocoon is intended mainly for various Web-based technologies. So, this means
that Cocoon provides only a single input channel: HTTP. Fortunately, there
is a way to get around this as you can build proxies that treat individual chan-
nels as separate processes and in turn communicate with Cocoon. Figure 8.7
shows how this may be possible.

2. Cocoon provides a good framework to tie together two orthogonal user inter-
face concepts for mobile applications, namely generic user interfaces and mul-
timodality, in a cohesive manner and within the same application framework.

Now, let us look at the mechanisms that Cocoon provides for fusion/fission of
multimodal content:

1. Cocoon transformers can be used as a mechanism to aggregate content intended
for multiple channels (as a fuser). This aggregation can be done using CInclude,
Xinclude, or Pipelining [Moczar and Aston 2002]. Both CInclude and XInclude
allow inclusion of external content specified by URIs. XInclude is a W3C stan-
dard and CInclude is a Cocoon tool. Each has its advantages. Obviously, we
recommend the usage of standards (XInclude in this case). You can also use
Cocoon pipelines to get the same effect.

2. Matchers and selectors can be used for fission. Although, as we can see in
Figure 8.7, not all of the delivery channels for the various modalities will

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.3 Multimodal Content 539

be HTTP (matchers and selectors being largely designed to take advantage of
HTTP-based features), the proxies can translate channel-specific features (spe-
cific to POTS, BEEP, etc.) to HTTP headers, URI parameters, or some other
value that can be used by Cocoon to pick the appropriate processing pipeline.

3. DELI (DElivery Context LIbrary), contributed to the Cocoon project by HP
labs, provides support for CC/PP and UAProf within Cocoon. This means that
we can use DELI to detect the multichannel capabilities of a device and se-
lect the appropriate pipeline, using the respectively appropriate channels and
modalities. DELI was originally created to address WAP-based devices. How-
ever, there is nothing to keep us from using it, and extending it, to interface
with other devices using other channels.

4. There is a particular Cocoon transformer that is of special interest to us: the
I18ntransformer. This transformer, along with the rest of the Cocoon infras-
tructure, provides a clear way of separating the concerns of multimodality from
those of internationalization.

This brings us to the end of our discussion on Cocoon. We refer you to the
references we have mentioned here if you are interested in implementing a project
based on Cocoon. Next, we will look at the SMIL and the problem of temporal
synchronization that lies at the heart of the multimodality problem.

8.3.12 The Synchronization Problem
Perhaps the most important difference in the design of single modality and mul-
timodal user interfaces is the temporal coordination between the channels. Let
us say, for example, that we intend to use a telephony channel for sending au-
dio back and forth between two nodes and a TCP/IP-based channel for graphical
data. There is a particular sequence in which the graphical information must be
displayed while audio is being heard. Because we are dealing with two different
channels, the content coming out of those channels must be synchronized first
on the server side and then on the client side. Even if we are dealing with simple
TCP/IP sockets, the sockets could be established between one mobile device and
multiple network points. Each network point may have certain QOS qualities that
may cause the temporal behavior of the abstract channels to be different. The
problem only gets more complicated with a more in-depth look.

There are various design patterns that have been well explored in the develop-
ment of stationary applications. Some are based on the concept of synchronization
and the techniques to implement synchronization between different channels. One
high-level pattern recognized by Fujino [Fujino 2002] encompasses many of these
patterns. The pattern is simply referred to as the temporal representation. Fujino
recognizes the common theme that runs through all of the patterns that deal with
the temporal nature of changes in state.

So, the forces of all patterns that deal with temporal representation focus on solv-
ing the ever-changing state of the software (if we are dealing with object-oriented
systems, these are objects). The rate of change of the state of various internal
components are not necessarily uniform and it is not only possible, but probable,
that the state of something is “forgotten” at some point (some component is out

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

540 MULTICHANNEL AND MULTIMODAL USER INTERFACES

of synchronization with others). In our world of multimodal interfaces for mobile
applications, this means that, in addition to all of that which we have discussed, we
need to understand that the timing and latency properties of the individual chan-
nels may vary from one another and that we need to deal with possible problems in
timing, latency, and reliability of the data delivery by each one of the channels in a
way that does not affect the processing of the other channels. We will look at the
two concepts of fusion and fission later (analogous to their use in physics) that
focus on putting together multiple things and then taking them apart. These are
two things that multimodal tools, frameworks, and architectures must enable us
to do to deliver multimodality: to fuse things based on their temporal properties
and to take them apart for use in a temporally appropriate manner. For example,
Flippo and colleagues have created a framework that defines a fusion manager
where direct manipulation and conversational interaction run in parallel and may
influence each other [Flippo et al. 2003]. We will look at other work later in the
multimodal architecture section.

For these various patterns and architectures to work and be effective, we need
a linguistic tool to specify the temporal nature of the multimodal content and the
multimodal interactions between the user and the system. This is where SMIL
comes in.

SMIL
SMIL, developed by the W3C, is perhaps the most important standard of concern
when it comes to the delivery of multimodal content to the mobile device. SMIL
defines an XML-based language for specifying multimedia content and multi-
modal interactions. To date, the latest version of SMIL stands at 2.0. SMIL 2.0
differs slightly from SMIL 1.0: Although supporting all SMIL 1.0 documents
through deprecation, SMIL 2.0 is designed to be processed using the DOM because
managing the temporal nature of multimodal interactions and multimedia content
are closer to navigating through various states of a user interface rather than pars-
ing through an XML document and emitting events based on the content (SAX
model).

SMIL follows the same convention as the most recent W3C standards such as
XHTML in providing modularization. SMIL is broken down into a set of mod-
ules to provide flexibility and extensibility; depending on the functionality of-
fered by each module and the intended usage, the developers can mix and match
modules somewhat freely. In this section, we will look at SMIL as it may apply
to mobile applications. SMIL is a very large specification and deals with many
different aspects of multimedia content and interactions. For a complete under-
standing of SMIL we refer you to the SMIL specifications at the W3C Web site
[SMIL 2.0]. A collection of modules is referred to as a profile (the same terminol-
ogy is used in W3C standards that use modularization). Table 8.8 shows the re-
quired modules for the host language conformant profiles and integration conformant
profiles.

Each module may be validated independently through a DTD provided publicly
by the W3C. For example, the DTD for the animation module may be found at
http://www.w3.org/2001/SMIL20/SMIL-anim.mod.

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.3 Multimodal Content 541

TABLE 8.8. Satisfying Host and Integration Conformance in SMIL

Host Language Integration
Profile/Module Conformant Conformant

Structure Required
BasicContentControl Required Required
BasicLayout Required
BasicLinking Required
BasicMedia Required Required
BasicTimeContainers Required Required
MinMaxTiming Required Required
RepeatTiming Required Required
SkipContentControl Required
SyncbaseTiming Required Required
BasicInLineTiming Required

Host conformance basically means that the document root namespace is SMIL.
In other words, the main purpose of a document that is host conformant is to de-
scribe multimodal interactions and multimedia content. However, SMIL modules
can be used by other W3C XML base standards. If a document does so, for it to
be integration conformant, it needs to include support for the modules specified
under the collection of integration-conformant profile. The root element of a host-
conformant document is <smil>. The SyncbaseTiming module may be excluded
from either profile for mobile devices that are resource-starved.

Table 8.9 lists a small set of the tags provided by the SMIL standard.
The core of SMIL is provided through two sets of elements: those elements

that provide information regarding the timing of things (grouped in a collection
called TIMING-ELMS) and those elements that provide information (grouped in
a collection called MEDIA-ELMS).

SMIL and Mobile Applications
SMIL provides a standard taxonomy and language for representing the temporal
behavior of multimodality. However, because of the breadth of issues that it tackles,
it can be too heavy to interpret for resource-starved mobile devices. Therefore, a
subset of SMIL may be useful. This is the SMIL Basic profile. The SMIL Basic profile
is the foundation for MMS specified in WAP 2.x. As its name suggests, SMIL Basic
is a subset of SMIL that provides only the absolutely essential functionality offered
by SMIL.

When it comes to processing an SMIL document, we are processing it on a
device that either has the necessary resources to deal with a document based on
the complete specification (such as servers, PCs, laptops, etc.) or one that does
not (such as most cellular phones, PDAs, etc.). In the first case, we simply need
an SMIL browser; the second case is more complex. Figure 8.8 shows an example
architecture.

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

542 MULTICHANNEL AND MULTIMODAL USER INTERFACES

TABLE 8.9. Summary of Some of the SMIL Tags

Element Description

<par> The par tag (which stands for parallel) allows us to specify a set
of elements that should be presented simultaneously.
Simultaneity is defined by the start time of the presentation of
the elements.

<seq> This tag allows us to specify a set of elements that should be
presented sequentially. This tag and the <par> tag are the two
main tools in specifying the temporal relationships among the
various media in SMIL.

<switch> This element allows the developers to specify different sets of
scenarios for presenting multimedia content or the multimodal
interactions with the user based on evaluation of one or more
attributes. It should be noted that this tag should not be
misused for placing business logic into the SMIL document or
snippet. This tag is intended strictly for presentation logic. So,
just like JavaScript with HTML or VXML, be weary of
misusing logical tags provided by SMIL. In the case of mobile
applications, because most end devices are resource-starved,
we want to preprocess as much of the logic on other devices on
the network (servers, PCs, etc.) as possible. For example, one
use for the switch statement may be to display a different size
graphic on the device depending on the screen size. However,
we may be able to perform this on the server side if the device
is getting the SMIL document from the server. In many cases
where the device is resource-starved this is preferable. Even in
those cases where the device is not resource-starved, it is a bit
risky to use this statement (unless absolutely necessary)
because different applications (SMIL-enabled browsers and
other applications that consume SMIL) will have small
differences in their interpretation of the document.

<head> This tag is used consistently as in the case of the other W3C
standards to specify the document header. It holds information
about the document (metainformation) itself. This can include
metainformation, information about the layout of document,
or information about customized extensions included within
the document.

<body> This tag wraps around the other tags that specify the temporal
behavior of the content and interactions that define the
multimodality properties of the user interface. Both this tag
and the head tag belong to the structure module; therefore,
their use implies support for the structure module.

<layout> This is the element that is used within the <head> tag to specify
the layout of the document. This tag provides roughly
analogous functionality to SMIL to what CSS offers for
XHTML and HTML.

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.3 Multimodal Content 543

SMIL Component

SMIL
FrontEnd

SMIL
Scheduler

SMIL
TimerMgr

EIT

DOM I/F Player Manager

DOM I/F

Brower Engine
Generic Web Browser

Media Players
Audio Player

Image Player

Video Player

XML
Parser

Layout

Presentation
Actions

SMIL Document
Information

Presentation
Actions

Presentation
Completion

Presentation
Completion

FIGURE 8.8. Example Architecture for Processing SMIL Documents on a Mobile Device [Hieda
et al. 2003].

When processing an SMIL document on a resource-starved mobile device, most
of the time we will opt to use the SMIL Basic profile. Because there may be other
tasks that need to be performed on the mobile device at the same time, the pro-
cessor of the SMIL Basic profile is probably a component in a bigger application.
This is why Hieda et al. outline a technique for integrating a processor of the
SMIL Basic profile into an application, referring to the general technique as SMIL
Component (which is probably not a good name because the word component
is one of the most overused words in the computer science vernacular). SMIL
Component is composed so that it can be attached to a generic Web browser pre-
installed in mobile terminals and does not have the generic browser functionality
such as a parser and a layout manager [Hieda et al. 2003]. The basic idea is that we
should be able to integrate SMIL capabilities into a variety of mobile applications

<smil>

<body>

<par begin="1s">

<audio id="splash" begin="0s" dur="7s"

src="splash.wav"/>

<img begin="1s" end="splash.end-2s" fill="freeze"

src="splash.gif"/>

</par>

<seq>

<video id="splash_vid" end="5s" src="splash.mpg"/>

<text dur="3s" repeatCount="1" max="5s"

src="splash.wml"/>

</seq>

</body>

</smil>

FIGURE 8.9. SMIL Basic Profile Sample Code.

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

544 MULTICHANNEL AND MULTIMODAL USER INTERFACES

running on a resource-starved mobile device. These applications may be browsers
or other types of applications. Figure 8.9 shows a simple SMIL basic profile
document.

8.4 SOFTWARE AND SYSTEM ARCHITECTURES FOR
DELIVERING MULTIMODALITY

Multimodal systems are constructed very differently from standard GUIs, largely
because of the nature of human communication; whereas input to GUIs is atomic,
certain machine perceptions of human input such as speech and gestures is uncer-
tain, so any recognition-based system’s interpretations are probabilistic [Oviatt and
Cohen 2000]. Though multimodality has its advantages, not just for the user but
also for the user interface developer who can use multimodality to reduce interface
ambiguity and increase friendliness, it also has the disadvantage of exponentially
increased complexity. In this section, we will review some of the general archi-
tectural solutions for building multimodal systems. Note that the architectures
that we introduce are not mutually exclusive, nor are they necessarily competing
architectures. Although they solve some common problems, each also addresses a
unique set of problems.

First, let’s go through a survey of the various high level architectures prevalent
in creating multimodal systems.

1. Multimodal Integrator: Recognized by Oviatt [Oviatt OHSU 2002], this archi-
tecture relies on the processing on the input and output from the individual
channels individually and then integrating the processed results in a multimodal
integrator. This multimodal integrator (a software component that could be its
own system or a subsystem of another system) encapsulates the logic for inter-
preting and integrating the various input and output being directed from and
into the multiple channels. This architecture has some very significant advan-
tages. First, we do not have to reinvent existing software components designed,
implemented, tested, and proved for processing of the input and output to the
individual channels. Second, most of the logic to handle multimodality is con-
centrated in one software component, thereby adhering to the separation of
concerns that we have mentioned so many times throughout this text. Finally,
it is an extensible and flexible architecture. We can add new input and output
channels to the software that have minimal effect on the existing components;
likewise, we can change the functionality of the existing software components
written to handle individual channels while avoiding cascading modifications
with the other components. Figure 8.10 shows a block diagram that depicts an
architecture that relies on the multimodal integrator to coordinate tasks of mul-
timodality. This pattern is also recognized by Corradini and Cohen [Corradini
and Cohen 2002]. Oviatt, Cohen, and Corradini also refer to the multimodal
integrator component as the fusion agent where the single-channel handling of
the input and output is handled by other agents such as a speech agent. There
are a few things that we should note about this architecture:

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.4 Software and System Architectures for Delivering Multimodality 545

Mouse Monitor SpeakerMicrophone

Hardware

Network, Operating System, Messaging Layer, etc.

Textual
Input

Reception

Textual
Presentation

Graphical
Presentation

Graphical
Output

Generation

Audio Output

Generation
Voice

Recognition

Audio
Presentation

Audio
Presentation

Multimodal
Integrator

Business Logic

FIGURE 8.10. Multimodal Integration (Fusion Agent) Multimodal Architecture.

a. There may be several variants of this architecture as the number of layers that
come before the multimodal integrator (fusion agent) is not dictated by this
architecture. We may be integrating the raw data coming from each channel
(bits, bytes, text, or whatever the raw data interface may be) or we may be
integrating the meanings of this input and output. In either case, the task of
the multimodal integrator is largely to coordinate the activities and content
involved in single-mode rendition into a multimodal system.

b. This architecture is orthogonal but related to PAC and PAC-TG as introduced
in previous chapters. Although we can still have generic content that is being
specialized for each modality, the specialization may be done inside or outside
of the fusion agent. The act of “fusing” or “integrating” has more to do with
integrating the input/output of each channel, or integration thereof, rather
then the specialization of the content going into and coming out of each
channel.

c. A list of various more granular software patterns such as the broker, the
mediator, or collaboration may be used in the internal implementation of
the larger grained components in the diagram in Figure 8.10. Note that this
diagram and the idea behind it represent a high-level pattern. There are
variations on this architecture. The act of “integration” or “fusion” can be
done in multiple stages during the processing (or pipelining) of the content
through each modality and channel. In other words, we can have multiple
types and instances of the multimodal integrator coordinate the efforts among
the interpreters, recognizers, and generators. The terms “early fusion” and
“late fusion” are often used in the literature as reference to some of the
variations on this architecture.

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

546 MULTICHANNEL AND MULTIMODAL USER INTERFACES

d. Oviatt and colleagues also recognizes, in a separate paper [Oviatt, Jacko,
and Sears 2002], that there are the following different levels of “fusion” or
“integration”:

i. Frame-based fusion is where we may use structural properties, such as the
visual boundaries (thereby the usage of the term frame-based), associated
with the various inputs being fused

ii. Semantic fusion is where we obtain the semantic meaning of the various
parts being integrated and have some predefined set of rules that allow
us to integrate them based on their meaning

iii. Unification-based fusion is where the meaning of the parts is programmat-
ically driven from some set of rules (similar to the semantic fusion).

iv. Feature-level fusion is a method for fusing low-level feature information
from parallel input signals within a multimodal architecture; this has
been applied to processing closely synchronized input such as speech
and lip movement [Oviatt, Jacko, and Sears 2002].

Note that the usage of one of these techniques does not prohibit the others. In
fact, any combination of them may be used in building the integration/fusion
logic.

2. Generic Multimedia Multimodal Dialog Architecture (MMDA): Recognized by
Djenidi, Ramdane-Cherif, Tadj, and Levy [Djenidi et al. 2002], a basic MMDA
allows the user to decide which modality or combination of modalities is better
suited to the particular task and environment. MMDA leverages various soft-
ware agents that cooperate to get the task of “fusion” done. Recall that mobile
agents are autonomous and asynchronous and can move around among various
hosts. The agents of the MMDA architecture are autonomous and asynchronous
but it is not necessary that they be mobile among different hosts. The focus of
MMDA is to provide a “dynamic” architecture where the agents can reconfig-
ure themselves and the way they communicate in different circumstances. This
architecture builds on variations of the first architecture that we introduced,
namely early and late fusion.

The problem with MMDA is that today’s base technologies (operating system,
programming languages, etc.) do not lend themselves well to dynamically con-
figurable software components. Much of what MMDA proposes is very difficult
to actually implement with today’s technologies for commercial environments.

3. Multimodal Integrator and Multimodal Dialogue Manager: This architecture is a
further refinement of the multimodal integrator architecture but is worthy of
mention on its own for two reasons. First, it recognizes some further separation
of concerns among the integration or fusion process, the disambiguation pro-
cess, and the management of the interactions with the user in specific scenarios.
Second, it recognizes that a viable way to handle the interactions with the user
in a multimodal is through the concept of dialogues. We looked at dialogues in
Chapter 7 while discussing VUIs. In the case of multimodality, the concept of a
dialogue allows us to encapsulate interactions with the user based on their con-
tent and general behavior as opposed to properties specific to a given channel.
In other words, we specify what needs to be presented to the user instead of

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.4 Software and System Architectures for Delivering Multimodality 547

Speech
Input

Speech Recognizer
& Natural Language

Processing

Ink
Input

Handwriting
Recognizer

DTMF
Input

DTMF Recognizer

Multimodal Integrator

Multimodal Dialogue Manager

Mutual Disambiguation
Processor

System Confirmation Multimodal Application

FIGURE 8.11. Multimodal Integrator and Dialogue Manager Architecture [Trabelsi et al.].

how and we do it in a scripted and sequential manner. Trabelsi et al. [Trabelsi
et al. 2002] recognize an application of this architecture for using voice and
text (through handwriting) for mobile devices; this is shown in Figure 8.11.

4. Sharma’s Dialogue Management for Multimodality: Sharma and his colleagues
at Pennsylvania State University have created an interesting architecture for
managing multimodal dialogues. This architecture, seen in Figure 8.12, has
a large focus on solving VUI problems, but it is interesting in that the treat-
ment of the VUI problem is extensible and adaptable to other user interface
modalities and channels. The crowning achievement of this architecture is that
it focuses on creating a grammar-based user interface controller (as discussed
in Chapter 5) that can handle multimodality. Sharma and colleagues build a
crisis management system based on this architecture and, along the way, also
mix in the idea of our multimodal integrator. However, whereas the center-
piece of the previous architectures we have discussed in this section have been
the multimodal integrator and its fusing capabilities, here the centerpiece is
the dialogue manager and everything else is a subsystem built around the di-
alogue management tasks. This architecture, appropriately so, aims to solve
the input problem with multimodal user interfaces. As we have mentioned
previously in this chapter, the variables for the output are more determinis-
tic and, as application developers, we have more control over them. Another
notable aspect of Sharma’s techniques is that he and his colleagues set out to
solve an application problem, namely, to build a multimodal crisis management

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

L
in

gu
is

ti
c/

S
em

an
ti

c
K

no
w

le
dg

e

D
is

co
ur

se
K

no
w

le
dg

e
T

as
k

K
no

w
le

dg
e

U
se

r
K

no
w

le
dg

e
W

or
ld

K
no

w
le

dg
e

S
ta

ti
c

C
on

te
xt

s

D
is

co
ur

se
S

ta
te

s
T

as
k

S
ta

te
s

U
se

rs
’

M
en

ta
l

S
ta

te
s

C
ol

la
bo

ra
ti

on
S

ta
te

s

D
yn

am
ic

 C
on

te
xt

s

In
te

nt
io

n/
B

el
ie

f
R

ec
og

ni
ti

on
D

is
co

ur
se

In
te

rp
re

ta
ti

on

P
la

n
R

ea
so

ni
ng

In
fo

rm
at

io
n

C
on

tr
ol

D
ia

lo
gu

e
C

on
tr

ol

D
ia

lo
gu

e
C

on
tr

ol

S
em

an
ti

c
P

ar
si

ng

Information
Systems

R
ec

og
ni

ze
d

S
pe

ec
h/

G
es

tu
re

R
es

po
ns

e

P
re

se
nt

at
io

n

R
es

po
ns

e

P
re

se
nt

at
io

n

2
1

11

10

8
9

3

4

6

7

5

FI
G

U
RE

8.
12

.
Di

al
og

ue
M

an
ag

em
en

tf
or

M
ul

tim
od

al
Sy

st
em

s
[S

ha
rm

a
et

al
.2

00
3]

.

548

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.4 Software and System Architectures for Delivering Multimodality 549

framework, rather than to build a framework that generically serves many pur-
poses. The advantage to this approach is that the architecture is put through the
rigors and questions of at least one real-world problem and solution implemen-
tation (in this case multimodal crisis management system) and thereby is more
refined.

5. DFKI Multimodal Architecture: The German Research Center for Artificial In-
telligence (DFKI) has made great strides in developing new techniques for
multimodality. These efforts revolve around the SmartKOM project, which we
have mentioned throughout this chapter. (Recall that M3L was created for use in
SmartKOM.) This architecture, which is referred to as the MULTIPLATFORM
TestBed (a somewhat confusing name because the term multiplatform is ex-
tremely overused in software), is used for a variety of projects by DFKI, one of
which is the SmartKOM project. Remember that we discussed M3L as one of the
more significant languages for expressing multimodal interactions previously:
This is the language designed for SmartKOM and is part of the MULIPLATFORM
TestBed. This architecture focuses on seven principles and recognizes seven re-
spective components as follows:
a. Recognizer: Recognizers are modality-specific components that process input

data on the signal level. Examples include speech recognition, determination
of prosodic information, or gesture recognition [Herzog et al. 2003].

b. Analyzer: This component interprets the semantic meaning of the input pro-
duced by the recognizer.

c. Modeler: The modeler basically holds the “model” (logic, business rules,
or the things that the software system needs to understand and that are
discretely defined for it). The model, for example, could be home–automation
interactions.

d. Generator: Generators are knowledge-based components that determine and
control the reactions of the dialogue system through the transformation of
representation structures [Herzog et al. 2003].

e. Synthesizer: An example of a synthesizer is a speech-synthesis engine or
a Braille-creation engine (creating Braille from textual input). Synthesizers
produce specific types of content.

f. Device: This is the abstraction of the input and output hardware used to
get the input from the user and send the output back to the user. Software
may accompany this hardware to produce input that is consumable by the
recognizers and consume output that is producible by the synthesizers.

g. Service: These modules allow us to connect our multimodal application to
some external service provided by a well-encapsulated piece of function-
ality. Basically, these are adaptors or connectors that hold the complexity
introduced by the integration of all of the different pieces.

For a deeper understanding of this architecture, we refer you to the reference
[Herzog et al. 2003]. Once more, you can see that this architecture has much in
common with the others in requiring the semantic interpretation of the input
in a manner that is more complex than simply interpreting the input from the
individual modalities.

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

550 MULTICHANNEL AND MULTIMODAL USER INTERFACES

Coutaz and colleagues correctly recognize that the taxonomy of the multimodal
architectures are two dimensional: They may be classified by how they achieve
fusion/fission and by the degree of parallelism (simultaneous multimodality)
that they offer [Coutaz et al. 2003]. Likewise, there are two approaches, rec-
ognized by Minh, to creating a language tool to outline application-specific multi-
modal behavior User Action Notations (UAN) and LOTOS (Language of Temporal
Ordering Specification) [Minh 1997]. UAN refers to a language tool that allows
us to specify the interactions of the user with the interface. LOTOS refers to a
language tool (such as SMIL) that allows us to specify the temporal behavior of
the interface while the user interacts with it.

We can think of these architectures as high-level system patterns for multimodal
application development. Most notable of these patterns is the first one: the multi-
modal integrator. The idea of fusing or integrating separately processed semantic
meaning of the input and output from various communication channels with the
user is the theme that seems to reoccur throughout the patterns that we have out-
lined here. Keep in mind that these architectures can internally use PAC, MVC,
or the variations thereof for each component or as the basis of implementation of
the core functional pieces such as the integrator (fuser). These architectures can
also be coupled with techniques such as transcoding and transforming, which we
looked at in Chapters 5 through 8.

Because the field of mobile development and the orthogonal but related field of
multimodal user interfaces are both rather young disciplines in computing, there
will be frequent innovations and new architectures. The best thing to do then is
to understand what properties these architectures must have to qualify as finalists
in any evaluation process. These properties are as follows:

1. Coordinated Decoupling of the Modalities: To reduce complexity, we want to
separate the various concerns in any piece of software and isolate them into
encapsulated components. Doing this can be tricky. Particularly, in the case of
multimodal user interfaces, we need to be able to separate the concerns of treat-
ing the individual channels and modalities to components that are decoupled
from one another. Yet, we must be able to coordinate the behavior of these
components across modalities and channels (e.g., the timing of rendering
various parts of the output content). A multimodal user interface architec-
ture must be able to decouple the various components and yet provide some
mechanism for coordinating the interactions among the various modalities and
channels.

2. Localization and Internationalization: At least when we use multimodal user
interfaces for mobile systems, we need to ensure that the architecture allows
for clean and proper implementation of localization and internationalization.
Users of future mobile services are likely to consider their mobile terminal
as a universal access device for all the services they subscribe to and they
will expect these services to “behave” in the same manner, irrespective of the
place where they happen to be at a given point in time [UTMS P1104 2002].
Whatever architecture we select must either provide for, or have the capability
to be extended to treat, the problems associated with internationalization and

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.4 Software and System Architectures for Delivering Multimodality 551

localization. These problems include the usage of various languages, currencies,
and other variables related to the specific domain of the application.

3. Validation: The validation of user input becomes a very difficult problem in
multimodal applications because the input from each individual channel, in
and of itself, may be invalid whereas the fused inputs from all modes may
be valid. The architecture that we choose must be able to accommodate the
implementation of a multimodal validation strategy through which we can
validate user’s input to the system as a whole.

4. Extensibility for Future Modalities and Channels: Whatever architecture we use
to implement multimodality in our application, it should be able to be extended
to support modalities and channels not well defined or required at the time of
the implementation of the architecture. In other words, if there is some new
device recording the user’s eye movement that replaces the mouse, we should
not have to reengineer the system. We should be able to simply snap in the new
system with the software components required for the appropriate support in
the architecture. This is obviously much easier said than done, but then, that
is the purpose of having an architecture.

5. Cross-Modal Disambiguation: One of the biggest utilities of multimodality in mo-
bile applications, as we have mentioned, is to provide a better disambiguation
mechanism. Multimodal architectures chosen for mobile applications should
implement an extensible mechanism that implements, or allows for the imple-
mentation of, disambiguation of the user’s input in a cross-modal way. In other
words, if the user’s hand is shaking too much while he or she is writing, we
can ask user “Did you mean to write ‘that shake’s great’ or ‘the shark’s jaws’?”
Another example may be disambiguation of user’s voice input through DTMF
or by text input into a device.

6. Semantic Treatment of Multimodal Input and Content: As we mentioned in the
introduction of this chapter, two factors that are very critical in the case of
developing multimodal user interfaces, especially for mobile applications, are
contextual and environmental factors. To deal with either one, we need to
be able to deal with the semantics of information and not just raw data. In
other words, we need mechanisms that deal with the meanings of things. Our
architecture needs to be able to handle the fact that spoken words and written
text have different meanings depending on the environment and contextual
surroundings. This is not something that every multimodal architecture will
have, but it is a definite plus. Processing of semantic information is one of
the hotly researched areas of computing that is orthogonal to our discussion
here, but its current state and evolution has a large impact on multimodal user
interfaces and their applications within mobile applications.

As in the case of any user interface management system, there are different ap-
proaches to designing multimodal applications. These approaches are similar to
the UIMS of the GUI world: grammar based, event based, and State-Machine
based. Dialogue management, whose trails are seen in most of the architectures
we have presented here, seems to fit the multimodal world well. Implementations
are probably the best indicator of this. For example, HP’s Mavrick project builds

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

552 MULTICHANNEL AND MULTIMODAL USER INTERFACES

around DialogML and WML to create a grammar-based multimodal user interface
infrastructure [Hickey W3C].

To build a system like the ones whose architectures we have been discussing, we
need some tools: programming or scripting language, development environment,
devices that can connect to our system, viable host environments, etc. All of the
major entities in the world of operating systems such as Microsoft, Apple, Palm,
Linux, and others are busily adding capabilities to support multimodality in one
way or the other. Unfortunately, not all of these entities have chosen standard
paths (to benefit their bottom line and at the detriment of the consumer’s good
in the long haul). So, what we have tried to do here is to introduce architectures
and the guiding principles behind the design and implementation of the tools. It
is certain that in a year or two after you read this text, the tools will not be the
same, but, using the principles that we have mentioned here, you will be able to
select the appropriate language tools and apply them to the architecture of your
selection.

At present, we would approach the problem as follows:

1. There are given standards that have been established, such as SMIL, and are
prevalent in the marketplace. Do not divert from these unless your application
absolutely requires you to. Standards do not just offer benefits because they
are open and create easy integration among disparate systems. Standards are
typically very well thought out by industry experts. So, if you are using a
standard, you are leveraging the expertise of people who really understand the
domain well.

2. Determine the available and required channels of communication to your mul-
timodal application both from the user’s perspective (input and output devices)
and from the system’s perspective (PSTN, TCP/IP, etc.).

3. Lay out your architecture based on the project requirements. We recommend
selecting one of the high-level architectures that we have outlined here.

4. Select a language tool and start coding!

8.5 INTERNATIONALIZATION AND LOCALIZATION

We have discussed internationalization and localization when dealing with var-
ious aspects of mobile applications earlier in this text. Internationalization and
localization of multimodal applications introduces the following entirely new set
of problems:

1. Managing the Content and the Channels: In a world of single modalities, all
we need is to manage one type of content for one type of channel. The n × m
content to channel matrix means that we have to know what content is available
in what language and localization rule sets for which channel.

2. Synchronization: The rules for synchronizing change too! Because the length of
the content in one language or localization set may be shorter or longer than

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

8.6 The Evolving Definition of Multimodality 553

the other and the synchronization points may be different, our system must
be smart enough to provide the infrastructure for specifying the appropriate
synchronization rules for our n × m content to channel matrix.

3. Decoupling the Concerns in Localization and Internationalization: There are mul-
tiple problems here: languages, translations, different currencies, different rules
of doing business, preferences of the users depending on where they are from
and where they live, and all the other more atomic concerns that we grossly
define as internationalization and localization. Separating these concerns al-
lows us to build a more extensible and flexible software system and to possi-
bly reduce the development time by reducing the focus on certain concerns
that may not be of much interest when delivering the functionality to the
end customer. For example, as the Euroscom report recognizes, localization
can be restricted to the presentation layer, where linguistic representation of
the information can be generated and subsequently rendered on the screen
[EURESCOM P1104 2002]. Though this is a very gross approximation, there
may be a circumstance where providing a multilingual multimodal application
suffices and localization is of less interest. You can extrapolate this sort of think-
ing to breaking down the granular components that make up localization and
internationalization.

We recommend using a framework or a tool such as Cocoon to solve the interna-
tionalization and localization problem. This problem has a tendency to spread its
claws throughout the software, causing it to mix with unrelated concerns.

8.6 THE EVOLVING DEFINITION OF MULTIMODALITY

Today, a multimodal application typically refers to an application that uses visual
and aural user input similar to those of telephones and PCs. This definition,
however, will be evolving during the coming years. First, there are various types
of sensors being introduced to the marketplace to accept various types of input
from the user. Examples of these are sensors that track eye movement, handwriting
recognition, and other types of sensors to more naturally receive input from the
user. There is also on-going research on receiving user input without a user’s
active participation. For example, a user’s location (or that of the user’s device)
or geospatial orientation can be used as an input. Compaq’s Itsy, which we have
mentioned several times in this text, is an example of a device that uses the physical
positioning of the device for user input (tilting, for example, is used for scrolling).
Some other modes of input on the horizon are gesture recognition; data gloves that
enable various types of input from hands, fingers, and even the rotation of wrists
and arms; and body suits that can use things like body position and temperature
as input.

The number of input and output channels are expected to increase consider-
ably as user interface research aims for creating more natural and efficient user
interfaces. So, as you may have noted by reading this chapter, we can not define

P1: KPB

0521817331c08 CB752-B’Far-v3 May 4, 2005 21:30

554 MULTICHANNEL AND MULTIMODAL USER INTERFACES

multimodality in terms of some static number or types of channels and content
types. Therefore, creating multimodal applications becomes more about coming
up with flexible and extensible design structures that do not limit the definition
of multimodality.

This ever-changing nature of multimodality reinforces the design principles
that we have been stressing, the most important of which is to create a generic
user interface that is then specialized to the specific modalities and bound to the
specific channels.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331pt3 CB752-B’Far-v3 April 29, 2005 12:22

SECTION 3

Additional Dimensions of
Mobile Application

Development

555

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331pt3 CB752-B’Far-v3 April 29, 2005 12:22

556

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

CHAPTER 9

Mobile Agent and
Peer-to-Peer Architectures

for Mobile Applications

To the “Drive” and No. 7

9.1 INTRODUCTION

In Chapter 16, we briefly look at five different architecture types: fully centralized,
client–server and its variations of N-tier, mobile agents, and peer-to-peer. You may
want to refer to this chapter intermittently or read it first. In this chapter, we will
focus on the latter two, namely mobile agents and peer-to-peer systems, as relating
to mobile application development.

We focus on these systems for two reasons. First, the application of mobile
agents and peer-to-peer architectures in the mobile application realm is not well
documented because both are fairly recent concepts. Second, both mobile agents
and peer-to-peer architectures promise to play an integral role in mobile applica-
tion development as it matures. We have already discussed the properties of these
two architectures that make them more desirable for mobile application develop-
ment. Furthermore, we have surveyed both of these technologies. Now, you may
wonder why we are making an association between the peer-to-peer and mobile
agent architectures. We can find the answer in looking at some of the properties
of the two architectures and their contrasts with the client–server model.

Peer-to-peer and mobile applications are similar in the following ways:

1. Unlike the centralized and client–server architectures, there is no necessity for a
centralized server. There is no inherent difference between the system-level

557

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

558 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

participants of peer-to-peer and mobile agent architectures, respectively peers
and hosts, within the confines of the respective architecture, as there is between
the client and the server in the client–server environment.

2. The participants of the system can be interconnected to each other in any manner.
Both peer-to-peer architectures and mobile agent architectures allow for self-
organizing and ad hoc networks.

This is not to say that mobile agents and peer-to-peer application infrastructures
are synonymous or the same. Quite the contrary, they are two completely different
paradigms. However, their requirements and properties are not mutually exclu-
sive. For example, whereas mobility of code and data is at the heart of mobile
agent architectures, peer-to-peer architectures do not impose any such require-
ments. However, the peer-to-peer infrastructure can also provide a substrate for
deployment of a mobile agent framework.

In this chapter, our focus will be on mobile agent technologies. You will want
to keep in mind that agent technologies are not as mature as client–server tech-
nologies within the context of reading this chapter.

Peer-to-peer architectures are of extreme importance in mobile computing, but
the fundamentals of their design and usage is closer to client–server computing
than to that of mobile agents. For this reason, our discussion of peer-to-peer
computing and mobility will be brief. To better understand the similarities and
the use of peer-to-peer and mobile agent architectures, we need to take a closer
look at each one. Let us quickly review what we discussed in Chapter 1 and then
go on to look at mobile agents in more detail.

9.1.1 Basics of Agent Technologies
As we mentioned previously, mobile agents require mobility of code and data.
When the agent moves from one host to another, it needs to preserve its data
and, in case of strong mobility, execution state. Mobility of the data is something
that should be somewhat familiar to most developers who have used client–server
architectures. The data held by one or more objects that make up an agent can be
persisted or streamed and moved from one host to another. In practice this may
be as simple as writing the data to a file, binary or otherwise. Once the data are
moved, it should go through a binding process to the agent at the destination. The
mobility of the code and its state of execution, however, are a bit more complex.

According to Fugetta, Picco, and Vigna [Fuggetta et al. 1998], there are two
types of code mobility: strong mobility and weak mobility. In strong mobility, the
execution state of the agent returns to the point at which it stopped before mi-
grating to the new host. Weakly mobile agent systems cannot do this; all they
can do is to migrate the code and initialize the code with the data. In the context
of this book, unless mentioned otherwise, when we say a mobile agent, we are
referring to strong mobility. Fugetta et al. go on to recognize three types of partic-
ipants in mobile agent systems: components, interactions, and sites. Huang [Huang
2000] divides the participants into mobile agents, clients that launch the agents, and
agent hosts. These divisions exist throughout the various research and implemen-
tations of mobile agents. Essentially, though, both groups recognize that there is

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.1 Introduction 559

a component that moves around the mobile agent infrastructure. We will refer
to this component as the mobile agent. Fugetta’s sites are approximately Huang’s
agent hosts; we will refer to an instance of either as a host. As defined previously,
hosts are the places where agents can operate. We will refer to the interactions
between the mobile agents as collaborations and the interactions between the hosts
and the mobile agents as interactions. It is also important to note that both words,
collaboration and interaction, are also used in UML; the definition of collaboration
and interaction with the world of mobile agents is unrelated to the definition and
usage of the same words in UML. Ideally, there are no direct interactions among
the hosts themselves. However, in practicality, most implementations of mobile
agent systems are hybrid and allow for client-server-type interactions among the
hosts.

Fuggetta et al.’s paper on code mobility [Fuggetta et al. 1998] gives us one of the
best short references for understanding the theoretical nature of mobile agents.
The theoretical coverage we have given mobile agents so far should suffice for
building mobile applications.

Now, to understand how mobile agents work, we need to look at the basic
services that the mobile agent platform must offer to handle agents. We can do
this by starting at the host. The sequence of events that take place, on the host,
are as follows:

1. The agent program arrives at this host. If the host is capable of multiprocessing,
and if the agent platform supports processing of multiple hosts at the same time,
the agent starts a new process for the new agent that has just arrived. Otherwise,
the host suspends or stops the operation of the current agent and starts up the
new agent.

2. The host facilitates rebinding of code, data, and state. The agent then continues
at the next instruction. As we mentioned previously, there are two parts to the
state, the state of the data and the execution state.

3. When the agent is either done or needs to migrate to another host, it finishes
executing the current instruction.

4. Then, the host collects the agent code, data, and state and puts them into a
message in a host-independent format.

5. The message can be shipped to an exact destination or it can be sent to a post
office that holds the logic for determining the destination host and shipping the
message to the destination host.

6. The destination host receives the message and continues with Step 1.

This series of events can be further refined if the mobile agent platform is object
oriented. If the code is a collection of classes, it can be cached. So, if the classes at the
source and destination hosts are identical, the classes do not need to be shipped as a
part of the message. This can be thought of as a caching mechanism. The instance
data of the classes comprise the state of the agent and the next method of the
driver class is the execution state. Note that we do not represent these sequences
of events with UML diagrams at this point because vanilla UML diagrams (with
no extensions) do not suffice in correctly representing the complexity of mobile

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

560 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

agents in a brief manner. (We could do this with several state diagrams; however,
state diagrams are typically not useful for seeing the interactions among the various
components of a system). Consequently, we will add some UML extensions later
on and represent mobile agent systems using UML diagrams.

It is important to note that the agent itself is the mechanism that decides when
it is time to move. The agent is autonomous and controls its own life cycle so it
decides when it starts, stops, moves, hibernates, or undergoes any other type of
state change.

Those readers familiar with client–server technologies that control the life cycle
of components, such as J2EE, may wonder what the difference is between the
functionality offered by an application server that manages the life cycle of objects
and that of mobile agents. The key here is that the host is not a container that
manages the life cycle of the agent. Rather, the host provides the agent with the
execution thread and machine resources it needs to do what it needs to accomplish.
Also, such technologies use mechanisms based on RPC or ROI (Remote Object
Invocation) to exchange information.

Bauer notes that, compared to objects, agents are active because they can take
the initiative and have control over whether and how they process external re-
quests [Bauer 2001]. Moreover, agents act not only in isolation but in cooperation
or coordination with other agents. This has a twofold meaning for us: First, it clari-
fies the difference between objects and agents and second it verifies that UML, with
no extensions, does not suffice to represent agents and their interactions. (When
we say “with no extensions,” as previously mentioned in this text, we mean use
including only the basic types and classifiers as defined by the UML specifica-
tion, without the introduction of profiles or modifications to a metamodel for
accommodating some domain of problems.)

Also, as you read through this chapter, it may be helpful to think of agents as
larger grained components than objects. (Once again, note that although there may
be a linear mapping between software components and UML components, within
the context of our discussion, we are not necessarily referring to a UML component,
but rather the loosely, and frequently, used term of “software component.”) Though
mobile agents are typically implemented using object-oriented languages, and an
agent can be comprised of a single object (an instance of a single class), mobile
agent behavior and useful properties are observed at a higher level of granularity.

Before we delve further into details and implementations of mobile agents and
infrastructures that support mobile agents, let us look at hybrids of mobile agents
and client–servers that offer an alternative to both mobile agent and client–server
architectures.

9.1.2 Hybrids of Mobile Agents and Client–Server
Although mobile agents have many advantages over their client–server counter-
parts, there are times when the client–server architecture is superior. For example,
in a pure mobile agent environment, if two agents need to exchange a small piece
of information, either both or one of the two have to migrate so that they are
on the same host. This may be effective when there are many different exchanges,

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.1 Introduction 561

between the agents, that must be completed, but it is superfluous if the interactions
are limited.

For this and similar reasons, hybrids of the mobile agent and client–server
architecture, where the mobile agents can assume the role of a client or a server
in the client–server model, can prove to be more effective than either the mobile
agent or the client–server architectures. In a hybrid of mobile agent and client–
server architectures, the autonomous agents decide, based on the interaction that
they need to initiate, on what mechanism to use to interact with other agents on
the system. The agent itself can decide whether it is more efficient, or suitable,
within the context of the transaction that needs to be initiated to use RPC, ROI,
or similar client–server mechanisms, or if it needs to be at the same host as the
agent with which it must interact.

Client–agent server gives us the best of both client–server and mobile agent
architectures: When the network conditions are suitable for client–server commu-
nication, the agents can collaborate and assume the roles of clients and servers.
When the network cannot provide the continuous bandwidth needed but bursts
of connectivity are available, or when the application needs to have a response
time that is closer to real time, we can have the agents migrate for communication
purposes. The important thing to remember is that a variation on the client–server
architecture uses mobile agent technology. In the client–agent server model, the
clients communicate with an agent on the host, which acts like a server in the
client–server environment. The agent then does whatever it needs to do within
the network-based mobile-agent region or agency.

We will not discuss the client–agent server much because we assume that you
understand the basics of client–server communication and we intend to cover
details of mobile agents in this chapter. When agents assume the roles of clients
and servers, they can communicate as if they were pieces of a system based on
the client–server architecture. You should be able to deduce the properties of such
systems based on your knowledge of client–server technologies and our discussion
of mobile agents.

9.1.3 Separation of Concerns in Mobile Agents
When writing code for mobile agents, we can apply separation of concerns much
as we did in the N-tier architectures to separate typical concerns such as those of
the user interface, persistence, communications, business logic, and others.

Recall that in the three-tier architecture, persistence, user interface, and busi-
ness logic were three of the main concerns. The same can be said in the case of
mobile agents. To separate these concerns, it is prescribed that a different agent or
group of agents be responsible for each one of the three. In this manner, a driver
agent that understands the general goal of the application can collaborate with a
persistence agent or agents to retrieve the data, a business logic agent or agents to
compute whatever computational logic may be involved, and a user interface agent
that has the proper services for rendering the functionality of the application, on
the particular host, to the user. Note that the driver agent may collaborate with the
other agents, based on the available resources on the host and application require-
ments, on the migration and life-cycle patterns of the agents. For example, if the

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

562 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

device does not have enough memory to load all of the agents at the same time,
they may be loaded sequentially, yet autonomously, and the driver agent may col-
laborate with the other agents to handle the necessary data and parameters among
the different agents as they migrate in and out of the host.

A great example of separation of concerns with mobile agent architectures is
given by SARA [Yang et al. 2000]. The SARA (Synthetic Aperture Radar Atlas)
digital library is an image archive system that has grown complex beyond the
ability of typical client–server computing models for scaling. Though in the case
of SARA, the mobile agents are used to comprise a stationary software application
(with the primary use of mobile agents in SARA being to take advantage of scaling
advantages of mobile agents), the architecture of the implementation outlined
in the aforementioned paper shows a marvelous separation of concerns within
the mobile agent architecture. For example, local retrieval agents can translate
a query task and retrieve information from a local archive, which could be a
database system or a file system [Yang et al. 2000]. SARA also has user agents
that render a generic interface to the system called user presentation agents and
agents that specialize the user interface for final rendition called user interface
agents. Separation of concerns within the structure of the agents is crucial for the
following reasons:

1. Without enough separation between orthogonal tasks, agents may become
bloated. In this case, mobile agents become unsuitable for mobile applica-
tion development and begin to lose their flexibility and ability to solve scaling
problems.

2. If the services to be offered by the agents are not carefully grouped into the
right agent(s), collaboration among the agents either emulates client–server
communication (in which case the desirable properties of mobile agent systems
are lost) or the agents have to migrate too frequently.

For example, let us say that we want to use mobile agents for making airplane
ticket reservations. The user may want a smart application that searches for the
right price and then contacts the user before the chance of purchasing the ticket is
lost. One way of making the application would be to create one large monolithic
agent that does everything from searching for the data, to finding where the user
may be, and finally to presenting the data to the user. This would not be a good
way of using mobile agents. The application would be difficult to modify, it would
take a large amount of burst bandwidth as it travels the network, and it would not
make use of any other existing agent(s) in the system. Essentially, this would be
equivalent to authoring a monolithic server program. The second option would be
to create several agents that do not encapsulate orthogonal tasks: One agent may
search to find the right data and store it temporarily and another agent that finds
the user and presents it to him or her. Though this is an improvement over the
monolithic agent, it still does not take full advantage of the mobile agent paradigm.
Multiple, unrelated services are offered by the same agent and there is no clarity
on how the agents should migrate and collaborate.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.1 Introduction 563

The most effective way of designing the agents would be to have clear separation
between the tasks that each accomplishes. The first simple pass at such design may
include the following:

1. agent(s) responsible for user interface rendering on a variety of specific
environments,

2. agent(s) responsible for providing a generic user interface to all agents except
for those responsible for rendering of specific environments,

3. agent(s) responsible for comparing the qualifications of the different tickets
based on the user specifications,

4. agent(s) responsible for connecting to a variety of data sources that have infor-
mation about airplane tickets, and

5. agent(s) that customize the overall application to how the user wants it to run.

Obviously, it is possible to come up with a finer grained division of responsibilities
among the agents. The granularity of the tasks assigned to the mobile agents must
be balanced with the following:

1. Migration latency: If there are too many agents, each doing some very small task,
they constantly have to migrate back and forth between different hosts.

2. Collaboration latency: If there are too many agents, each doing some very small
task, they have to continually pass information back and forth, reducing the
autonomous nature of mobile agents and creating large latencies while the
information is being passed back and forth.

Also, note that by separating the concerns among the different agents, we can
promote reuse of agents. For reuse, agents can be thought of as any other type of
software component: Reuse is only possible if the component is not too large, not
too small, and shaped just the right way with the right semantics and services.

It is also possible to come up with an altogether different scheme for separating
the concerns among the different agents. For the sake of simplicity, we have sepa-
rated the concerns in a way familiar to most client–server developers: persistence,
user interface, and business logic. Tasks can be divided in many different ways. As
with many other aspects of software design, perfecting this design methodology
becomes somewhat of an art and requires some experimentation on the part of the
software designer. However, this example should demonstrate that application of
separation of concerns is critical, not only for reuse (as is true for all software) but
also for optimizing the performance of the mobile agent system.

Finally, refer back to Chapter 6 to see our discussion on the PAC pattern. Re-
member that the PAC pattern is a collection of so-called agents comprised of
presentation, abstraction, and control components. It is plausible that, in im-
plementing a mobile agent–based application, there could be a 1 − N mapping
between PAC agents to mobile agents. The cooperation between PAC agents is
easily implemented in the collaborative environment of mobile agents.

We will not delve too much into the topic of internal implementation of mobile
agents for this broad topic lies outside of the scope of this text. Refer to the

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

564 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

references if you are interested in a better understanding of implementation of
mobile agent infrastructure and implementing mobile agents. Our goal here is to
use mobile agents for mobile application development and this is what we will
look at next.

9.2 MOBILE AGENTS FOR MOBILE COMPUTING

As we mentioned in Chapter 1, the key distinguishing factors of mobile agents are
the following:

1. Code and state are mobile. For a software program to be a mobile agent, it has to
have both mobile code and data properties. This means that it should be able
to move from one instance of the mobile agent environment (a platform that
supports the particular mobile agent framework) to another instance without
losing the state at which it was before moving. Moreover, it has to be able to
return to the exact state at which it was before moving to the destination once
it arrives there.

2. Mobile agents are autonomous and asynchronous. They control their own life
cycles and there is no required timing synchronization between the activities
of two or more agents.

In this text, we will refer to a computing unit that can allow execution of a mobile
agent as a host. A host may be a device with some hard-wired software, a device
with an operating system, a device with an operating system and a virtual machine,
or a variety of other combinations of software on a device. Regardless of what
comprises the host, it, in its entirety, includes the framework that allows the
mobile agents to move around and operate. Hosts are also referred to as agencies.
We will refer to the act of two or more agents communicating to achieve some
task as collaboration.

There are also other properties that mobile agents can exhibit such as intelligence
and recursion. Intelligence is the ability of the agent to learn from the information
it gets and make decisions (e.g., to decide where to move next); recursion is
the ability of the agent to create child agents for subtasks if necessary [Huang
2000]. Note that intelligence and recursion are not required for classifying an
infrastructure as one that uses mobile agents.

Now, let us see why mobile agents are particularly suitable for mobile application
development. The following are the primary reasons:

1. Because of their autonomous nature, mobile agents are inherently active. They do
not have to be invoked by some external means to start up, do work, commu-
nicate, or emit some event.

2. Mobile agents use less of the network bandwidth in comparison to RPC or ROI mech-
anisms of client–server architectures. In client–server architectures, two disparate
applications send data back and forth using RPC. Every transaction includes at
least one call from the client to the server. In mobile agent architectures, the
code and its instance (the data) move from one host to another host. Once they

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.2 Mobile Agents for Mobile Computing 565

arrive at the destination host, they perform some task autonomously without
having to communicate with other hosts on the network. This does not mean
that mobile agents never communicate with other hosts on the network, just
that because of their autonomous nature, they do not have to use the network
for every transaction

3. Mobile agents can display better response times owing to reduced effect of network
latency on the application. Once an agent arrives at the destination, it can respond
faster, uninhibited by network latency.

4. Mobile agents are inherently heterogeneous. Mobile agent architectures typically
assume that not all hosts are the same. In dealing with this heterogeneity of
hosts, they solve a big portion of the problems posed by having a variety of
devices and platforms that mobile applications must support.

5. Mobile agents are autonomous and asynchronous and so can deal with intermittent
network connectivity gracefully. A mobile agent application can continue normal
operation even with no network connectivity. This is not true of the thin-client
model or many other implementations of the client–server architectures.

6. Mobile agents can adapt extremely well. Mobile agents are autonomous and so can
adapt to their execution environment. This is particularly critical in adapting
to the device capabilities, be they user-interface-related capabilities or others.
A working user application may be composed of multiple mobile agents. Each
can determine its own life cycle and execution state depending on the available
resources on the device.

By now you should know that mobile applications and mobile agents are com-
pletely different things. However, because of their nature, mobile agent frameworks
make themselves suitable for mobile application development. Namely, there are
three things that make mobile agents somewhat of a “killer platform” for mobile
applications:

1. Mobile devices are often connected to the network through a wireless connec-
tion. The nature of wireless networks is very ad hoc. Whether the network
is a cellular network or another type of ad hoc network such as 802.11a and
802.11b, the device may come in an out of connectivity with the network, and
thereby in and out of connectivity with other devices. Whereas the agent may
reside on the device, it is also very natural for a mobile agent to “follow” around
a particular device, when and if the device cannot serve as a host, to the nearest
connectivity station, based on the location of the network to which the device
connects, and serve as a proxy for the device.

2. Because of the QOS problems associated with mobile computing, mobile agents
provide one way of having the application continually service the user even
while the device is disconnected from the network.

3. Mobile agents can run on any host, whether a mobile device or a powerful
server, allowing us to distribute computing tasks in a way that best fits the
requirements of the application. In other words, we can decide what gets done
where based on the dimensions of mobility and the mobile condition of the
user (and thereby the user’s mobile device).

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

566 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

Nevertheless, strong mobility is something that is not implemented by most per-
vasive commercial products. BREW comes closest to allowing us to implement
strong mobility. Unfortunately, BREW’s mobile agent capabilities are restricted by
Qualcomm’s closed provisioning system, so there is not much that the developer
can take advantage of as far as the mobile agent features of the BREW platform is
concerned. It should be noted that strong mobility is not natively supported by the
BREW platform; however, because the programming language is C/C++ based, we
can play tricks to mimic strong mobility (particularly, making use of the execution
state). As we have mentioned, weak mobility is offered by J2ME, .NET framework,
BREW, and other products. Most of the work done today to implement mobile
agents on mobile devices is being done on J2ME because it is the most pervasive
and open platform. We will look at some of these efforts later in this chapter.

One may wonder why mobile agent platforms are not more prevalent. There
are three primary reasons for this:

1. Developing software for mobile agent systems is considerably more complex
and presents developers with many more issues to consider than their client–
server counterparts.

2. Different vendors implement mobile agent platforms quite differently. OMG
tries to address this second issue with a standard named MASIF. We will discuss
the issues of mobile agent systems and MASIF later in this chapter.

3. Security tends to be a complicated issue when dealing with most mobile agent
platforms and implementations.

Now, let us dig a little more into the nitty-gritty of mobile agent systems and
how they work before relating them to mobile application development. Keep
in mind that mobile agent usage for mobile applications is very much an area
that is still undergoing research and development. Before delving into specific
implementations of mobile agents (frameworks, languages, etc.), let us look at
how we represent mobile agents with UML.

9.2.1 RoadBlocks in Pervasive Usage of Mobile Agents for
Mobile Computing
The main roadblocks in using mobile agents more pervasively are twofold:

1. It is a very difficult task to create a host environment that allows agents to roam
freely from one host to another on hardware platforms that differ greatly in their
resources and availability in performing computing tasks.

2. Some security problems remain unsolved.

We will look at the security problem in the next section, but let us look at why it
is so hard to create an agent environment, particularly one that fits the needs of
mobile applications.

As we have mentioned, the dimensions of mobility dictate that there are a wide
variety of devices, some specialized for certain tasks, with very little available re-
sources. We can have very lightweight hosts that do not provide too many services
and can thereby reside on any of the platforms that we specify for a given mobile

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.2 Mobile Agents for Mobile Computing 567

application. The less functionality the host environment offers, the more the mo-
bile agent needs to be able to do. This means that the minimum amount of code
required for the agent itself grows.

So, if we author a set of classes that make up an agent, we need to either
select a minimum set of functionality that works on all devices or author multiple
applications for different hosts. In the first case, a move will include saving the
state of data and execution of an agent, destructing the agent, selecting the right
equivalent set of classes that make up the agent in the target host, recreating the
agent on the target platform, and restoring the data and execution state on the
target platform. The “substitution” of agents based on the platform somewhat, but
not completely, violates the mobile agent paradigm. Nonetheless, this is the only
practical way that we can implement mobile agents in an environment where there
is a great amount of disparity between the weakest of the hosts involved and the
most powerful.

So, “how strong” of a mobile agent platform do we need? What does this mean in
terms of the distribution of functionality, and therefore device resources, between
the agents and the platform? The logic for the application and the agent behavior
of the application must reside somewhere. And many mobile devices are simply
not powerful enough for this approach. There are two realistic solution to this:
Either we implement weak mobility because strong mobility is considerably more
complex or we have to standardize on mobile devices that have mobile agent
platforms built into them because the devices themselves, in their hardware, can
support a standard mobile agent framework.

J2ME takes the first approach. J2ME implements only weak mobility. With the
right provisioning platform on the more powerful hosts (servers), we can select
the right implementation of the same agent and provision it to the right client,
then restore the state of the data. We will look at some sample implementations
of mobile agent applications with J2ME.

Qualcomm’s BREW takes the second approach. Qualcomm’s BREW takes ad-
vantage of the powerful DSP capabilities built into CDMA phones and provides a
provisioning framework.

Alternatively, we will look at LEAP and Grasshopper, both commercial efforts
by, respectively, multiple commercial entities and IKV++, to develop a mobile
agent platform that can support mobile applications. Both these platforms build
on top of J2ME partly because of the openness of J2ME and partly because of its
pervasiveness.

Before we see these concrete examples, we will discuss two issues. First, we will
look at some specific security problems and then we will look at some standard-
ization efforts for mobile agent platforms and the features that they offer.

Security Issues with Mobile Agents
As we have mentioned repeatedly, the biggest problems with implementation of
mobile agents lie in the security arena. Let us look at some of the specific security
problems associated with mobile agents:

1. Host environment platforms such as Java that provide a virtual machine do not
provide a mechanism for limiting the amount of resources that an agent can

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

568 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

take on the host (from the virtual machine). Therefore, it is easy for a malignant
agent to bring down the host by simple overuse of resources.

2. Because mobile agents are autonomous, they control initiation of communica-
tion with other agents and environments outside of the host. Therefore, there
is method by which the host can impose any restrictions on when and how the
agent establishes such communication without breaking the agent paradigm.

3. Mobile agent platforms are inherently heterogeneous. So, not only must the
interfaces for the security mechanism be standardized but so must the required
and optional security implementations. This will be difficult to enforce in real
life because the implementation is typically the closed part of a software sys-
tem and the interface is the open part. However, the actual implementation of
security features become important here.

Mobile agents used within a mobile application are also faced with the other typical
security problems that plague any mobile application. We will discuss those in
Chapter 14.

9.2.2 MASIF
As we previously discussed, one of the key features of mobile agents is that they can
work in a heterogeneous environment. With a variety of manufacturers producing
different platforms for mobile agent systems, OMG has created a standard for
interoperability among the different mobile agent platforms called MASIF (Mobile
Agent System Interoperability Facility). The problem is more difficult than just
creating a standard set of canonical APIs as in the case of some of the other
standards that we have used in this text.

MASIF addresses the following:

1. Management of Agents: Although the host implementations may be different,
they should create, move, clone, and provide all of the other services that hosts
provide in a mobile agent framework the same way.

2. Transfer of Agents: For an agent to move from one environment to another
(host and region), the mobile agent platforms have to treat the move operation
between hosts and regions in the same way.

3. Naming: For different regions and hosts to address the agents, there has to be a
uniform way of naming agents, hosts, and regions. Names for agent and agent
systems (hosts, regions, etc.) are standardized in MASIF.

4. Agent System Types: As we will see in the case of LEAP and JADE, we are not
guaranteed that all of the hosts in a mobile agent system are of the same type
(capabilities, functionality offered, etc.). So, every host and region must have
some type information associated with it. MASIF specifies the standards for this
typing system so that the hosts and regions of various mobile agent platforms
can recognize the capabilities of one another. Such recognition is used for things
such as allowing an agent to move, security, etc.

5. Location Syntax: For regions and hosts to interoperate, they need to be able to
find each other and identify each other’s abilities. MASIF provides this naming
and finding mechanism.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.2 Mobile Agents for Mobile Computing 569

The MASIF specification recognizes the basic ideas that we have already learned:
agents, the state of the data encapsulated in the agent, and the state of execution
of the agent. It also recognized the following:

1. Stationary Agent: This is an agent that can run only where it is created.
2. Agent Authority: An agent’s authority identifies the person or organization for

whom the agent acts [MASIF 1997].
3. Agent System Type: This is a way to specify some of the implementation of the

mobile agent and, therefore, specify its ability to run particular types of agents.
For example, Aglets are a type of agent system built on top of the Java Virtual
Machine and the Java programming language.

4. Agent Location: This is a way to specify where a particular agent is located. This
means specification of the host and the region in which the agent exists. MASIF
refers to the key combination of host and the region to which the host belongs
as a place.

5. Agent Name: Every agent must have a unique name with respect to its authority.
In other words, whatever it is that invokes that agent (person, organization, or
a proxy for one of those two) should be able to call the agent with a unique
name within the boundaries where it can call it. (Boundaries may be a host, a
region, etc.)

6. Agent System: This is an abstraction to identify the collection of platforms that
a host runs on and the host that allows the agent to exist. The agent system is
the thing that allows a mobile agent to exist.

7. Interconnections: Communication within all of the participants in a mobile agent
infrastructure is regulated through a mobile agent communication infrastructure
(CI). There are two types of CIs: those between agent systems and those be-
tween regions. You can think of the CIs at the system level as network layer
communication infrastructure and those at the region level as application-layer
communication infrastructure.

8. Code Base: This simply refers to the collection of classes required to instantiate
a mobile agent.

9. Serialization/Deserialization: For an agent to move, we have to stop it, save its
state (data and execution), then instantiate its code base at the target location,
restore its state (data and execution), and finally tell it to resume operation.
The process of saving the information following stoppage of the agent is called
serialization. The process of instantiating the new agent and restoring the state
from the saved blob (file, memory location, etc.) to the agent before it resumes
operation at the new location is called deserialization.

MASIF also introduces some other terminology for more refined recognition of
components and the interactions among the components in a mobile agent system.
We refer you to the MASIF specification [MASIF 1997] and OMG’s Web site for
further exploration.

There is one more important thing that MASIF addresses and that is security.
As we previously mentioned, the biggest problem with mobile agent implemen-
tations tends to be security. Because the agent host and regions should be able

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

570 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

to authenticate agents and assure that the authenticated agent acts in a secure
way, MASIF recognizes the security problems associated with mobile agents and
their existence in a heterogeneous environment and specifies a level of security
implementation that all MASIF-compliant mobile agent platforms must support.

Among the security issues that MASIF recognizes with mobile agents and their
supporting frameworks are the following:

1. DOS Attacks: DOS (Denial of Service) attacks should be familiar to anyone who
has developed Web-based applications. There are several ways that DOS attacks
happen. Some DOS attacks happen at the network layer by unrecognizable
incoming packets. Others happen at the application layer such as sending the
same request over and over again. DOS attacks vary in form and complexity
depending on the infrastructure that they attack. DOS attacks to mobile agent
frameworks may take advantage of the CI among the agents and/or the CI
between hosts and regions.

2. Authorization Failure: The type of operation that a human or system actor can
invoke in a mobile agent depends on the authority of the human or system
actor. Authorization failures happen when a human or system actor who is
not supposed to have access to a particular operation is able to perform that
operation. The same is true if the state of the mobile agent or some piece of
information in the system is changed or destroyed without authorization.

3. Eavesdropping: Communication among the different components of a mobile
agent system is to be secure. This communication can be monitored by different
techniques, thereby breaking the security.

4. Authentication: If an agent uses some mechanism such as spoofing, masquerad-
ing, or replay to pose as a valid agent, it can break the authentication system.

To combat these types of threats, MASIF specifies the following security measures:

1. Network-Level Security: At the network level, MASIF requires confidentiality,
integrity, authentication, and replay detection. These are standard measures
meant to, respectively, make sure that, at the network level, the information is
not recorded, modified, coming from a nonsecure source, or being played back
from a recorded transaction from a valid source.

2. Mutual Authentication of Agent Systems: Network applications that are based on
mobile agents are composed of multiple types and instances of hosts, regions,
and agents. These hosts, regions, and agents must be able to authenticate one
another when communicating with each other. For example, if a region requests
the code base for an agent from another region, it needs to be authenticated
before its request is fulfilled.

3. Agent Authentication and Delegation: For agents to be able to move from host to
host, they need to carry around their credentials for repeated authentication by
subsequent hosts. This can be done by including the authentication information
with the agent itself or by transferring the credentials separately (with the
second being preferred as it is more secure and protects better against stolen
identity).

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.2 Mobile Agents for Mobile Computing 571

4. Agent and Agent System Security Policies: An agent should know how to limit
access to itself and protect itself from unauthenticated or unauthorized third
parties invoking its behaviors. Agents and agent systems must include and
enforce an ACL (Access Control List).

5. Authentication of Clients for Remote Agent Creation: The systems that interact
with mobile agent systems may be based on nonmobile agent technologies or
may not be compliant with MASIF. In these cases, there should be a mechanism
for authentication of such systems before any interactions are initiated.

6. Agent System Access to Authentication Results and Credentials: When an agent
receives communication from a host or another agent, it should verify the
credential of the initiator of the communication.

The syntax of the rules enforced by MASIF is very much like that in CORBA. For
those of you unfamiliar with distributed-object APIs, we recommend that you look
into OMG’s CORBA or Microsoft’s DCOM as examples of APIs to distributed-object
systems. You can find these APIs, respectively, at OMG and Microsoft Developer
Network Web sites. Note that though agents are a higher level abstraction con-
cept, they rely on objects, and because they move around, they are distributed.
Therefore, mobile agent platforms have much in common with distributed-object
platforms and technologies.

What we have reviewed here should give you a good feel for what the inter-
operability issues in mobile agents are and how MASIF addresses them. Besides
OMG, FIPA is the other significant organization that addresses standardization for
mobile agents. We will look at FIPA and its standards in the next section.

9.2.3 FIPA
The Foundation for Intelligent Physical Agents (FIPA) is an organization that
focuses on standardization of agent-based systems and their interactions. FIPA’s
membership includes commercial and academic participation. To date, FIPA has
published standards that cover architectural concerns of mobile agent systems,
communications among the various components of mobile agent systems, man-
agement of agents, and implementation of agents themselves. By all counts, FIPA’s
treatment of the mobile agent problem is more comprehensive than OMG’s MASIF
(which focuses on the interoperability issues only). Here is an overview of the FIPA
specifications:

1. Abstract Architecture Specification: This is the highest level of all FIPA specifi-
cations for mobile agents, systems that allow for creation of mobile agents,
interactions and communications among the components of mobile agent
systems, and applicability issues related to mobile agents (such as that of ap-
plying mobile agents to mobile application development). If you are going to
build a mobile agent system, this specification document is a must read [FIPA
Arch 2001].

2. Agent Management Specification: The primary purpose of hosts, regions, and
whatever infrastructure is provided by a mobile agent platform is to allow
mobile agents to do what they need to do. However, as we have mentioned,

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

572 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

because of the heterogeneous nature of mobile agent platforms (the fact that
we are not guaranteed that all mobile agent hosts and regions are of the same
type and/or same implementation), mobile agents must be guaranteed some
minimal amount of services. The agent management specification outlines the
functionality that must be supported for managing the mobile agent framework
and the interfaces for this functionality. Among these are the specifications for
directory facilitator, agent management system, and message transport service.
The directory facilitator encapsulates the set of functionalities required to pro-
vide a directory of agents by the environment (host, region, etc.). The agent
management system encapsulates the set of functionalities required to create
and destroy agents as well as monitoring their move from one host to another.
The message transport service specifies communication among agents. There
are other parts of the FIPA specification that expound on some of these indi-
vidual issues in more detail. These include the following:
a. Messaging Interoperability Service Specification: This part of the specification

addresses communication among agents in detail.
b. Agent Configuration Management Specification: This part of the specification

outlines the configuration management issues for agent systems and their
components.

c. Agent Message Transport Envelope Representation in Bit-Efficient Encoding
Specification: This part of specification details an efficient way of representing
messages that are sent back and forth between agents.

d. Agent Message Transport Envelope Representation in XML Specification: Like its
binary counterpart, it specifies the format for the messages to be exchanged
among agents, except that this format is specified in XML.

e. Agent Management Support for Mobility Specification: This part of the speci-
fication focuses on the management of agent systems that are deployed on
mobile devices or that interact with mobile devices.

f. Agent Message Transport Protocol for HTTP Specification: As HTTP is currently
the most pervasive application-layer communication protocol (and this is
not likely to change for a long time after this text is written), FIPA has
specified how to use the HTTP protocol to transport MTP (Message Transport
Protocol) messages among the agents. This is important for our purposes of
using mobile agents to build mobile applications as most mobile devices and
mobile operating environments have some sort of support for HTTP.

g. Agent Message Transport Protocol for IIOP Specification: IIOP is an object-
oriented communication protocol. This specification describes how to use
IIOP to transfer MTPs (analogs to using HTTP to transport MTPs).

3. Nomadic Application Support Specification: This section of the FIPA specification
is particularly designed to address “nomadic” environments. Nomadic environ-
ments are those where either some part of the system or the user is mobile.
This specification addresses QOS issues, negotiation of transport protocols for
the messages exchanged among the different components of a mobile agent
system, and most importantly extensive adaptability to mobile devices. This
part of the FIPA specification hits the nail right on the head! The dimensions of
mobility, with the exception of location-based services, are treated in this part

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.2 Mobile Agents for Mobile Computing 573

of the specification, albeit at a high level. There are the following additional
parts of the FIPA specification that address the dimensions of mobility in more
depth:
a. Quality of Service Ontology Specification: This part of the specification deals

specifically with QOS issues in the mobile agent infrastructure.
b. Device Ontology Specification: As we have previously mentioned, one of the

problems of mobile computing is to understand the capabilities of the devices
that are used by the mobile user. Unfortunately, the ontology specified by
FIPA is not based on RDF and XML. Therefore, there is a mismatch between
the implementation, even if we use functionality specified in CC/PP and
UAProf.

4. ACL Specifications: Messages passed back and forth between agents must have a
particular format. This format is specified through the FIPA specifications. The
following properties are specified:
a. Communicative Act Library Specification: ACL stands for Communicative Act

Library. This part of the FIPA specification outlines the basics and semantics
of the ACL syntax. Atomic interactions among agents are outlined, described,
and defined in a well-defined structural manner.

b. ACL Message Structure Specification: This specification outlines the structure
of parameters to be included in an ACL message. The actual format (text,
binary, etc.) is specified according to the serialization type (XML, simple
strings, etc.). This part of the specification simply outlines what parameters
must be included for a message to qualify as an ACL message and the structure
of those messages, in whatever serialization format they may be.

c. ACL Message Representation in XML Specification: This specification simply
outlines a DTD for representing ACL messages in XML.

d. ACL Message Representation in String Specification: This specification simply
outlines how to serialize an ACL message into a character-based string.

e. ACL Message Representation in Bit-Efficient Encoding Specification: This spec-
ification outlines a binary format for serializing ACL messages.

f. Agent Message Transport Service Specification: This specification outlines a ref-
erence model for the Message Transport Service (MTS) and the functionality
that such a service must implement to be able to transport ACL messages
among agents.

g. Propose, Subscribe, Recruiting, Brokering, Contract Net, Query, Request, Interac-
tion Protocol Specifications: These specifications collectively outline the Agent
Interaction Protocol (AIP). AIP is an interaction protocol for mobile agents
and their infrastructure. This part of the specification leverages works done
by James Odell and others in development of AUML (which we will look at
in the next section). Namely, it ties in AIP to ACL and specifies the parame-
ters to be inserted into an ACL message for AIP-based interactions. The AIP
interactions are described by the AIP diagrams, which we will see in the next
section.

Note that FIPA specifications do not outline the various parts of the specification
in the taxonomy that we have introduced here. The taxonomy we have chosen

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

574 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

here is based on our need for the treatment of mobile agents as applied to mobile
application development as well as the introductory basis that we have built, thus
far, regarding mobile agents.

The FIPA standard is extremely well thought out and gives the dimensions
of mobility a first-class treatment. If you are looking at choosing a mobile agent
platform, we strongly urge you to make sure that it is FIPA compliant. If you are
looking into building your own mobile agent platform, there is no better place
to start than the FIPA specifications, not just because you will need to build a
framework that is FIPA compliant for interoperability reasons, but also because the
specifications bring out all of the challenges in building in mobile agent platform.

We are now finished looking at the basic concepts of mobile agent development,
the relationship between mobile agents and mobile applications, and the standards
that not only specify interoperability interfaces but also specify the most important
features and implementation details about those features.

Before jumping into building mobile applications based on mobile agents, we
will look at how to model mobile agents in UML so that we can continue to use
UML as the primary tool for development.

9.3 UML EXTENSIONS FOR MOBILE AGENTS

As in the rest of this text, we are going to discuss how to use UML to model mobile
agents for our mobile applications. When it comes to UML extensions or profiles
for mobile agents, there are currently no standards ratified by OMG or any other
significant standards body. What we will present here is a collection of disparate
but significant efforts by academic and commercial institutions in modeling mobile
agents with UML. We will pick and choose what best applies to mobile application
development. First we will discuss AUML. There are two categories of extensions
specified by AUML: 1. UML extensions to the classifiers representing structural
components of a mobile agent system such as the agents themselves, hosts, and
regions and 2. UML extensions to support the various interactions among these
structural components.

Then, we will look at some other efforts, primarily by Rausch and Sihling
[Rausch et al.], to extend UML for mobile agents. We will conclude by selecting
a subset of the union of these extensions as the set of extensions that we will use
for mobile agents in mobile application development.

Let us start with AUML because it is the most organized effort in introducing
UML extensions for mobile agents.

9.3.1 AUML
AUML, or Agent UML, is an effort stemming from work by James Odell, H. Van
Dyke Parunak, and Bernhard Bauer during the late 1990s and early 2000s to
introduce a set of UML extensions for proper representation of mobile agents and
their interactions with UML. To date, AUML is the only organized body that has
made such an effort though there is a tremendous amount of independent work
done by academic and commercial institutions that we will summarize in the next
section.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.3 UML Extensions for Mobile Agents 575

At the time of authoring this text, there is no official specification for AUML.
It remains a working document to which the aforementioned contributors along
with other individuals make contributions. This working document is composed
of a series of papers written by the major contributors. We will review the summary
of these papers.

As we mentioned, there are two types of UML extensions for mobile agents:
those that extend structural components of UML and those that support the inter-
actions among the extended components. Bauer [Bauer, Odell, and Muller 2001]
contends that, for extensions describing the communication among structural
components of a mobile agent system, we first need to define the types of com-
munication that takes place among such components. There is where Bauer starts
and introduces agent interaction protocol diagrams to satisfy the need for diagrams
that represent interactions among agents properly. AIP diagrams look like se-
quence diagrams. They simply have some added iconic semantics to support the
UML extensions based on stereotypes and utilize OCL for further specification of
constraints.

In addition to these diagrams, we can use collaboration diagrams to model com-
munication of messages among different agents. Because agents and their roles can
be modeled using object notation, this comes naturally to collaboration diagrams.

State diagrams can be used to model the states of an agent as it is created,
moves from host to host, assumes different roles, performs different operations,
and finally dies when it is finished. We can use state diagrams to model mobile
agent life cycles without any extensions.

AUML Agent Interaction Protocol Diagrams
As we mentioned, AIP diagrams are a new type of diagram, introduced by Bauer,
Odell, and Muller [Bauer, Odell, and Muller 2001] to model interactions among
different components of a mobile agent system. In essence, protocol diagrams
combine the functionality of sequence diagrams and activity diagrams to allow us
to represent interactions among agents (which map to object instances) in time.
As Bauer and colleagues define protocol diagrams, they are used to modeling
interactions through any AIP. Therefore, protocol diagrams can represent agent
interactions without implementation dependencies because UML is not language
dependent. Table 9.1 shows the UML extensions that make up protocol diagrams.
In addition to these extensions, protocol diagrams use lifelines. Lifelines are the
dotted vertical lines that are used in sequence diagrams to indicate how long an
agent lives. The only distinction is that an agent can change roles during its life.
Therefore, the extensions of XOR, AND, and OR introduced in Table 9.1 allow us
to place markers on the lifeline that indicate the dependency of the future role and
interactions of one agent based on the message received from another agent/actor.

The papers that make up the current working document of AUML also specify
other extensions that provide more detail in AIP diagrams. We refer you to the
references cited in this text to find a fit in including more detailed descriptions
of your mobile agent–based system. Not among these extensions, though, are
stereotypes of associations that indicate moves, clones, and the building blocks of
a mobile agent system (hosts, regions, etc.).

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

TA
B

LE
9
.1

.
U

M
L

E
xt

e
ns

io
ns

fo
r

A
U

M
L

P
ro

to
co

l
D

ia
gr

am
s

E
xt

en
si

on
D

es
cr

ip
ti

on
Ic

on
ic

R
ep

re
se

n
ta

ti
on

A
ge

n
t

R
ol

e
T

h
is

ex
te

n
si

on
is

u
se

d
to

sp
ec

if
y

th
e

ty
pe

of
ro

le
th

at
th

e
ag

en
t

is
ta

ki
n

g
on

at
a

gi
ve

n
ti

m
e.

T
h

is
is

n
ot

a
st

er
eo

ty
pe

or
ex

te
n

si
on

of
an

ex
is

ti
n

g
ty

pe
in

U
M

L
.R

at
h

er
,i

t
is

u
se

d
to

de
te

rm
in

e
th

e
“r

ol
e”

th
at

a
gi

ve
n

ag
en

t
pl

ay
s

du
ri

n
g

a
pa

rt
ic

u
la

r
se

t
of

in
te

ra
ct

io
n

s.

N
ot

ap
pl

ic
ab

le

A
ge

n
t

ro
le

s
ar

e
in

di
ca

te
d

in
th

e
sa

m
e

w
ay

as
ro

le
s

ar
e

re
pr

es
en

te
d

in
se

qu
en

ce
di

ag
ra

m
s.

Sp
ec

ifi
ca

ll
y,

th
ey

ar
e

in
di

ca
te

d,
in

si
de

a
sq

u
ar

e
bo

x
an

d
at

th
e

to
p

of
th

e
pr

ot
oc

ol
di

ag
ra

m
,

as
fo

ll
ow

s:

A
ge

n
t

N
am

e/
R

ol
e:

C
la

ss

X
O

R
C

on
n

ec
to

r
T

h
is

co
n

n
ec

to
r,

al
on

g
w

it
h

th
e

O
R

an
d

A
N

D
co

n
n

ec
to

rs
,i

s
u

se
d

in
tw

o
w

ay
s.

It
m

ay
be

pl
ac

ed
to

fo
rk

or
m

er
ge

m
es

sa
ge

s
go

in
g

in
to

or
co

m
in

g
ou

t
of

an
ag

en
t.

T
h

is
is

do
n

e
be

ca
u

se
th

e
ro

le
of

th
e

ag
en

t
m

ay
va

ry
de

pe
n

di
n

g
on

th
e

in
co

m
in

g
m

es
sa

ge
.

M
es

sa
ge

s
en

d
at

a
ro

le
of

an
ag

en
t.

W
h

en
th

e
X

O
R

co
n

n
ec

to
r

is
u

se
d

on
th

e
li

fe
li

n
e,

it
m

ay
in

di
ca

te
th

at
on

ly
on

e
of

tw
o

or
m

or
e

ru
le

s
ca

n
be

as
su

m
ed

at
th

e
sa

m
e

ti
m

e.

X

O
R

C
on

n
ec

to
r

L
ik

e
th

e
X

O
R

co
n

n
ec

to
r,

th
is

co
n

n
ec

to
r

ca
n

be
u

se
d

ei
th

er
on

a
li

fe
li

n
e

or
be

tw
ee

n
m

es
sa

ge
s.

If
th

is
co

n
n

ec
to

r
is

u
se

d
to

fo
rk

tw
o

or
m

or
e

m
es

sa
ge

s,
on

e
or

m
or

e
of

th
e

m
es

sa
ge

s
m

ay
ex

is
t

de
pe

n
di

n
g

on
th

e
co

n
di

ti
on

(b
ec

au
se

fo
rk

ed
m

es
sa

ge
s

ar
e

n
ot

m
u

tu
al

ly
ex

cl
u

si
ve

as
in

th
e

ca
se

of
th

e
X

O
R

co
n

n
ec

to
r)

.
W

h
en

th
e

O
R

co
n

n
ec

to
r

is
u

se
d

on
a

li
fe

li
n

e
it

is
th

er
e

to
in

di
ca

te
th

at
th

e
ag

en
t

ca
n

as
su

m
e

ei
th

er
on

e
of

th
e

ro
le

s
at

th
e

ti
m

e
of

re
ce

iv
in

g
a

sp
ec

ifi
c

m
es

sa
ge

or
se

t
of

m
es

sa
ge

s.
A

N
D

C
on

n
ec

to
r

L
ik

e
th

e
X

O
R

co
n

n
ec

to
r,

th
is

co
n

n
ec

to
r

ca
n

be
u

se
d

ei
th

er
on

a
li

fe
li

n
e

or
be

tw
ee

n
m

es
sa

ge
s.

W
h

en
th

e
A

N
D

co
n

n
ec

to
r

is
u

se
d

on
a

li
fe

li
n

e,
it

is
th

er
e

to
in

di
ca

te
th

at
th

e
ag

en
t

ca
n

as
su

m
e

bo
th

of
th

e
ro

le
s

at
th

e
ti

m
e

of
re

ce
iv

in
g

a
sp

ec
ifi

c
m

es
sa

ge
or

se
t

of
m

es
sa

ge
s.

N
ot

e
th

at
an

ag
en

t
ca

n
as

su
m

e
m

u
lt

ip
le

ro
le

s
at

th
e

sa
m

e
ti

m
e.

576

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.3 UML Extensions for Mobile Agents 577

The problem with AUML is that it adds a great deal of complexity in its ex-
tensions. Although treatment of roles is needed in mobile agent modeling, logical
operators of XOR, AND, and OR make any sort of significant AIP diagram fairly
complex to read and understand. AIP diagrams tend to display the state of the
agents both through time and through agent role (which itself is a function of the
location of the agent, the interactions of the agent with other agents, etc.).

Also, current efforts in the AUML working document still do not address mod-
eling some of the properties of mobile agent frameworks. For example, there is
no clear iconic method of representing an agent moving from one host to another.
However, there are other efforts to provide UML extensions for such a need. We
will look at these in the next section. We will use a mixture of AUML and other ex-
tensions in Section 9.3.3 for some examples of modeling mobile agents as applied
to mobile application development.

9.3.2 UML Extensions for Mobile Agents
Besides AUML, there are several significant works done by variety of academic
and commercial groups to extend UML to model mobile agents and their behavior
using UML. These works rely on the UML extension mechanism. In this section,
we will take pieces of these works and form a set of UML extensions that allows us
to model mobile agents with UML. There are two reasons that we do not stay with
AUML as the one and only method to represent mobile agents in UML: 1. AUML is
still not an official specification supported by OMG and 2. AUML does not provide
some of the metamodel pieces that we need to allow us to model mobile agents
in a mobile application environment. The majority of what we will be discussing
in this section is based on the work of Andreas Rausch and Marc Sihling, who are
frequently referenced throughout this section.

In the previous sections, we have defined the major concepts of mobile agents.
Now, let us see what Rausch and colleagues [Rausch, Sihling, and Wen 1998] add
as UML extensions to help us represent mobile agents with UML. Table 9.2 lists
these extensions.

Before we can put these extensions to use, let us create a small union of them
with AUML to create a set of extensions for mobile agents used for mobile appli-
cation development.

9.3.3 Mobile Agent UML Extensions for Mobile Applications
Rausch et al.’s extensions are particularly useful because we can represent the
structure and the actions taken by mobile agents easily with the existing type of
UML diagrams. To these, we will add the AUML AIP diagrams. This is what we
will utilize as our extensions to model mobile agents used in a mobile application
infrastructure.

Now, let us put this to quick use. Let us start with a use case diagram that
shows the use case outlined in Figure 9.1. Agent B is always looking for the right
restaurant and Agent A is always keeping track of the user. Agent B and Agent A
can communicate. Figure 9.1. shows a UML use case diagram that represents our
use case. We learned this back in Chapter 6.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

T A
B

LE
9
.2

.
R

au
sc

h’
s

Ic
o
ni

c
U

M
L

E
xt

e
ns

io
ns

to
R

e
pr

e
se

nt
M

o
bi

le
A

ge
nt

s
in

U
M

L

St
er

eo
ty

pe
D

es
cr

ip
ti

on
Ic

on

<
<

m
ob

il
e

ag
en

t>
>

C
la

ss
,O

bj
ec

t,
Se

qu
en

ce
,

an
d

C
ol

la
bo

ra
ti

on
D

ia
gr

am
s

T
h

is
is

th
e

m
os

t
ba

si
c

co
n

ce
pt

of
m

ob
il

e
ag

en
t–

ba
se

d
sy

st
em

s.
T

h
is

st
er

eo
ty

pe
in

di
ca

te
s

a
cl

as
s

(w
h

ic
h

m
ay

be
a

w
ra

pp
er

ar
ou

n
d

ot
h

er
cl

as
se

s,
pa

ck
ag

es
,e

tc
.)

th
at

en
ca

ps
u

la
te

s
st

ro
n

g
or

w
ea

k
m

ob
il

it
y

as
w

e
h

av
e

de
fi

n
ed

pr
ev

io
u

sl
y.

R
em

em
be

r
th

at
m

ob
il

e
ag

en
ts

ar
e

au
to

n
om

ou
s

an
d

as
yn

ch
ro

n
ou

s.
B

ec
au

se
th

is
st

er
eo

ty
pe

ex
te

n
ds

th
e

U
M

L
cl

as
s,

th
en

it
is

re
pr

es
en

te
d

by
th

e
sa

m
e

sy
m

bo
l

(o
pt

io
n

al
st

er
eo

ty
pe

te
xt

on
th

e
cl

as
s

ic
on

)
an

d
ca

n
be

u
se

d
in

di
ag

ra
m

s
th

at
ca

n
in

cl
u

de
cl

as
se

s.
A

n
ot

h
er

ve
ry

im
po

rt
an

t
n

ot
e

is
th

at
th

is
is

no
ta

n
in

st
an

ce
;

th
is

st
er

eo
ty

pe
is

u
se

d
to

m
od

el
th

e
co

de
th

at
re

su
lt

s
in

an
in

st
an

ce
ag

en
t.

<
<

m
ob

il
e

ag
en

t>
>

<
<

re
gi

on
>
>

Se
qu

en
ce

,
C

ol
la

bo
ra

ti
on

,a
n

d
A

ct
iv

it
y

D
ia

gr
am

s

A
re

gi
on

re
pr

es
en

ts
a

gr
ou

pi
n

g
of

tw
o

or
m

or
e

h
os

ts
.R

eg
io

n
s

ty
pi

ca
ll

y
h

av
e

a
re

gi
st

ry
th

at
ke

ep
s

tr
ac

k
of

w
h

at
ag

en
t

is
on

w
h

ic
h

h
os

t
an

d
th

e
ab

il
it

y
of

a
pa

rt
ic

u
la

r
h

os
t

to
se

rv
e

as
a

h
os

t
fo

r
a

pa
rt

ic
u

la
r

ag
en

t
(b

ec
au

se
di

ff
er

en
t

h
os

ts
in

a
re

gi
on

n
ee

d
n

ot
h

av
e

th
e

sa
m

e
ca

pa
bi

li
ti

es
).

T
h

is
st

er
eo

ty
pe

m
ay

be
ap

pl
ie

d
to

a
cl

as
s

or
a

pa
ck

ag
e.

R
eg

io
n

N
am

e

<
<

ag
en

t
sy

st
em

>
>

D
ep

lo
ym

en
t

an
d

C
om

po
n

en
t

D
ia

gr
am

s

T
h

is
st

er
eo

ty
pe

ex
te

n
ds

th
e

U
M

L
co

m
po

n
en

t
st

er
eo

ty
pe

an
d

is
re

pr
es

en
te

d
by

th
e

sa
m

e
sy

m
bo

l.
T

h
e

ag
en

t
sy

st
em

is
u

se
d

to
re

pr
es

en
t

th
e

h
os

t
en

vi
ro

n
m

en
t

in
a

co
m

po
n

en
t

di
ag

ra
m

.

<
<

ag
en

cy
>
>

C
la

ss
,O

bj
ec

t,
Se

qu
en

ce
,

C
ol

la
bo

ra
ti

on
,a

n
d

A
ct

iv
it

y
D

ia
gr

am
s

T
h

is
st

er
eo

ty
pe

re
pr

es
en

ts
th

e
co

n
ce

pt
of

a
ho

st
(s

yn
on

ym
ou

s
to

ag
en

cy
in

m
ob

il
e

ag
en

ts
).

It
re

pr
es

en
ts

an
en

vi
ro

n
m

en
t

th
at

su
pp

or
t

th
e

fe
at

u
re

s
n

ee
de

d
fo

r
at

le
as

t
w

ea
k

m
ob

il
it

y.
T

h
is

st
er

eo
ty

pe
ex

te
n

ds
a

U
M

L
cl

as
s

or
pa

ck
ag

e.

A
ge

nc
y

N
am

e

578

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

<
<

m
ov

e>
>

Se
qu

en
ce

,
C

ol
la

bo
ra

ti
on

,S
ta

te
,

an
d

A
ct

iv
it

y
D

ia
gr

am
s

M
ob

il
e

ag
en

ts
m

ov
e

fr
om

h
os

t
to

h
os

t.
W

h
en

an
ag

en
t

m
ov

es
fr

om
on

e
h

os
t

to
an

ot
h

er
,i

t
is

de
co

n
st

ru
ct

ed
,t

ra
n

sp
or

te
d,

an
d

re
co

n
st

ru
ct

ed
.T

h
e

tr
an

si
ti

on
be

tw
ee

n
th

e
ag

en
t

be
fo

re
it

is
be

in
g

de
co

n
st

ru
ct

ed
an

d
th

e
ag

en
t

af
te

r
it

is
re

co
n

st
ru

ct
ed

is
in

di
ca

te
d

u
si

n
g

th
is

st
er

eo
ty

pe
.I

n
th

is
ca

se
,i

t
in

di
ca

te
s

a
de

pe
nd

en
cy

(i
n

th
os

e
di

ag
ra

m
s

w
h

er
e

de
pe

n
de

n
cy

is
re

le
va

n
t)

be
tw

ee
n

ag
en

ts
(r

ea
ll

y,
in

st
an

ce
s

of
th

e
sa

m
e

ag
en

t
in

ti
m

e)
.

T
h

is
st

er
eo

ty
pe

is
al

so
u

se
d

to
in

di
ca

te
th

e
ac

ti
on

(i
n

th
os

e
di

ag
ra

m
s

w
h

er
e

ac
ti

on
is

re
le

va
n

t)
of

m
ov

in
g

fr
om

on
e

h
os

t
to

an
ot

h
er

h
os

t.

N
ot

e
th

at
th

is
st

er
eo

ty
pe

in
h

er
en

tl
y

in
di

ca
te

s
st

ro
ng

m
ob

il
it

y.
In

ot
h

er
w

or
ds

,t
h

e
st

at
e

of
ex

ec
u

ti
on

is
pr

es
er

ve
d

fr
om

th
e

ti
m

e
w

h
en

th
e

m
ov

e
st

ar
ts

to
th

e
ti

m
e

w
h

en
th

e
m

ov
e

en
ds

an
d

it
is

re
su

m
ed

th
er

ea
ft

er
on

th
e

h
os

t
to

w
h

ic
h

th
e

m
ob

il
e

ag
en

t
h

as
m

ov
ed

.

<
<

cl
on

e>
>

Se
qu

en
ce

,
C

ol
la

bo
ra

ti
on

,S
ta

te
,

an
d

A
ct

iv
it

y
D

ia
gr

am
s

M
ob

il
e

ag
en

ts
h

av
e

th
e

ab
il

it
y

to
cl

on
e

th
em

se
lv

es
if

th
ey

ar
e

to
be

de
fi

n
ed

as
m

ob
il

e
ag

en
ts

.T
h

is
is

tr
u

e
fo

r
bo

th
w

ea
k

an
d

st
ro

n
g

m
ob

il
it

y.
T

h
is

st
er

eo
ty

pe
al

lo
w

s
u

s
to

in
di

ca
te

w
h

et
h

er
on

e
ag

en
t

is
th

e
cl

on
e

of
an

ot
h

er
ag

en
t

(i
n

th
is

ca
se

it
ex

te
n

ds
th

e
U

M
L

de
pe

n
de

n
cy

).

A
lt

er
n

at
iv

el
y,

it
ca

n
be

u
se

d
to

re
pr

es
en

t
th

e
ac

ti
on

of
cl

on
in

g
in

di
ag

ra
m

s
th

at
re

pr
es

en
t

ac
ti

vi
ti

es
an

d
st

at
es

(i
n

th
is

ca
se

it
ex

te
n

ds
th

e
U

M
L

ac
ti

on
).

In
th

e
ca

se
of

w
ea

k
m

ob
il

it
y,

th
e

cl
on

e
is

a
co

py
of

th
e

so
u

rc
e

ag
en

t,
bu

t
it

st
ar

ts
at

ze
ro

ex
ec

u
ti

on
st

at
e.

In
th

e
ca

se
of

st
ro

n
g

m
ob

il
it

y,
th

e
st

at
e

of
th

e
cl

on
ed

ag
en

t
be

gi
n

s
at

th
e

ti
m

e
w

h
en

th
e

cl
on

in
g

pr
oc

es
s

st
ar

te
d

on
th

e
so

u
rc

e
ag

en
t.

(c
on

ti
nu

ed
)

579

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

TA
B

LE
9
.2

(c
on

ti
n

u
e

d
)

St
er

eo
ty

pe
D

es
cr

ip
ti

on
Ic

on

<
<

re
m

ot
e

ex
ec

u
ti

on
>
>

Se
qu

en
ce

,
C

ol
la

bo
ra

ti
on

,S
ta

te
,

an
d

A
ct

iv
it

y
D

ia
gr

am
s

T
h

is
st

er
eo

ty
pe

is
u

se
d

to
in

di
ca

te
a

m
ov

e
fr

om
on

e
h

os
t

to
an

ot
h

er
h

os
t,

by
an

ag
en

t,
w

h
er

e
th

e
st

at
e

of
ex

ec
u

ti
on

of
th

e
ag

en
t

is
n

ot
pr

es
er

ve
d.

T
h

er
ef

or
e,

th
is

st
er

eo
ty

pe
in

di
ca

te
s

w
ea

k
m

ob
il

it
y.

O
n

ce
th

e
ag

en
t

ar
ri

ve
s

at
th

e
de

st
in

at
io

n
h

os
t,

it
st

ar
ts

ex
ec

u
ti

n
g

at
so

m
e

st
at

ic
st

ar
ti

n
g

st
at

e.
K

ee
p

in
m

in
d

th
at

st
ro

n
g

m
ob

il
it

y
is

a
su

pe
rs

et
of

w
ea

k
m

ob
il

it
y;

th
er

ef
or

e,
a

sy
st

em
th

at
is

ab
le

to
su

pp
or

t
st

ro
n

g
m

ob
il

it
y

co
u

ld
st

il
lh

av
e

so
m

e
ag

en
ts

th
at

m
ov

e
in

a
w

ea
kl

y
m

ob
il

e
m

an
n

er
(w

h
at

R
au

sc
h

ca
ll

s
“r

em
ot

e
ex

ec
u

ti
on

”)
.

<
<

ro
le

ch
an

ge
>
>

Se
qu

en
ce

,
C

ol
la

bo
ra

ti
on

,S
ta

te
,

an
d

A
ct

iv
it

y
D

ia
gr

am
s

A
ge

n
ts

ca
n

ex
h

ib
it

a
di

ff
er

en
t

se
t

of
fu

n
ct

io
n

al
it

y
de

pe
n

di
n

g
on

th
e

lo
gi

c
th

at
ca

n
be

sp
ec

ifi
ed

in
th

e
m

ob
il

e
ag

en
t

it
se

lf
,r

eg
io

n
re

gi
st

ry
in

fo
rm

at
io

n
,o

r
th

e
h

os
t

to
w

h
ic

h
th

ey
m

ig
ra

te
.W

e
ca

ll
th

e
se

t
of

fu
n

ct
io

n
al

it
y

th
at

a
m

ob
il

e
ag

en
t

ex
h

ib
it

s
an

d
pe

rf
or

m
s

it
s

“r
ol

e.
”

If
th

e
ro

le
of

a
m

ob
il

e
ag

en
t

ch
an

ge
s

ow
in

g
to

a
m

ov
e

or
so

m
e

ot
h

er
ev

en
t,

w
e

in
di

ca
te

it
u

si
n

g
th

is
st

er
eo

ty
pe

.T
h

is
st

er
eo

ty
pe

ex
te

n
ds

th
e

U
M

L
de

pe
n

de
n

cy
st

er
eo

ty
pe

as
it

is
be

tw
ee

n
th

e
m

ob
il

e
ag

en
t

an
d

it
se

lf
at

tw
o

di
ff

er
en

t
po

in
ts

in
ti

m
e.

580

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.3 UML Extensions for Mobile Agents 581

Let’s assume that we have a series of mobile agents that follow the user around,
based on the user’s location, to provide some services for the user. A real exam-
ple of such could be agents that are traveling on a collection of small wireless
networks (WIFI, etc.) forming a so-called hot-spot. Let’s say that there are two
types of agents: those that can reside anywhere on the network including the
mobile device, the servers, personal computers, etc. and those that can reside
only on stationary systems (PC’s, servers, etc.). We need to model the following.
The job of Agent B is to allow the user to enter some preferences that allows it
to search for the local restaurants of a particular type. The job of Agent A is to
follow the user around and notify the user, based on his location, if he/she is
near one of the restaurants.

The use cases are:

1. Editing Search Preferences: For the sake of the example, let’s say that we only
want to allow the user to edit their preferences on their PC or PDA. They can’t
do it on devices with less capabilities (cell phones, etc.).

2. Editing Contact Information: This enables the user to enter his/her contact
information, register devices, and any preferences on when he/she doesn’t
want to be reached or when he/she doesn’t have any of his/her devices along.

3. Notification: The user should be notified of the restaurant within 5 minutes
walking distance or 0.25 Kilometers, which ever is longer (because a direct
line from the user’s location to the location of the restaurant may be much
shorter than walking streets that are the only route and not a direct route).

There may be other use cases, but let’s assume that these are our essential use
cases. (See Chapter 6 for the definition.)

FIGURE 9.1. Use Case of a Mobile Agent in Mobile Computing.

The use case diagram does not use any of our new extensions. This brings
out something very important: Implementation of a system of mobile agents is
not related to use cases. The user never sees, hears, or knows about the type
of implementation. So, all those diagrams that are used to model use cases or
user interfaces remain the same whether we are building a client–server mobile
application or a mobile application based on mobile agent technologies. Note also
that we are using Wisdom-style use case diagrams to focus on the interaction of
the user with the system for the essential tasks. We will use other diagrams to
show the internal implementation.

Let us assume that we have a series of mobile agents that follow the user around,
based on the user’s location, to provide some services for the user. A real example
of such could be agents that are traveling on a collection of small wireless networks
(WIFI, etc.) forming a so-called hot spot. Let us say that there are two types of
agents: those that can reside anywhere on the network including the mobile device,
the servers, PCs, etc. and those that can reside only on stationary systems (PCs,
servers, etc.). We need to model the following: The job of Agent B is to allow

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

582 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

Restaurant Vicinity
Notification

Edit Preferences

Edit Contact Information

FIGURE 9.2. Mobile Use Cases for Example in Figure 9.1.

the user to enter some preferences that allow him or her to search for the local
restaurants of a particular type. The job of Agent A is to follow the user around
and notify the user, based on the user’s location, if he or she is near one of the
restaurants.

The use cases are as follows:

1. Editing Search Preferences: For the sake of the example, let us say that we only
want to allow the users to edit their preferences on their PC or PDA. They
cannot do it on devices with less capabilities (cell phones, etc.).

2. Editing Contact Information: This enables the user to enter his or her contact
information, register devices, and set any preferences on when he or she does
not want to be reached or does not have any devices within reach.

3. Notification: The user should be notified of the restaurant within five minutes
walking distance or 0.25 kilometers, whichever is longer (because a direct line
from the user’s location to the location of the restaurant may be much shorter
than walking streets that are the only route and not a direct route).

There may be other use cases, but let us assume that these are our essential ones.
Next, we need to show the internal implementation of how things are going to

work. We need to show the following:

1. Agent A and Agent B communicate.
2. Agent A can migrate among all of the different hosts that participate in our

system.
3. Agent B can migrate to most of the different hosts that participate in our system

(all but the least powerful devices).
4. Agent A gathers information from a GPS system that is on the device.
5. Agent B communicates with a database that holds restaurants and their loca-

tions.

Next, we need to model the implementation that will provide the functionality.
Figure 9.2 shows how some basic mobile use cases can be modeled using the
extensions that we have learned so far. Let us use a collaboration diagram first.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.3 UML Extensions for Mobile Agents 583

<<region>>
Application Service

Provider

<<region>>
Network Operator

<<agency>>
Server Host

<<agency>>
Device Host

GPS

<<mobile agent>>
Agent A

<<agency>>
Provisioning

Host

<<mobile agent>>
Agent A

<<agency>>
Server Host

<<mobile agent>>
Agent B

<<mobile agent>>
Agent B

GIS

FIGURE 9.3. Collaboration Diagram for Example in Figure 9.1.

Figure 9.3 shows a collaboration diagram that shows how the two agents and the
infrastructure work together to provide the necessary functionality to the end user.

As you can see, Figure 9.3 shows the two separate regions. The Application
Service Provider Region is simply the region that encapsulates the hosts of the
provider of the application. The network operator has its own region to enforce its
own security, billing, user registry, and other concerns that are typical for network
operators when dealing with their users. Agent A has to communicate with a system
actor and a mobile human actor (defined in Chapter 6) as well as with Mobile
Agent B. Mobile Agent B must be able to communicate with a GIS (Geographic
Information System) system actor as well as with Mobile Agent A. We have not
modeled the collaboration with databases and other applications that may hold
the information about restaurants. It will be a good exercise for the user to add
these to the diagrams.

Next, to show the temporal series of events, we are going to build a sequence
diagram in Figure 9.4. Note the following things on this figure:

1. Communication between the user and the agent on the handset is asynchronous
because the agent notifies the user in an active manner, based on the user settings
and the response time of the system components.

2. We have used regions and agencies to show boundaries that are not part of
standard sequence diagrams. We specified these extensions in the last section.
They are very useful in allowing us to see how messages are passed back and
forth among regions, agencies, and agents. The separation among these three
layers is crucial. We may decide to include the sequence of messages and actions
between agents in one sequence diagram, use another diagram that shows agen-
cies only, use yet another diagram that shows agencies and agents, or produce
any other combination of these three depending on the needs of the mobile

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

<
<

re
gi

on
>

>
A

pp
li

ca
ti

on
 S

er
vi

ce

P
ro

vi
de

r

<
<

re
gi

on
>

>
N

et
w

or
k

O
pe

ra
to

r

<
<

ag
en

cy
>

>
S

er
ve

r
H

os
t

<
<

ag
en

cy
>

>
D

ev
ic

e
H

os
t

<
<

m
ob

il
e

ag
en

t>
>

A
ge

nt
 1

:A
ge

nt
 A

<
<

ag
en

cy
>

>
P

ro
vi

si
on

in
g

H
os

t

<
<

m
ob

il
e

ag
en

t>
>

A
ge

nt
 1

: A
ge

nt
 A

<
<

ag
en

cy
>

>
S

er
ve

r
H

os
t

<
<

m
ob

il
e

ag
en

t>
>

A
ge

nt
 3

:A
ge

nt
 B

<
<

m
ob

il
e

ag
en

t>
>

A
ge

nt
 3

:A
ge

nt
 B

R
eq

ue
st

S
er

vi
ce

R
eq

ue
st

A
ge

nt
R

eq
ue

st
A

ge
nt

C
re

at
e

<
<

m
ob

il
e

ag
en

t>
>

A
ge

nt
 1

: A
ge

nt
 A

<
<

m
ov

e>
>

<
<

m
ov

e>
>

L
oc

at
e

C
ol

la
bo

ra
ti

ve

A
ge

nt
 (

A
ge

nt
 B

)

N
ot

if
y

U
se

r

[N
o

A
ge

nt
 B

]
L

oc
at

e
C

ol
la

bo
ra

ti
ve

 A
ge

nt

(A
ge

nt
 B

)

[N
o

A
va

il
ab

le
 A

ge
nt

 B
]

C
lo

ne
 A

ge
nt

 (
A

ge
nt

 B
)

[A
ge

nt
 B

 A
va

il
ab

le
]

C
re

at
e

<
<

m
ob

il
e

ag
en

t>
>

A
ge

nt
 2

:A
ge

nt
 B <

<
cl

on
e>

>

<
<

m
ov

e>
>

FI
G

U
RE

9.
4.

U
si

ng
Se

qu
en

ce
Di

ag
ra

m
s

to
th

e
M

od
el

Ag
en

tI
nt

er
ac

tio
ns

of
th

e
Ex

am
pl

e
in

Fi
gu

re
9.

1.

584

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.3 UML Extensions for Mobile Agents 585

application and the complexity of the implementation. Typically, there are two
reasons for showing regions and agencies (hosts). The first is if there are a
variety of different types of hosts in the system. Remember that although agents
can migrate from host to host, it is not a requirement that agents be able to
migrate to all of the hosts nor is it a requirement that the implementation of
the host on the various platforms be identical. Second, we may want to show
regions because the security issues are typically resolved at the region level. The
registry of viable agents for the hosts in the region as well as authentication and
authorization of the interactions among the users and the agents and within the
agents themselves is implemented within the region. So, showing the regions
and hosts on the sequence diagram can clarify logical boundaries that are very
useful.

3. Our example here is somewhat trivial. Nonetheless, it shows you the usage of
the basic stereotypes that we introduced and indicates how to put them together
to build a sequence diagram. There is a diminishing return on increasing the
level of detail in most UML diagrams (Although some make the argument that
the graphical artifacts of UML are only the surface, the counterargument that
this surface is the most valuable part of UML in practice nearly always holds
true.) Assess the requirements of the project and how UML is being used before
deciding what you are going to model with UML and at what level of detail you
are going to do it.

4. Our sequence diagram documents a very important design and implementation
detail: Agent A and Agent B types communicate through an RPC-like mecha-
nism. We could require that Agent A moves to the same host or region as Agent
B and then communicate with Agent B. This may be advantageous. Remember
that a move operation uses considerable burst bandwidth because the entire
agent has to move from one host to another. A move to communicate with
another host makes sense if there are numerous interactions going on between
the two agents and if the agents are in physically disparate locations. Typically,
there is some sort of mapping between regions and physical locations of the
platform. Therefore, migration from one host to another host, or from one re-
gion to another region, may make sense if it saves communication bandwidth,
if the network provides high-burst bandwidth and low continuous QOS, and if
the application requirements allow it. It is important to note that being a mo-
bile agent does not require that communication be done only within the same
region or the same host.

Next, let us look at an AUML AIP diagram in Figure 9.5. Because our agents do
not change roles, this diagram looks similar in nature to the sequence diagram
that we already introduced. We can, however, treat whether the agent notifies the
user as a role. This is because if the agent notifies the user, then it has to render
an interface; otherwise, it is just running in the background. This brings us to
another conclusion: AIP diagrams are most useful when dealing with applications
that include mobile agents that can play multiple roles. Sequence, state, and col-
laboration diagrams deliver more value in cases where the agents do not change
roles much.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

A
ge

nt
 1

: A
ge

nt
 A

A
ge

nt
 3

: A
ge

nt
 B

X

S
en

d
L

oc
at

io
n

N
o

R
es

ta
ur

an
t

F
ou

nd
 R

es
ta

ur
an

t

In
va

li
d

L
oc

at
io

n

G
IS

 S
ys

te
m

V
er

if
y

L
oc

at
io

n
R

es
ta

ur
an

ts
 D

B

S
ea

rc
h

fo
r

R
es

ta
ur

an
t

N
ot

if
y

U
se

r

N
on

e

R
es

ta
ur

an
t a

nd
A

dd
re

ss

L
oc

at
io

n
In

fo

S
en

d
L

oc
at

io
n

V
al

id
at

e
L

oc
at

io
n

w
it

h
G

PS

FI
G

U
RE

9.
5.

U
si

ng
AI

P
Di

ag
ra

m
s

to
M

od
el

Ag
en

tI
nt

er
ac

tio
ns

.

586

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.4 Applications of Mobile Agents to Mobile Applications 587

This brings us to the end of our discussion on using UML for modeling mobile
agents. UML and the extensions that we have introduced here offer a tremendous
amount of value in building agent systems. Mobile agent–based systems tend to be
more complicated than client–server systems. UML helps us reduce the complexity
of dealing with the problems by allowing us to create visual models and break down
large interaction sets by representing them with several such diagrams. Now, let
us get to the core reason why we are looking at mobile agents and learn how to
build mobile applications with mobile agents.

9.4 APPLICATIONS OF MOBILE AGENTS TO MOBILE APPLICATIONS
AND IMPLEMENTATION TOOLS

The example in Figure 9.4 in the previous section demonstrates the two types of
uses that mobile agents may have in a mobile application environment:

1. Pervasive Usage: Mobile agents can run on mobile devices to provide
application-layer functionality to the user. When mobile agents are used perva-
sively throughout the mobile application infrastructure, they can move among
hosts with a wide range of capabilities.

2. Limited Usage: Mobile agents can run on the network that supports the mobile
devices but not on the device itself. In these cases mobile agents run on servers,
PCs, and other stationary computing devices with enough necessary comput-
ing power to support the mobile agent framework as well as the mobile agents.
However, the mobile agent framework, in this case, may be too large to be run
on the devices. The agents are used to provide data and functionality to an
application on the device, which, in turn, delivers application-layer function-
ality to the user. Such limited usage of mobile agents is typically implemented
in a hybrid environment with client–agent server architecture. Mobile agents,
in this case, really make up the fabric of a middle-ware system that supports
mobile applications rather than make up the actual mobile applications.

To build these mobile agent applications, we need mobile agent platforms. It is
much easier to build a mobile agent platform to use mobile agents in a limited way,
as a middle-ware, to support mobile applications than it is to build a mobile agent
platform that allows mobile agents to freely move among mobile devices and
the underlying supporting network made of the stationary systems. Also, weak
mobility is simpler to implement than strong mobility, particularly when dealing
with pervasive usage of mobile agents in building our mobile applications. So, it
is obvious that we need to take a detailed look at the tools that let us build mobile
agent–based applications.

As we have mentioned before, because Java is, at least in theory, a “write-once-
run-anywhere” platform, it provides today’s most basic base platform for building
mobile agent frameworks. It is important to note that, by itself, Java and its existing
supporting APIs in J2SE, J2ME, and J2EE are insufficient to build the mobile agents
used pervasively throughout the mobile application infrastructure. However, there

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

588 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

are several mobile agent platforms built on top of Java and its supporting APIs such
as JADE and LEAP, which we will look at later in this section.

Of course, Java is not the only alternative as a platform. Besides mobile agent
platforms built on C and C++, there are many agent platforms that use scripting
languages such as TCL. The concepts that go into building the mobile agents
themselves are no different for a mobile agent platform based on Java than those
based on C, C++, or some other programming language. The major difference lies
in the fact that C and C++ code (as well as most other languages) are typically
fairly platform dependent, as we discussed in Chapter 1. The implementation of
the platform is typically more difficult in C and C++ because the mobile agent
platform would have to bridge the gap between all the underlying hardware and
operating system platforms that the hosts can run on. The same is true for scripting
languages such as TCL but for a different reason. Although implementing programs
in a scripting languages does not change from platform to platform, something has
to implement the scripting language itself (compilation, interpretation, etc.). This
extra functionality of compilation and/or interpretation adds to the complexity of
the mobile agent platform implementation So, such scripting languages are not
necessarily a suitable technology for resource-constrained devices.

Once we have looked at a few examples of tools to build mobile agents, we will
look at the various usages of mobile agents for dealing with dimensions of mobility
and how they can solve the challenges we face in building mobile applications. So,
let us start with Java, the mobile agent platforms built on Java, and some examples
of how to build mobile agents for such platforms.

9.4.1 Java and Mobile Agents
Java, developed by Sun Microsystems, offers the facilities to build systems with
weak mobility. The Java Virtual Machine (JVM) abstracts the hardware and oper-
ating system platform from the application developer, thereby providing a homo-
geneous development environment on an otherwise heterogeneous background.
Java provides a complete mobile code platform if the platform is able to support
the full JVM. Regardless of the host, as long as it supports the virtual machine,
it can load classes and other supported resources. The JVM loads classes from
files of byte code (platform-independent, compiled Java code) as needed. Once
the class has been loaded, it is always returned to its initial state. The serialization
mechanism of Java allows us to restore data to the initial state of the class, but
there is no mechanism to return to some previous execution state.

Java can provide support for a system with strong mobility if and only if every
host uses only one process with one thread for one agent at a time. Java does
not offer thread-level control; therefore, with the current implementation of the
virtual machine (JDK 1.4) in a multithreaded environment controlled by the virtual
machine, it is impossible to capture and return the state of execution of any thread
without some degree of uncertainty.

There are also applets, Aglets, and MIDlets. These are collections of classes that
make up an application. The supporting framework for each supports mobility to
a degree. Let us take a closer look at them.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.4 Applications of Mobile Agents to Mobile Applications 589

Applets, Aglets, and MIDlets
Java was originally conceived as a portable language for client-side programming
more so than the server side. Java has found its success in large, scalable server-side
programs that could be ported among platforms, depending on the usage, without
much in the way of modifications; nevertheless, Java applets were the instrument
that gave Java its first claim to fame.

Applets are complete applications that can be loaded by Web browsers and run
on the same computer using the virtual machine that is installed on that computer.
Web browsers are not required to know how to run applets. In fact, though applets
have a formal specification published by Sun Microsystems, they are a de facto
standard (a standard that develops slowly by becoming pervasive as opposed to
a standard that is formed by a committee and formally accepted) for platform-
independent applications on the Web. Applets implement mobile code within the
browser that implements their usage. An applet is written by extending a base
class provided in Java. Applets require a full-blown JVM (J2SE JVM). Applets
implement code mobility for all those environments that can run the JVM and a
Web browser powerful enough to take advantage of the JVM features. Applets run
within the browser security “sandbox.” In other words, they only have access to
what the browser allows access to. You can think of the host for the applet as a
combination of the JVM and the browser. So, compared to other types of mobile
agents, applets are fairly secure.

Aglets are an implementation of weak mobility in using Java. Aglets are a newer
incarnation of mobility using Java; they are not pervasive throughout the devel-
opment community. Nevertheless, they are worth looking at as one of the few
available mobile agent mechanisms today.

MIDlets, which we briefly discussed in Chapter 2, implement weak mobility
for the J2ME environment. As we have learned, J2ME targets resource-starved
devices that cannot run the full JVM or the full set of supporting APIs in J2SE. The
code base for MIDlets is not portable between J2ME to J2SE. Neither is the code
base for applets (which run using the full-blown JVM) portable to J2ME. This is
the gap that exists in the Java platform to implement agent mobility pervasively
throughout our mobile application and, thereby, gives rise to the need to build
additional software on top of the Java platform to provide such functionality.

Now, let us look at applets, Aglets, and MIDlets in more detail.

Applets
Applets are a great example of mobile code but do not display any state mobility
properties. Therefore, applets are not mobile agents. An applet is a Java program
downloaded by a browser as a part of an HTML page directive. This Java program
is then executed by the virtual machine present on the machine that hosts the
browser. Every time an applet moves, it returns to its initial state.

The only significant difference in the code for an applet and a typical Java
program is that the driver class has to extend the class applet and the main method
is replaced by an initial method. Figure 9.6 shows sample code for the skeleton of
a “Hello World” applet.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

590 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

Public class HelloWorldApplet extends Applet

{
public void init() {

drawHelloWorld();

}
public void drawHelloWorld() {

....

....

}
}

FIGURE 9.6. Skeleton of an Applet.

Applets cannot be made to implement mobile agent capabilities because the
security model requires the following:

1. An applet can only communicate with the host that it came from. This is the
server from which it was originally downloaded.

2. An applet cannot run a local executable on the host. This prohibits an applet
from cloning itself or creating another applet.

This does not mean that mobile code is not useful for mobile computing. Quite
the contrary, the applet model can be utilized quite effectively because one of the
biggest problems that we face in designing mobile applications is lack of volatile
and nonvolatile storage resources. It is much more practical to load the application
on demand and run it rather than to permanently store it. Nevertheless, the applet
model by itself is limiting. Applets require the full J2SE virtual machine, which is
too resource-starved for most mobile devices. J2ME’s MIDlets, discussed later in
this chapter and previously in Chapter 2, borrow much from applets and do not
require the full-blown J2SE virtual machine.

Aglets
If you look at the Webster dictionary, aglets are defined as those plastic things at
the end of shoelaces! Now, Aglets are also the name of mobile agents written for
a mobile agent specification created by the IBM research group in Japan. Aglets,
like applets, are a model for mobile code. However, they also implement weak
mobility, meaning that they can carry their state from one host to another.

Aglets use the Java serialization mechanism to store their own state before mi-
gration. After migration, they use the serialization mechanism once more to restore
their state. Serialization is possible when one of the two interfaces, externalizable
or serializable, are implemented by a Java class. When a Java object is serialized, its
state from the heap is written into a byte stream. This byte stream may be a file, a
database, or some other persistence mechanism. The byte stream, in its complete-
ness, can then be used to reconstruct the same object. Because serialization does
not allow us to capture any information about the object or the application in the

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.4 Applications of Mobile Agents to Mobile Applications 591

stack, the state of execution is lost. This prohibits implementing strong mobility.
Also, when the agent (the Aglet) needs to migrate, it must first be warned. This is
because there is no telling whether all of the objects in the Aglet have placed all
of the information critical to a meaningful restoration of state in the heap.

Now, let us briefly look at some implementation details about Aglets.

The Aglet Architecture
As previously discussed, mobile agents are asynchronous and autonomous. This
makes the life cycles of mobile agents of utmost importance. Because Aglets are
collections of Java objects, this translates to the life cycle of a collection of Java
objects:

1. Creation: Aglets are created by the Aglet host. This host can later be accessed
by the Aglet as the Aglet context.

2. Dispatch: This is the term used for migration. An Aglet is said to be dispatched
when it migrates from one host to another.

3. Deactivated: In this state, the Aglet is persisted and not running.
4. Activated: An Aglet is said to be activated when its state is restored and it is

given the necessary resources to begin running autonomously.
5. Disposed: Disposing an Aglet deletes its state. This is the end of the life cycle of

an Aglet. By definition, the end of the life cycle of a mobile agent may cause the
deletion of the mobile code as well. In the case of Aglets, this is typically not
necessary because Java classes may be cached for later usage.

Although these states are required in presenting mobile agent behavior, Aglets can
also display the following additional behavior that may be desirable:

1. Cloning: An Aglet can copy itself to a new agent. This agent is then autonomous
and not dependent on the Aglet that created it.

2. Retraction: An Aglet can be recalled to the host it came from.
3. Messaging: Aglets can communicate synchronously or asynchronously with one

another.

It is important to note that cloning, retraction, and messaging are necessary for
Aglets: They are part of the specification. However, they are extraneous to mobile
agent systems.

Aglets are transferred from one host to another using Aglet Transfer Protocol
(ATP). ATP allows usage of a framework different from the Aglet framework to
handle the Aglets and then allows for various hosts to interoperate to enable
the migration of agents. Unfortunately, Aglets do not support MASIF. This is a
significant downfall as ATP is not a widely accepted protocol by the other agent
platforms we will look at later. FIPA and OMG are the key organizations whose
standards are of importance when evaluating mobile agent platforms. Now, let us
see how we can write an Aglet.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

592 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

Hello World Aglet
Let us go back to our infamous “Hello World” sample program. As one would
guess, the most basic Aglet would simply need to know of its own life cycle and
be able to communicate with the host. As can be seen in Figure 9.7, we extend
the Aglet class and override the methods that make up the standard interface of
an Aglet. This standard interface is what is used by the host to start up an agent
after its move and to destroy an agent when it is finished or ready to move.

The Aglet Tools
To develop an Aglet, you’ll need to install the Aglet Software Devel-
opment Kit (ASDK). The Aglet specifications and API can be found at
http://www.trl. ibm.com/aglets. The specifications and API outline the require-
ments of the host as well as the mobile agents.

The Aglet API is built on the top of JDK 1.1, therefore, it is not typically suitable
for mobile devices. Most mobile devices do not have enough resources to run the
full J2SE suite let alone a framework written on the top of it. One of the current
short comings of Aglets is that they do not run on J2ME. The Aglet framework is
simply too heavy for J2ME.

J2ME and MIDlets
In Chapter 2, we discussed the functionality offered by J2ME. Here, we will look at
J2ME and how it can provide a mobile agent platform. As we discussed previously,
Java itself provides the facilities needed to build a mobile application infrastructure
that supports weak mobility. However, the JVM (the virtual machine for the J2SE) is
too big for most mobile devices today. Even as devices get better and faster, there
is always going to be a resource starvation problem on some devices. For this
reason, there is J2ME and its virtual machines, the KVM and the CVM. The KVM
and CVM are both smaller than the JVM. The KVM implements less functionality,
but it is much more compact. For a detailed discussion of J2ME refer back to
Chapter 2. The point is that J2ME provides a mobile code environment for mobile
devices, even the most resource deprived of them. However, J2ME, like J2SE, does
not provide a mobile agent platform because it does not provide for continuation
of execution state. As we mentioned in Chapter 2, there are two possible base-
line configurations for J2ME: CLDC and CDC. To date, only CLDC has had real
implementations. CDC remains in the specification phase to be implemented in
the near future.

The most significant feature eliminated from CLDC, when it comes to mobile
agents is serialization. This means that CLDC does not support weak or strong
mobile agents by itself. MIDP (functionality added on top of CLDC for Mobile
Information Profile) has support for so-called MIDlets. MIDlets can be made to
support weak mobility. MIDlets are complete applications and can control their
own life cycles. The initial state of a MIDlet can be set as a resource file that
can contain the value of the various members of the classes; however, this means
that some sort of serialization mechanism must be implemented manually for the
mobile agent, in this case the MIDlet, to read the values from the resource file.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.4 Applications of Mobile Agents to Mobile Applications 593

import java.io.*;

import java.net.*;

import java.util.*;

import java.awt.*;

import com.ibm.aglet.*;

import com.ibm.aglet.util.*;

import com.ibm.aglet.event.*;

Public class HelloWorldAglet extends Aglet

{
private String mHello;

//This is the execution method.

//Put whatever the Aglet needs to do during its

//life cycle here.

public void run(){
System.out.println(mHello);

}

//This method is called when the Aglet is first

//created by the host.

public void onCreation(Object o) {
mHello = "Hello World Was Created At" +

System.currentTimeMillis();

}

//This method is called when the Aglet is told it

//needs to die.

public onDisposing() {
System.out.println("Disposing of Hello World

Agent At" + System.currentTimeMillis();

}

//This method is called when a message is sent to

//the Aglet.

public boolean handleMessage(Message m) {
mHello = mHello + "Message Arrived At" + System.

currentTimeMillis();

return true;

}
}

FIGURE 9.7. Hello World Aglet.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

594 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

J2ME, as with the other editions of Java, cannot support strong mobility. One
look at the MIDP and CLDC specifications shows you that the designers really had
many of the features and properties of a mobile agent system in mind. However, it
seems that because of security concerns and lack of consensus among the handset
manufacturers, they were unable to arrive at a true mobile agent platform. We
already looked at a Hello World MIDlet in Section 2.4.1 so we will not discuss
them all over again.

The JADE–LEAP platform builds on top of J2ME and J2SE to provide a true
mobile agent platform that allows agents to move among mobile devices and the
mobile network with much more flexibility than what is provided in the vanilla
J2ME.

JADE and LEAP
Let us start with JADE, the Java Agent Development Framework. JADE version
2.6, which is the latest version so far, is a mobile agent framework, completely de-
veloped in J2SE version 1.2. JADE has been integrated into LEAP, the Lightweight
Extensible Agent Platform, to produce an agent framework that uses J2ME and
J2SE with the goal of creating a mobile agent framework that can serve mobile
and stationary applications at the same time. Both JADE and LEAP are aimed
at building a FIPA-compliant agent framework. FIPA, along with OMG, are the
leading standardization bodies when it comes to mobile agent APIs and specifica-
tions. Whereas OMG has specified the interoperability issues, FIPA is focused on
addressing the infrastructure problems of building a mobile agent platform. FIPA
is the leading organization in the LEAP project (which now includes JADE as a
part of it), but there is also participation from W3C, giving the project additional
standardization and acceptance support. LEAP is administered under the GNU
Lesser General Public License so it is an open source and free piece of software.

Figure 9.8 shows how LEAP breaks down the different host types for differ-
ent families of hardware platforms. You can download LEAP at http://leap.crm-
paris.com and JADE at http://jade.cselt.it. Once you download JADE and LEAP,
you will need to install JDK 1.2 or JDK 1.3 to run the JADE environment. Whereas
the agents supported by JADE–LEAP can reside on hosts of a mobile device, de-
velopment and deployment is a task left for the J2SE on PCs and servers.

Every host implementation of the JADE–LEAP host is accompanied by a GUI
tool that allows for administration of the settings that enable mobile agents to
migrate on and off the host. Obviously, because of the different host implemen-
tations and the different device capabilities for which the hosts are implemented,
the configuration and administration of the hosts will differ. However, the mo-
bile agent paradigm is preserved by providing the same application-layer APIs
to the agents regardless of the hardware platform and host implementation. This
does not mean that the same agent can run on any of the hosts, but this is not a
requirement of mobile agent frameworks either. The requirement is that the mo-
bile agents can migrate from one host to some other host in an autonomous and
asynchronous manner. This requirement is satisfied by the JADE–LEAP frame-
work. Note that there are three types of hosts. There is the light container, which
is the lightweight implementation of the container providing the minimal set of

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.4 Applications of Mobile Agents to Mobile Applications 595

JADE-LEAP
Light Container

(J2ME Host)

JADE-LEAP
Container

(J2SE Host)

JADE-LEAP
Container

PJava Host

JADE-LEAP
Main Container

(J2SE Host)

J2ME J2SE
Personal

Java J2SE

PDAs, Cell
Phones, etc.

PC’s, Servers,
Powerful PDAs

PDAs,
Appliances,

etc.
Servers

Homogeneous JADE-LEAP API’s

Agent
X

Agent
X

Agent
Y

Agent
Y

Agent
Z

Agent
Z

Agent
A

Agent
A

Agent
B

Agent
B

FIGURE 9.8. JADE–LEAP Host Implementation Paradigm.

functionality for the host to allow agents to migrate on and off the device and
execute their tasks. This container is designed primarily for the resource-starved
devices. Then, there is the regular container, referred to simply as the container.
This is a slightly heavier implementation sitting on top of J2SE and Personal Java.
Then there is the main container, which provides communication compatibility
with other mobile agent platforms and facilitates communication within a net-
work of LEAP hosts. The main container is unique and acts as a front end for
the platform; it maintains platform-wide information and provides platform-wide
services [Bergenti and Poggi 2001]. Matching this with the theory that we learned
earlier about mobile agents, the main container provides the registry and region
functionality. Because each type of host is implemented on a different platform,
and because each platform has its own set of communication protocols, LEAP pro-
vides a mapping between the communication protocols. This integration is made
possible through what LEAP documentation refers to as ITP, Internal Transport
Protocol. Underneath this, the implementation may be TCP/IP, IIOP, or Java RMI.
Obviously, RMI and IIOP are too resource intensive and require a lot of code for the
light container, so TCP/IP is the prevalent implementation for communications
among light containers, containers, and main containers (the variety of hosts that
make up the list of hosts in a LEAP network).

An important aspect of LEAP is that it connects the hosts in a peer-to-peer
manner. Every host is connected to the network through a socket and can send
and receive messages to an IP address with a port. This allows LEAP hosts to
provide for an infrastructure that supports active behavior for the mobile agents
(i.e., they can push information out to other agents instead of just listening for
requests and responding to the request).

Let us look at the some of the JADE–LEAP Java source implementations in
Table 9.3 This will give us an insight into what type of functionality the host

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

596 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

TABLE 9.3. Overview of the Some Important Packages in JADE–LEAP

Package Description

jade.imtp.leap This package provides the basic interfaces for building
agents and internal communication of the hosts. It
includes the following:

1. serialization classes (which are required to provide
the basic agent capabilities of constructing agents,
moving them, and reconstructing them),

2. skeleton classes for the containers, and
3. skeleton classes for the internal communication

classes.
jade.util.leap This package builds on the existing J2ME utilities

(because they are very limited) to provide iterators,
linked lists, hash maps, sorted sets, and
comparators. Obviously, the implementation of
these classes provides minimal functionality
compared to their J2SE counterparts. Nonetheless,
for those who have programmed using J2ME, it is
obvious that these classes need to exist to provide
the minimal functionality that a host would need to
contain agents, keep track of them, and keep track
of minimal information on them.

jadelang.sl This package holds classes processed by JavaCC. You
will need to download and install JavaCC if you
want to modify any of the functionality here. (We do
not recommend modifying the functionality of this
or any other packages that ship with JADE–LEAP.
This is a complex framework and modification is not
for the faint of heart. The fact that it is open source
does not mean you have any obligation to modify it
and use it.) The source for this package exists in
semantic language (SL) along with the rest of the
source code when you download the package.

SL0 is Semantic Language version 0. Depending on
when you download the LEAP–JADE packages, you
will probably find a different version of the parser.
SL is similar to RDF in its purpose. For a review of
RDF, refer to Chapter 3.

jade.lang.acl This package is similar to jade.lang.sl in that it is
compiled using JavaCC except that it supports ACL.
The Agent Communication Language (ACL) is the
FIPA standard language for creating messages
exchanged between agents. SL code can be included
in an ACL message.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.4 Applications of Mobile Agents to Mobile Applications 597

Package Description

jade.imtp.leap.JICP
(J2SE implementation)

This package holds the implementation of the
JADE–LEAP API implementation specified in
other packages. Depending on the ANT (an
Apache Build tool for Java code) parameters
that you set when building JADE–LEAP, you
will compile a particular version of the host
(or you can build so that you compile
multiple versions at the same time).

jade.imtp.leap.JICP
(J2ME implementation)

This package holds the implementation of the
JADE–LEAP API implementation specified in
other packages. Depending on the ANT
parameters that you set when building
JADE–LEAP, you will compile a particular
version of the host (or you can build so that
you compile multiple versions at the same
time).

jade.imtp.leap.JICP
(shared classes among
all of the container
implementations)

This package holds the classes that encapsulate
running and communication of the container
at a higher layer, abstracted from the
platform implementation (J2ME, J2SE, etc.).

platform offers and how we can write agents for it. Then, we will return to look
at the big picture again.

Now, let us consider a real example. Let us say that we want to implement Agent
A in the example of Figure 9.1. In this case, we need the agent to be able to migrate
to the J2ME host as well as to the J2SE and Personal Java hosts. To separate our
concerns properly, let us list the different types of things we need to implement:

1. a user interface for every platform,
2. some way for Agent A to communicate with Agent B,
3. the logic that enables Agent A to know when to notify the user, and
4. an interface between Agent A the GPS system on the device.

We can approach this problem in two different ways. We can either implement the
PAC-TG pattern for the user interface separation of concerns or select a simpler
solution and build different GUIs for each supported platform. Deciding between
these two methods would come down to the resources available on the device
and the number of devices we need to support. If we need to support numerous de-
vices, then it might be advantages to use the PAC-TG pattern, with the transforma-
tions taking place on the server side to generate specialized user interface code for
J2ME, J2SE, and Personal Java. Alternatively, we could have the J2ME agent actu-
ally implement PAC-TG in itself. However, this is probably too code- and resource-
intensive for a J2ME application. Yet another option would be to write XForms-
to-J2ME and XForms-to-J2SE transformations, build only an XForms interface

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

598 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

package com.cienecs.mobile.agent.examples;

import jade.core.*;

import jade.lang.acl.*;

import com.somegpsapi.*;

import jade.core.behaviours.*;

public class RestaurantFinderAgent extends Agent {
private GPS_API_Stub mLocationFinder;

private GUI_Class mGUI;

private AID mDestinationHost;

public void setup() {
//First, set up the destination host that the

//agent is being started on.

try {mDestinationHost = new AID((String)

getArguments()[0], AID.ISLOCALNAME);

} catch (Exception e) {System.out.println("Setup
Failed. Destination Host Not Found.");}

//Then, set up the GUI that fits the host. This

//is not the most elegant way to implement

//discovery of the right host. We can use things

//like CC/PP and UAProf for a more elegant

//implementation. Start with the lowest common

//denominator and work up to the most

//complex one.

try {mGUI = (SpecializedInterface)

Class.forName("com.cienecs.mobile.agent.examples.

AgentAMIDP");

} catch (Exception e1) {
System.out.println(e1.toString());

try {mGUI = (SpecializedInterface)

Class.forName("com.cienecs.mobile.agent.

examples.AgentAPDAP);

} catch (Exception e2) {
System.out.println(e2.toString());

try {mGUI = (SpecializedInterface)

Class.forName("com.cienecs.mobile.

agentexamples.AgentJ2SE");

} catch (Exception e3) {System.out.println
(e3.toString());}

}
}

FIGURE 9.9. Agent Wrapper Class.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.4 Applications of Mobile Agents to Mobile Applications 599

// Set up Location Capabilities

mLocationFinder = GPS_API_Stub.getInstance();

//Add the ability to communicate with Agent B and

//notifying the user.

mGUI.initialize(this);

addBehaviour(new Notification(this));

}

void sendLocationtoAgentB(Agent anAgentB) {
ACLMessage mMessage = new ACLMessage(ACLMessage.

INFORM);

msg.addReceiver(anAgentB);

send(mMessage);

}
}

FIGURE 9.9 (continued)

for all of the agents, and leave the creation of the user interface to the agent at run
time.

We will take the easier route and simply look at implementing the different
user interfaces manually. Because the JADE–LEAP mobile agent platform limits
the user interface types to J2ME, J2SE, and Personal Java, we are not concerned
with an overwhelming number of interfaces to implement. First, we need a wrap-
per that instantiates the right classes for the right platform. You can see this in
Figure 9.9.

The LEAP project provides a well-thought-out network connectivity solution.
The smallest of the mobile devices that LEAP provides a host for, cellular phones,
can connect to the network using SMS or TCP/IP over GSM. For PDAs, connectivity
is available through SMS, 802.11, and TCP/IP over GSM. Personal computers,
servers, and other more powerful stationary or mobile hosts that use the J2SE
implementation connect to the network using TCP/IP.

The JADE-LEAP platform gives us a FIPA-compliant mobile agent platform
with hosts that can run on most of the devices for our mobile applications and,
therefore, allows pervasive usage of mobile agents throughout the mobile agent–
based system. Grasshopper is a mobile agent platform that currently provides
hosts only for more powerful systems such as PCs and servers. It can be used
to provide agents that support mobile applications. Let us take a closer look at
Grasshopper.

Grasshopper
To date, IKV++ Berlin’s Grasshopper is the only MASIF-compliant mobile agent
platform. Grasshopper can run on any operating system supported by the full
J2SE JVM including Windows CE. Unfortunately, Grasshopper is not supported

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

600 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

package com.cienecs.examples.agents

import de.ikv.grasshopper.agent.*;

import de.ikv.grasshopper.agency.*;

import com.cienecs.gps.locationfinder.*;

public class HelloWorldAgent extends MobileAgent {
private int mState;

private Location mCurrentLocation;

public void live() {
switch(mState) {

case 0: {
while (mState == 0) {

try {
Location myLocation = LocationHandler.

getInstance().getCurrentLocation();

System.out.println("Hello World. My

Location is:" + myLocation.

toString());

mCurrentLocation = myLocation;

}catch (LocationException e) {
e.printStackTrace();

mState = 2;

}
}
break;

}
case 1: {

mState = 0;

System.out.println("Hello World. Current

Location is:" + mCurrentLocation.toString());

break;

}
default: {

System.out.println("Invalid State or Could Not

Obtain Location Information");

break;

}
}
System.out.println("Agent is finished. It is going to

be destroyed now.");

}

// This method is called before the agent is destroyed.

public void beforeRemove() {

FIGURE 9.10. Trivial Mobile Agent for Grasshopper Platform.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.4 Applications of Mobile Agents to Mobile Applications 601

PersistenceHandler myPersistenceHandler =

PersistenceHandler.getInstance();

myPersistenceHandler.saveAndAssociateWithAgent

(mCurrentLocation, this);

}

/** This method allows the host to pass in

additional parameters possibly provided by the

user, host specific, location specific, etc. **/

public void init(Object[] args) {
mState = 0;

mCurrentLocation = (Location) args[0];

}
}

FIGURE 9.10 (continued)

on J2ME CLDC devices at this time. Grasshopper’s Distributed Agent Environ-
ment (DAE) encapsulates familiar concepts that we have already discussed: hosts,
regions, agencies, and agents. To create mobile agents using Grasshopper, you
will need to download the DAE and install it. You will be writing your agents
in Java. Communications among the different components of the mobile agent
system in Grasshopper are done using CORBA, IIOP, RMI, or TCP sockets. In a
way, Grasshopper is more of a client–agent server environment as its design and
implementation take into account synchronous and asynchronous communica-
tion between components and allow agents to assume roles of clients and servers.
In addition to this, Grasshopper also provides a multicast communication mecha-
nism that allows one component of the mobile agent system (agent, host, etc.) to
send one message to multiple destinations in one transaction. This can be a par-
ticularly handy feature. For example, it can be used to clone one agent multiple
times with one transaction.

Grasshopper offers several methods of securing communications including
symmetric and asymmetric encryption algorithm implementations, SSL, and oth-
ers. Compared to most other mobile agent implementations available to date,
it offers the best-thought-out security measures, thereby addressing one of the
biggest concerns with mobile agent–based systems.

Unfortunately, Grasshopper 2.2.4, which is currently the latest version, does
not support HTTP. Though HTTP is not the ideal protocol for stateful communi-
cation such as those that may be required by mobile agents and their supporting
infrastructure, because of its pervasiveness and because of the existence of secu-
rity barriers that block everything but HTTP traffic to certain networks, it can be
handy to have an HTTP-based implementation available. For an overview of the
Grasshopper architecture, visit the Grasshopper Web site [IKV 2001].

Let us get write a simple agent for Grasshopper. Figure 9.10 shows the trivial
“Hello World” agent for the Grasshopper platform.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

602 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

In our simple example, the agent prints out its current location to whatever
console it has a handle to (most probably the console of the host system that in
which it resides at the time of calling this method). If there is a problem initializing
the agent or when the source of location information (GPS unit or else) no longer
returns a valid location, the agent stops.

As you can see, Grasshopper agents, like the other types of agents that we
have looked at, extend a class. To add the functionality necessary for the agent
to operate, you simply override the implementation of the methods that you
need.

Currently, Grasshopper offers the most complete MASIF-compliant implemen-
tation of an agent-based platform. It offers an ideal platform for mobile agents
to operate as the supporting infrastructure to mobile applications. As we men-
tioned before, however, there is no implementation of a Grasshopper host for
PDAs, cell phones, or resource-starved mobile devices. Nor are there any imple-
mentations of the communication mechanism of Grasshopper based on UDP/IP
or similar protocols that lend themselves to use in an environment where the
connection to the network is unreliable. We do need to remember, though, that
mobile computing includes usage of laptops that are intermittently connected to
the network or connected to the network through 802.11a or similar networks
that provide high-bandwidth wireless access. The spectrum of mobile devices is
somewhat discontinuous at this time, ranging between PDAs and mobile devices.
However, this will change in the near future, with a variety of devices that can ac-
cess “hot-spot” wireless networks, thereby providing access to devices with more
features and more power than a PDA as well as being smaller than the smallest
laptops on the market today. This means that the role of more sophisticated mobile
agent platforms such as Grasshopper can become more and more prominent in
mobile computing.

Now that we have looked at several mobile agent platforms based on Java tech-
nologies, let us look at JINI, which is a Java technology often used by many mobile
agent platforms. This section is mostly pertinent to those interested in building
a mobile agent platform for mobile computing rather than to the users of such
platforms. A good mobile agent platform should hide the internal implementation
tools.

JINI for Mobile Agents
As we mentioned in Chapter 2 when we looked at the tools for mobile applica-
tion development, JINI provides a mechanism by which services are offered and
clients can access these services. In a way, JINI provides a flexible-application-
layer, ad hoc grouping mechanism that allows grouping of services and the usage
of those services. JINI addresses ownership of services, distribution of services,
issues caused by network unreliability such as fail-over, and leasing of services to
clients who want to use those services. In this context, JINI can be very useful for
implementing the security infrastructure for a mobile agent platform. Remember
that agents need to be granted rights to execute various sets of actions on the host,
including the basic actions of migration and cloning.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.5 Solving Mobile Application Development Problems 603

The first problem with mobile agent systems is that they employ active objects
and therefore have automatic access to the resources of the machines to which
their agents travel. A solution to this problem would be to move the agents from
one machine to another as passive objects, but move them to a JINI service that
would then oversee granting—at the appropriate time and priority—a thread of
control to that agent [Waldo 2001].

Unfortunately, once again, JINI implementations exist only for J2SE at this time.
This rules out systems such as JADE–LEAP that provide a mobile agent platform
that may be used pervasively throughout the mobile application framework. The
only work-around is to create a gateway or adaptor to replicate the functionality
that JINI offers to the lower end hosts, but this is effectively creating an entirely
new set of security and transfer problems.

JINI can be effectively used for distribution and movement of objects, under
the covers, by the mobile agent platforms that target the higher end hosts.

Mobile Agent Platforms for Microsoft’s .NET
Although Microsoft platforms have offered a variety of distributed computing
functionality, up to the release of the .NET framework, there was no consideration
paid to code mobility in the Microsoft platform. As we have seen, code mobility is
the first step for agent mobility. The .NET platform, for the first time, offers aca-
demics and commercial vendors the opportunity to build mobile agent platforms
for the Microsoft platform. Microsoft’s .NET CLR (Common Language Runtime)
allows for different (though prespecified) versions of libraries to be loaded into
the same execution space, but it leaves prevention of potential calamitous inter-
action of those versions up to the component developer (e.g., if both versions
create and use the same temporary file, no protection is offered) [Cook 2001].
Overall, the Microsoft .NET framework provides much of the same functional-
ity as the Java Virtual Machine does when it comes to building a mobile agent
framework.

As of yet, there are no mobile agent frameworks that offer weak or strong
mobility for the .NET framework. However, this is certain to change. What is not
certain is the penetration levels of the .NET CLR into the mobile device market.
Because most mobile devices are manufactured by handset manufacturers that
provide their own operating systems (such as Nokia, Motorola, Palm, Handspring,
etc.), there are compatibility issues between a mobile agent framework built on
the .NET CLR (which is designed to run on the variations of Microsoft Windows
operating system) and other systems.

9.5 SOLVING MOBILE APPLICATION DEVELOPMENT PROBLEMS WITH
MOBILE AGENTS

As we mentioned previously, mobile agents have some properties that allow them
to solve the problems associated with mobile applications well. In Chapter 1,
we defined the dimensions of mobility and the condition of the mobile user:
those things that are unique to mobile applications as opposed to their stationary

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

604 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

counterparts. Now, let us see how mobile agents are able to address the dimensions
of mobility better than other approaches to distributed computing systems.

9.5.1 Mobile Agents and Context
We talked about context and its implications for the user interface in Chapter 5.
Context-aware computing is an entire field in itself and encompasses various
aspects of dependency of computing operations in the context of the actions
they perform and the context of the conditions under which computing is per-
formed. In fact, much of the research done for mobile agents is driven by intelligent
systems and context-aware computing. This is outside of the scope of our discus-
sion. However, the context of the mobile condition of the user and the usage of
the mobile application is something of particular interest to us.

For example, we may use the context of the usage to select the user inter-
face components to be stitched together at run time to render a user interface.
The mobile context is something that a mobile agent is very well suited to “un-
derstand” and “process.” By this, we mean that mobile agents are uniquely po-
sitioned to acquire the necessary information about the context of the usage of
the mobile application (because they rely less on network connectivity, etc.) and
that they can process this information in a more efficient way than the available
alternatives.

The final point of all of this is that context-aware mobile applications are best
accommodated by mobile agents because mobile agents offer a higher system avail-
ability rate than their counterparts (client–server and centralized) and have a more
immediate and accurate information set that describes the context of computing.

9.5.2 Mobile Agents and Location Sensitivity
Whether we use mobile agents in a supporting role for mobile applications or use
them to build the mobile applications themselves, mobile agents have inherent
properties that make them desirable for computational tasks related to the location
of the user and or the device. Namely, mobile agents migrate and their migration
is associated with hosts. Hosts are some application running on some machine
somewhere. And, there is typically a one-to-one association between hosts and
hardware. This means that when agents migrate from one host to the next, they
are probably changing their physical location.

Particularly, if the mobile agent platform can run on the mobile device (such
as JADE–LEAP), the location information can be obtained from the device. The
location information, obtained through triangulation or a GPS unit on the device,
can be used by the agent. Conversely, mobile agents that run only on the supporting
network can obtain the location of the device through triangulation or the device
program may serve as a peer or client to the agent and send the location obtained
through the GPS unit on the device.

We will discuss the various methods of obtaining location information in later
chapters. The important thing to note here is that mobile agents present a more nat-
ural framework for acquiring and processing location information because there
is some linear mapping between the concept of hosts and physical location of the
user, the device the user is using, or the network node that the device accesses.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.5 Solving Mobile Application Development Problems 605

Mobile agents have lifecycles while they exist on a host; however, information
also has a useful life (distributed data requires synchronization, done by agents
or traditional techniques). The calculation of these lifecycles combined as relating
to implementing application functionality is extremely complex. Murphy [Murphy
2000] takes a close look at this and other concerns that arise when using mobile
agents to integrate location information into your mobile application.

9.5.3 Using Agents to Build User Interfaces
We have seen, throughout this text, that user interface problems of mobile appli-
cations are orders of magnitude more difficult to deal with than their stationary
counterparts. In Chapters 5–8, we discussed creating generic user interfaces and
specializing them. Let us tie that discussion into mobile agents. We can use mobile
agents to create mobile user interfaces in the following two ways:

1. We can create series of agents that are solely responsible for specializing the
generic user interface for which another set of agents may be responsible. In
this manner, the agents that specialize the interface may migrate to the de-
vice and communicate with the agents that produce the generic user interface.
This model is more of a hybrid (client–agent server) because the agent spe-
cializing the user interface on the device basically is a client to the agent that
generates the generic user interface. The advantage of using agents here is that
the agent that migrates to the client can take advantage of the mobile context,
location sensitivity, and all of the other pieces of dimensions of mobility that
are more accessible on the device as opposed to the network.

2. We can create a series of agents that represent the entire application or whole
parts of the entire application. Let us take for example the restaurant finder
application that we discussed previously. This mobile agent may be part of a
bigger “travel agent” that helps the user with finding not just restaurants, but
also hotels, gas stations, public transport, museums, and other travel-related
information. Each atomic functional part of the application can be an agent. In
this case, we can have a collection of mobile agents performing as one seamless
application, one finding the nearest restaurant, another finding the nearest ho-
tel, and so on. The advantage to this approach is that the entire user interface
problem can be encapsulated into one agent without much traffic going back
and forth to the network. Conversely, the disadvantage is that separation of
concerns inside a mobile agent that is going to run on a resource-starved device
is going to be resource prohibitive. In other words, it does not make any sense
to create a large degree of separation between the different parts of a given agent
if the code base that makes up the agent is fairly small. Much of the separation
of concerns in such a situation can be provided by the host API that allows the
agent to perform certain tasks. For example, the restaurant agent may be less
than 100 lines of code in totality. Breaking it up into user interface component,
logic component, communication component, and control component may not
have enough benefit to justify the cost. There is another disadvantage to this as
pointed out by Yim and colleagues [Yim et al. 2001]: As the number of agents in-
creases, it cannot be avoided that more dependencies among agents will exist;

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

606 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

agents communicate with other agents in keeping independence; finally, the
concept of software architecture, which software systems consist of compo-
nents and connectors, supports the design to minimize the interconnection
among agents. So, functional separation of concerns should be accompanied
by meaningful usage of the concept of “roles,” where one agent can have mul-
tiple roles. The grouping of roles into agents may be based on a variety of factors
such as the code base used to perform each function and the interconnectiv-
ity of the various tasks to be performed when an agent assumes a particular
role.

Dimitri [Dimitri 2002] presents a comprehensive study of both of these cases, how
to implement each, and, furthermore, the costs and benefits of each on various
platforms.

The Mobile Agent to User Interaction (MAUI) project presents us with yet
a third way of thinking, designing, and implementing user interfaces to mobile
agents [MAUI 2000]. In MAUI, Mihailescu, Gamage, and Kendall define a taxon-
omy of three types of interactions that a user may have with a mobile agent:
Initial interactions are the set of interactions between the user and the system
that eventually cause the creation or invocation of the mobile agent; in-progress
interactions are those interactions taking place while the mobile agent is doing
work; and completion interactions are the set of interactions that take place to
inform the user of some results before finishing. Likewise, as we have seen with
mobile agents, these mobile agents can be running on the local device, in our
case the mobile device, or be somewhere else on the network and produce a user
interface for the local device (generating HTML, WML, etc.).

Therefore, MAUI creates a taxonomy of tasks to render user interfaces based on
the types of interactions. For example, we may have an agent that is invoked from
a markup-based user interface such as WML, then migrates to the device, begins
interacting with the user so that the in-progress interactions are encapsulated in
an interface rendered by the agent on the device, and renders the completion
interactions to multiple user interfaces, one of which may be the device the user
is using at the time. This is a very novel and valid approach.

The approach you choose in building the user interfaces to your mobile agents
has a symbiotic relationship with the mobile agent platform you choose and the
tasks that your agents are to accomplish. So, you should gather accurate require-
ments on what your system is supposed to accomplish and the plausible mobile
agent platforms that you can use to build your system, then weigh the various
design strategies for building the user interfaces to these agents.

9.5.4 Mobile Agents and QOS
Mobile agents and QOS have a symbiotic relationship. Mobile agents can be used
to provide information regarding QOS within the underlying communication net-
work. However, as we have mentioned repeatedly, one of the problems that mobile
agents solved for mobile computing is dealing with lack of reliable continuous
bandwidth.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.5 Solving Mobile Application Development Problems 607

Mobiware, created at University of Columbia, is an example of a mobile agent
middleware that provides specific API calls for the agent interfaces for allowing
you to specify different behaviors based on the QOS. Mobiware will measure QOS
and supply the hooks to enable the application to react and adjust [Afnan 2002]
according to the QOS levels.

Also, because of the collaborative nature of mobile agents, they can become
very handy in forming ad hoc networks that provide services to mobile devices. If
the wireless networking infrastructure that provides communication to the mobile
application is based on an ad hoc networking technology (WIFI, 802.11a, etc.),
the application-layer services offered can be offered in an equally ad hoc manner.
In other words, we can offer a set of application-layer services to the device that
joins an ad hoc network upon joining the network. Mobile agents can be used
to move through networks, as proxies or device-independent agents that offer
various services, to provide services throughout a mobile application.

9.5.5 Mobile Agents as Proxies
One usage of mobile agents in mobile applications is as so-called proxy agents.
Agents can be proxies for mobile devices or proxy for an application that resides
on the mobile device (mobile code or otherwise) but does not comply with the
rest of the mobile agent framework.

In the first case, we can have an agent that follows around a device. Whenever
the device connects to the network, the agent migrates to the “closest” node to
the device (closeness being defined in various terms based on the mobile agent
platform) and performs some tasks on behalf of the device. The device may not
have any capabilities in running an application (such as a regular old phone), it
may be able to run some minimal applications that use the mobile agent on the
network as a server, or it may be able to support a host environment for mobile
agents, in which case the mobile agent on the device may migrate to the network
to communicate with the proxy or may use RPC-like mechanisms to communicate
with the agent on the network.

This approach does introduce some scalability concerns. CPU cycles, memory,
and bandwidth for supporting every existing device in a networked application that
engages any substantial number of users and mobile devices can grow polynomially
versus the number of users as each user may have multiple devices, roaming
from one network to another, using a combination of devices, and performing
fairly complex tasks or tasks that require a significant amount of communication
between the proxy agent and the supporting systems.

9.5.6 Mobile Agents and Performance-Related Problems
Associated with Mobile Computing
One of the biggest problems to be experienced, by existing Web-based and non-
Web-based systems that will attempt to serve mobile computing environments,
will be performance-related issues. Remember that the tolerance of the mobile
user for long waits is much less than that of the stationary user and that numerous
computing cycles have to be spent to just deal with the problems associated with
the mobile condition of the user and the dimensions of mobility. So, we have several

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

608 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

different types of scalability problems: Not only do we have to build systems that
perform and scale well as they grow, but we also have higher performance expec-
tations for a mobile application than its stationary counterpart. Simply measuring
the performance of mobile agent–based systems is quite complex because of all of
the factors involved. Let us review some performance and scalability issues with
mobile agents used in mobile computing:

1. In one way, mobile agents can help reduce the scalability problem by massively
distributing computing tasks. They allow the resources of the collection of
hardware systems that make up a system (mobile devices, servers, etc.) to be
utilized more effectively because we can make them migrate to the host with
the most available resources (CPU, memory, etc.)

2. The acts of migration, cloning, and other properties and structures that must
be supported by the mobile agent framework have a high overhead. Simply
utilizing a mobile agent framework has a high price that is only justifiable if
there are ample computing resources (CPU, memory, etc.) on the hosts and the
number of hosts justifies usage of mobile agents. This means that we probably
would opt not to use a mobile agent system if there are only two hosts involved
at all times.

3. Performance of a mobile agent system depends on the properties of the under-
lying communications network. However, this relationship is neither straight-
forward nor linear. The dependency of the mobile agent system on the network
is a function of available continuous bandwidth, available burst bandwidth,
and the reliability level of the network. The actual function is defined by the
implementation of the mobile agent framework.

4. Performance of the mobile agent system depends on the range of hardware plat-
forms to be supported. The higher this range is, the lower the performance; the
lower the range is, the higher the performance. This is because more optimiza-
tion of the agents is possible with fewer supported platforms.

In addition, there are various research and development efforts in defining tech-
niques that identify ways of measuring performance and scalability issues involved
in mobile agent platforms. The AMASE project [AMASE 1999] is among those.
This project attempts to define metrics on the practicality of porting a host to a
small device, the resource cost of the participation of such a device on the net-
work (the cost of proxies and other special measures that may need to be taken to
accommodate the resource-starved devices), storage requirements on the device
to allow for installation of the host and operation of the agents, latencies in load-
ing and unloading the agents, service lookup latencies, migration latencies, and
a variety of other metrics that allow for measuring the performance of a mobile
agent–based system.

9.5.7 Mobile Agents and Device Adaptation
When mobile devices are able to serve as the host platform for mobile agents,
or run some third-party software that is able to serve as the host platform, the
mobile agent has the perfect opportunity to be able to adapt the mobile application

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.6 Techniques for Agent-Based Software 609

(whether the mobile agent is the entire mobile application or whether there are
other parts to the mobile application) to its environment. Let us look at a couple
of possible cases.

If a mobile application is implemented as a mobile agent and is responsible
for the rendering of a user interface, it can discover the user interface capabili-
ties of the device and immediately adapt the application to those capabilities that
suit the device. Elsewhere, if the agent is designed to somehow utilize the device
location, it can discover the mechanism for obtaining the location information,
be it GPS, triangulation, or some other method, when it moves onto the device.
The alternative to these two cases is if we represent the capabilities of the device
with CC/PP, UAProf, or some other mechanism, is to use RPC-based communi-
cation to communicate the capabilities of the device back and forth among the
device, the nodes that it communicates with on the network, and the provisioning
server responsible for sending it the right version of the application based on its
capabilities. This has the following benefits:

1. The usage of mobile agents and their properties to adapt the state and behavior
of the application (which could be the mobile agent itself or otherwise) to
the device reduces the complexity of the entire system. The complexity of
provisioning is reduced, the complexity of the repository of the devices and their
capabilities are reduced, and the number of transactions among the different
components of the system is reduced.

2. The network traffic between the device and the network is reduced, thereby sav-
ing precious bandwidth, which is most probably provided using an intermittent
wireless connection to the network.

We have now seen how mobile agents can help us with problems of mobile com-
puting. Let us look at techniques that we can use to build agents.

9.6 TECHNIQUES FOR AGENT-BASED SOFTWARE

We have talked a lot about the basics of mobile agents, looked at some mobile
agent platforms that can come in handy in developing mobile applications, seen
some samples of how to write basic agents, learned how to use UML to model
the behavior of mobile agents, and briefly reviewed some possible benefits of us-
ing mobile agents to build mobile applications. But, thus far, we have laid out
no basic plan of attack or strategy on how to do this. The fact is that there are
very few techniques such as design patterns and architectural patterns for mobile
application development because the field is much younger than that of central-
ized and client–server computing. And using mobile agents for mobile computing
efforts is an even younger field of endeavor. Nevertheless, there are some signifi-
cant research efforts that suggest some generic techniques in building agent-based
software with applications to mobile computing.

The first and simplest question to be answered is whether we should use mobile
agents for our mobile application at all. Besides the factors that we have mentioned

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

610 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

previously (such as QOS concerns) Grassi et al. [Grassi et al. 2002] define an anal-
ogy that should be considered when looking at mobile agent solutions for mobile
application problems. First, let us break down the problem into functional chunks
that communicate with one another (such functionality chunks may have an n to
1 mapping to mobile agents). Now, let us assume that these functional chunks are
people. A key question to ask is whether the people in the system can collaborate
more efficiently through writing letters or whether the collaboration is more effi-
cient if they visit each other and talk. This analogy is overly simple and is meant
to be applied to mobile code rather than mobile agents. However, we can apply
it to mobile agents and it is indeed powerful for both mobile agents and mobile
code. This is a simple litmus test that can show us the type of interactions, and
therefore implied QOS concerns and other factors, required to deliver a successful
application. Once you get past the simple litmus test of whether or not to use
mobile agents to solve the problem, then we need to address “how” we implement
the agents.

Yim et al. [Yim et al. 2001] outline a development methodology that leverages
UML-based methodologies and existing design patterns; unfortunately, it does not
use any of the various UML extensions, and the ideas behind those extensions,
that we have introduced in this text. Yim et al. point out the following principles
in designing mobile agent systems:

1. Multiagent structure consists of agents having roles of components and con-
nectors.

2. An agent is a primitive building block for the design of multiagent systems.
3. Architecture-centric design favors pattern-based mechanism over inheritance.

We have looked at the idea of roles several times throughout this chapter. The
second principle basically points out that when we are designing the agent-based
application, we should not be concerned with the internal implementation of
the agent. Rather, the agent should be represented by some abstract or wrapper
class that completely models the external interface and usage of the agent. Then,
Yim points out the fact that usage of aggregation and composition is preferred
over inheritance when dealing with agents (in fact, many argue this is true in
general for object-oriented programs). Whereas composition versus inheritance
has fueled many heated discussions throughout the object-oriented design com-
munity, using inheritance becomes less attractive when dealing with agents as it
adds rigidity to large-grained component structures where each component (agent)
may encapsulate many complex behaviors and states and assume roles that de-
pend on communications with other agents. Yim introduces some UML extensions
to model various types of component-wise substitution that display this prefer-
ence of substitution over specialization of agents and components of agent-based
systems.

Although there is no prevailing consensus on what modeling tool should be used
in design and development of mobile agents, nearly all research and development
done in the mobile agent arena points out the absolute need for modeling structures
and interactions of agents because of their complexity. Obviously, we recommend

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.7 Peer-to-Peer Applications for Mobile Computing 611

the usage of UML and the extensions that we have introduced in this chapter to
accommodate this design.

There is also the matter of code generation. Although we have repeatedly ques-
tioned the over usage of code generation for user interface parts of mobile systems,
it is very plausible that, other than the user interface code, everything else may
have to be generated. In fact, code generation may be particularly attractive in
the case of mobile agents because of the degree of complexity involved in imple-
mentation of even those agents that perform moderately complicated tasks. There
are currently several tools in the marketplace that generate code based on UML
diagrams but none that provide any support for mobile agents and associated be-
haviors. Whatever code-generation tools that arise in this area must be able to
support FIPA and OMG standards that specify functionality and interoperability
standards for mobile agents and their supporting infrastructure.

If you are interested in implementing your own code-generation technology for
mobile agents, Sparkman et al. [Sparkman et al. 2001] present some techniques
that can be a good starting point.

To date, techniques for design, development, and implementation of mobile
agent systems for mobile applications remain in an adolescence stage. Design and
architectural patterns for mobile agents should become pertinent in time as they
are developed, utilized, and evolved.

Before we end this chapter, let us take a quick look at peer-to-peer application
infrastructures and how they are leveraged for mobile application development.

9.7 PEER-TO-PEER APPLICATIONS FOR MOBILE COMPUTING

We gave a brief introduction of peer-to-peer concepts in Chapter 1. To remind
the reader, one can think of a peer-to-peer network of networks as networks of
decentralized systems (devices, applications, etc.) where the systems communi-
cate and collaborate as equal members. Note that in client–server computing, the
server provides services and the client requests services. So, in peer-to-peer, any
peer can serve both as a client and a server. Of course, there are numerous such
collaborations based on the peer-to-peer infrastructure, the range of capabilities
of the participating systems, and a host of other factors. Nevertheless, we can use
this gross generalization to see the relationship between peer-to-peer computing
and mobile computing. The important thing to note here is that peers communi-
cate with RPC-like mechanisms; unlike for mobile agents, there is no migration
of applications required in peer-to-peer computing.

9.7.1 The Basics
There are three styles of peer-to-peer communication: one-to-one, one-to-many,
and many-to-many. As may be implied from their names, they indicate the accessi-
bility of the participating peers in the network. In the mobile computing case, two
PDAs can communicate directly through the infrared port or a TCP connection
(one-to-one), one PDA can communicate with another PDA and a PC (one-to-
many), or we can have many PDAs and PCs communicating (many-to-many).

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

612 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

Peer-to-peer networks have a variety of desirable properties for mobile appli-
cations. These include the following:

1. They provide better fault tolerance through introducing more fail-over points.
2. They lower the latencies by allowing for peers to provide services to one another.
3. As we will see in later chapters, peer-to-peer networks offer some unique prop-

erties that can be useful in providing location-based services.
4. They provide an excellent platform for building mobile agent frameworks. Be-

cause peer-to-peer networks typically provide a standard communication pro-
tocol for the peers as well as a predefined set of functionality for the applications
using such protocols, much of the specification for what hosts are responsible
for is addressed within the peer-to-peer architecture.

5. They provide a natural provisioning mechanism for delivery of mobile code to
the mobile device even if the mobile code is not being used as a mobile agent
or within a mobile agent framework.

6. They provide high scalability and availability for data replication. Peer-to-peer
replication is particularly well suited for maintaining replicated data in a mo-
bile environment [Reiher et al. 1996]. Imagine if you have several devices,
each getting wireless connectivity through a different network. If these de-
vices are joined in a peer-to-peer network, they can collaborate in providing
each other with synchronization and replication of data more effectively than
a client–server scheme where the server may be unavailable or out of date be-
cause of network QOS problems on one or some of the sources that modify
data.

Of course, these are not the only benefits of peer-to-peer mobile computing, just
a few important ones.

One way to establish a peer-to-peer network with mobile devices is to put a
Web server on every peer. This has given rise to a multitude of efforts to create so-
called micro Web servers: Web servers for very small devices with some minimal
HTTP server functionality. These micro Web servers exist for a variety of mobile
operating systems including Windows CE, Symbian, and Palm.

Like mobile agents, the biggest downfall of peer-to-peer-based systems is se-
curity. The lack of a centralized server introduces possible holes in the security
scheme. However, these problems are dealt with in a fairly easy manner by moving
to a hybrid model where there are one or more servers that act as a registry and
provide security functionality to the rest of the peers.

9.7.2 JXTA
JXTA stands for “juxtapose”; it is the peer-to-peer networking protocol supported
by the Java platform. JXTA allows peers to discover each other, self-organize into
groups, communicate, monitor other peers, and discover network resources.

The JXTA protocol’s reference implementation is open source and it only defines
a set of interfaces. JXTA is language independent, so peers can be authored in any
language and not just Java.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

9.7 Peer-to-Peer Applications for Mobile Computing 613

JXTA creates a taxonomy of the components and services for peer-to-peer com-
puting that include the following:

1. Peers and the services that they offer: JXTA defines a minimal interface for an
application to qualify as a peer and provides the interfaces for introducing
its services. JXTA components are addressed through a URN-based format
like urn:jxta:uuid-22222AAAA444444444AAAA or a URI-based format like
jxta://mypeer/pipeId. It is important to note that there is no centralized server
keeping track of security or naming.

2. Advertisement and discovery: JXTA allows for publishing and discovery of ser-
vices. It is important to note that the actual behavior to be invoked may be done
through a Web service protocol such as SOAP or other communication proto-
cols such as RMI depending on the type of available network infrastructure
and security concerns. JXTA defines an XML DTD for creating XML documents
that “advertise” the resources engaged in the JXTA-based peer-to-peer network.
Peers are advertised by a peer id, a group id, a name, a description, and parame-
ters that identify public end points and the services offered by the peer. Chan-
nels are advertised by a name, an id, and a type and can be unicast (one-to-one),
secure unicast (secure one-to-one), or one-to-many.

3. Exchange of messages among peers: Messages are propagated by embedding the
propagation information into the message itself. Rendezvous peers provide the
propagation of messages within groups. For a peer to send a message, it must
obtain a lease from a rendezvous peer.

4. Pipes: These are basically communication channels among the peers. They are
unidirectional and asynchronous, thereby allowing the maximum amount of
flexibility in messaging peers. Pipes are established between end points. We
can establish a single pipe between an initiating end point and another end
point or many pipes between the initiating end point and many other end
points. The former provides the ability to do multicast-like messaging. SSL is
supported for secure communication

5. End points: The end point is a concept used for routing of messages. This is be-
cause a message may take several hops before actually arriving at the destination.

6. Groups: These are logical assemblies of endpoints to provide proper routing
functionality, security, and other functionality useful when dealing with large
numbers of peers.

One of the most important things about JXTA is that it offers binding to TCP, BEEP,
HTTP, and TLS (SSL) whereas most Web-service-based peer-to-peer technologies
offer only binding to HTTP. BEEP is of particular interest as it has properties that
can be quite useful. Another notable point is that the JXTA specification is actually
fairly small, so its implementation on mobile devices is not prohibitive because of
its size. Because JXTA assumes a great deal of XML-based communication, though,
the XML parsing presents some technical difficulties in the more resource-starved
devices. There is an implementation of the JXTA framework for J2ME called JXME.
You can download the source code for this project at http://jxme.jxta.org.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c09 CB752-B’Far-v3 May 4, 2005 17:3

614 MOBILE AGENT AND PEER-TO-PEER ARCHITECTURES

There are also a variety of commercial vendors that provide JXTA-compliant
peer-to-peer platforms (e.g., Endeavors Technologies, maker of the MAGI plat-
form).

9.8 WHAT LIES AHEAD

Mobile agents have been around for several years now but they have not yet
found their niche. Although the architecture is more complex than client–server
computing, it does not offer much that client–server computing does not already
accomplish with stationary applications running on wired and fairly reliable net-
works.

As mobile computing begins to flourish, mobile agent technology will begin to
get the opportunity to achieve more widespread usage. For the first time, there is
something that mobile agents can do better than client–server computing systems:
They can provide the mobile user improved service in a network with poor con-
tinuous QOS. There are always those who contend that network QOS will not be
a problem as networks improve. However, this is somewhat of a shallow perspec-
tive as mobile computing inherently produces QOS problems regardless of the
viability and performance of the underlying wireless networks because physical
obstacles such as a mountain or a concrete wall will always block a large por-
tion of the signal, leaving the possibility of a poor QOS in connectivity to the
network.

Implementations of mobile agents for mobile computing such as the LEAP
project are very recent at the time of authoring this text. The question, and the
opportunity, for the mobile agent enthusiasts will be whether these experimental
implementations will deliver improved service to the user without posing new
computing problems or making the mobile application implementations overly
complex.

With current implementations of mobile agent platforms such as those that
we have reviewed in this text, and those implementations planned for the near
future based on current design ideas of mobile agents, it is possible to make a
gross generalization: Choosing mobile agents for mobile applications makes sense
if we have the necessary CPU and memory on the device to support a mobile agent
platform and if the mobile agent platform is robust enough to support a variety of
devices and agents that can move among hosts on very different types of devices
and yet retain meaningful functionality. And, of course, there is always the ability of
whether or not we can run a mobile agent platform on all of the devices required
by a certain application: Some mobile devices provide more facilities to enable
operation of a mobile agent platform (Palm, Windows CE, Symbian, etc.). Oth-
ers, such as simple mobile phones that run very rudimentary operating systems,
do not.

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

CHAPTER 10

Wireless Connectivity and
Mobile Applications

The transparency of thought in existence is inwardness.
Søren Kierkegaard

10.1 INTRODUCTION

One of the first topics that we discussed in this text was the definition of mobility
and how it differs from wireless connectivity. By definition wireless connectivity
between a mobile device and another device requires a physical layer of network-
ing technology. To cover all of the subjects that will allow one to comprehensively
understand wireless connectivity and its currently existing permutations is im-
possible, not just in this text, but even in a dedicated text. One may require an
entire library to gather all of the various topics on wireless connectivity and re-
lated inventions. So, the first thing that we might do is to reduce the scope of what
wireless connectivity may mean in our discussion of mobile computing.

In this chapter, we will first look at a basic introduction to wireless communi-
cation that will include examples of techniques and technologies from the various
abstraction layers in wireless communications.

We can qualify two types of connectivity to the network: strong and weak. We
use the concept of strong and weak connections in various places in this text.
Essentially, a weak connection refers to lower QOS than strong connectivity but
higher than disconnection. This way of distinguishing weak and strong connec-
tions is fairly subjective and relative to the application. Unfortunately, because of
the changing landscape of communications and computing, we cannot quantify

615

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

616 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

the QOS properties of strong and weak connectivity. At present, connectivity to
a wireless network through WIFI may be considered strong connectivity whereas
connectivity through WAP 1.x may be considered weak connectivity. It is impor-
tant to keep in mind that most mobile devices are not always strongly connected
to the network because of their mobile nature regardless of the networking tech-
nology. The primary reason for making the distinction between weak and strong
connectivity is to imply the importance of a mobile device being able to operate
without network access; applications that are designed to be weakly connected
to the network must place a greater importance on disconnected operation than
those strongly connected. Although some networking technologies provide better
connectivity under a certain set of physical circumstances (e.g., within a given
radius of a transmitter), physical location and the surrounding environment make
it so that the best case scenario is connectivity ranging from weak connectivity
to strong connectivity and the worst case scenario is connectivity ranging from
disconnection to weak connectivity.

Our focus in this text is on the design and implementation of mobile
applications; therefore, the nature of the connectivity is what is most important to
us: This factor is what we need to account for in our application. We will survey
various wireless technologies so that you understand the ramifications of using a
particular wireless technology for your application. We do not intend to address
design and implementations of wireless technologies as, in and of themselves, they
are orthogonal to design and implementation of a mobile application.

The other side of the equation comprises the requirements for our mobile appli-
cations that drive the required bandwidth. Figure 10.1 shows the type of function-
ality that a mobile application may offer and the rough bandwidth requirements
associated with such functionality. Note that although we can use a variety of tech-
niques to make things like video conferencing possible in lower bandwidth ranges,
these techniques always come at a high resource cost on the device (because of
compression using CPU, memory, etc. on the device) or cause significant loss of
quality.

We will look at technologies that offer various ranges of bandwidth and the
delivery of such bandwidth to the mobile device. Furthermore, we will look at the
properties of these technologies and the type of required infrastructure for offering
such connectivity.

We can create a variety of taxonomies of wireless networking technologies based
on various criteria. In this introductory section, we will look at modulation tech-
niques and transmission techniques as the two main methods for distinguishing
the various types of wireless technology solutions.

10.1.1 Modulation Techniques
One method of categorizing the various wireless communication techniques is by
using the modulation technique(s) that each may use. Electromagnetic waves are
analog in nature—they are continuous. Therefore, they are digitally modu-
lated so that we can encapsulate the digital data used by the computing devices in
them.

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.1 Introduction 617

POTS
Voice

Required
Bandwidth

1 Kbps 1 Mbps 1 Gbps

Video Conferencing

Compressed Video

Text Based Application
Data Transfer

High Fidelity Audio

High Definition TV

Functionality
Type

Location
Information

FIGURE 10.1. Spectrum of Functionality and Corresponding Required Bandwidth.

These modulation techniques each have their advantages and disadvantages,
ranging from simple ones that provide minimal bandwidth efficiency and com-
pression to complex ones that provide greater bandwidth efficiency and compres-
sion. For example, we can modulate electromagnetic waves by their amplitude:
The amplitude of the wave may be used to contain the basic information needed to
transmit. This type of modulation is called amplitude modulation (AM). If you have
used a radio before, this is where the name of the AM channel on your radio comes
from. Likewise, if we use the frequency of the signal to contain information, we
call the modulation technique frequency modulation (FM), and hence the name of
the FM channel on the radio. Some other modulation techniques are Minimum
Shift Key (MSK), Gaussian Minimum Shift Key (GMSK), and a variety of Phase
Shift Key (PSK) techniques. There are many textbooks, such as that authored by
Lathi [Lathi 1989], in the field of communications engineering that discuss these
digital communication techniques. This is not our concern in this text. However,
these modulation techniques and their different properties are one of the main
differentiators between the commercially available wireless communication sys-
tems such as CDMA, TDMA, CDPD for cellular wireless communication or IEEE
802.11 and other medium-ranged wireless communication systems.

What makes a basic awareness of these modulation techniques important is
that the properties of each type of high-level wireless networking technology such
as CDMA and TDMA stems from the basic properties of the modulation tech-
nique used. These properties include the spectral efficiency and power efficiency of
the modulation technique, complexity of modulating in real time, effectiveness of

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

618 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

the modulation technique within a given spectral frequency range, and resiliency
to interference. Modulation techniques make up a large portion of the genetics
of a wireless communication technique. Just like fiber optics inherently have a
better capability for carrying data than a twisted pair of wires, some modula-
tion techniques provide a better and more efficient transmission medium than
others.

Next, we will look at a taxonomy of wireless communication systems based on
the system of transmission and reception nodes.

10.1.2 Transmission Techniques
How we transmit and receive signals in a wireless network largely depends on the
size and the environmental conditions of the coverage area in mind. Of course,
the frequency range of the signal being transmitted is dictated both by these con-
ditions and the necessary amount of bandwidth. The more bandwidth we need,
the higher in the spectrum we should go: This helps us minimize the relative band
of frequency that we are using. It should be noted that when making a graph that
represents a large portion of the spectrum, we typically use a logarithmic scale.
This is because the relative range occupied by a band is more relevant than the
absolute range. It should also be noted that regardless of the type of wireless tech-
nology that we use, a rule of thumb is that the amount of bandwidth delivered to
the receiving device from the transmitter decreases as the movement (speed) of
the receiver increases. This relationship may be linear, exponential, or nonlinear
in nature. In any case, the speed of the intended user is something that must be
taken into consideration while bench-marking any wireless technology.

We can roughly divide today’s commercially available wireless technologies into
three categories by the nature of their transmission and reception of signal:

1. Satellite-Based Wireless Communication: Systems such as Iridium use a cluster of
satellites to provide global wireless connectivity. The advantage of such systems
is that coverage is available almost everywhere, whether in the Sahara Desert or
in Beverly Hills. The two main disadvantages of satellite-based systems are their
cost and the limitations on the bandwidth. Satellites are expensive to send into
orbit, to maintain, to operate, and to replace. This cost, of course, is transferred
to the end user. Also, at present, the bandwidth available through satellite com-
munication is considerably less than that available with other methods. This is
because all of the users are using the same frequency range and, because the
coverage is global, we cannot reuse the channel(s) in different geographical loca-
tions. There are three types of satellite-based wireless communication systems:
Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and Geosynchronous
Earth Orbit (GEO).

2. Cellular Wireless Communication: The major concept behind cellular commu-
nication is to divide and concur. An area is broken down into many cells (see
Figure 10.2). Each cell can communicate with its neighboring cells. Cellular
communication dominates today’s deployments of long-range wireless com-
munication systems. The cells “hand off” the connected devices based on the
location of the connected device and the distribution of the load across the

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.1 Introduction 619

F4
F2

F1
F3

F5

F6

F7
F4

F2
F1

F3
F5

F6

F7

FIGURE 10.2. Covering a Geographical Area with a Cellular Network.

cellular network. Also, the cellular structure of such wireless communication
systems allows us to implement other features such as location detection using
triangulation (which we will discuss later in this text). In addition to cellular
technologies, there are microcellular wireless technologies. Microcells are popu-
lar in Japan in highly populated areas. Microcells make sense where the density
of use is extreme. They have several advantages over typical cellular systems:
switches are less expensive, base stations are smaller, antennas are smaller,
hand-off capability is better, and they can offer higher bandwidths [Katz 1995].
The distinction between microcellular and cellular technologies is slowly fad-
ing. Microcells typically cover a 100-meter range, about the same range as some
WLANs. So, in effect, WLANs become a competitor to microcells; frankly, they
are a better alternative as they offer IP-based networking. Also, although the
individual microcell stations costs less, the maintenance of hundreds of base
stations is very labor intensive. These labor costs, in time, make microcells as
expensive or more expensive than alternative cellular technologies.

3. Short-Range Transmission: These technologies include anything from IrDA us-
ing infrared range frequencies to the 802.11 standard. The idea here is that the
standard is specifying transmission of a signal, between two peers or in a radio-
broadcast manner, in a small geographic area. Just like radio towers, we can
have wireless transmission nodes that cover a radial area to provide service to
all devices within the circle of coverage. Bluetooth, 802.11 standards, and a se-
ries of other WLAN (wireless local area network) and WPAN (wireless personal
area network) standards fall within this category. Then we can cluster the small
coverage areas together to cover a larger area. Though this technique, at first
glance, may seem similar to cellular transmission, there are very distinct differ-
ences. For example, there is typically no coordinated cooperation among the
transmitters, in this model, to provide handoffs (though 802.11 standards are
now actually adding this). Rather, larger networks are built with the smaller
networks based on concepts such as scatternets, which we will discuss later
in this chapter. Also, the area of coverage of each node is considerably smaller
than that of a typical cell in a cellular telephony system. There is a wide range of
base technologies used to build short-range wireless communication systems.
We will discuss a fair sampling of these technologies.

Obviously, there are other types of wireless technologies. However, for the purposes
of our discussion about mobile application development (software), we will stick
with these three types of networks as they comprise what we are most concerned

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

620 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

with. Before delving into a discussion of the individual networking technologies
though, let us discuss the concept of QOS, which we introduced to be a dimension
of mobility in Chapter 1. The ideas surrounding the QOS of connectivity pro-
vided by the network affect the design and implementation of mobile applications
immensely.

10.2 QUALITY OF SERVICE

As we have mentioned throughout this text, the QOS in connecting to an underly-
ing network, particularly through a wireless connection, is one of the dimensions
of mobility: things that make mobile applications fundamentally different from
their stationary counterparts. But how is it that QOS affects our mobile applica-
tion design and what measures do we need to take into account in the design and
implementation of our mobile application to compensate for these effects? The
answer to this question will be the topic of the discussion in this section. To start,
let us look at some main points:

1. Failure and Recovery Mechanism: Because variable QOS means that the reliability
and robustness of the communication between the device and the world sur-
rounding it are variable, then we need to be able to recover from failures when
they occur. Although the wireless networking infrastructures take into account
these failures, the mobile application itself also must know how to treat failures
and/or failure and recovery messages bubbled up from the network layer.

2. Variable Bandwidth: Although we may lose connection altogether, more fre-
quently, we will see variable bandwidth in a wireless network. A mobile appli-
cation must take into account this variable bandwidth and further be able to
optimize the use of available bandwidth.

3. Computing Distribution: Networks of mobile devices are inherently distributed.
How the various tasks of computing are divided throughout the different devices
and what is communicated among the different participants in the network
should take into account QOS. Take for example a mobile application that
has an adaptable user interface. For the more powerful mobile devices and
with poor network connectivity, the application may decide to download the
specialization components to receive the minimal information needed to render
a user interface when the QOS conditions are particularly poor. Likewise, if
we have built our mobile application on top of a mobile agent framework,
the mobile agents’ migration patterns may directly depend on the amount of
bandwidth available.

4. Discovery Mechanism: Every wireless technology provides a mechanism by
which the mobile device intending to connect to the network discovers the
network and transmits to it (or vice versa). In any case, there has to exist a
discovery mechanism by which the sender and receiver of the signal find each
other and then transmit and receive. One of the keys we have to consider in
building our mobile application is whether this discovery mechanism is always
on or whether it is variable depending on QOS conditions.

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.2 Quality of Service 621

5. Variable Latency: Because there is probably some higher level protocol such as
TCP/IP that delivers digitized data on top of lower level communication pro-
tocols used by the wireless network such as CDMA, the latency in the arrival
of the chunks of data (packets in the case of TCP/IP) is unpredictable. Based
on the usage of the network, the bandwidth available to the device at its geo-
graphical location, and a series of other factors, latency is variable. The mobile
application designer must be aware of this fact.

6. Performance Feedback: A distributed application that uses a wireless network to
transfer information among its pieces can itself change the QOS of the network.
For example, if we put too much communication load in one part of the network,
we may actually worsen data loss and latency problems. The behavior of a
distributed mobile application running on a wireless network, then, directly
affects the condition of the network as does the condition of the network affect
the performance of the application.

The solution to each of these problems largely depends on the architecture we de-
cide to choose for implementing our system. For example, failure may be detected
by a mobile agent and be communicated to our mobile application based on a
client–server architecture, which has recovery built into it. The point is that we
have to think about QOS as we design and implement the application. Another
example of a solution to these problems can be seen in the WAP gateway model,
where the gateway is responsible for addressing much of the QOS problems.

To understand QOS, we need to define it a bit more. For this, we need to create
a model of all of those variables that are the properties of QOS. In other words,
QOS is an aggregate of a bunch of different properties in the network and we need
to determine what these properties are. The right question to ask is probably what
type of properties define QOS because the actual breakdown of the properties
can be somewhat subjective and depend on the model we use to represent the
properties of the wireless network itself (see Section 10.3.3).

The first place we can look to is the UMTS specifications and documents where
special attention has been paid to QOS.

UMTS breaks down QOS into five classes as follows:

1. Traffic: QOS is measured, at the most rudimentary level, by the fundamental
characteristics of handling of traffic such as packet loss. So, the analysis of traffic
gives us the most basic qualification of QOS.

2. Conversational: When two entities, a sender and a receiver, are exchanging
information through a channel, there are further requirements such as timing.
For example, for voice and video, we have to guarantee a degree of certainty in
the temporal behavior of the packets in addition to the integrity of the data.

3. Streaming: Multimedia streams have yet more stringent requirements on the
temporal behavior of the data channel. So, there are additional properties of the
channel that help us in qualifying the QOS.

4. Interactive: HTTP transactions like those that run the WWW dominate many of
the network-based transactions. These types of transactions and their stateless
request–response nature are unique. The requirements are less stringent then

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

622 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

the conversational interactions between two nodes. UMTS recognizes these
types of exchanges between two nodes as interactive and recognizes the fact
that the QOS that concerns them must be qualified uniquely.

5. Background: Whereas conversational, streaming, and interactive exchanges be-
tween two nodes all have temporal requirements, there are transactions that do
not require specific timing. These exchanges are typically background transac-
tions in the mobile world. They have much less stringent requirements on the
QOS because we can have indefinite retries to accomplish the necessary tasks.

Furthermore, ITU-T X.641 defines a taxonomy for the network and the elements
that make up the definition of QOS. Although there are other standards and frame-
works that attempt to do the same, we will use the ITU-T QOS model. In the next
section, we will look at this model translated to UML diagrams and extensions as
represented by Asensio, Villagra, Vergara, and Berrocal [Asensio et al. 2001].

10.2.1 Modeling QOS with UML
Because QOS can have a great effect on the desired behavior of the mobile ap-
plication, it is very helpful if we can model it in UML. In this way, not only can
we properly model and document the structure and behavior of the systems that
provide network connectivity and hence exhibit QOS properties, but we also can
tie QOS-related behavior and data to the rest of our mobile application.

There are two scenarios in which UML is useful for us:

1. When the infrastructure that provides the application-layer, communication
layer, and the supporting protocols are object oriented. In this case, we can
model the interface (to such an application-layer communication protocol)
with UML and follow this by representing the QOS qualities of such a network
with UML. An example would be if we have a Java RMI implementation on top
of a TDMA network. For this type of a situation, we will leverage the work by
Asensio, Villagra, Vergara, and Berrocal [Asensio et al. 2001] that introduces
UML extensions to represent QOS properties.

2. When we use UML to model the QOS properties of the network while treating
the network as one subsystem. We can model the behavior of the networking
system and its QOS properties using state diagrams, component diagrams, and
other artifacts that focus on representing the behavior of the system as observed
externally. Also, we can use interaction diagrams, collaboration diagrams, and
sequence diagrams to show any significant interaction taking place between the
mobile application and the underlying wireless networking infrastructure and
its QOS properties or behaviors.

Asensio and his colleagues attack the problem by creating two UML profiles based
on the ITU-T QOS taxonomy. Keep in mind that these two profiles attempt to
describe problems, and solutions to problems, of QOS at the application level.
Also, note that a good portion of these solutions (class diagrams, etc.) are only
valid when we can apply an object-oriented model to the solution because UML
is designed primarily to represent design and implementation of object-oriented

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

Q
O

S
V

al
ue

Q
O

S
C

ha
ra

ct
er

is
tic

T
yp

e

Q
O

S
C

ha
ra

ct
er

is
tic

Q
O

S
C

ha
ra

ct
er

is
tiz

ed
F

ea
tu

re

Q
O

S
T

yp
e

Q
O

S
O

bl
ig

at
io

nT
yp

e

Q
O

S
C

on
tr

ac
t

Q
O

S
C

on
st

ra
in

tC
on

ta
in

er
T

yp
e

Q
O

S
C

on
st

ra
in

tC
on

ta
in

er
Q

O
S

C
on

st
ra

in
t

<
<

m
et

ac
la

ss
>

>
C

on
st

ra
in

t

<
<

m
et

ac
la

ss
>

>
P

ac
ka

ge

Q
O

S
O

ffe
r

Q
O

S
C

ap
ab

ili
ty

Q
O

S
R

eq
ui

re
m

en
t

Q
O

S
E

xp
ec

ta
tio

nT
yp

e

Q
O

S
E

xp
ec

ta
tio

n
Q

O
S

O
bl

ig
at

io
n

+
is

D
er

iv
ed

: b
oo

le
an

FI
G

U
RE

10
.3

.
Ba

si
c

U
M

L
M

et
am

od
el

of
U

M
L-

Q.

623

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

624 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

systems (though it can be used to represent other types of systems). The solution
is offered by creating the following two UML profiles, which essentially provide
new UML metamodels to extend the UML [Asensio et al.]:

1. UML-Q allows us to specify QOS requirements and properties (at design time)
such as how long it should take to obtain the results of the invocation of a
method of a particular object of an application. UML-Q metamodel focuses
on the types of QOS information that can be described by UML, how such
information can be represented with UML classifiers, and how these classifiers
can be related and combined. The UML-Q metamodel is created mainly by using
OCL to define these notions. Figure 10.3 shows a basic representation of UML-Q
with a class diagram.

2. UML-M focuses on specifying that QOS requirements are satisfied at run time.
Monitoring QOS properties and behaviors is half the problem because we need
a way to measure these properties and then communicate these measurements.

Like the other UML extensions that we have introduced in this text, many tools
such as Object Domain’s UML tool or Borland’s TogetherJ will allow you to imple-
ment your own extensions by creating custom widgets described by meta-models
(preferred), using OCL, or using both together.

Let us refocus. All of this discussion of QOS, its properties, and its modeling
has but one intention: to define the dependencies of mobile applications on QOS
of the network (most probably a wireless network), to properly treat the various
conditions of QOS in the implementation of our mobile application, and to create
clean decoupling between the core of the mobile application and the parts that
treat QOS issues using the models that we have introduced or similar models.

Next, we will survey the basics of wireless technologies that comprise the un-
derlying networks providing wireless voice and data services to most of the devices
currently on the market.

10.3 SURVEY OF WIRELESS NETWORKING TECHNOLOGIES

As promised, we will now survey various wireless networking technologies used
for mobile computing. We will break these technologies into three categories, by
the geographical distances that they can cover: short range, medium range, and
long range. When comparing these categories, you will find that the coverage
area of wireless technologies is typically inversely proportional to the maximum
amount of bandwidth provided. In other words, long-range wireless networking
technologies typically offer less bandwidth than the short-range ones. One of the
reasons for this is that the longer the range of the wireless networking technique,
the larger the coverage area is and hence the higher the number of probable con-
nected devices there are. Another reason is that maintaining a good SNR at higher
frequencies requires more transmission power. Also, our survey is not compre-
hensive and is very much susceptible to obsolescence as it revolves more around
specific technologies than design concepts. We will not discuss medium-range

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.3 Survey of Wireless Networking Technologies 625

wireless technologies in this section. What we refer to as medium-range wireless
is covered by wireless metropolitan area networks. The IEEE 802.16 standard,
which addresses these groups of networks, is being worked on at the time of au-
thoring this. We will start by looking at a few short-range wireless technologies
and work our way into the longer range ones.

10.3.1 Short-Range Wireless
How we define short range is very subjective. Within the context of this text, we
will define short-range wireless networking technologies as all of those with a range
equal to or less than the range specified by IEEE 802.11 and 802.15 specifications.
These will include WLANs and WPANs. These two standards are a subset of the
IEEE 802 project, which includes a large spectrum of networking standards in
the local area network and metropolitan area network domains such as Ethernet,
Token Ring, and others.

Short-range wireless technologies are a rapidly developing field. Leeper recog-
nizes the reasons for this growth as the following [Leeper 2001]:

1. There is a growing demand for wireless data capability in portable devices
at higher bandwidth and with lower cost and power consumption than that
envisioned for third-generation cellular devices.

2. There is a crowding in the radio spectra that regulatory authorities segment and
license in traditional ways.

3. There is tremendous growth of high-speed wired access to the Internet in en-
terprises, homes, and public spaces.

4. Both the cost and power consumption for signal processing of semiconductors
are shrinking.

Short-range wireless networks, connected to one another to cover wide area net-
work (WAN)-size areas, are sometimes referred to as “hot spots.” WIFI, or Wire-
less Fidelity, is a term used to refer to the various short-range wireless networking
technologies specified by IEEE 802.11; it does not refer to all short-range wireless
technologies.

With the exception of Bluetooth, current state-of-the-art short-range wireless
specifications address only data, typically in the format of TCP/IP or some other IP-
based technology. Though we can always use voice-over IP or alternative solutions
for transmission of voice over a data channel, one of the areas in need of more
research and development is support for voice in short-range wireless networks.

We will start this section by looking at Bluetooth and then look at the IEEE
802.11 standard. There are other important technologies, but our intention is to
look at the most prevalent and these are the two key players.

Bluetooth
Bluetooth is a short-range wireless networking technology designed to provide an
infrastructure for application-layer ad hoc networking. In the case of Bluetooth,
short-range is defined as approximately 10 meters (approximately 33 feet). Blue-
tooth is specifically designed to take into account the requirements of both voice

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

626 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

and data transmission, so it is very well suited for short-range multichannel com-
munication. Finally, the other very important part of the Bluetooth [Bluetooth]
specification is that it is designed to enable ad hoc networking. In other words,
various Bluetooth-enabled devices can connect to one another in an ad hoc man-
ner. In this section, we are aiming only to give a short introduction to Blue-
tooth. Our purpose is to provide enough information so that you can recog-
nize how Bluetooth and the functionality that it offers may be relevant to your
project.

The Bluetooth specification was designed by the Bluetooth SIG (Special Inter-
est Group) as a joint effort among several different commercial entities including
Ericsson, Nokia, IBM, Intel, and Toshiba corporations. With its origins deeply em-
bedded in the Scandinavian countries, Bluetooth gets its name from King Harald
Blatand (which means Bluetooth in English and refers to his dark complexion), the
king of Denmark more than 1,000 years ago. Historically, the Bluetooth SIG was
first officially formed in 1998 and intended to solve several problems including
specifying an air interface, an application-layer protocol stack, and an interop-
erability specification. Since then, the SIG has reorganized several times and is
composed of several different working groups. Today, Bluetooth is also supported
by the IEEE. Specifically, it is covered under the IEEE 802.15 specification, where
the concepts of WPANs is covered. The key idea of these personal area networks
(PANs) is to allow connectivity among a set of devices located within the radius
of a user’s “personal operating space” while keeping the implementation cost and
power usage to a minimum.

Although 802.15 is a superset of Bluetooth specifications, and although these
efforts began separately, they have now merged and the Bluetooth specification is
now part of the IEEE 802.15. Currently, IEEE 802.15 is broken into six different
task groups, the first of which focuses on Bluetooth. The specifications of the first
task group is also referred to by IEEE 802.15.1.

Let us look at the specification of the physical communication among Bluetooth-
enabled devices. Bluetooth operates on the 2.56-GHz ISM band and uses Frequency
Hop Spread Spectrum (FHSS) and GFSK modulation. Bluetooth receivers must be
sensitive to signals as low as –70 dBm. Bluetooth devices are sometimes referred
to as “rude radios” because they do not check to see if someone else is using the
spectrum in that range. A Bluetooth radio simply broadcasts its messages radially
1,600 times per second. Frequency hopping occurs among seventy-nine channels
(the number of channels into which the Bluetooth specification breaks its available
spectrum).

The smallest PAN in Bluetooth is also referred to as a Piconet. A Piconet allows
up to eight devices to be connected to one another (seven slaves and one master).
The slaves use the master’s clock to correctly perform hopping among different
frequencies (FHSS). Scatternets are collections of up to ten Piconets. Amplifiers
can be used to extend the reach of Bluetooth to as far as 100 meters (approxi-
mately 330 feet). Bluetooth signals are transmitted radially in all directions (also
called omnidirectional); it does not require line-of-sight positioning of two peer
units connecting to one another. Figure 10.4 shows the formation of a Bluetooth
Scatternet.

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.3 Survey of Wireless Networking Technologies 627

M

M

SS

S
S

Piconet
A

Piconet
BSS

FIGURE 10.4. Formation of a Scatternet with Multiple Piconets.

The conceptual architecture of Bluetooth (see Figure 10.5) can be broken into
the following eight parts [Bannon et al. 2002]:

1. Bluetooth Baseband, LMP (Link Management Program), Radio: This is basically
the implementation specification for the hardware and the physical communi-
cation layer. This portion is implemented by the device manufacturers.

2. HCI: In this text, we have typically referred to HCI as a human-to-computer
interface. Within the discussion of Bluetooth architecture, HCI refers to the
abstraction between the hardware and the software layer. Basically, the HCI
functionality is provided through device drivers. HCI within Bluetooth is really
a HAL (Hardware Abstraction Layer).

3. L2CAP (Logical Link Control and Adaptation Protocol): This layer sits directly on
top of the hardware abstraction layer. L2CAP is an adaptation layer for hiding
the baseband protocols from higher layer transport protocols and applications
[Bisdikian 1999].

4. SDP: Service Discovery Protocol (SDP) is a protocol that allows Bluetooth de-
vices to discover the services that other Bluetooth devices are willing to share
[Scott 2001]. SDP provides the basic functionality of discovery for ad hoc net-
working techniques implemented at the application layer.

5. Serial Port Layer: This layer provides RS232 [RS232 2003] emulation on the
top of the physical layer implemented above.

Applications (Profiles, Custom Applications, etc.)

RFComm, TCS, SDP, etc.

Baseband

Physical Radio

AudioControl L2CAP
Link Manager

FIGURE 10.5. The Conceptual Architecture Model of Bluetooth.

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

628 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

HoldPark

Inquiry

PageStandby

Connected

Transmit Data

FIGURE 10.6. States of a Bluetooth Device.

6. Network Layer: This part of the stack provides data and voice channels. It is
particularly important as this is the first part of the protocol that separates data
access from voice access. PPP emulation as well as AT (Attention) commands
(modems) are available.

7. Internet Layer: This part of the stack adds TCP/IP functionality. Because most
networks today are based on TCP/IP, this is another crucial functionality as
it allows Bluetooth to be fundamentally interoperable with other networking
technologies that use TCP/IP.

8. Application Layer: This part of the stack simply specifies where the application
using Bluetooth resides. This is our mobile application.

Once a Bluetooth-enabled device is turned on, it goes through a set of states,
represented in Figure 10.6, to connect to a Piconet. These states are as follows:

1. Standby: The device is waiting to join a Piconet. This is the first phase of the
discovery stage.

2. Inquire: The device broadcasts a signal and listens for responses to discover a
radio to connect to. This is the second phase of discovery.

3. Page: Once a valid master is discovered, a page is sent to specify the master–slave
relationship in the Piconet.

4. Connected: This is the state in which the device is connected to a Piconet and
transacting with the other slaves or master in the Piconet.

5. Park/Hold: This is equivalent to the “power-save” mode in which the device is
conserving as much power as possible.

This last state of Park/Hold brings us to the fact that Bluetooth gives a suitable
treatment to the power constraints of mobile devices, one of the dimensions of
mobility typically neglected with most mobile and wireless technologies. While
in the standby mode, Bluetooth requires less than 0.3 mA, in the voice mode it
requires from 8 to 30 mA, and in the data mode it requires an average of 5 mA

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.3 Survey of Wireless Networking Technologies 629

with a peak of 30 mA and a low of 0.3 mA. In the Park/Hold mode, Bluetooth only
requires 60 µA.

Bluetooth also gives full treatment to the problem of data synchronization,
which is a result of intermittent connectivity to the network. We discuss this as-
pect of Bluetooth further in the next chapter, which focuses on topics related to
data synchronization and replication. In fact, synchronization is one of the profiles
of Bluetooth: the synchronization profile. Bluetooth profiles address certain usage
domains of Bluetooth. For example, another profile is the generic access profile,
which addresses the problem of interoperability with other networking technolo-
gies. Additionally, there is the ultimate headset profile, which specifies connectivity
among various usages of Bluetooth-enabled wireless headsets for usage with com-
puters or phones for audio. This profile is minimal and specifies call transfer and
volume control. Some other profiles worth mentioning are the dialup networking
profile, cordless telephony profile, file transfer profile, LAN access profile, and fax
profile.

Depending on the mobile device, the operating system on the device, and how
Bluetooth is used, the chunks of software are provided by different parties ranging
from the device manufacturers, to third parties, to the carriers. Most of the func-
tionality, though, is typically implemented by the device manufacturers. Typically,
an independent software developer does not have much in the way of access to the
device for adding functionality—we use what we can to build our application. It is
important to note though that because some of the functionality we have men-
tioned is optional, some devices will provide implementation for part of the func-
tionality whereas others will not. The important thing here is that, if you take
advantage of Bluetooth’s networking capabilities in your application and if you use
any of the profiles, either make the application smart enough to gracefully discover
what is offered by the device and what is not (RDF, CC/PP, UAProf, or some other
mechanism) and/or understand the subset of Bluetooth-enabled devices on which
your mobile application will be deployed and the functionality that they offer.

Though Bluetooth itself is not a LAN technology, we can build LANs based
on Bluetooth. An example of this is an effort by the Siemens Research Group
called blu21. The blu21 LAN access solution comprises access points and access
server software; the access points are directly connected to the Ethernet; Bluetooth-
enabled terminals are used to communicate with the access points [Goose et al.
2002]. In addition to addressing basic LAN functionality, this project also addresses
user interface issues. As a side note, whereas blu21 is an interesting project that
delivers a good architecture for networking Bluetooth devices together in a LAN,
it is probably a bad idea to have inserted user interface issues into the scope of
this particular project as it confuses the issues of user interface and networking.
Nevertheless, blue21 represents a good example of how higher level networking
functionality can be built on the basic, and very flexible, networking functionality
offered by Bluetooth.

This brings us to the end of our discussion on Bluetooth 1.0. Bluetooth 2.0 is
mostly new profiles and improvements to be made to the existing functionality
of Bluetooth (faster data rates, more reliability, etc.) with no major changes to
the base functionality. Bluetooth 2.0 will also be tackling the problem of possible

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

630 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

Application

Presentation

Session

Transport

Network

Data/Link

Physical{802.11

IP

TCP, UDP, etc.

FIGURE 10.7. 802.11 Standard Coverage.

conflicts with other short-range wireless networking technologies that may oper-
ate in the same frequency range (which are currently unregulated by the FCC in
the United States). Among the profiles with dedicated working groups in Blue-
tooth 2.0 will be working groups that address telematics (wireless communication,
mobile devices, and locations services integrated into vehicles), multimedia-based
communications between the network and the device, and closer integration of
location information services into Bluetooth.

Bluetooth is the only short-range wireless networking technology to be used, in
the real world, for mobile commerce (m-commerce) applications such as vending
machines. Other uses of Bluetooth networking include mobile medical devices
that collect biometrics and real-time data, home networking equipment, replace-
ment of wired PC peripherals (such as a wired mouse with a wireless one) and
synchronization with PDAs, and limited usage in short-range voice devices such as
cordless phones. Bluetooth promises to be one of the most prominent short-range
wireless technologies for years to come.

The 802.11 Standard
Figure 10.7 shows where the 802.11 standards sit on a stack relative to other layers
of a communication system. There are currently a number of 802.11 standards
available ranging from 802.11a to 802.11g. The IEEE 802.11 standard addresses
WLANs. Because we are already familiar with Bluetooth and WPANs, let us begin
defining WLANs by contrasting them to WPANs. First, as opposed to WPANs,
which are designed for personal devices, WLANs can be used by either personal
devices or by other devices that may be connected more conveniently through a
wireless connection, mobile or stationary. WPANs such as Bluetooth are designed
to get rid of wires in the work space of a single person. The range of coverage
of WLANs is considerably larger spanning an entire building or even multiple
buildings depending on the size of the building and the specific WLAN technology
used. Also, as we have seen, there are limits to the number of participants in the
Piconets and Scatternets of Bluetooth. WLANs are designed for both stationary and
mobile systems whereas WPANs are designed primarily for very mobile systems.
These limitations mainly exist because of the ad hoc application-layer networking
behavior displayed by these systems and the fact that the participants in such
networks are very mobile; WLANs do not exhibit these properties.

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.3 Survey of Wireless Networking Technologies 631

The 802.11 standard, like the wired Ethernet standard, is based on a bus topol-
ogy. The difference is that the physical medium for the bus, in the wired world,
consists of wires and a hub (or router). In the wireless world, there is still a hub
or a router (typically referred to as a Wireless Access Point or WAP—not to be
confused with the Wireless Access Protocol whose acronym is also WAP) that
manages the traffic coming in and going out of the network but the bus is the
space through which the waves propagate. Currently, there are three 802.11-based
standards, namely 802.11a, 802.11b, and 802.11g, whose implementations are
available commercially in the form of hubs and network cards. Let us review the
different subgroups that exist within the 802.11 standards group:

1. 802.11a operates in the 5-GHz range and provides data rates between 6 Mbps
(megabits per second) and 54 Mbps. Ironically, because 802.11a became com-
mercially available after 802.11b, it is less prevalent.

2. The 802.11b standard uses the same frequency range as Bluetooth at 2.4 GHz.
802.11b divides the assigned band into fourteen 22-MHz channels that are
assigned to access points. It provides data transmission rates of 5.5 Mbps to
11 Mbps.

3. The 802.11c working group is the group that produced the standard for how
wireless access points used in the other 802.11x standards must operate.

4. Because the 5-GHz frequency range is regulated differently in various parts of
the world, the 802.11d working group’s job is to define and solve interoperability
issues.

5. The 802.11e standard, in progress at the time of authoring this text, will address
multimedia transmission over wireless connections. This is an area largely ne-
glected by the other 802.11x standards because higher QOS requirements of
video and audio and other concerns are not properly addressed.

6. The 802.11f protocol specification addresses the roaming need for transmis-
sion for a user from one access point to another and ensures the continuity of
transmission; it would ultimately provide an inter–access point protocol [Vichr
2002].

7. 802.11g provides data rates of 20 Mbps on the same frequency range as 802.11b
(2.4 GHz). Most 802.11g equipment is being manufactured to be backward
compatible with 802.11b.

8. 802.11h is an extension of 802.11a to satisfy regulations in Europe for the
spectrum band of 5 GHz by providing dynamic channel selection (DCS) and
transmit power control (TPC) [Vichr 2002].

In an environment with several access points, the node searching for an access
point chooses the access point based on signal strength and error rates.

IrDA
Infrared Data Associations (IrDA) is a short-range wireless technology that has
been used for several years to provide PAN-like functionality. The major difference
in the physical implementation between IrDA and Bluetooth is that it requires a
clear line of sight with no physical obstacles in between the sending and receiving

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

632 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

parties. Of course, IrDA also lacks all of the provisions for mobile computing made
in the Bluetooth specification. Nevertheless, IrOBEX (Infrared Object Exchange)
and IrMC (Infrared Mobile Connectivity), respectively the object exchange and
synchronization mechanisms developed by IrDA, are actually used by Bluetooth as
they hold years of proven service in consumer applications such as synchronization
between handheld devices and PCs.

IrDA delivers transmission rates of 2,400 to 115,200 bps depending on the
emitter, receiver, and the length and condition of space in between them. IrDA re-
quires a clear line of sight between the transmitter and the receiver. The maximum
reach of IrDA is specified to be 1 meter, though a subset of IrDA, low-power IrDA,
has been defined for distances of 10 cm or less. Line of sight is approximated by
a 30-degree window evenly distributed around a straight line between the trans-
mitter and receiver (though the closer to 0 degrees, the closer we can get to the
maximum range as transmission is radial). Data are transmitted asynchronously
in the serial port format. Additional modulation techniques have been used to
increase the data rate to 4 Mbps with CR-32 correction.

In addition to specifying the physical layer protocol, IrDA defines higher layer
protocols. Because it was the first to establish such protocols, some of these are now
being used by other short-range wireless protocols such as Bluetooth. They include
IrDA Transport Protocol (Tiny TP), IrDA Object Exchange Protocol (IrOBEX),
IrDA Infrared Link Access Protocol (IrLAP), IrDA Infrared Link Management
Protocol (IrLMP), and IrDA Infrared Transfer Picture (IrTran).

IrDA is frequently used in synchronizing PDAs with PCs, PDAs with other
PDAs, or other mobile devices and applications that can easily have line of sight.
IrDA is typically used as a means of very occasional commands (such as in TV
remote controls) or synchronization. It is not designed as a means for continu-
ous transmission between two mobile devices because mobility breaks line of
sight. During the transmission, the transmitter and the receiver have to be roughly
stationary to provide the requirement of line of sight.

This brings us to the end of our discussion on short-range wireless networks.
Next, we will look at long-range communication technologies.

10.3.2 Long-Range Wireless Communication
As in the case of short-range wireless communication, defining long-range wire-
less communication systems is difficult and subjective. For the purpose of our
discussions in this text, we will define long-range wireless communication sys-
tems to be any wireless system that provides geographical coverage that exceed
that of WLANs. This translates to a wide-ranging spectrum: anything from satellite
communication to cellular telephony networks to clusters of WLANs that make
up WANs or larger coverage areas. For the purpose of this section, let us eliminate
satellite communication and wireless WANs that are made of clusters of WLANs
(also referred to as hot spots). Our focus will be on cellular telephony technology
that provides both voice and data transmission.

Most deployments of cellular wireless data networks today are either packet
switched or circuit switched. Circuit-switched networks can deliver data rates rang-
ing between 9.6 and 14.4 Kbps (this is the average legacy network installed in the

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.3 Survey of Wireless Networking Technologies 633

United States and Europe). They use a single voice channel for transmission of
data for every connected mobile device. Circuit-switched networks are continu-
ously connected to a single routing connection. This design came about because
they have mainly been designed to provide a voice channel and this is a good way
to treat voice, which tends to be a continuous stream.

In contrast, packet-switched networks send and receive bursts of data to and
from the network. Each burst contains a sequence number, allowing creation of
the blocks of data once all data are sent [Stemberger 2002]. The fact that the
bandwidth is not completely occupied by one device at all times allows packet-
switched networks to use the available bandwidth more efficiently (despite there
being some small inherent inefficiency in the packetizing things such as header
packets, etc.).

GSM, which we will look at in this section, is a standard for circuit-switched
networks. Of course, various compression and modulation techniques can be used
to increase the data transmission rate, but the rate of transmission at the physical
layer is limited by the frequency range of transmission, the bandwidth allocated
for the channel, and the switching technology used.

CDPD
Cellular Digital Packet Data (CDPD) was first created by McCaw Cellular and IBM.
CDPD uses GMSK modulation. It provides a data network layer on top of ana-
log cellular telephony systems using 30-kHz channels at the 800-MHz frequency
range and provides up to 19.2 kbps of digital bandwidth on an IP-based infrastruc-
ture. CDPD is actually fairly impressive in that it offers a considerable amount of
bandwidth and IP support on top of analog cellular telephony. Note the following:

1. Mobile End Station (M-ES): In our case, this is basically the mobile device that
is connected to the system through a wireless connection (PDAs, cell phones,
laptops, etc.).

2. Mobile Data Intermediate Systems (MD-IS): The MD-IS provides mobile rout-
ing using the Mobile Network Location Protocol (MNLP). This subsystem is
responsible for locating the end stations (where the wireless devices are con-
nected to the network) and routes the data to the proper network node.

3. Fixed End Systems (F-ES): This subsystem typically includes accounting, con-
nects to billing systems, authenticates the end systems upon connection, autho-
rizes them to use the appropriate functionality offered by the network provider,
and manages the routing of data among the fixed points in the network infra-
structure.

4. Mobile Data Base Station (MD-BS): The MD-BS stations are located at the same
place as the cellular voice equipment and provide allocation of frequencies and
modulation on top of the analog voice signal provided by the analog voice
equipment. They also provide the ability to hop among different frequencies as
requested by the analog telephony equipment.

Today, CDPD is primarily deployed on top of TDMA, pairing two analog or digital
TDMA voice frequency channels for one CDPD channel at the physical layer. Note

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

634 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

that CDPD is a network layer protocol. Its two main competitors are proprietary
protocols that are built on top of CDMA, TDMA, and other basic networking
technologies that specify physical layer protocols and Mobile IP. CDPD and GSM
do not really compete because CDPD only addresses data; GSM addresses a much
larger superset of concerns including voice. Whereas Mobile IP promises to be
more prevalent than CDPD deployments in the future, there are quite a few legacy
TDMA-based CDPD networks still in existence. We will discuss Mobile IP in
more detail later in the chapter. The CDPD system component deployment is very
similar to what you will see with Mobile IP; both have a home agent system and
an attachment agent system. Mobile IP and CDPD differ mainly in the messages
being passed back and forth among these system components, the content they
encapsulate, and the higher level protocols used to specify the arrangement of the
messages in a meaningful transaction among the system components.

Next, we will look at TDMA, a lower layer protocol on top of which many
CDPD deployments are built.

TDMA
TDMA, or Time Division Multiple Access, basically multiplexes the usage of a
given frequency channel to multiple users by time. In other words, in a given span
of time interval �t , if there are n devices connected, each device is allotted an
equal time interval of �t/n or a weighted time interval of w�t/n.

Commercially speaking, TDMA and CDMA are the two major competitor’s in
the cellular telephony market today.

CDMA and Its Variations
Code-Division Multiple Access (CDMA) technology, developed by Qualcomm,
uniquely encodes every data session (every connection to a mobile client), al-
lowing the now famous analogy of “multiple conversations at the same time but
in different languages” as multiple mobile devices are transmitting at the same
time and on the same frequencies. CDMA is a competing technology to GSM.
Because Qualcomm owns most of the patents on CDMA-related base technolo-
gies, typically an implementation of a part of CDMA means paying some royalty
fees to Qualcomm. Although some consider CDMA to be a technically superior
technology to TDMA, on which most current GSM-based systems are built, this
sole ownership of CDMA, along with the ever-improving TDMA standards, has
made it difficult for many carriers and device manufacturers to decide on which
technology to use.

As its name implies, instead of using different frequency channels or time-based
phase shifting, CDMA differentiates the connected users by coding the messages
exchanged with each mobile device uniquely. This means that, ideally, all other
conversations seem like simple noise to the two parties involved in one CDMA-
based conversation. There are two types of basic CDMA technologies: those that
use frequency hopping (FHSS) modulation and those that use direct sequence
spread spectrum (DSSS) modulation. For this reason, devices that use CDMA
typically have to have much more computing power than that needed for the
other protocols and modulation techniques that we will talk about: Much of this

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.3 Survey of Wireless Networking Technologies 635

computing power is spent coding and decoding messages. We will forego the
details of FHSS and DSSS modulation techniques and their ramifications as they
divert from our focus. Because of its design, CDMA lends itself very well to digital
data–based messages. Critics of CDMA initially claimed that it would fail in the
delivery of high-quality scalable voice solutions, but pervasive voice usage in the
United States has dispelled this notion.

There are now variants on CDMA. These variants include Wideband CDMA
(WCDMA). Voice, images, data, and video are first converted to a narrow-band
digital radio signal; the signal is assigned a marker (spreading code) to distin-
guish it from the signal of other users; WCDMA uses variable rate techniques
in digital processing and it can achieve multi-rate transmissions [Ericsson 2002].
Because WCDMA is designed to be used as a base technology for third-generation
(3G) devices, 3G specifications address interoperability issues between GSM and
WCDMA.

Another variation on CDMA is CDMA2000. CDMA2000 offers a CDMA mi-
gration path, beginning with CDMA2000 1X, at a maximum sub-3G data rate of
153.6 Kbps [Garber 2002]. The next step is the CDMA2000 1xEV-DV, which
provides data rates of up to 614 Kbps and subsequently to CDMA2000 3x, provid-
ing a 3G-compliant data rate of 2.05 Mbps. The main difference between WCDMA
and CDMA2000 is that WCDMA supports asynchronous base stations whereas
CDMA2000 relies on synchronized base stations [Bahl 2002]. This means that
CDMA2000 requires some external timing mechanism whose time is synchro-
nized for all of the base stations. In this way, adjacent cells can use the same
frequency ranges but use a different phase shifting to distinguish themselves (the
signals being communicated to and from each cell).

Use of CDMA and its variations is growing because of their high bandwidths.
In addition to Qualcomm, there are third-party licensees who manufacture CDMA
handsets and other CDMA-based equipment. On a tangent note, BREW, a mobile
application development platform that we discussed in earlier chapters, is available
only for CDMA networks and takes particular advantage of CDMA, its variants,
and the features that they offer.

Finally, there is a variation of CDMA called TD-SCDMA that is currently in
experimental deployment in some East Asian countries.

Other Long-Range Base Technologies
Although CDMA and TDMA currently comprise the bulk of long-range cellular
network deployments and continue to see increased usage, there are other tech-
nologies on the horizon. These technologies, as any technology should be, are
driven by new requirements. Fourth-generation (4G) networks must not only of-
fer more bandwidth and higher degrees of reliability from the network, but they
also must have additional features, the most important of which is interoperability
with short-range networks. For example, Orthogonal Frequency Division Multi-
plexing (OFDM) is beginning to gain attention in research circles as the tool to
deliver large amounts of data. For example, IEEE 802.11a and 802.11g WLAN stan-
dards offer theoretical maximum speeds of 54 Mbps, with real-world data ranges
of up to 22 Mbps; service providers are looking at OFDM for their broadband

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

636 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

mobile services including those used in cellular phones and PDAs (long range
and short range) to solve these problems [Vaughan-Nichols 2002]. OFDM utilizes
techniques that are typically used in digital signal processing (such as fast Fourier
transforms) to provide yet more efficient modulation of the signal for delivery of
the data. Of course, there remain some problems with such technologies as OFDM.
For example, OFDM in particular requires more power usage in the transmitter
and receiver than the comparable technologies such as TDMA and CDMA. There
are also several variations of OFDM; which will become prevalent in building 4G
networks is still a open question.

OFDM is obviously not the only contender for the future and there is no crystal
ball to tell us which technology will succeed and which will fail. There are two
important aspects to this that the mobile application developer should constantly
be aware of while designing and developing:

1. Avoid tight coupling between your application and the underlying network
infrastructure. Network infrastructures and the services that they deliver change
rapidly. A robust application is easily adapted to new wireless technologies.

2. Continue to be aware of the technology being deployed on the network(s) with
which your application will interact and make sure that there are no inherent
requirements in your application that cannot be delivered by the underlying net-
work. Furthermore, while designing and implementing your mobile application
(prior to the first deployment), remember that you are designing and imple-
menting for an infrastructure that may be significantly different from what you
test in the unit-test environment. Make sure that you are properly diligent in
your research to find out the network conditions at the time of first deployment
and from that point onward.

Next, we will look at standards, including 3GPP, that specify further usage of
TDMA and CDMA technologies, specify additional functionality built on top of
the two, specify interoperability requirements, and aggregate various higher level
functionality (such as billing, location sensitivity, etc.) that helps in successful
deployments. These standards are particularly important to the mobile application
developer as they provide the interface point of the mobile application with the
underlying wireless communication network and the capabilities of the wireless
communication network that can be used by the mobile application.

3GPP
The Third-Generation Partnership Project Agreement, or 3GPP, is simply the um-
brella organization that maintains the specifications for GSM, GPRS, EDGE, and
WCDMA. So, 3GPP is an organization and not a technology. Its headquarters
are based in Sophia Antipolis, the Silicon Valley of France. To date, perhaps the
most significant of these overseeing functions has been the move from GSM to 3G
beginning with deployment of GSM in the early 1990s and progressing to 3G mi-
gration in the early 2000s. We will spend much of the following sections discussing
technologies that fall under 3GPP recommendations and specifications.

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.3 Survey of Wireless Networking Technologies 637

1G, 2G, 2.5G, 3G, and 4G
The “G” in these acronyms simply refers to the word “generation” of cellular
transmission technologies. These generations are not defined by time periods,
rather by types of technology. First-generation technologies, which we call 1G
here (a term that is rarely used), refer to analog cellular telephony technologies
such as Advanced Mobile Phone Service (AMPS) and Frequency Division Multiple
Access (FDMA). These technologies were first introduced in the early 1980s by
AT&T in the United States and primarily intended for telephony voice. In the late
1980s, the second generation of cellular telephony technologies broke into the
scene in Europe. At present, these technologies are frequently referred to as 2G
and comprise the bulk of deployments of voice and data services in Europe and
the United States. They include, but are not limited to, the three most popular
base technologies of TDMA, GSM, and CDMA. TDMA and GSM are somewhat
open standards wheras CDMA is solely owned by Qualcomm.

The name 2.5G has been given to those transitional technologies that will
provide higher data rate services than 2G technologies but are not quite as able as
3G technologies. These technologies also provide a crucial migration path for the
telecommunication companies. These technologies include General Packet Radio
Services (GPRS), which is a GSM extension that transmits data in short packets at
a rate of up to 100 Kbps and High-Speed Circuit-Switched Data (HSCSD), another
GSM extension that allows operation of GSM channels up to 57.6 Kbps.

Third-generation (3G) technologies are intended to transmit data to fast-moving
mobile users (e.g., in cars) at 144 Kbps and slow-moving mobile users (e.g., walk-
ing users) at 384 Kbps. It aims to deliver up to 2 Mbps connectivity between
stationary fixed-location nodes. At this time, there are different implementations
of 3G technologies depending on the geographic location. Although Europe is forg-
ing ahead with Universal Mobile Telecommunications System (UMTS) standards,
the picture is more murky in the United States with Qualcomm owning CDMA and
related 3G technologies and CDMA, TDMA, and GSM being comparably pervasive
in the network infrastructure deployments. Included in 3G deployments will be
WCDMA, TD-CDMA, CDMA2000, and other technologies. Most importantly, 3G
will provide a network infrastructure that gives us an IP-based communication
system, thereby providing interoperability with existing data network infrastruc-
ture as well as making it easy for software developers to deal with building software
systems. A true 3G system must be IPv6 compatible.

Fourth-generation (4G) technologies are yet to be deployed and are in research
stages at the time of authoring this text. With 4G, users will have access to different
services, increased coverage, and convenience of a single device; one bill with
reduced total access cost; and more reliable wireless access even with the failure
or loss of one or more networks [Varshney and Jain 2001]. 4G services will deliver
some type of IP-based technology for data access and may offer bit rates of around
50 Mbps. The remaining issues under research and development of 4G networks
focus on value-added services such as native accommodation for multimode and
multichannel interactions with the network, providing QOS information to all
of the participants in a particular network, tight integration of short-range and
long-range wireless technologies, and interoperability among networks operated

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

638 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

by different carriers or providers based on fundamentally different technologies.
Additionally, 4G networks will offer fast handoff between different cells as well as
better and faster security.

UMTS
UMTS promises to deliver data ranges of up to 2 Mbps. This is an enormously
higher bandwidth than all other specifications available to date. Enhancements to
UMTS will provide even higher data rates. However, the first networks to become
UMTS compliant will only support approximately 200 Kbps by year 2006 dur-
ing which time the mainstays of high-rate data delivery will remain GSM-based
technologies such as GPRS and EDGE.

UMTS builds on WCDMA and TDMA networks to specify higher level services,
particularly support for multimodal and multichannel interactions as well as sup-
port for location information. UMTS is mainly designed as an evolutionary step to
GSM. Like 3GPP, UMTS is more of a collection of specifications than a single one.
The UMTS Forum acts as the organizational arm. Unlike 3GPP, which tends to lean
more toward addressing technical concerns, UMTS tends to publish documents
that are more business related and focus on the sales and marketing aspects of
wireless technologies. In fact, the technical aspects of UMTS is all covered under
the various 3GPP specifications [UMTS 2002].

GSM
The hallmark of GSM (Global System for Mobile) is the SIM card, which enables
users to switch phones without having to change their electronic identity or to
switch their electronic identity without changing phones. Obviously, this is a
trivial byproduct of one of the most important standards in mobile computing
and wireless communications. GSM provides an internationally accepted standard
for encoding and transmitting voice on mobile telephony networks. The GSM
specification has been largely created for TDMA-based networks.

The GSM specification is very comprehensive. It covers not only base voice
and data-related services but also services related to location information, billing,
provisioning, distribution of devices, and QOS as well as value-added applications
delivered by network providers and device manufacturers. However, if you are
authoring an application for a mobile device with heavy data use, you are probably
looking for a GSM add-on such as GPRS and EDGE to deliver the higher data
rates.

GPRS
GPRS is a GSM upgrade that provides packet data and rates up to approximately
170 Kbps. GPRS modulation is based on Gaussian Minimum-Shift Keying (GMSK)
modulation. It is very important, though, to understand that this is the maximum
bandwidth delivered. Most of the time, depending on the QOS of the location of
the device and many other factors, users get only a fraction of this bandwidth.
Figure 10.8 shows the general system architecture that the careers must deploy to
provide GPRS service. Note that as a software application developer, unless your
application runs as a part of the telecommunication infrastructure, you simply see

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.3 Survey of Wireless Networking Technologies 639

POTS/PSTNPOTS/PSTN

IP Based Networks
(Intranets, Internet,

etc.)

IP Based Networks
(Intranets, Internet,

etc.)

Base
Station

GPRS/EDGE
Support Node

Mobile Switching Center and
Visitor Location Register

GPRS/EDGE Register
Home Location Register

FIGURE 10.8. EDGE and GPRS System Architecture.

an IP-based access to the system. This is true for nearly all the technologies that we
discuss in this section including EDGE. GPRS and EDGE are both technologies
that bridge the gap on our way to 3G technologies that provide multichannel,
multimedia connections to the network at high bandwidths with very good QOS
capabilities.

Because GPRS is an add-on to GSM, a GSM-enabled mobile device does not
necessarily support GPRS. To use GPRS and EDGE, the device must be specifically
enabled for the appropriate technology, the carrier must be able to support the
service, and the carrier must enable the device account to use the service. Also, in
the case of both GPRS and EDGE, it is possible to saturate the base station node,
particularly because these technologies are typically deployed on TDMA.

EDGE
EDGE, yet another GSM upgrade, is designed to provide data rates up to 384
Kbps and was initially developed by Ericsson and scheduled for commercial use
in 2002 using 3G transmission technology but working in the GSM frequency
range [Garber 2002]. EDGE deployment will primarily be in the United States as
it is best suited for the infrastructure there.

EDGE can achieve this higher rate by introducing 8PSK modulation technique
(which breaks the 360 degrees of a sinusoidal wave into eight phase shift keying).
At this point you may be wondering why we do not simply increase the order of
the phase shift keying. There are many reasons for this, the biggest of which is the
increase of errors and hence the necessity of introducing more and more elaborate
correction techniques. So, although the promised bit rate of 384 Kbps may be deliv-
ered under ideal conditions, because of the higher chance for errors, the minimum
bandwidth delivered may be much lower than this. EDGE may be implemented

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

640 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

Incoming
Call

x x

Determine
Home IP

Determine
Device Type

Mobile Device
Home Agent
Network

Home
Network

x

Determine
Device IP

FIGURE 10.9. Using UCMs to Model Wireless Network Interactions.

on both packet radio and circuit-switched networks. EDGE and GPRS essentially
require the same type of system architecture from the telecommunication careers
as seen in Figure 10.8.

This brings us to the end of our discussion on long-range wireless networks.
As you must have noted, our focus was mainly on cellular telephony technology
and the various modulation techniques, at a high level, that allow for delivery of
data and voice to the mobile device.

The various networking technologies that we have looked at are typically com-
mercially bundled with some additional services, both to provide additional rev-
enue streams for the carriers and to make them more useful to the end users and
the application developers. As an application developer, to use such functionality,
we need to first have a high-level of understanding of the type of services offered
and then we need to build an interface with these services. As previously men-
tioned, the goal is to create a clean interface between our application and these
services. To do this, we need to understand the model of services offered by various
wireless networking services. We have already used UML to represent such a model
for QOS as a dimension of mobility and an aspect of wireless communication.

10.3.3 Modeling Wireless Network Communications with UML
Previously in this chapter, we discussed the merits and methods of modeling QOS
properties of a wireless network with UML. In the bigger picture, it is also useful to
model the other aspects of wireless network communications with UML. First, we
can use the existing artifacts of UML diagrams to represent collaboration among
the various components of a wireless network (collaboration diagrams), tempo-
rally organized interactions among these components given specific circumstances
(sequence diagrams), discrete software components with well-defined functional-
ities (component diagrams), and the overall division of the delivered functionality
(use case diagrams). In general, UML 1.3 and above, without any extensions,
allows us to model network communications, wired or wireless, fairly well. How-
ever, there is always room for improvement. In this section, we will look at some
proposed extensions that will allow us to more efficiently model certain properties
of wireless networks. This is not to say that all, or any of, these extensions hold a
magic key to making the modeling process more efficient; rather, you can use any
of these extensions, at your discretion and based on the nature of your project,
to enhance your UML-based documentation. Also, there is a close relationship

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.3 Survey of Wireless Networking Technologies 641

between synchronization and wireless network access (because one of the rea-
sons to have synchronization is intermittent connectivity); refer to Chapter 11 to
see how we model data replication and synchronization with UML. The same is
true with location information, which can be obtained from the network and its
topology; this is discussed in Chapter 12.

Let us start with extensions to use case diagrams, the starting point of any
UML-based technique.

Use Case Maps
Proposed by Amyot and Andradel, the visual notation Use Case Maps (UCMs) aim
to capture operational requirements of communicating and distributed systems
[Amyot and Andradel 2001]. UCMs are not proposed as a UML extension by Amyot
and Andradel though they can be represented, as we propose here, and modeled
as a UML extension. In other words, the artifacts that have been introduced to
build UCM diagrams can be described by stereotypes, constraints, and tags.

Because of their causal and temporal nature, UCMs can be thought of as
something in between UML sequence and use case diagrams. UCMs use be-
havior as a concrete, first-class architectural concept. They describe scenarios in
terms of causal relationships between responsibilities [Amyot and Andradel 2001].
They are useful in representing wireless communications because the nature of
communication systems is temporal and causal and because, as proposed by Amyot
and Andradel, a reference model for wireless communication is provided where
roles of some typical components in a wireless communication system are prede-
fined. Amyot and Andradel first define a few simple artifacts for their UCMs and
then recognize some entities and create stereotypes based on the functionalities
that these entities perform in a wireless network. They make use of the following
functions:

1. authentication control function,
2. call control function,
3. location registration functions,
4. mobile station access control function,
5. radio access control function,
6. radio control function,
7. radio terminal function,
8. service control function,
9. service creation entity function,

10. service data function,
11. service management function,
12. service switching function,
13. service management access function, and
14. specialized resource function.

For the description of each of these, refer to the paper by Amyot and Andradel ref-
erenced here; these are mainly concepts of component-based services for wireless
telecommunication systems. The artifacts are simple and are listed in Table 10.1.

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

642 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

TABLE 10.1. Use Case Map Artifacts

Start Point Represented by a full circle, this artifact
indicates the start of a temporal process.

Causal Path These are simple lines that attach the other
artifacts to one another. They imply a
causal temporal behavior.

Responsibility Responsibilities are indicated by an X that
crosses the causal paths. Responsibilities
are roughly large-grained functionality
provided by the system.

X

Components Components provide a way to map the
responsibilities to systems and
subsystems that actually perform those
responsibilities. They are indicated with
boxes that surround the included
responsibilities. Note that UML already
defines components; however, they have
to be redefined within the framework of
the UCMs.

End Point As every process has a start, it must also
have an end. The end point, indicated by
a straight vertical line that ends the last
causal path, represents this ending.

Figure 10.9 shows a simple example of an incoming call using these artifacts.
In UML terms, UCMs fill the gap between requirements described as (natural

language) use cases and detailed behavior based on components and messages
(e.g., sequence, collaboration, and state diagrams) [Miga et al. 2002]. UCM dia-
grams are simple and similar to the other diagrams that we have learned. For the
mobile application developer, they are most handy when he or she has to model
the functionality offered by a wireless network system or needs to create interfaces
that rely on such functionality. Next, we will look at UML.

How to Model Network Services
One of the most important things in understanding the services offered by any
wireless network is the “service model” offered by the network. Whereas some
networks only offer rudimentary communication services to deliver packets of
data back and forth, other networks have special considerations for more advanced
features such as billing, QOS, and other functionality. Unfortunately, one of the
great unresolved fundamental problems of software engineering is that the model
with which we represent a system is very much dependent upon our perspective
and that the behavior of two systems built to solve the same problem represented
by two different domain models vary.

This means that the model with which we decide to represent a system is of
paramount importance. For this reason, there are many organizations tackling
the standardization of domain problem. Although there are still some variations

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.3 Survey of Wireless Networking Technologies 643

because there are competing standard bodies in many of these domains, the success
and survival of standards is often proven in an organic manner and by the simple
passage of time.

Traditionally, ITU’s (International Telecommunications Union) Specification
and Description Language (SDL) is the tool of choice for the engineers within
the telecommunications community. However, unlike UML, SDL is not very per-
vasive among software developers. Selic and Raumbaugh (two of the forefathers
of OOP and UML) have defined a mapping from SDL to UML by creating a UML
profile that defines stereotypes, constraints, and tagged values to extend existing
UML artifacts [Selic and Raumbaugh]. These extensions also leverage the rational
real-time (often referred to as RRT) extensions to UML designed to treat prob-
lems specific to real-time computing. For details of this mapping, we refer you
to the aforementioned reference; indeed, if you are a mobile application devel-
oper within the telecommunications community or one who has to communi-
cate with colleague members of the telecommunications community, we strongly
recommend that you read this document. A digest of this paper can be presented
as follows [Selic and Raumbaugh]:

1. UML RTT capsules, represented by the <<capsule>> stereotype can be
mapped, by further specialization, to SDL’s system, block, service, and process.

2. Ports, stereotyped by <<port>>, and attributes of capsules that allow repre-
sentation of communication among capsules, can be mapped to SDL’s gates.

3. Because UML state machines are more general than SDL state machines, they
can be used to model the semantics of SDL state machines.

4. There is a one-to-one mapping between SDL and UML signals.
5. An SDL variable can be represented by a UML RTT capsule attribute.
6. SDL inputs are translated into UML transition triggers.

These are only a small subset of what Selic and Raumbaugh have specified as the
mappings from SDL to UML and the UMLRTT extension. For those readers famil-
iar with both SDL and UML, this should give you a taste of the mapping. Once
again, for more details see the reference paper mentioned. Because SDL was de-
signed specifically for the telecommunications industry, this mapping allows us to
use UML for design or representation of the operation of wireless systems. How-
ever, we have yet to see what a typical domain model of a wireless communication
system may look like.

In the case of modeling wireless network behaviors, like many other domain
problems, there are competing organizations. For the purposes of this text, we
will look at the model defined by the EUROSCOM P809-GI project. EUROSCOM
is a community of European telecommunications carriers that includes British
Telecom, Deutsche Telekom AG, Telefonica, and FINNET Group. One of the rea-
sons we select the EUROSCOM model is that project P809-GI uses UML and
object-oriented concepts in modeling the domain of services offered by a wireless
network.

P809-GI focuses on the problem of interacting with intelligent networks that
provide a variety of advanced services such as multimedia content to users, other
terminals, nonintelligent systems, and other intelligent systems. Though these

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

644 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

User

+Home Domain:

+Communication Profile:

+Conference Title:

+ControlAddress:

+TotalCapacity:

+Schedule:

+Reserved Capacity:

+Charge Mode:

+Activation()

+Deactivation()

+Reservation()

+Name:
+PIN:
+AttachedFlag:

+AttachToTerminal()

+DetachFromTerminal()

1..*

1..*

0..*

1..*
1

1

1

Service

Coordinator Participant

Multipoint Server

Add-on VideoConference

FIGURE 10.10. Add-on Video Conference Service Classes [P809-GI 1999].

definitions are not limited to wireless connectivity, the focus is on wireless systems.
Now, let us look at some of the models outlined by this project:

1. Figure 10.10 shows the basic model for a video conference. Once again, the
model is simple: A video conference may have many participants but only one
coordinator.

2. Figure 10.11 shows the general participants in a mobile interaction. This model
is rather basic. There is a user, a terminal (the mobile device that the user is

User

+Home Domain:

+Name:

+PIN:

+AttachedFlag:

+AttachToTerminal()

+DetachFromTerminal()

Network Access Point
Terminal

1..*

1..*

0..*

0..*

0..*

1..*

1..*

1..*

Service

+Address:

+AttachToAccessPoint()

+DetachFromAccessPoint()

+Terminal Address:

+AttachedFlag:

+initialize()

+cancel()

FIGURE 10.11. Mobility Classes and Relationships [P809-GI].

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.3 Survey of Wireless Networking Technologies 645

Personal Mobility Manager

Log Charge

ServiceComponent

Service

CallControl

ConnectionControl

User Interaction

AddressTranslation
DataManagement

+registerUser()

+rootAddress:

+rootAddress:

+menuData:

+displayMenu()

+userData()

+continue()

ResourceManagementAuthentication

+allocation()

+modification()

+deAllocation()

+resourceData()

+authorizedRelationship:

+authenticateUser()

+endAuthorization()

+userData()

+disconnectParty()

+connectParty()

+endConnection()

+disconDetect()

+currentAddress:+retrieve()

+modify()

+store()
+translate()

+addParty()

+removeParty()

+endCall()

+abandonCall()

+deregisterUser()

+authorize()

+userData()

+serviceChoice()

+startLogging()

+stopLogging()

+startCharging()

+endCharging()

FIGURE 10.12. Service-Independent Classes [P809-GI].

using), and an access point to which the mobile device connects to utilize the
underlying wireless network.

3. Figure 10.12 shows those basic data elements and structures that are indepen-
dent of the individual value-added services in a wireless network but that are
used by all various services on the network. As you can see, this part of the model
tackles more problems but still does it in a very generic manner. It demonstrates
the requirement for any mobile system connected to the network through a wire-
less connection to have an authorization and authentication mechanism, proper
logging, management of network and device resources, persistence data store
management, and address translation for interoperability. We also see the basic
concepts of controlling the channels to the network in ConnectionControl and
CallControl classes. Furthermore, there is one aspect of wireless networks and
mobility that we do not look at in this text: billing. Billing is not a dimension
of mobility, but its role in mobile applications is very unique and different from
that in stationary applications. Because most mobile applications are connected
to the network through a wireless network, the network infrastructure and the
application are responsible for tracking network usage. Billing is one of the
most complicated deployment problems as telecommunications carriers have
complex schemes for bandwidth and service usage.

Besides defining these models, the EUROSCOM Project 809-GI continues to create
more refined definitions of the recognized entities. As generic as these definitions
and the model itself is, other entities have defined these same models in a different
manner. Also, inheritance is, at least semantically, overused in the P809-GI model.
An experienced object-oriented programmer knows that overusing inheritance
leads to an inflexible model that cannot be easily extended. For this reason, we
recognize the models that we have introduced here as more useful because of the
proper distinctions of the entities rather than the way the relationships among

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

646 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

the entities are represented in the UML model. As a mobile application developer,
you may find the model of the wireless network important to you because of the
following:

1. You need to understand the service model of the network to write simulation
or unit-test programs that emulate the environment in which your mobile ap-
plication will exist.

2. A core part of your mobile application uses the various services offered by
wireless networks and you need to create clean APIs and interfaces that separate
the concerns of the adapters that couple you to the network infrastructure(s)
from the core functionality of the mobile application.

You will find that, as a mobile application developer, you will not need too many ad-
vanced development techniques such as UML modeling for representing network
behavior. Most of this work is done by the creators of the lower layer protocols
and the base services that they offer. However, you will need to be able to use such
functionality and model the behavior of your application, which potentially can
be centered around the functionality of the wireless network, with precision and
quality.

Unfortunately, thus far, carriers and equipment manufacturers involved in the
creation and deployment of wireless networks have not been willing to agree
upon some universal model for various aspects of providing wireless networking
services that can be represented in UML. This is largely because carriers and
manufacturers differentiate themselves by using different models for providing
wireless networking services.

10.4 MOBILE IP

IP addresses, with IP-based deployments dominated by TCP/IP, have traditionally
been associated with stationary computing systems that are located in the same
location for long periods of time. This is the foundation for much of the routing
techniques used for TCP/IP-based networks. The biggest problems in using TCP/IP
and the accompanying technologies in mobile computing are related to routing.
Whereas applications in TCP/IP use the IP address and a port to identify an end
point, end points in the mobile world are not static: A mobile device may connect
to one network, be assigned an IP address, move to another network, be assigned
another IP address, and so on all in a very short period of time and while the same
application needs to continue to operate properly. This problem is the primary
reason for the existence of Mobile IP.

Although the term Mobile IP is used by a variety of specifications and tech-
nologies, we will be using it as specified by the Internet Engineering Task Force
(IETF). Keep in mind that Mobile IP is being designed to be in line with mobility
solutions offered based on IPv6, but because most of the infrastructure of the
Internet only supports IPv4 at this time, backward compatibility to IPv4 is a re-
quirement. The two biggest improvements in the Mobile IP implementation of IPv6

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.4 Mobile IP 647

over IPv4 are that security is integrated into the design of the protocol and that han-
dovers among different subnets are possible without having packet loss. At present,
MIPv6 (Mobile IP for IPv6) has not been finalized by the IETF. Although Internet
service providers are currently balking at adopting MIPv6, many big companies
support the technology and say it eventually will become widespread [Vaughan-
Nichols 2003].

Mobile IP requires maintenance of two IP addresses for each end point. One
address is used to locate the end point and the other is used to uniquely iden-
tify it. So, one IP address is used to locate the home network of the mobile
device. Once the datagram arrives at the home network, it is routed to the
“care-of-address,” which is the address of the end-point device. In this way,
the home network can change the “care-of-address” once the datagram arrives.
Now, let us review some of the basic functionality requirements for Mobile IP
nodes:

1. A Mobile IP node should be able to communicate with other nodes after chang-
ing its link-layer point of attachment to the Internet, yet without changing its
IP address [Campbell 2001].

2. Mobile nodes should be interoperable with other IP-based nodes.
3. Because this usage of two IP addresses for each node leaves the protocol vulner-

able to new types of security attacks, all messages must be authenticated before
routing.

4. Assignment of IP addresses should have no other constraints.

Whereas the mobile host is defined as a host on the network similar to a normal
IP host there are some new concepts introduced in Mobile IP as follows (see
Figure 10.13):

1. Home Agent: The home agent receives and routes the datagram based on the
home network IP address. The home agent is the first contact point of a datagram
that exists outside of a subnet but is addressed to that subnet. The home agent
is always the same regardless of the location of the device. Instead, it is tied to
the specific device.

2. Foreign Agent: This is the agent that the mobile device connects to. Because the
mobile device roams around among different subnets, the foreign agent varies
based on the location of the device.

3. Mobile Node: This is the mobile device connected to the network through some
sort of connectivity, most probably wireless.

There are also some basic processes that go on in the routing of messages with
Mobile IP:

1. Agent Advertisement: Both home agents and foreign agents send out periodic
advertisement so that they may be properly discovered. The mobile node is
listening for these advertisements.

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

648 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

InternetInternet

Foreign
Agent

Subnet A

Subnet B
Foreign
Agent

Foreign
Agent

Subnet C

Home
Agent

FIGURE 10.13. Mobile IP System Components.

2. Registration: Once a mobile node has discovered a home agent and/or a foreign
agent, it registers with them for a limited period of time. Registration always
expires after some time and must be renewed.

3. Advertisement: The home agent advertises the public IP address of the mo-
bile node so that other routing points in the network can route the datagrams
properly.

The biggest concerns with Mobile IP are its ability to deliver reasonable QOS and
provide appropriate security.

Of course, we cannot have a discussion of IP without one of TCP. The combina-
tion of these two comprises the foundation of the Internet. One of the biggest ef-
forts in the telecommunications community has been to build an effective TCP/IP
implementation on top of the networks that we have discussed in this section.
Unfortunately, TCP does not lend itself to wireless networking naturally. Wireless
networks connect and disconnect frequently and intermittently and the connect/
disconnect cost in TCP/IP is considerable. Things like handoffs between relays,
which are very natural to the basis of wireless networks, cause problems in TCP/IP
implementations. Also, TCP assumes that packet loss is caused by either network
congestion or reordering of packets—an assumption that is not true in the case of
wireless networks.

Two solutions have been suggested. Some systems simply use a different proto-
col such as UDP (User Datagram Protocol). Unfortunately, this too has its draw-
backs. First, wired networks perform much better with TCP so this causes an in-
herent impedance mismatch. Second, UDP tends to be a less efficient and slower
protocol for long-lived sessions, and most transactions between users and the

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.5 SMS 649

mobile application involve more than one or two simple transaction and require
some state to be kept. This is not impossible in UDP, merely not as natural to UDP
as it is to TCP. Other solutions have focused on creating variations on TCP such
as Multimode TCP. A mode is a subset of the entire TCP state [Zhang 2001].

To date, there is no clear canonical solution for wireless networking that is
similar to TCP/IP. The best we have done is simply port TCP/IP to run on wireless
networks. And this simply is not a very good solution because of the fundamental
differences in wireless and wired networking.

10.5 SMS

SMS is the delivery of alphanumeric messages to mobile phones over wireless
networks [Malhotra 2002]. SMS is not inherently a wireless communication tech-
nology. It is a value-added service designed to run on long-range wireless networks.
Nonetheless, we have left its discussion to this section of the book because it only
lives within wireless networks and, to many 1G and 2G data networks, it is the
only or the most important form of data communication. SMS messages can be sent
from a mobile device or from an SMSC (Short Messaging Service Center), routed
by an SMSC, and arrive at a suitable destination as an SMS message, an e-mail,
or some other form of electronic message. Two things make SMS fundamentally
different from the other data access technologies: It can be delivered whether or
not there is an ongoing voice call and it is an asynchronous messaging system that
allows for flexibility in the temporal behavior of the network and related delivery
attributes.

SMS was first deployed in Europe in the early 1990s and became prevalent in
the mid 1990s. In the United States, it was not until the very late 1990s that SMS
was available and usage grew slowly but steadily from thereon. To date, SMS is by
far the most successful data application used on wireless networks.

SMS does not require usage of one type of wireless network over the other; it
can be implemented over whatever network is available. However, to date, it is
primarily implemented on TDMA and CDMA networks and will be supported by
the 3G variants of those networks or more modern networks. Figure 10.14 shows
the basic architecture of a telecommunication infrastructure that can deliver SMS
messages.

One important thing to note is that SMSCs all implement Signaling System 7
(SS7) connectivity. This is crucial for delivery of messages among disparate net-
works and is a big part of what the implementation of an SMSC gateway includes.

Most carriers, for security reasons, do not offer third-party connectivity to their
SMSC or any connected part of the infrastructure of an SMS system. Unfortunately,
this means that the only way for a programmer to write an SMS application is to
interface with the carrier’s SMTP servers that are then connected to the SMSC.
Carriers either create an alias at some domain (user@carrierdomain.com) or the
phone number is used (7145555555@carrierdomain.com). In other words, creat-
ing an SMS message, as far as we are concerned, is the same as creating an e-mail.
Whereas the length of the message is supposed to be 160 characters, depending

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

650 WIRELESS CONNECTIVITY AND MOBILE APPLICATIONS

Application Servers

SMSC

Cellular
Infrastructure

(CDMA, TDMA, etc.)

SMTP Servers

Billing

FIGURE 10.14. Basic System Diagram for an SMS-Enabled System.

on the network, you will see a maximum of anywhere from 100 to 280 characters
for an SMS message.

Of course, we only have to do this if the device we are using is not SMS enabled.
With SMS-enabled devices (typically mobile phones and PDAs), you simply com-
pose your short message and address it to the phone number of the recipient and
off it goes.

There is one other way to send SMS messages: You can use a mobile phone, or
another SMS-enabled device, as a proxy into the carrier’s network. Here are the
steps to do this:

1. Connect your mobile phone, PDA, or whatever SMS-enabled device you have
to your PC with an RS232 cable, USB cable, or whatever connector is provided.

2. Install that phone as a modem to the PC.
3. You can now send an SMS message using the SMS-enabled device as a modem

by sending an “AT” command. This message would be formatted as follows:
a. AT+CMGS=“17144546537” ➔ Enter key
b. Enter the text message ➔ Ctrl-z
c. AT OK AT+CMGF=1 OK AT+CMGS=“17144546537”,129 >Hello+

CMGS:3 OK

SMS will eventually be replaced with the more advanced EMS and MMS, which
we have discussed previously in this text.

One interesting thing about SMS is that, because of its pervasiveness, it is
occasionally used as a text-based application-layer transport protocol. In other
words, we can build a mobile application that resides on the device, in one of
the environments we have looked at such as J2ME and Windows CE, and use
SMS to send and receive messages from some other node on the network. The
SMS messages could, for example, hold SOAP envelopes. Though most typical

P1: KPB/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c10 CB752-B’Far-v3 May 4, 2005 17:5

10.6 What Now? 651

SOAP envelopes would be too large to put into one SMS message, we can split the
messages in several different SMS messages.

10.6 WHAT NOW?

We have certainly not covered all of the various areas of wireless networking
that relate to mobile application development. Our attempt has been to give an
introduction to some of the most pervasive technologies to give us a good under-
standing of the limitations and capabilities of the infrastructure that our mobile
applications will be using for communication. The core services of the more ad-
vanced data networks such as various 802.11 networks and 3GPP-based networks
may evolve along a number of different paths. The governing rules for determining
this evolution will be largely driven to an equilibrium point where the wireless
carriers can make money and expand their markets, the device manufacturers can
continue to introduce more and more advanced devices, the third-party application
developers will find a way to introduce applications quickly to a mobile software
marketplace suffocated by the carriers, and the consumers will continue discov-
ering new value in mobile applications that they can use through their wireless
connection to the network.

Wireless networks will be changing fast. The key for the mobile application
developer is to keep up with these changes and to design applications that resist
becoming obsolete by these changes.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

CHAPTER 11

Synchronization and
Replication of Mobile Data

Doubt is the key to knowledge.
Persian proverb

11.1 INTRODUCTION

The word replicate means “to produce a copy of itself” and originates from the
Latin word replicates. The word synchronize is defined by the Webster dictionary
to mean “to represent or arrange (events) to indicate coincidence or coexistence.”
Synchronization and replication are two essential operations in distributed com-
puting. Although synchronization can mean a variety of things, replication is
typically used in reference to data. Like the literal definitions of synchroniza-
tion and replication in the English language, their definitions within the field of
computing are different but related. In this chapter, we will limit our discussion
of synchronization and replication to data synchronization and data replication. As
you may have already noted, we used the term synchronization, in Chapter 8, when
synchronizing contents and actions transmitted across multiple communication
channels. We are discussing synchronization in the context of data replication in
this chapter.

Data replication, in its broadest sense, simply refers to copying data from one or
more data storage locations to one or more other data storage locations. Note that
these locations are virtual locations and not physical locations—it is not required
for the virtual locations to be at different physical locations. The taxonomy of
the types of replication technologies depends on the domain problem as well
as the infrastructure on which replication is being performed. However, we can

652

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

11.1 Introduction 653

break nearly all data replication into two groups: complete replication and partial
replication. When we replicate data completely among two or more nodes, all of
the data are copied. Partial replicas allow us to set up behavioral rules that allow us
to specify a subset of the data to be copied among two or more nodes participating
in the replication process.

Data synchronization, in its broadest sense, assures that there are no conflicts
or discrepancies among two or more instances of the same data. The problem with
this definition is that conflicts and discrepancies are domain dependent. In other
words, whether two or more data sources are synchronized depends on the defi-
nition of “conflicts and discrepancies” within the data domain. Whereas in most
domains this means that the different instances of the same data must be identical
(hence the relationship with replication), this is not necessarily the case. Hans-
mann defines data synchronization, as applied to mobile applications, by stating
that “Data synchronization allows a consistent local ‘copy’ of various kinds of data,
from a central corporate datastore or a service provider datastore on the user’s de-
vice” [Hansmann 2002]. This definition is correct but does not encompass all
aspects of data synchronization needed by mobile applications. Like replication,
we may synchronize data only partially. Partial replication or synchronization may
be based on a set of domain dependent rules, the infrastructure performing the
synchronization, or even temporal properties of the data and the act of synchro-
nization itself.

When it comes to mobile computing, there is an obvious use for data replica-
tion and synchronization: Allow the user to access an application and data when
the end-user device is disconnected from the network. But there is a deeper rela-
tionship here. There is a graduated, inversely proportional, relationship between
QOS of the network connectivity provided to the device and how replication and
synchronization are to be used. For example, when the user is often completely
disconnected from the network, we may need a complete replica and frequent
synchronizations to keep the data updated for those times when the user is dis-
connected from the network. In contrast, if the network connection is typically
very reliable but slow and the device is resource-starved, then we may use partial
replicas to improve performance almost like a caching mechanism. We will not
intend to quantify the relationships among QOS, replication, and synchronization
in mobile environments with any degree of exactness, but we will go through some
general concepts and the mechanics of implementing these general concepts that
will give the reader a qualitative feeling for these relationships.

We will also discuss some basic concepts in data replication and synchroniza-
tion, see the relevance of replication and synchronization in mobile applications,
look at how we can represent replication and synchronization actions with UML,
and look at SyncML as a syntactical tool that we can use for implementing repli-
cation and synchronization solutions.

Before we delve into implementations of how we can replicate data onto our
mobile device and synchronize the data from there on, let us first take a more
diligent look at the various types of data replication and synchronization and the
relationship of synchronization to the dimensions of mobility.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

654 SYNCHRONIZATION AND REPLICATION OF MOBILE DATA

11.2 TAXONOMY OF REPLICATION AND SYNCHRONIZATION

So far, we have learned about complete and partial replications. Now we intro-
duce the concept of master and replica in any replication process. We are always
replicating from a source to a destination: The source is typically called the master
and the destination is typically called the replica. The replica, then, may be a
complete or a partial replica of the master. In a system with many devices (PCs,
mobile devices, etc.) connected together through a network, it is conceivable
(actually typical) that a data source may need to play the part of a master or
a replica and that the way the devices connect to each other depends on the
network topology and the application that they sit on top of and the application-
layer communication protocols provided for the devices to communicate with one
another.

A quick review of basic networking theory tells us that the network-based
topology can be a star, a ring, a bus, peer to peer, or any variation and combination
of those four. Although all of these network-layer protocols can provide for the data
platform that performs the replication and synchronization, some lend themselves
in a more effective way to particular types of data replication. This is somewhat
obvious, but let us review it quickly:

1. One-to-Many Replication: In this case, there is one central host that creates com-
plete or partial replicas and with which all of the nodes synchronize partially
or completely. At the network layer, star, bus, and peer-to-peer networks allow
this to be done efficiently whereas the application-layer communication archi-
tecture can be centralized, client–server, or peer to peer. An example of this
may be a set of configurations that is hosted centrally and is to be replicated to
many node devices. After the initial replication, this information may need to
be synchronized periodically.

2. One-to-One Replication: In this case, there are only two participants. There is one
master and one replica. Though, as we mentioned before, the roles of master
and replica are typically static to the life cycle of the application, sometimes the
replication tool allows for reversal of the roles. An example of this in the realm
of mobile computing is when a user creates a complete or partial replica of his
or her contacts on a PDA device and synchronizes the contents of the data from
that point on. Many software packages that provide for such replication also
allow the user to connect his or her device to a different device and serve as the
master to create a replica of itself.

3. Many-to-Many Replication: In this case, there are many masters and replicas in
the replication and synchronization scheme. Any one of the instances of the
storage systems that can assume the role of a master can replicate a new replica.
From that point on, replicas, whether partial or complete, can synchronize with
masters or among themselves.

Another angle with which we can build a taxonomy of replication and synchro-
nization technologies is through the structure of the data being replicated and

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

11.2 Taxonomy of Replication and Synchronization 655

synchronized. We can grossly generalize persistence mechanisms for mobile de-
vices to three categories:

1. Proprietary (Binary) Storage: Most of the lower end devices have limited storage
and this storage is typically built on a proprietary technology (which could be
standards based but is definitely hardware driven) that optimizes the storage
technique for the minimal amount of storage available on the device.

2. Flat Files: Storage may be done using text or binary flat files. This is becom-
ing more and more prevalent in the lower end devices as the definition of
lower end is moving up (devices are becoming more powerful and thus offer
more persistence storage). Flat files do not offer any special searching and in-
dexing features; therefore, they are only practical for information with simple
structure.

3. Database Files: Although databases offer us more advanced functionality such
as searching and indexing, having even a small subset of basic database func-
tionalities is fairly resource intensive but also very useful for higher end mobile
devices. Products such as PointBase and other microdatabases are designed
to run on PDAs. Such microdatabases provide some minimal set of func-
tionality of a relational, object-oriented database. Some of these micro-
databases are interoperable (replication, synchronization, etc.) with their larger
siblings running on more powerful nodes of the network (servers, PCs,
etc.).

Mixing these two taxonomies gives us a mixture of storage types at various nodes
or allows networks of interconnected mobile devices and mobile applications that
can connect together in a variety of different ways.

This means that one important task becomes the interoperability of the various
storage systems on various devices within a particular application network. In
other words, we may have a PDA that can have a microdatabase with a small set of
functionality that distinguishes it from file systems, a mobile phone that has the
simplest of persistence forms implemented in a proprietary way with a proprietary
API, and servers that host database systems that are fully SQL compliant. Obvi-
ously, there is a large impedance mismatch among the abilities of these different
storage forms. This impedance mismatch is indeed one of the biggest drivers in
the birth of various standards, such as SyncML, that try to address the problem of
standardizing data synchronization schemes, in a flexible and extensible manner,
across many different platforms. The problem of replication is a bit easier, since,
prior to the start of replication, there is no replica, thereby leaving all of the logic
with the master, which can create a replica that includes a replica with some subset
of functionality and data of itself but never exceeding the functionality and data
that it (the master) possesses.

There is yet another axis that we can introduce in breaking down types of
replication and synchronization. Replication and synchronization can be done
manually or automatically. This means that we can only replicate and synchronize
data when the user explicitly requests it (the manual method), we can replicate and

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

656 SYNCHRONIZATION AND REPLICATION OF MOBILE DATA

synchronize data automatically without any user involvement or notification of
the user, or we can have schemes that sit somewhere in between allowing the user
to set some settings and then perform the act of replication and synchronization
in a manual or automatic way.

Lee [Lee 2000] makes yet another distinction between types of synchroniza-
tion and replication, particularly when used in mobile environments. Namely, he
defines the terms strongly connected and weakly connected. The former implies
that the connection among all nodes of the network is robust, highly avail-
able, and offers a sufficient amount of bandwidth without the possibility of bot-
tlenecks for replication and synchronization. The latter is defined as an inter-
mittent connection with unreliable amount of network bandwidth: the type of
connection that most mobile devices provide (typically a wireless connection).
Note that strong and weak connectivity do not have anything to do with the
strong and weak mobility mentioned in Chapter 9 within the context of mobile
agents.

Finally, we can type data replication and synchronization techniques by the
likelihood of conflicts. Pessimistic replication and synchronization techniques as-
sume that conflicts are likely whereas optimistic replication and synchronization
techniques assume that conflicts are unlikely. Obviously “likely” and “unlikely”
are relative to the data storage systems, network availability, and the application
logic. Pessimistic approaches typically force locking on certain portions of data
(files in file-based storage systems, rows in databases, etc.) whereas optimistic ap-
proaches present the possibility of more frequent data conflicts. There is also the
matter of whether we can automate the resolution of data conflicts. Depending on
the type of application and the data that it stores, some or all data conflicts can
be resolved without the involvement of the user; however, it is very possible that
some human intervention is needed to resolve some data conflicts. Sometimes, it
is also beneficial to store various versions of the data. In fact, versioning is built
into the more sophisticated storage systems. However, keep in mind that keeping
multiple versions of the same data on a mobile device is very expensive. So, if we
want to do this, do it on the network (PCs, servers, etc.).

It is also important to keep in mind that replication and synchronization are
transactional. In other words, there is an atomic nature to the smallest messages
being sent back and forth between the different nodes of the network during
synchronization and replication. If only half of a single transactional message is
received and the rest is lost because of a broken connection, timeouts, etc. the
entire message must be retransmitted.

Finally, replication and synchronization are typically stateful. This means that
there is typically more than one single atomic transaction during a synchronization
session and that it is useful to maintain information about these various atomic
transactions as they are executed and completed. In fact, in the case of one-to-
many, many-to-many, or many-to-one replication, this statefulness is necessary
to ensure that data conflicts do not cause data corruption if multiple nodes are
synchronizing during the same time period.

Now, let us take a look at some additional considerations when designing and
implementing mobile systems that use data replication and synchronization.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

11.3 Data Replication and Synchronization for Mobile Applications 657

11.3 DATA REPLICATION AND SYNCHRONIZATION FOR
MOBILE APPLICATIONS

First, we need data replication and synchronization for mobile devices because we
assume that most mobile devices are sometimes disconnected from a network and
operating in isolation. This means that they need to access local data so that the
device operator can continue to use the applications on the device. The amount
of data to be stored varies based on the device capabilities, the application types,
and the user preferences. Typically, the sequence of events taking place are as
follows:

1. Initial Replication: Some data are replicated from the master to the replica. Nor-
mally, the master is a PC, server, or some other device that hosts some data
and the replica is the mobile device, but this does not have to be the case. The
mobile device can act as a master and create replicas on other devices.

2. Local Data Modification: This stage entails all of the user or machine interactions
that modify the data for one node. Usage of the data while the device is weakly
connected or disconnected may result in the data in other nodes becoming
partially or completely obsolete (or in conflict if the same data are modified at
some other node with different information).

3. Synchronization: This stage entails exchange of synchronization messages that
update the obsolete data and either resolve the conflicts in an automated fash-
ion or present the user with the necessary information to resolve the conflicts
manually.

After the initial replication, steps 2 and 3 can be repeated as many times as desired.
Now, let us look at some considerations on how frequently we may want to

synchronize after the initial replication:

1. If the mobile device operating system allows for multithreading or multipro-
cessing, then consider running the replication and synchronization threads in
the background. Users typically accept having to wait for their data to be syn-
chronized, but they want to be able to continue using the device for other
purposes.

2. If there are many different mobile clients modifying the same data, then try
to make the synchronizations as frequent as possible while preventing “hoard-
ing” conditions when synchronization is taking up a considerable amount of
the continuous bandwidth and other resources of the device for a long period
of time. The higher the number of nodes that can modify the data to be syn-
chronized, the higher the probability of synchronization conflict becomes. One
of the most important things to do is to try to avoid possible synchronization
conflicts.

3. We should make sure that the infrastructure used in synchronization mini-
mizes the amount of data shipped back and forth across the wire. Most modern
databases and other storage mechanisms that support synchronization keep

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

658 SYNCHRONIZATION AND REPLICATION OF MOBILE DATA

track of changes and optimize synchronization based on which pieces of data
have been changed on the two nodes being synchronized because those two
nodes were last synchronized together. There are other methods of optimiz-
ing the synchronization process as well. For example, Lee [Lee 2000] suggests
the concept of compact operations instead of value shipping. In this case, before
the changes are transmitted, they are analyzed. If it is possible to transmit the
command that tells the other node to make the necessary changes to reflect the
changes, this is done. In other words, instead of shipping the individual val-
ues to be synchronized, it is possible to recognize operations that both nodes
involved in the synchronization process are aware of. Synchronization through
transmission of these operations can prove to be much more efficient though it
means that the synchronization mechanism becomes very tightly coupled with
the application implementation.

4. Trickling reintegration is a term introduced by the Cods project of the
Carnegie Mellon Computer Science Department for a project whose focus
is in addressing replication and synchronization issues of weakly connected
devices [Mummert 1996]. The central idea is to use whatever bandwidth
is available in the most efficient way. Trickling reintegration stipulates the
following:
a. We should try to use whatever bandwidth is available in the most efficient

way for replication and synchronization.
b. The size and shape of the replication and synchronization transactions must

be designed with weak connectivity in mind if the connection to the network
is weak.

c. Providing temporally dependent partial replicas is often needed in mobile
systems.

d. We should keep in mind usability issues while implementing trickling re-
integration.

This technique can well lead to initial unnecessary hoarding of the resources
and then to complete saturation of the available resources on the device.

With this in mind, we should be looking for tools that provide trickling reinte-
gration based on similar techniques for replication and synchronization of data to
and from mobile devices. Such techniques maximize the usage of weak network
connectivity.

Let us keep in mind the obvious: Data replication and synchronization is most
applicable to mobile computing when we are dealing with devices that can store
more than trivial amounts of data. Two-way synchronization is only meaningful
in cases where the mobile device has an acceptable input HCI so that modifying
the data through the mobile device is realistic. One-way synchronization does not
have such a requirement as the mobile device could merely be updated by some
network-based mechanism (servers, PC, etc.) that does have an acceptable input
HCI mechanism.

Now, let us look at some of the issues involved with data replication and syn-
chronization in mobile applications.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

11.3 Data Replication and Synchronization for Mobile Applications 659

11.3.1 Scalability Issues Involved with Synchronization and
Replication in Mobile Application Infrastructures
As we eluded to earlier, whatever type of replication and synchronization is re-
quired for an application may dictate the functionality needed from the networking
and communication infrastructures. For example, if we have one centralized data-
store of which all of the devices have complete or partial replicas of and with which
all of the devices must be synchronized, then a star communication topology pro-
vides us with the most efficient infrastructure for the one-to-many replication and
synchronization. However, the problem is that the networking and communication
infrastructure typically comes before the synchronization problems and there are
other considerations that often take precedence in the networking and communi-
cation infrastructure. Therefore, our task when designing mobile applications that
use replication and synchronization is typically to create the canonical design for
a given networking and communication infrastructure without demanding much
in the way of changes to it.

We also previously mentioned that there exists a relationship between QOS
and replication/synchronization of data on mobile devices. This relationship is
symbiotic and not easily quantifiable. Namely, as the QOS drops off, we may want
to do more frequent synchronizations; however, numerous synchronizations may
hoard the available bandwidth and cause secondary problems such as bandwidth
starvation to the mobile device. So, frequently the design decisions with which the
mobile developer is faced includes how much of the data should be synchronized
and within what periodicity this synchronization should take place. At the same
time, an elaborate synchronization scheme may require more computing cycles
on the client side. We have to be aware of the techniques we used so that we do
not increase the requirements on the device while trying to deal with the network
connectivity restrictions.

Multidevice synchronization is more difficult, because maintaining the consis-
tency of several devices might require many individual synchronizations between
pairs of devices [Agarwal, Starobinski, and Trachtenberg 2000]. This presents us
with somewhat of a scalability nightmare. The problem is then twofold: First, the
more devices that are connected to our datastore as replicas, the more replication
and synchronization interactions we need. At the same time, we have to make
sure that the system performs well, the number of conflicts is kept to the abso-
lute minimum, and the burden on the resource-starved devices is also kept to a
minimum.

So, let us summarize the scalability-related variables that we have to take into
account when designing a scaleable mobile data replication and synchronization
solution:

1. Transaction Boundaries: Transactions should be sized to take maximum advan-
tage of the available bandwidth and, yet, not cause hoarding in the case of
failures.

2. Chunking: The data encapsulated in the transactions must be of a size whose
integrity can be consistently guaranteed for delivery between replication and

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

660 SYNCHRONIZATION AND REPLICATION OF MOBILE DATA

synchronization nodes. Otherwise, replication and synchronization will be far
too slow because of the numerous retries.

3. Number of Nodes to Be Synchronized: It is somewhat obvious that the higher the
number of nodes to be synchronized, the more difficult the scalability problem
becomes. What is less obvious is that some network and data synchronization
topologies handle this better depending on the nature of synchronization. In
other words, the star topology is not always the optimal topology (we are talking
about the application layer here and not the lower layers such as the physical
layer). Take, for example, a software provisioning system that provides the lat-
est version of an application to hundreds of thousands of mobile devices. Such
a system may use a replication and synchronization scheme to update the mo-
bile devices with the latest versions of a software application that executes on
the device and the local data files that go along with that (mobile) application.
In this case, it may be efficient and sufficient to centralize provisioning. Now,
think about a mobile application that we want to distribute to the market in a
viral manner. In such a case, we may want every mobile device to be able to
contact any other mobile device directly (e.g., like the Palm platform allows
thorugh the IR port or like Bluetooth-enabled devices allow) and download the
application or synchronize the latest data files that go along with the applica-
tion. In this case, we would need an ad hoc networking infrastructure and the
data replication and synchronization infrastructure that allows many-to-many
replications.

Of course, in addition to these considerations, we need to apply everything else
that has been learned from the “Internet experience” as well as building scalable
and robust mobile application infrastructures. Yet, there are certainly some unique
considerations when it comes to building scaleable applications that require data
replication and synchronization.

11.3.2 Approaches to Solving the Mobile Synchronization and
Replication Problem
In this text, we have discussed architecture often. One of our main goals has been
to lay out design strategies without getting bogged down in the implementation
details involved with specific platforms. Regardless of what platform and protocol
we use for performing data replication and synchronization, the mobile device is
either synchronizing directly with another device or going through a proxy for
this.

In essence, there are two scenarios for mobile devices and mobile applications.
Either the device is able to connect to a peer device, through some ad hoc network-
ing technology or some other means, and begin a one-to-one replication process,
or the device is able to connect to a network with some centralized control (servers,
etc.). In the latter case, although the server may host the data itself, it may also
act as a proxy for some other device that holds the datastore with which the repli-
cation and synchronization is to be performed. Whereas some mobile application
systems may require one or the other, other systems may require both.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

11.3 Data Replication and Synchronization for Mobile Applications 661

Nearly all mobile devices that are based on open-systems technologies allow
for some one-to-one synchronization of data with some other device. The usage of
the proxy-based model where the mobile device interacts with some intermediary
first is required for a few different reasons. First, the two different datastores to
be synchronized may be stored on platforms that cannot communicate with one
another readily. Second, data replication and synchronization may require robust
functionality such as conflict resolution that cannot be implemented on resource-
starved devices; the intermediary can offer us a place to do this computing. Finally,
the different mobile devices may have better and more reliable connectivity to
the intermediary than to each other; for example, we can synchronize the PIM
(Personal Information Management) datastores of two different mobile devices in
very disparate physical locations through a server on a communication network
that both devices have access to at all times. Each of these datastores may be on
the mobile device itself or stored on some proxy somewhere.

Now, let us take a quick look at how the most popular mobile platforms handle
data replication and synchronization.

11.3.3 Synchronization on the Most Popular Mobile Platforms
In this text, we have looked at Java, Palm, BREW, Symbian, and Windows CE
as examples of mobile device platforms. Let us look at how each provides for a
synchronization mechanism. Because J2ME is the most pervasive of mobile device
platforms, we will discuss it in a bit more detail later in this chapter. For now, let
us consider the other platforms:

1. The Palm platform, which also has very good support for Java applications
(thereby allowing for Java applications to use Java-based replication and syn-
chronization techniques), also offers the so-called HotSync synchronization
protocol. HotSync is primarily designed for the Palm-based PDAs to synchro-
nize their data with data on a PC through any physical interface allowed by the
particular device. There are two types of HotSync synchronizations: Slow Sync
and Fast Sync. Slow Sync is really more like a replication (where a complete set
of data is copied). It is designed for when a Palm device first connects to a new
PC, in which case data are copied back and forth rather than compared and
synchronized. Fast Sync is a real synchronization process in which only records
modified since the last synchronization or the initial replication are compared.
Like a real synchronization process, Fast Sync includes conflict resolution.

2. Microsoft offer s a variety of techniques to synchronize and replicate data be-
tween Windows CE devices and PCs. The primary mechanism for synchro-
nization of applications on the Windows CE platform is the ActiveSync API.
ActiveSync is fairly robust in allowing Windows CE devices to synchronize
with other Windows platforms (Windows NT, 2000, XP, etc.). There is also
the programmatic model in which a subset of Microsoft’s data objects are avail-
able for the Windows CE platform (.NET platform) and programmatic interface
is provided for synchronization and replication. Of course, the Microsoft PIM
products such as Outlook have their own internal databases that are different

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

662 SYNCHRONIZATION AND REPLICATION OF MOBILE DATA

SIDE D ISCUSSION 11 .1

SyncML Leveraged by Wireless Protocols

Some wireless protocols such as Bluetooth include some specification of synchro-
nization functionality. Although all specifications are converging at SyncML, SyncML
does not address some issues specific to each particular communication technology.
Therefore, it is foreseeable that many of the existing and upcoming wireless standards
will continue to specify at least some amount of synchronization functionality. This
does not imply in any way that there is overlap with Sync.

The Bluetooth synchronization profile, for example, offers two modes: a general
synchronization mode in which the client and server are connected and can syn-
chronize and an initialization synchronization mode in which the server is in a mode
to be discovered or synchronized with but the interaction between the client and
server does not include everything needed for a two-way synchronization. These
modes are more a byproduct of the nature of a Bluetooth ad hoc network than any-
thing related to synchronization itself. There is a detailed discussion of the Bluetooth
synchronization profile in Section 11.4.2.

than what is offered to the programmers. Therefore, replication and synchro-
nization is bit different with those products.

3. Whereas BREW offers a very rich programmatic interface, a built-in provision-
ing system, and persistence on the device, there is no built-in data replication
or synchronization with BREW at this time. You will have to build your own
synchronization or replication mechanism or find a third-party vendor that
provides one (remember that BREW is a C/C++ platform).

4. When it comes to Symbian, the choices are many. Symbian offers a very rich
C/C++ platform and there are several open-source and commercial tools that al-
low synchronization of data between a Symbian device and other devices. There
is a close affinity between Symbian synchronization and SyncML, which we will
look at later in this chapter. Nearly all products that address the synchronization
issue on the Symbian platform support SyncML.

For two datastores to replicate and synchronize data, they need to “speak the same
language.” In other words, we need a protocol for communicating synchronization
messages. A data synchronization protocol defines the workflow for communica-
tion during a data synchronization session when the mobile device is connected
to the network [SyncML White Paper]. There are many standard and proprietary
data synchronization protocols for mobile and stationary datastores. To date, there
is only one standard accepted by the majority of mobile platforms for data replica-
tion and synchronization: SyncML. Let us see what SyncML is all about and how
we can use it to build mobile applications with data on the device.

11.4 SYNCML

As we saw earlier in this text, XML makes the ideal format for content when
it comes to mobile computing. It gives us the required structure, the existence

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

11.4 SyncML 663

of a framework to represent metadata, and it is widely accepted, thereby help-
ing us with device proliferation issues. The Synchronization Markup Language
(SyncML) is an XML-based standard for data synchronization between two nodes.
The SyncML Initiative was established in February 2000 by Ericsson, IBM, Lotus,
Motorola, Nokia, Palm Inc., Psion, and Starfish Software [Leufven 2001]. Its pri-
mary purpose is to specify a protocol for synchronization of data between mobile
devices and the network. SyncML addresses two problems: The Sync Protocol spec-
ifies how different synchronization methods are to be implemented with SyncML
and the SyncML Representation specifies how the results of synchronization oper-
ations are represented. SyncML is a protocol primarily designed for client–server
interactions though it can also be used in a peer-to-peer environment or a mobile
agent environment where the peers or agent can assume the roles of clients and
servers and communicate through an RPC-like communication protocol.

From the commercial perspective, most mobile middle-ware and most mobile
devices that have a medium to high amount of storage resources (more than 256 kB
of storage) support a SyncML interface for synchronization of data. Examples of
such are DB2, Oracle, and Sybase products for both servers and hand-held devices.
As we will see later, many handset manufactures, such as those that are partners
in Bluetooth, also support SyncML on top of whatever device-specific replication
and synchronization mechanism may be available on those devices.

SyncML defines a SyncML client and a server. The client can send messages to
the server along with payloads and receive messages from the server. The server can
do the same but also needs to do some operations related to data analysis (possible
existence of conflicts, stale data, etc.) and conflict resolution. It is important to
note that SyncML is not an application-layer communication protocol. SyncML can
be bound to application-layer communication protocols such as HTTP. SyncML
has primarily been designed with three transport protocols in mind: OBEX, HTTP,
and WSP (WAP). We have already looked at HTTP and WSP in some detail. OBEX
is a transport protocol well suited for short-range ad hoc wireless networking such
as Bluetooth. At this point, it is important to note that there is a close relationship
between SyncML and the Bluetooth synchronization profile.

The Bluetooth synchronization profile is a critical part of the Bluetooth standard
that allows PDAs and other mobile devices supporting Bluetooth to synchronize
with other Bluetooth-enabled devices such as PCs, USB Bluetooth adapters, etc.
to synchronize data such as contacts in a PIM.

SyncML provides the following synchronization types:

1. Refresh synchronization from client: In this case, the client updates its infor-
mation with the latest information on the server. The client does no writing of
data back to the server.

2. Two-way synchronization: In this case, the client and server synchronize a
partial or complete set of data on the client. Because the server is to resolve the
conflicts, the client sends its data to the server first. See Figure 11.1.

3. Slow sync: The “slow” in Slow Synchronization should really be termed as “thor-
ough” because slow synchronization means that all data are compared between
the client and the server, field by field. This type of synchronization is rarely

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

S
yn

cM
L

C
lie

nt
S

yn
cM

L
S

er
ve

r

S
en

dC
re

de
nt

ia
ls

fo
rA

ut
he

nt
ic

at
io

n(
)

A
cc

ep
t(

)

A
cc

ep
t(

)

S
en

dC
re

de
nt

ia
ls

fo
rA

ut
ho

riz
at

io
n(

)

S
en

dS
yn

cP
ac

ka
ge

F
ro

m
C

lie
nt

T
oS

er
ve

r(
)

S
en

dS
ta

tu
sA

nd
D

at
af

or
C

lie
nt

U
pd

at
es

()

S
en

dS
ta

tu
sT

oS
er

ve
r(

)

M
ap

A
ck

no
w

le
dg

em
en

tT
oC

lie
nt

()

if
(B

ad
C

re
de

nt
ia

ls
 =

=
 tr

ue
):

 R
eq

ue
st

A
ut

he
nt

ic
at

io
n(

)

if
(U

na
ut

ho
riz

ed
 =

=
 tr

ue
):

 R
eq

ue
st

C
re

de
nt

ia
ls

()

P
ro

ce
ss

S
yn

cM
es

sa
ge

s(
)

U
pd

at
eD

at
a(

)

FI
G

U
RE

11
.1

.
Ba

si
c

St
ep

s
of

Tw
o-

W
ay

Sy
nc

hr
on

iz
at

io
n

in
Sy

nc
M

L.

664

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

11.4 SyncML 665

required, but it is necessary occasionally to recover from data corruptions or
other problems.

4. One-way synchronization from client: This is a sync type in which the client
sends its modifications to the server but the server does not send its modifica-
tions back to the client [SyncML Specification 1.1].

5. One-way synchronization from server: Many times the data on the client are read
only or, alternatively, modifications to data are only persistent if they are made
at the server. In such conditions, a one-way synchronization from the server,
where only the server sends the data modified since the last modification to the
client, is desired.

6. Refresh synchronization from client: There are situations in which the data
sent by the client always completely replaces the data on the server without any
synchronization. For example, the server may merely be a backup system for
the client, or the server may hold data updated by several clients and the latest
set of updates received from a client always overwrite all other changes. SyncML
calls these types of synchronization refresh synchronization from client because
the data on the server are refreshed without any analysis for conflicts.

7. Server-alerted synchronization: If some vital data on the server change and the
client needs to know about this, it may be desirable for the server to notify the
client so that the client can start to synchronize. In these situations, a server
alerted synchronization is desirable.

Before we move on to look at the SyncML syntax, let us look at some terms and
their definitions as defined by SyncML:

1. Datastore: In this text, we use the terms “data store” and “datastore” interchange-
ably. Datastores, as defined in this text and in SyncML, are simply a generic way
to refer to some data storage mechanism, be it a database, a file system, or some
other mechanism, that provides persistent storage of data.

2. Device Info: Because SyncML is designed with mobile applications in mind,
and because the datastore on one device may need to synchronize with many
different datastores on many different devices, the capabilities of the device
determine the appropriate operations during synchronization. Device info is
metadata about the devices involved in synchronization. It encapsulates the
capabilities of the device related to data replication and synchronization.

3. Meta Info: Besides the information about the device, there is information about
the specific synchronization to take place, about the specific datastores involved
in a particular synchronization action and about the data to be exchanged in a
specific synchronization action. Such information is really metadata about the
synchronization commands and the data to be synchronized. Such information
can include the average data chunks, the number of commands to be exe-
cuted, etc.

4. Message: The term message is simply used to describe an envelope of infor-
mation exchanged between a SyncML client and a SyncML server. Messages
contain a header and a body. The body encapsulates the commands.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

666 SYNCHRONIZATION AND REPLICATION OF MOBILE DATA

<SyncHdr>

<VerDTD>1.0</VerDTD>

<VerProto>SyncML/1.0</VerProto>

<SessionID>session01</SessionID>

.

</SyncHdr>

FIGURE 11.2. Sample SyncML Header Element.

5. Command: Commands are CRUD (Create, Read, Update, Delete) and similar
operations that encapsulate the information about the actual data to be changed
or they request some programmatic behavior to be invoked on the other node
(e.g., the server can send the client an alert).

6. Status Code: SyncML specifies a series of status codes used in messages ex-
changed between the SyncML client and SyncML server that indicate the results
of commands, for example the type of conflict between two data elements.

There are three main DTDs to SyncML: the main SyncML DTD, the Meta Info DTD,
and the Device Info DTD. It is important to note that because SyncML documents
may be encapsulated within other XML documents, SyncML messages must be
well formed, but they do not have to be valid XML. This is because there can only
be one instance of the DOCTYPE and XML version tags

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE application PUBLIC>

per XML document. These tags are replaced by <VerDTD></VerDTD>, which
wrap around the version number of the XML document on which the SyncML
chunk is based, and <VerProto></VerProto> tags, which wrap around the version
of SyncML used. Both of these tags are part of the SyncML header enclosed in
<SyncHdr>. Therefore, we can have something like the code in Figure 11.2.

This brings us to the fact the SyncML XML document is broken down into a
header and a body. The header, as you may expect, holds some metadata about
the SyncML document. The next section is the SyncML body, which can include
a variety of elements that specify commands for synchronization of data. These
commands are as follows:

1. <Sync>: This command wraps around the other synchronization commands
that outline a set of actions for data synchronization of two data collections.
Anything unrelated to adding, deleting, or updating of records in one of the
two data stores is not included.

2. <Add>: This command allows the server or the client to request a new
record to be added. This command can only be specified within the <Sync>
command.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

11.4 SyncML 667

3. <Delete>: This command allows the server or the client to specify that a
data element or a collection of data elements must be deleted. This command
allows for specification of whether the data to be deleted should be archived
or not. If the data are archived, the term soft-delete is used. If they are not,
the term hard-delete is used. This command can only be specified within the
<Sync> command.

4. <Update>: This command allows the server or the client to specify that a
data element or a collection of data elements should update existing data with
new information. This command can only be specified within the <Sync>
command. Note that an update means a complete replacement of the data
element. The data element’s segments (if such segments exist and can be
programmatically recognized) are ignored.

5. <Get>: This command is used to request metainformation about an element.
It is important to note that this command is not requesting the element or
collection of elements that include the data values themselves. Rather, this
command is a request for metainformation about the data that can be used for
many reasons including determining what the next set of transactions should
be, etc. Because this command does not include the actual data values, then
it is not to be included within the <Sync> element.

6. <Put>: Like the <Get> command, this command must be used outside of
the <Sync> command.

7. <Alert>: This command allows the initiator of a synchronization transaction
to notify the recipient.

8. <Atomic>: This tag specifies transaction boundaries in SyncML. In other
words, all of the commands inside this tag have to be successfully performed
for the results to be committed to the corresponding data stores. Because of
the transactional nature of the commands inside this tag, the order of the
commands is also important: There may be interdependencies among the
commands that are executed.

9. <Copy>: With this command the sender of the command asks the recipient
to copy a data element or a collection of data elements.

10. <Exec>: Either the client or the server can ask the other to execute some exe-
cutable program through this command. This command is subject to security
restrictions.

11. <Map>: With this command the sender of the command asks the recipient to
update the identifier mapping between the two elements or two data collec-
tions.

12. <Results>: This element wraps around the results of a <Get> or a <Search>
command. The content returned is in response to a <Get> or <Search>
request.

13. <Search>: Either the client or the server can ask the other to execute a query
on its datastore and return the results with this command.

14. <Status>: Like <Results>, this element indicates the status of an operation
requested by the client. This element is returned in response to a client
request.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

668 SYNCHRONIZATION AND REPLICATION OF MOBILE DATA

<SyncHdr>

<DevInfo>

<SwV>0.80</SwV>

<HwV>1.0</HwV>

....

</DevInfo>

<MetaInf>

<FreeMem>6400</FreeMem>

<MaxMsgSize>1024</MaxMsgSize>

....

</MetaInf>

....

</SyncHdr>

FIGURE 11.3. Sample Meta and Device Info SyncML Documents.

As we mentioned before, other DTDs define Meta Info for the synchronization ses-
sion and the capabilities of the device that is the client during the synchronization
process. Once again, because we want the ability to include SyncML information
within other XML documents, Meta Info and Device Info SyncML documents are
well formed but do not have to be valid XML documents on their own. Figure 11.3
shows samples of these documents.

It should be noted that the Device Info document is not just for describing the
client, in our case the mobile device. It can be used by all of the nodes in a system
supporting data replication and synchronization including servers, PCs, and other
participants.

Here are some other notable features offered by SyncML:

1. Chunking: The SyncML specification calls this “Large Object Handling.” Specific
attention has been paid to the fact that, because of the weak connectivity nature
of most wireless connections and because of the limited resources on devices,
the amount of data transferred in one message may be limited. For this reason,
there is the <MoreData/> tag, which effectively provides a mechanism by which
we can chunk the data.

2. Security: Obviously, one of the biggest concerns when dealing with data synchro-
nization is security. Both parties have to assure that the other party is properly
authenticated and authorized to avoid malignant behavior such as spoofing (a
term to be explained in Chapter 14). To achieve this, first, we have to have the
concept of a session. As we have seen already, stateful transactions are supported
by SyncML as this is a necessary part of data replication and synchronization
even without security concerns. The rest of the authentication process nearly
mimics the HTTP authentication mechanism. Even the status codes are similar.
It is important to remember that, though we may bind to a different transport
protocol than HTTP, these status codes will remain the same. This is a very

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

11.4 SyncML 669

good thing because we need to implement authentication and authorization
independent of the transport layer binding. Notable in the authentication pro-
cess is that security is broken down into authentication and authorization (as is
customary with security). Figure 11.4 shows the basic authentication process.
Note that the server may return a 200, in which case it is necessary for the
client to reauthenticate, by sending the credentials to the server, along with
every subsequent message.

3. Initialization: Before a SyncML client and server engage in a synchronization,
an initialization process has to take place. Note that this is not same as an alert
sent by the server to the client. Rather, the initialization process encapsulates
authentication and exchange of device capabilities. In other words, the server
first authenticates the client and then the two exchange what they can and
cannot do so that the synchronization commands are executed with the capa-
bilities of the two nodes in mind. The initialization information is encapsulated
in the SyncHdr element. We noted before that the DTD for the metainformation
and the device capabilities are separate from the SyncML body DTD, but this
does not mean that separate documents are used. The metainformation and the
device capabilities are placed in the header through the use of XML namespaces.

4. Errors: Synchronization and other errors are well defined in SyncML. Whereas
some implementation of the SyncML server behavior is optional, you can count
on some basic messages that will notify you of basic errors such as incomplete
SyncML documents, data conflicts, etc.

5. Alert Codes: There are a set of well-defined alert codes through which the server
can alert the client in an efficient manner.

6. WBXML: We previously mentioned the usage of WBXML (Chapter 3) as a
content format for the data being shipped back and forth with SyncML. There
has been special consideration given to WBXML because it is a more compact
format for XML-based data.

We have made considerable generalization and summarization in our discussion
of SyncML for the sake of brevity. Note that our main purpose here is to see the
basic functionality encapsulated in SyncML so that you can effectively use it in
your mobile applications. In most cases, the base operating system platform will
either offer a SyncML implementation or you will be able to easily find an example
of a commercial or open-source implementation of a programmatic interface for
SyncML implementation on the device and servers. An example of such is Sync4J,
which we will look at next.

11.4.1 Sync4J
Sync4J is a complete open-source implementation of SyncML with the Java pro-
gramming language. Currently, Sync4J is only available for the full-blown JVM
(J2SE and J2EE); therefore, it is primarily intended for the higher end devices that
can run the full-blown JVM. There are two parts to the Sync4J project: the client
and the server. At present, Sync4J uses basic XML parsing APIs such as SAX and
DOM to parse SyncML documents.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

S
yn

cM
L

C
lie

nt
S

yn
cM

L
S

er
ve

r

A
cc

ep
te

d(
)

R
eq

ue
st

F
or

S
ec

ur
eR

es
ou

rc
e(

)

S
en

dM
es

sa
ge

()

S
en

dC
re

de
nt

ia
ls

()

C
ha

lle
ng

e(
)

B
ad

C
re

de
nt

ia
ls

 =
=

 tr
ue

 :
S

en
dE

rr
or

M
es

sa
ge

T
oC

lie
nt

()

if
(R

es
po

ns
eC

od
e

=
=

 2
00

):
 S

en
dC

re
de

nt
ia

ls
W

ith
A

llS
ub

se
qu

en
tR

eq
ue

st
s(

)

FI
G

U
RE

11
.4

.
Se

qu
en

ce
Di

ag
ra

m
Re

pr
es

en
tin

g
Ba

si
c

Au
th

en
tic

at
io

n
fo

rS
yn

cM
L.

670

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

11.4 SyncML 671

AbstractCommand

AtomicCommand

AlertCommand

ModificationCommand PutCommand ResponseCommand

GetCommand

ItemizedCommand MapCommand SearchCommand SequenceCommand

SequenceCommand SyncCommand

FIGURE 11.5. Class Diagram of Sync4J Implementation of SyncML Commands.

The single biggest value of Sync4J is that it completely hides the complexity of
SyncML, which as we have seen is a fairly complex and comprehensive specifica-
tion, from the Java developer while exposing a natural Java-based API. Figure 11.5
shows the UML class diagram that depicts some of the internal implementation of
Sync4J, particularly the mapping of the SyncML body to classes exposed through
the Sync4J APIs.

At the time of authoring this text, there is no standard implementation of
SyncML, nor a useful subset thereof, for the J2ME CLDC/MIDP platform. How-
ever, implementing the crucial CRUD commands is not too big of a task. Depend-
ing on what type of J2ME device you have, you may find a different persistence
mechanism and therefore have different abilities and application requirements for
implementation of data replication and synchronization.

11.4.2 Bluetooth Synchronization Profile
As we mentioned in Side Discussion 11.1, Bluetooth has a synchronization profile.
We looked at Bluetooth as a short-range wireless ad hoc networking communica-
tion channel in Chapter 10. The Bluetooth synchronization profile enables us to
use Bluetooth as a tool to perform data synchronization and replication between
the Bluetooth-enabled mobile device and another Bluetooth-enabled mobile de-
vice, a Bluetooth-enabled PC, or some other converter such as a Bluetooth-to-USB
converter that eventually connects to a data store.

The Bluetooth synchronization profile allows for client-initiated, server-
initiated, or automatic synchronizations. It should be obvious that data synchro-
nization through Bluetooth falls under the one-to-one synchronization model
because the two devices form an ad hoc network after which they exchange data.
This means that once the two devices are connected together through the ad hoc
Bluetooth network, we can sit at the PC and press a button on an application
that initiates synchronization, we can push a button on the PDA that performs

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

672 SYNCHRONIZATION AND REPLICATION OF MOBILE DATA

the synchronization, or, alternatively, we can schedule a synchronization on time
intervals, connection intervals, or based on some other event on which either the
server or the client initiate synchronization automatically.

Bluetooth synchronization is mainly intended to support at least one of the
basic PIM features of a phonebook in vCard format, a calendar in vCalendar
format, a simple message in vMessage format, or a note in the vNote format.
Because the application-layer transport protocol for Bluetooth is OBEX, then data
synchronization is performed on top of OBEX in one of the following ways:

1. Either the client or the server sends a connect message to the other party to
initiate synchronization.

2. Either the client or the server sends a put message to send information to the
other party during synchronization that includes synchronization information.

3. Either the client or the server sends a get message to get information from the
other party during synchronization.

4. Either the client or the server can send an abort message to discontinue all
transactions.

5. Either client or the server can signal the end of the synchronization sequence
by sending a disconnect message.

You may wonder at this point whether you will have to write a lot of code, or
get a library, that implements the OBEX calls if you want to synchronize with a
Bluetooth device. The fact is that there is a close relationship between the Blue-
tooth creators and SyncML creators. So, most devices that support Bluetooth have
an implementation of SyncML on top of the Bluetooth synchronization profile
(which in turn uses OBEX). Consequently, you probably will never have to worry
about implementing the Bluetooth synchronization profile, but you may need to
understand the SyncML binding with OBEX for your implementation.

11.5 WEBDAV

WebDAV (Web-based Distributed Authoring and Versioning) is a set of HTTP
extensions that allows us to modify and update a set of files in a collaborative
environment. WebDAV was conceived at the University California at Irvine and
has since gained a great amount of adoption throughout various open-source and
commercial products, the most famous of which is the Microsoft Windows Web
Folders. There are also products such as Endeavor Technologies’ MAGI, which
provide a comprehensive and ubiquitous collaborative work environment that is
based on WebDAV. Many WebDAV-based products such as MAGI support mobile
platforms such as Windows CE and the Palm operating system. It is important to
note though that because the concept of a file is important to WebDAV, the mobile
device and platform for which you are considering using WebDAV should at least
be able to support basic files. In addition, for two-way communication, you will
need to be able to run an HTTP server and an HTTP client on the device. For
one-way communication, you can get away with having only one of the two.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

11.6 Mobile Agents, Replication, and Synchronization 673

WebDAV provides functionality for locking and unlocking files remotely and
performing basic file-based operations such as moving, copying, removing, adding,
and querying the system for a list of files. Although WebDAV does not provide
data synchronization and replication, it does provide a mechanism to modify and
update a set of files by multiple users. Therefore, it provides a basic infrastructure
on top of which replication and synchronization may be built. The difference be-
tween the functionality provided by WebDAV and typical database replication and
synchronization type functionality is twofold: No conflict resolution is provided
and granularity is at the file level.

WebDAV is extremely well thought out. First, it is built on the top of the RESTful
HTTP (see Chapters 1 and 16). Second, it uses XML as the underlying messaging
format. WebDAV is a true HTTP extension that does not violate any principles of
HTTP design (as do many of the various Web services available). Finally, WebDAV
is small, thereby making its implementation light and possible on mobile devices.

WebDAV can be quite useful in substituting for data replication and synchro-
nization in the following mobile environments:

1. If the data are only being modified at one node and then replicated to other
nodes, we can use WebDAV to replace the replication mechanism by simply
copying the files.

2. If the record granularity is equal to file granularity (every record is its own file),
we can use WebDAV. This happens rarely, but it does happen.

WebDAV does not offer us a data replication and synchronization mechanism;
however, it offers us two possibilities: building a real data replication and syn-
chronization on top of it or using it to substitute the simplest of replication and
synchronization mechanisms, thus giving us a lightweight elegant solution to pro-
viding HTTP-based access to files.

11.6 MOBILE AGENTS, REPLICATION, AND SYNCHRONIZATION

One of the biggest promises of mobile agents for mobile computing is their ability to
operate equally well whether or not the mobile device is connected to the network.
In this way, mobile agents can be very helpful in replicating and synchronizing
data. Here are the scenarios with which mobile agents can assist us in replicating
and synchronizing mobile data:

1. Mobile agent A running on a mobile device constituting host C can be invoked,
begin running, scan the local datastore, and recognize the stale data based on
some set of rules. Conversely, it may migrate to a host B, where it analyzes
the data on the datastore residing on host B and recognizes the stale data.
Subsequently, it migrates back to the host from which it came from, host C,
and performs the data replication and synchronization. The mobile agent can
carry the actual data back to host C, can carry metadata (meta info in SyncML
terminology) about the synchronization to take place, or communicate with

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

674 SYNCHRONIZATION AND REPLICATION OF MOBILE DATA

some other mobile agent D, which resides on host C, or is aware of the data
replication and synchronization to take place on host C.

2. Mobile agent A can act as a proxy for other mobile agents or systems that
provide synchronization or replication and cannot communicate directly be-
cause of impedance mismatch in various parts of the system, anywhere from
the underlying communication networks, to the replication and synchroniza-
tion protocols, to the datastores themselves. In this scenario, mobile agent A
can migrate to the different hosts while carrying the actual data to be synchro-
nized or carrying metadata about the data to be synchronized and perform data
replication and synchronization iteratively or completely.

As we mentioned in Chapter 9, mobile agents present us with a very promising
technology to solve many of the different mobile application problems. However,
like some of the other areas that we have already seen, the usage of mobile agents
to perform data replication and synchronization is an area mostly in the research
stages at the time of authoring this text. It is important for you to keep in mind
the possibility of using mobile agents for data replication and synchronization as
these technologies are being developed at a rapid pace.

Let us end this chapter by a quick look at how we can use UML to represent
data replication and synchronization.

11.7 USING UML TO REPRESENT DATA REPLICATION AND
SYNCHRONIZATION SCHEMES

As with everything else that we have covered in this text, once again, we would like
to continue to use UML diagrams to represent design and implementation of our
system. Reading any UML book or the UML specifications, you will run into the
word “synchronized” or “synchronous” many times. However, most of the time,
this is a reference to a synchronized object (an object that can be accessed by one
thread at a time) or a synchronous transaction (where the current thread must fin-
ish executing the specific synchronous transactions before any other transactions
are executed).

To represent data synchronization in UML, we do not really need any exten-
sions. The subject of object-to-relational mapping and representing data stores
(specifically databases) in UML is a topic that has attracted the most number of
proposed UML extensions. Our topic is somewhat orthogonal to this because we
are discussing replication and synchronization of those datastores and not the rep-
resentation of them or the mapping between their internal implementation and
object-oriented programs. Usage of UML to represent synchronization while using
any such extensions will depend on what the specific extensions are. Because there
is a broad range of disagreements on the topic of object-to-relational mapping and
representation of datastores with UML, we will leave such extensions out of our
topic of discussion.

However, this does not mean that we cannot use UML to represent synchroniza-
tion. In fact, UML’s sequence diagrams offer us a perfect tool to represent sequential

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c11 CB752-B’Far-v3 May 4, 2005 21:38

11.7 Using UML to Represent Data Replication 675

interactions between clients and servers—the model that most synchronization
technologies utilize. The temporal nature of data replication and synchronization,
and the fact that it happens between multiple datastore entities, make it ideal to
represent with a sequence diagram at a high level.

Collaboration diagrams can prove useful as well as synchronization is about
direct or indirect collaboration of two datastores in a client–server environment.
If we are using mobile agent technologies to synchronize data, then we may want
to use state diagrams to show the various states that the agent goes through or
utilize the extensions that we introduced earlier in Chapter 9 for representing the
behavior of the agent.

The point here is that we have already introduced all of those tools that we
need to represent data replication and synchronization in UML outside of the
hotly debated topic of data modeling with UML. As with the other uses of UML,
it is the job of the designer to recognize the appropriate use of UML diagrams for
representing data replication and synchronization in his or her mobile application.

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

CHAPTER 12

Mobility and
Location-Based Services

If the rich could hire someone else to die for them, the poor would make a
wonderful living.

Jewish proverb

12.1 INTRODUCTION

Location, location, location. The changing location of the user and the device used
by the user make mobile applications fundamentally different from their stationary
counterparts. Yet, most software developers, even those who have some experi-
ence with mobile applications, have little experience and understanding in how
location-based information is gathered and distributed and how this information
may be utilized by mobile applications. Although we will not be able to cover all
aspects of location-based information in mobile applications, we will try to tackle
the basic problems in this chapter.

If you have looked into developing mobile applications, you have certainly heard
of “location-based services.” The UTMS Forum defines location-based services as
follows:

Business and consumer 3G services that enable users or machines to find other
people, vehicles, resources, services, or machines. They also enable others to find
users as well as enabling users to identify their own location via terminal or vehicle
identification.

This definition is somewhat narrow as it limits location-based services to 3G ser-
vices. There are many location-based services that do not have any relationship

676

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.2 Data Acquisition of Location Information 677

with 3G services. So, location-based services are those things that provide the mo-
bile device, the mobile application, and the mobile user with location information
about themselves or other devices, applications, and users.

In this chapter, we will first look at different ways of obtaining the user’s loca-
tion information and how location information, including maps and other artifacts
thereof, has historically been treated. Next, we will look at some sample mobile
applications that take advantage of location information. Because the field of loca-
tion information is still in its infancy, most developers are not even familiar with
the myriad ways that location information may be used. This will help us set up
some context for showing how to use location information to build mobile appli-
cations. Finally, we will see how we can use UML to model the changing location
of the user and the mobile device so that we can create more meaningful models
of our applications before setting off to implement them.

Let us get started.

12.2 DATA ACQUISITION OF LOCATION INFORMATION

To use location information in our application, we first have to have a way to get
it. As we mentioned in Chapter 1, there are three major techniques for locating
things: triangulation, proximity, and scene analysis. Figure 12.1 shows how GPS
systems use triangulation. As a quick review, triangulation relies on age-old geo-
metric methods that allow calculation of the location of a point that lies in the
middle of three other points whose exact locations are known. If the distance to
each one of the three points is known, we can use geometric techniques to calcu-
late the exact location of the unknown point. Proximity-based methods measure
the relative position of the unknown point to some known point. Scene analysis
relies on image processing and topographical techniques to calculate the loca-
tion of the unknown point based on a view of the unknown point from a known
point.

For the purposes of mobile computing, scene analysis is the least important and
the one that we will not discuss much here. There are two categories of systems to
acquire location information of a device: those that are based on the GPS and those
that are not. Triangulation and proximity are both used in GPS and non-GPS-based
systems. Of course, there are additional techniques that combine other techniques
that may fall within one or both of these categories. Among the second category
are methods that use properties of wireless networks such as cellular networks or
short-range WLANs. Location information acquired by either method has some
margin of error. There are also some methods, within the latter group, that do
not give us an absolute location; rather, they provide information about location
relative to some other known location. The various methods and their relationships
are depicted in Figure 12.2.

Finding the location information is not where things end. Once the location of a
device, and thereby a user, is determined, we may need to update this information
with some frequency. We may want to permanently store this information or
compare it with some database of location information. How we obtain the location

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

678 MOBILITY AND LOCATION-BASED SERVICES

Satellite 1

Satellite 3

Satellite 2

Q1

Q3

Q2

B

a1
b1

a3
b3

a2
b2

FIGURE 12.1. GPS: A System of Satellites Providing Location Information.

Hybrid
Techniques

GPS-Based
Solutions Network-Based

Solutions

Other Solutions
(Badge, Radar, etc.)

EOTDGPS

A-GPS

DGPS E-FLTEOTD

TOA

Bluetooth-Based
Solutions

A-FLT

Others

Solutions Specific to
Cellular Networks

WiFi-Based
Solutions

A-FLT & A-GPS

Others

FIGURE 12.2. Taxonomy of Today’s Popular Location Acquisition Techniques.

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.2 Data Acquisition of Location Information 679

information also makes a difference in how difficult it may be to use the information
in our application.

Now, let us look at GPS, the most established method of obtaining location
information electronically.

12.2.1 GPS-Based Solutions
In Chapter 1, we briefly talked about the GPS. A system of satellites is positioned
around the earth, with each broadcasting a signal that can be used, by a GPS-
enabled device, to determine its location. GPS devices typically use the signal
coming from three or four different satellites. Sometimes, the device itself does the
triangulation and sometimes it sends the information back to the network where
the calculation is done. The accuracy of the position determined by using GPS is
anywhere from 5 to 40 meters. Of course, a GPS uses a signal broadcast by a
set of satellites, the GPS-enabled device must have an electronically unobstructed
path to the satellites. This could mean a lot of things! Basically, the SNR drops off
because the sky may not be clear, the device may be used in a building where the
physical structure reduces the SNR, or because of other factors.

The major advantage of GPS is that it is a simple solution. There are currently
single-chip solutions that include an entire GPS system. Such chips will undoubt-
edly get smaller as the technology improves. Also, using GPS allows us to calculate
a latitude and a longitude as opposed to a relative location. Such absolute loca-
tion (well, not quite absolute according to Einstein, but absolute enough for our
purposes) has many inherent computing advantages.

A-GPS, or Assisted GPS, uses network receivers that are positioned in intervals
of 200 to 400 kilometers. The wireless network can then provide location informa-
tion as well in case there is a problem with receiving enough signal at a particular
location from the GPS satellites. By providing the location information through
the wireless network, A-GPS provides a more reliable location information service
to the device. It also reduces the TTFF (Time-to-First-Fix), which can be in excess
of 20 seconds.

Differential GPS, or DGPS, is similar to A-GPS in that the location information
from GPS is improved by the network. DGPS increases the location accuracy of
conventional GPS, but it does not increase the sensitivity of GPS receivers; A-GPS
improves the performance of conventional GPS receivers in low-SNR conditions
and can be combined with DGPS to increase the geolocation accuracy as well
[Djuknic and Richton 2002].

The military had used GPS for years for acquiring accurate location information
prior to year 2000 while GPS access was provided, but the U.S. government had
intentionally degraded the GPS signal to provide less accurate information to non-
military devices. This is called “selective availability.” However, this degradation
was removed in year 2000 and GPS with the highest accuracy possible can now
be used in commercial applications.

GPS System of Satellites
The GPS system consists of a constellation of twenty-four satellites, orbiting the
earth every twelve hours, in groups of four following six separate orbits. These

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

680 MOBILITY AND LOCATION-BASED SERVICES

satellites transmit two signals, one at 1575.42 MHz and the other at 1227.60 MHz.
Commercial GPS devices use the signal broadcast on 1575.42 MHz. The signal
being broadcast from the satellite includes a timestamp and the identity of the
satellite that allows the GPS device to calculate distance to the satellite based on
the when the signal is received. This of course relies heavily on exact correctness
of the internal clock of the GPS device. Whatever inaccuracy inherent in the
device clock (and most clocks are not perfectly in sync with the satellite clocks)
is reflected in the calculated location. The GPS device then uses triangulation of
its distance to three or more satellites to calculate its location.

GPS Receivers
There are several types of GPS receivers: sequential receivers, continuous receivers,
and multiplex receivers. Sequential receivers receive a maximum of two signals at
a time, looking for the signals coming from the different satellites in a sequen-
tial manner. These receivers have the slowest TTFF, typically between 20 and
45 seconds. Continuous receivers can receive signals from all of the satellites at
the same time (more than three at a time because three is the minimum number
of satellites needed to do triangulation). Continuous receiving gives us the best
performance, offering at least four receiving channels that can be operated simulta-
neously. Multiplex receivers cannot track as many satellites as continuous receivers
simultaneously; however, they can multiplex between the available channels and
track more satellites than the sequential receivers, thereby yielding performance
that lies somewhere in between the sequential and continuous receivers.

Single-chip GPS solutions are being deployed in small mobile devices such as
mobile phones and PDAs. We will look at some of these devices later in this text.
For the purposes of mobile computing applications, we are most interested in GPS
receivers that can integrate and attach to mobile devices or those that can be used
in building mobile devices. The scenario of the user carrying two separate devices,
a GPS device and a mobile computing device such as a PDA or mobile phone, is
not a likely one for our purposes.

12.2.2 Non-GPS Location Solutions
There are a variety of schemes and methods designed to discover the location of
things without the usage of GPS. These methods range anywhere from radar sys-
tems to badge-based systems. We will only look at those systems that we surmise
to be of most significance to mobile applications. Most of these positioning sys-
tems use the properties of the wireless network for locating the device that is using
the wireless network. Whereas GPS is the most robust method of obtaining loca-
tion information to date, there are some clear advantages in not using GPS-based
systems. First, the availability of GPS signals is not guaranteed. As we previously
mentioned, these signals were intentionally degraded until very recently and there
is nothing that guarantees they will not be degraded again, for security or other
reasons. Also, a GPS signal can be unreliable when inside buildings, when under-
ground, in bad weather, or under any other circumstance that reduces SNR. Like
their GPS-based location solutions, some non-GPS location solutions obtain the
raw information on the device, send it to the network for calculation of the actual

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.2 Data Acquisition of Location Information 681

location, and get back the actual location if needed. Other solutions put all of
this computing on the device. This depends on the technique used to obtain the
location and the computing capabilities of the device. Among the subcategories
of non-GPS-based solutions are network-based solutions, which use the properties
of an underlying wireless network, MS-assisted network-based (where MS stands
for Mobile Station) solutions, which require the nonactive participation of the
mobile device (often referred to as mobile station within the wireless networking
community), and MS-based network-assisted solutions, which require the active
participation of the mobile device in determining the location.

Cell Identification Solutions
Cell ID–based solutions are probably the most rudimentary way of obtaining the
location of a device that uses a cellular wireless network. The location of a device
that uses a cellular network as a method of wireless connectivity can be approxi-
mated by the absolute location of the cellular node to which it is connected. This
can be enhanced with Timing Advanced (TA) measurement. TA is the measured
time between the start of a radio frame and a data burst [Andersson 2002]. The
accuracy of this technique depends largely on the type of cellular network (how
wide of a range each cell covers, how reliable the handoff process may be, etc.).
Typically, with networks in Europe and the United States, the best-case accuracy
here is about 500 meters. The position of the device is calculated by the network
and transmitted to the device if the information is required by the device (i.e., the
application that is running on the device).

Time-of-Arrival Solutions
One way of determining distance is to measure the time difference between when
a signal is transmitted and when it is received. This distance can then be used
to calculate a rough geographical position, based on the location of either the
source or the destination of the signal. Time-of-Arrival (TOA) solutions calculate
the distance of a mobile device from a cell node based on the time it takes for a
signal coming from the mobile device to the network cell node. As the cell node
can also obtain the direction from which the signal is coming, it can calculate a
distance and direction for the position of the mobile device, thereby calculating the
position of the mobile device based on the position of the cell node that receives the
signal. (This depends on the specific cellular technology; some cellular systems
do not provide accurate directional information.) The accuracy of this method
depends largely on the type of cellular network; the margin of error can be as
low as 100 meters. Figure 12.3 shows the effect of the cell size and structure on
the accuracy of location: the smaller the cell sizes, the more accurate the location
information.

Obviously, this method of obtaining the location information is specific to mo-
bile applications and devices that connect to the network with a wireless cellular
network such as TDMA, CDMA, CDPD, or others. TOA techniques provide an
absolute location based on the relative location of the mobile user to the cell node
whose absolute position is known. TOA has some advantages over cell ID–based
techniques in offering somewhat more accurate location information for those cell

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

682 MOBILITY AND LOCATION-BASED SERVICES

Largest Cell

In the Grid –

Least Accuracy

Smallest Cells
In the Grid –
Most Accuracy

Size of the Cell Is
Inversely Proportional
to Accuracy of Location

FIGURE 12.3. Effect of the Cell Size on Accuracy of the Location Information Provided by Network-
Based Methods for Cellular Networks.

networks that have larger cells. Also, TOA techniques are more easily implemented
in legacy wireless networks, though upgrades are still very expensive.

Enhanced Observed Time Difference
The Enhanced Observed Time Difference (E-TOD) method is similar to the TOA
method in that the time it takes for the signal to travel is used to calculate distance.
However, this time, it is the time that it takes the signal to reach the mobile
device from the source of the signal. GPS is typically used to provide an absolute
position for the source, which is sent to the device. The device, then, uses its
relative position to the source and the absolute position of the source to calculate
its absolute position. The accuracy of this method is roughly 125 meters. The
important distinction here is that the work is being done on the device itself.
Theoretically, this method is really a hybrid of GPS and non-GPS-based techniques
because GPS is typically used at the base stations to obtain absolute locations.
E-TOD is an MS-assisted network-based solution. Of course, base stations typically
do not move, so, practically speaking, it is not a hybrid method.

Other Network-Based Techniques
There are a variety of other techniques that provide more accurate location in-
formation, adding features to the basic techniques that we have mentioned. Oth-
ers take advantage of properties of specific networks. Forward Link Trilateration
(FLT) is a pure network-based solution that uses a single cellular network base
station. There are two techniques that build on FLT: Advanced Forward Link
Trilateration (A-FLT) and Enhanced Forward Link Trilateration (E-FLT). A-FLT
uses the mobile device to improve coverage and accuracy (MS-assisted network
based). E-FLT uses network properties unique to CDMA networks. Performance
is enhanced by complementary methods, including pattern matching of RF (radio
frequency) characteristics, statistical modeling, round-trip delay measurements,
and AOA (angle of arrival) [Djuknic and Richton 2002].

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.2 Data Acquisition of Location Information 683

Wireless LAN-Based Solutions
Short-range wireless networks such as WIFI and Bluetooth have properties that
can be used to determine the location of various nodes. First, the signal quality de-
grades quadratically proportional to distance (or with an even steeper falloff as
there would be additional degradation owing to noise). In the case of WLANs,
this degradation is fairly significant (which is why they are suitable for local and
not wide area networking). Larger networks can be composed of WLANs whose
coverages are next to each other, or even have some overlap, so that the mobile
device can move through several networks without losing connectivity for a sig-
nificant amount of time (or not at all as operating systems and wireless networking
equipment improve in quality).

Simply connecting to a particular WLAN tells us that the connected device
is within the range of the WLAN’s coverage. If the WLAN’s transmitting location
(wireless hub, router, etc.) is known, then we can use it as an approximate location
for the mobile device. In so-called hot spots we can easily track the motion of the
user as he or she moves from one WLAN to the neighboring one. Furthermore,
by adding some software, we can cut down the margin of error by using the signal
attenuation. This, however, is an unreliable method of improving our location
information because some physical obstacles reduce SNR more than others. Al-
ternatively, if there is significant overlap among the different WLANs, we can use
triangulation to get a more accurate fix on the connected device.

There are also some unique problems associated with location sensitivity and
WLANs. If you consider a hot spot covered by many different WLAN segments,
with some crossing coverage boundaries into the coverage areas of others, the
implementation of the ad hoc networking technique has a substantial effect on
the accuracy of the fix on the connected device. This is mainly because, for load
balancing or other purposes, a given device may not be connected to the nearest
available WLAN; likewise, because of the topology of the WLANs, one or more of
the WLANs may be “hidden” when a given user is in a particular location.

Despite these challenges, WLANs offer an excellent method for getting approx-
imate locations of a user in enclosed spaces such as shopping malls.

The relationship between WLANs and location sensitivity is symbiotic: WLANs
can use location information to perform their primary task of routing data as well.
Particularly, location information can be used in mobile ad hoc networks, known
as MANETs. MANETs are not exclusive to short-range wireless networks, but
they tend to be more popular in this arena because long-range technologies such
as TDMA and CDMA require stationary cell sites. The location of the various
participants in the ad hoc network can be provided through the use of GPS or
other related systems that do not rely on the network topology (as this would
create a circular dependency between location of the participants of the network
and how they form the network). From a graph viewpoint, routing in a MANET
is like finding a path—typically the shortest—from a source to a destination in a
graph [Tseng et al. 2001]. There are several network routing protocols currently
being worked on to use location information as either the base routing protocol or
a method to enhance the short-range wireless network. Location-Aided Routing

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

684 MOBILITY AND LOCATION-BASED SERVICES

[Ko and Vaidya 1998], Geographic Distance Routing [Lin and Stojmenovic 1999],
and Geogrid [Liao et al. 2000] are among them. A key feature of these protocols is
the use of location information to reduce traffic during the discovery process and
to reduce the number of hops required to reach a destination.

We have now looked at a variety of methods to obtain the location of a mobile
device. Before we move on to see how we can use this information, let us look at
GIS systems, a piece of the puzzle required to use location information whether
the system is mobile or stationary.

12.3 GIS

A geographic information system or GIS is a configuration of computer hardware
and software specifically designed for the acquisition, maintenance, and use of
cartographic data [Tomlinson 1990]. The usages of GIS for stationary applications
are numerous. They are used in a variety of applications from providing real-estate
solutions to assisting firefighters. These systems are specially designed to store
geographic data such as maps, aerial photos, and surveys; provide flexible querying
mechanisms for retrieving such information and reporting on the stored data; and
provide advanced features such as transformations, modeling, and performing
statistical analyses on the stored data. In many ways, GIS systems are similar to
databases, but they are designed specially to input, store, and retrieve geographic
data in a way natural to the domain of study of the surface of the earth.

So, GIS systems encompass the integration of databases, computer cartogra-
phy, location sensing, and computer-aided design (CAD) systems. In this text and
within the domain of mobile application development, we will refer to all such
functionality as the GIS system except for that which handles the actual acquir-
ing and providing of the location of a mobile device using GPS, network-based
methods, or any other technique. We refer to the latter as the “location-based ser-
vice” or the “location sensitivity” system. The reason for making this distinction
is to simply keep things clear. Within the framework of developing mobile appli-
cations, we are much more concerned with acquisition and usage of the location
information than with cross-referencing it and usage of maps and other tools. This
is not to belittle the importance of such tools; merely, we do not discuss those parts
of GIS systems because they have been used for stationary applications and have
matured; there are many sources to learn about them and use them for your mo-
bile applications (see, for example, works by C. Dana Tomlinson [Tomlinson
1990], Jeffrey Star, and John Estes [Star and Estes 1990]).

GIS applications are used by civil engineers, geologists, structural engineers,
military intelligence, and a host of others. When it comes to mobile applica-
tions and location-based services, their biggest use is in cross-reference systems
to retrieve information such as maps, surveys, directions, and other things that
relate to one or more sets of location coordinates. So, a typical problem for you
as a mobile application developer may be to obtain the location of a user using
location-sensitivity technology (GPS, non-GPS, etc.) and then use that informa-
tion to pull a map from a GIS system to show the user where he or she is. In fact,

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.3 GIS 685

this is a great part of the functionality that many of the automotive navigation
systems (telematics) to date offer.

Based on this definition and the respective role of GIS in designing and im-
plementing location-sensitive mobile applications, first we need to have a basic
understanding of how GIS systems work, then we need to see some examples of
how they can be useful in mobile applications, and, finally, we need to see how
we can create well-designed interfaces between our mobile applications and GIS
systems.

12.3.1 The Internals of GIS Systems
Let us start by looking at what sort of data GIS systems store. GIS systems can store
data much like Computer Aided Drawing and Drafting (CADD) or CAD systems
do: using elementary geometry. In other words, they can store information about
points, which may be locations, or store various shapes such as lines, polygons,
curves, and others, which can be represented using various coordinate systems
(Cartesian, cylindrical, spherical, etc.) and can be vector based or raster based.
In addition to these types of information, GIS systems can also store symbolic
information such as floor plans, roads, city maps, infrastructure plans (water lines,
etc.), and other types of categorized spatial information. GIS systems can also
hold graphic maps, which may be simple bitmaps with no associated metadata
or complex and composed of semantically meaningful metadata accompanied by
layered graphics.

In addition to storing data, GIS systems can process data. Most GIS systems
have at least some advanced image-processing capabilities that allow meaningful
processing of maps, they provide statistical analysis tools for analyzing the stored
data, they allow correlating and layering of different types of spatial information
about the same location (e.g., layering the water lines on top of the terrain), and
they enable other types of operations to be performed on the stored information.
Most recent GIS systems provide pattern recognition algorithms that allow the
clients to analyze the stored information for recurring patterns. We will discuss
issues of security and privacy in Section 12.8.

Finally, GIS systems provide multiple methods of retrieving the stored or pro-
cessed location information. This is going to be the part that most mobile applica-
tions use. GIS systems allow us to pull the map for a given area, acquire information
about the number of floors of a particular building that the user may be in, and
find out the elevation of the natural terrain at a given latitude and longitude.

GIS systems are increasingly designed and implemented with object-oriented
languages as geographic information lends itself to object orientation very natu-
rally. Because of this, the programmatic access to most GIS systems has moved
toward an object-oriented API.

GIS systems typically have to be run on higher end hardware that provides fast
processing of images and good floating-point arithmetic.

Among the most popular commercial GIS systems are ArcGIS, a product of
ESRI, GeoMedia, a product of Intergraph, and MapInfo, a product of MapInfo
Corporation.

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

686 MOBILITY AND LOCATION-BASED SERVICES

12.3.2 Using GIS for Mobile Applications
Simply locating a device or a user is useful. This is done through the location-
sensing technologies that we surveyed earlier in this chapter. However, the use-
fulness of just knowing this location is miniscule compared to all of the relevant
information that we can gather regarding that location. For example, let us say we
know that a given user is standing at the corner of a street. We can provide some
basic services based on knowing just the location. Using a GIS system, however,
we can find out directions to the destination and pull up a map that he or she can
view. We can tell the user whether he or she is near a favorite place (restaurant,
friend’s house, or whatever may have been entered into that user’s profile that
may be cross-referenced for distance and directions through the GIS system). GIS
systems have been used, along with mobile devices, to track endangered species
to determine migration patterns and other information crucial to avoiding their
extinction.

And this is just the beginning.
Historical information of the movement of a mobile user comprises some of

the most useful information we can have. Using a GIS system, we can recognize
patterns in those movements. For example, we can tell the user which way is
statistically the fastest way to get home based on his or her travel patterns and
which restaurants he or she visits more frequently. We can also use historical
location information of a group of users to determine behavioral patterns about
that particular group. Correlations of such patterns and geographical patterns, in
turn, can yield extremely useful information.

12.3.3 Building Interfaces between Mobile Applications
and GIS Systems
Most legacy GIS systems offer proprietary APIs, each with some bias toward the
domain(s) of the customers that a given product catered to. However, in recent
years, there has been a move to standardize the interface to GIS systems. As in
the case of most other systems, you can build your own (which we definitely
recommend against), buy, or subscribe. GIS systems are far too complex to build.
Even if you have a small subset of a GIS system, do not attempt to build it. There
are a variety of service-based GIS systems, the simplest of which start with the
likes of MapQuest, that can offer you a Web service–based interface. For larger
organizations that want to own their own GIS-related data, purchasing a GIS system
may be an option; nevertheless, most GIS systems are very expensive and buying
one falls outside of the buying power of most medium-sized companies.

The interface that you build to access information on a GIS system is either
from an application running on the device or from an application running on the
network. There is typically no need to build this interface directly to an application
running on the device: GIS systems are typically used to reference information that
is first acquired by the location-sensitivity technology, on the device or otherwise.
We recommend, that if your architecture and requirements allow, you hide the
interface to the GIS system from the mobile device even in the case where there is
a mobile application running on the mobile device. Regardless, network connec-
tivity is needed because GIS systems are foreign to the core mobile applications;

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.4 Location Information Modeling 687

Mobile Application

GPS Interface Connector

GIS Connector
GIS Service

Location
Based

Service
(LBS)

LBS Connector

GPS (Internal
to Mobile
device)

On the device

May be running on the
mobile device or a

proxy (such as a server)

May be running on
the mobile device or

 a proxy (such as a server)

HTTP,
SOAP,
RMI,
etc.

HTTP,
SOAP,
RMI,
etc.

FIGURE 12.4. Typical Mobile Application Architecture for Communicating with a GIS System.

therefore, the mobile application may as well rely on a the network-based portion
of application to do the interfacing with the external GIS system.

A typical mobile application architecture for communicating with a GIS system
is shown in Figure 12.4. The protocols used to interface with GIS systems depend
on the implementation of the GIS system and on how the various concepts related
to location and changing of location are modeled. The actual specific protocols,
obviously, are not as important as the governing principles that drive the design
and implementation of these protocols. APIs to commercial applications such as
GIS systems will come and go as the commercial products, themselves, are born,
evolve, and eventually die off. However, if you design your mobile application
properly, it can interface with foreign mobile systems with minimal coupling to
any specific GIS system. To do this, we need to get a better understanding of
the driving forces of design and implementations behind location APIs, the most
important of which is how spatial information is modeled.

12.4 LOCATION INFORMATION MODELING

Now that we have seen some methods for obtaining the location information as
well as systems that allow us to cross-reference useful information such as maps
using the location information, let us explore some of the programmatic techniques
for representing location information. Although we will look at modeling location
information with UML later on in this chapter, we need to consider expressing
location information in a more rudimentary level. Namely, we need some way
of organizing location information so that it can be stored and made accessible

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

688 MOBILITY AND LOCATION-BASED SERVICES

to various computer systems, so that various computer systems can exchange
this information among themselves and, for our specific purposes, so that we can
use location information in an architecturally clean manner for usage in mobile
applications.

Obviously, this has been something to which the academic and commercial
communities have given considerable thought. In this text, we will present some
of the standards that represent the more promising solutions for this problem (al-
though, obviously, there is a great deal of subjectivity here). These standards are
important because they not only create means for interoperability but, more im-
portantly, reveal various approaches to representing data and behavior of location
information.

The efforts to come up with such standards can be divided into two branches:
standardization of modeling of the location data and standardization of ways to
interface with various location information systems. Of course, some standards
try to address both concerns. Also, it is important to note that the taxonomy of
how each standard chooses to treat location is largely based on the domain whose
problems it attempts to address.

Some of the organizations taking up the task of standardization are the IETF, the
W3C, and the Open Mobile Alliance (OMA). (OMA and Location Interoperability
Forum efforts are done collaboratively.)

To represent location-based data, we will look at the Geographic Markup Lan-
guage (GML) developed by the Open GIS Consortium (OGC). We will look at
NVML as a tool to represent navigational information. We will also look at IETF’s
SLoP (Spatial Location Protocol) as a protocol that allows simple text-based trans-
actions for location information (a standard that is more on the behavioral side).
On the behavioral side, we will look at a variety of Java APIs, some designed for
mobile applications and others designed for the servers that support the network.
We have selected Java out of all of the other programming languages for mobile
because, it is currently the only one that has given any special treatment to is-
sues concerning location sensitivity. Finally, we will look at some of the standards
involved in the wireless world, such as those of OMA and 3GPP, that give some
treatment to issues of location sensitivity. There is of course the “markup language
du jour.” Nonetheless, we have selected a subset of those markup languages that
we feel deliver true open standardization and a somewhat canonical and nonbiased
representation of location information. Let us start with GML.

12.4.1 GML
Before getting into the details of GML, let us look at the benefits and purpose of
this markup language in representing location information:

1. Because GML is XML based, and because its schema allows us to specify the
types of positioning and navigational data, it is easily possible to use XML-based
technologies to get a view of the location information that fits the needs of the
application.

2. GML implementations use SVG (see Chapter 6). This allows us to render maps,
animated directions, and other graphical renderings of location information in

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.4 Location Information Modeling 689

a more robust way than just displaying single bitmap graphics, which are not
very efficiently used to produce animated graphics, for zooming in and out, or
for a variety of other features.

3. GML’s XML Schema is really the representation of the location model created
by the OGC. In this sense, GML is more than a mere XML Schema; it is the
reference implementation for OGC’s location model.

4. GML allows for both absolute and relative representations of location. This is
done by allowing a client system, requesting from a server system that provides
location-based services, to request a Spatial Reference System (SRS).

5. GML provides support for XLink and XPointer. XLink and XPointer allow us to
link documents together and reduce complexity of single XML documents by
distributing them over multiple documents (while gaining other benefits such
as reuse through modularization).

6. XSLT—the transformation technology that can be handy in many usages of
XML including producing XML-based mobile user interfaces—can be used to
transform GML to other types of XML or vice versa.

7. Many legacy GIS and CADD systems are moving toward supporting GML as the
standard interface for external access. This puts a lot of weight in GML’s corner
as integration is one of the biggest problems facing the mobile developer.

The GML Specifications [GML Specifications 2002] also point to the concept of
separation of content (geodata) from presentation (graphics and maps). This is a
different separation of concerns between content and presentation than the one
that we have looked at earlier in this text (Chapters 5–8). Namely, this separation
specifically concerns geographical data. Topology and spatial properties of topol-
ogy can be represented using graphical representations such as pictures and three-
dimensional models. Meanwhile, these properties can also be described with meta-
data that describe the attributes of the topology and space.

Now, let us move on to the implementation details of GML. The OGC has been
very clever: They used UML pervasively throughout the specification document
to ease the process of understanding the taxonomy they have chosen for modeling
location information. This can be seen in Figure 12.5.

Whereas the class diagram model represents the high-level model of taxonomy
of entities that define location information as defined in GML, this is more like
a metamodel from a UML perspective. Every individual class in Figure 12.5 is
described in the GML specifications by its own class diagram that presents more
details of the implementation of how location is represented; we will not look at
those models as they are outside of the scope of our discussion. What is important
to note is the extremely well-thought-out representation of the GML model in
UML class diagrams and that, by usage of inheritance, the designers of GML
have provided a mechanism for a hierarchical mechanism of defining and refining
location information.

The UML class diagrams are also related to the XML Schema that defines a GML
document. Namespaces are defined by placing an underscore before the class name
of the diagram in Figure 12.5. So, for example, the namespace of Coverage class
is gml: coverage.

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

O
bj

ec
t

G
M

L
O

bj
ec

t
G

M
L

M
et

a
D

at
a

G
M

L
F

ea
tu

re

G
M

L
O

bs
er

va
tio

n

G
M

L
U

ni
t D

ef
in

iti
on

G
M

L
T

em
po

ra
l R

ef
er

en
ce

 S
ys

te
m

G
M

L
C

oo
rd

in
at

e
R

ef
er

en
ce

 S
ys

te
m

G
M

L
D

ef
in

iti
on

G
M

L
C

ov
er

ag
e

G
M

L
C

ov
er

ag
e

G
M

L
S

ty
le

 D
es

cr
ip

tio
n

G
M

L
T

op
ol

og
y

G
M

L
G

eo
m

et
ry

G
M

L
V

al
ue

G
M

L
T

em
po

ra
l

FI
G

U
RE

12
.5

.
H

ig
h-

Le
ve

l
Se

m
an

tic
De

fin
iti

on
of

Lo
ca

tio
n

In
fo

rm
at

io
n

as
De

fin
ed

by
G

M
L

Sp
ec

ifi
ca

tio
ns

an
d

Re
pr

es
en

te
d

w
ith

U
M

L
Cl

as
s

Di
ag

ra
m

s
[G

M
L

3.
0]

.

690

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.4 Location Information Modeling 691

We will leave the complete description of the GML syntax to the GML Specifi-
cations by the OGC. Here we will merely list some notable features:

1. The highest level class defined in the diagram of Figure 12.5, “Object,” can have
the four attributes of name, type, abstract, and substitutionGroup. The name at-
tribute allows us to give the element a lexical name; this name should represent
the meaning of the element. The abstract attribute conveys the same concept
as abstract classes in OOP: whether or not this element is actually the repre-
sentation of a real thing (in which case this attribute is false) or whether it is
created as an abstraction that helps us model ideas and things that are actually
tangible (in which case this attribute is true). Note that because these attributes
are attributes of the root object, they are inherited throughout all elements
(except GML Meta Data, which does not inherit from Object).

2. XLink values can be used to specify attributes by reference. This is done through
the URI mechanism and standard XLink expressions with an href.

3. A GML Feature is a meaningful object in the selected domain of discourse
such as a Road, River, Person, Vehicle, or Administrative Boundary [GML 3.0].
As can be seen in the UML model, Feature is further refined to Observations,
Definitions, and Coverages. However, if there is a symbolic, relative, or absolute
object or location that you cannot find under the derived classes to fit your
domain, you can always extend the gml:AbstractFeatureType. The basic concept
of location is defined in the Feature schema (gml: feature namespace). The
details of how a location is then defined can be found in this part of the GML
specification.

4. A GML Geometry defines meaningful boundaries that are location-independent.
Geometries include points, lines, closed curves, surfaces, solids, composites of
any of those, and any other things that are geometrically describable. This
is probably the largest and most important part of the GML Specification. It
encapsulates the heart of how the shapes of things are categorized and dissected.

5. The Coordinate Reference System defines the coordinate system used in the
document to describe geometries, features, and everything else. Without a co-
ordinate system, mathematical measurements are meaningless. If only one coor-
dinate system is specified, then the application becomes rigid. This part of GML
gives the application developers the flexibility to deal with multiple coordinate
systems depending on the problem domain and the external applications that
need to be integrated.

6. The Topology constructs define the topological properties of the geography
that is being described by the GML document. The constructs of topology
allow characterization of the spatial relationship among objects using simple
combinatorial or algebraic algorithms [GML 3.0]. Topological properties can
be unintuitive to understand: They describe those things that do not change
as the geography and shape of the thing whose location we are describing may
change. In practical terms, what this part of GML allows us to do is to define
things like the space shared between two different spatial areas defined by two
different spatial boundaries.

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

692 MOBILITY AND LOCATION-BASED SERVICES

7. The Temporal construct allows us to describe the properties of the location that
may change over a period of time. This part of GML first defines how temporal
characteristics are measured through describing basic temporal types and then
relates those characteristics to the spatial properties associated with other GML
objects.

8. Temporal Reference System and Unit Definitions define measurement systems
for temporal and spatial properties. The allows us to define a reference system
that can be used to describe temporal properties in relative terms and defines
unit measurements that give meaning to various measurements of objects de-
fined in GML.

There is much more to GML than what we have described here. The specifica-
tion document for version 3.0 is more than 500 pages! GML gives a truly proper
treatment to defining an extensible, flexible, and scaleable mechanism for rep-
resenting information related to absolute, relative, or symbolic measurements of
spatial properties and locations. Nevertheless, you should remember that GML is
one of many standards in the marketplace. Which standard becomes the prevalent
one will be an evolutionary process.

Later in this chapter we will look at possibilities of generating GML with UML.
Whereas GML is a markup language designed to represent a model of location
information, there are also XML languages that are designed around models of
tertiary domains that use location information. An example of such is NVML,
which focuses on representing navigational information.

12.4.2 NVML
One of the most applicable areas of location information in mobile applications
involves helping users with navigational problems such as driving directions.
Though navigation itself is a small subset of the location-based functionality that
can be presented by a mobile application, it is an excellent example of a well-
defined model of usage of location information to produce useful applications. In
this section, we will look at the Navigation Markup Language (NVML). Although,
in and of itself, NVML is just another XML-based standard, it gives us a good
demonstration of how we may use a tertiary location-based standard.

NVML is a submission to W3C by Fujitsu, but it is not yet a standard. The
following are some major features of NVML:

1. NVML provides a model for geographic navigation with route assistance and
point guidance. Route assistance provides step-by-step help along the travel
path; point guidance provides information about things around a geographic
point.

2. NVML has features that facilitate its integration into a multimodal and multi-
channel user interface.

3. Because NVML is an XML-based technology, we can take advantage of all those
things that XML-based technologies can take advantage of: transformations,
integration with Web services, etc.

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.4 Location Information Modeling 693

4. An NVML document is made of two major parts: a header enclosed within
<head></head> tags and a body enclosed within <body></body> tags. The
header element encapsulates other elements that hold information about the
entire document, such as the title of the document, and some textual, graphical,
or aural (in the form of text to be consumed by a speech-synthesis engine)
information about the document. Interestingly enough, neither the <head>
nor the <body> tags have any attributes.

5. The body element is broken down into two main elements: navigation, enclosed
within <navi></navi> tags, and guide, enclosed within <guide></guide>
tags. The navigation element holds information about the starting and ending
points of the route, information about the route such as the distance and dura-
tion, and other related information. The guide element holds information about
the surroundings of a geographic point.

NVML’s usefulness and elegance is in its simplicity. But this simplicity is also
its downfall because, unfortunately, NVML does not integrate with GML or any
other markup language that approaches the definition of location modeling in a
comprehensive way. Although extending NVML is possible because it is an XML-
based technology, it is not recommended.

Nonetheless, NVML is still a very useful markup language if your mobile appli-
cation needs to convey directions to the user. At a higher level, our short analysis
of NVML is important in one way: Its implementation model is not as crucial to
our location-based mobile application as GML was. Fundamentally, this is because
NVML is a higher level application of XML to location information and it treats
a more narrow band of problems. The moral of the story is that a solution such
as NVML is great if your application only needs to treat a narrow problem set.
However, if you have to treat a large set of location-related problems, then you
should make sure that the foundation—built on the location model—is sound
and robust. In our case, if we needed directions to be available based on relative,
absolute, and symbolic location information, NVML would not be a canonical
solution. We would look for something that has a solid foundation such as GML
or another extensible and comprehensive location model.

12.4.3 MPP
The Mobile Positioning Protocol (MPP) is a protocol to be used to request and
receive location information. At present, MPP remains a technology proprietary to
the wireless giant Ericsson. However, this protocol is under serious consideration
for adoption as the positioning protocol of choice by ETSI (European Telecom-
munications Standards Institute). Such standardization would bolster the case of
MPP for industry-wide standardization for most mobile applications to use as
the protocol of choice for communicating location information. MPP is based on
HTTP. Therefore, it is a stateless, request-response-based protocol. Meanwhile, it
is possible to request the position of multiple mobile nodes in one request and get
multiple results back in one response.

Figure 12.6 shows the general architecture for implementing mobile positioning
using MPP. Note that those mobile devices that are GPS enabled can acquire

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

694 MOBILITY AND LOCATION-BASED SERVICES

FIGURE 12.6. Using MPP and Supporting Architecture to Provide Location Information to Mobile
Applications.

location information directly from the GPS system. Those devices that are not
GPS enabled have a virtual connection to the MPP client, which then provides the
location information. This information is most likely provided through the same
network that provides data and voice connectivity to the mobile device. Therefore,
the connection to the MPP client is a virtual one. Of course, we can have an MPP
client on the device itself or implemented as a proxy on the network.

As we previously mentioned, MPP is request response based. The URI mecha-
nism of HTTP is used to request the position of a mobile device. Parameters can
be passed in the request, in the typical HTTP GET fashion with name value pairs
appended to the end of the URI. MPP also supports TLS (in the form of HTTPS) for
sending the request in a secure way. The request URI must include the following
parameters:

1. USERNAME: The value of this parameter must be the user name used for the
positioning of the device to be located.

2. PASSWORD: The value of this parameter must be the password used for the
positioning of the device to be located.

3. POSITION ITEM: This must be set to the MSISDN of the mobile device. The
MSISDN provides a unique identifier for the mobile device shared by the net-
work and accessible by the device and the supporting network infrastructure.
The ID is different depending on the communication protocol between the

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.4 Location Information Modeling 695

devices and the network. For example, in the case of WAP, this ID is in the
HTTP headers (x-sub-no).

4. POSITION TIME: In the current implementation of MPP, this parameter may
only be set to the current time, implying that the current location of the mobile
device is requested.

The newest versions of Ericsson’s MPP are moving toward encapsulating all of the
request content in an XML document and using the HTTP POST method to send
this content to the location server. We will avoid reviewing the syntax in great
detail as it is in somewhat of a state of flux.

Ericsson provides a development tool kit that includes an emulator for devel-
oping location-based applications. This tool kit is only applicable to developing
location-based applications that operate exclusively on the server side. In other
words, currently, the tool kit does not offer APIs for any particular device, or plat-
forms designed for mobile devices such as J2ME, to access location information.
Rather, location information is obtained through the MPP on the server side. This
information can then be made available to a J2ME application on the client or
used to create a thin-client user interface for the client as previously discussed.

The response is an XML document that contains the request ID along with
the absolute position of the mobile device and the description of the network
properties at the time the location information was gathered of the cell node(s)
responsible for gathering it (e.g., the radius of the coverage arc, the angle of
incidence, etc.)

One notable terminology you will encounter is the Mobile Positioning Center.
This is basically the logical grouping of all the software and hardware required in
the data center that make up a positioning server available with the MPP proposal.

The current version of the MPP server implementation by Ericsson provides a
software development kit. This development kit can be used to communicate with
the MPP server. There are handlers and utilities that simplify sending a request and
parsing the contents of a response. In this way, a dynamic mobile application that
uses basic Web technologies to access the MPP server can be designed by writing
some server-side code. MPP promises to be one of the core pieces of technology
standards for accessing mobile positioning information in the future.

The Java API provided by Ericsson is too heavy for mobile devices, so this is a
case where the acquisition and processing of the location information will need
to be done on the server side (or, if a mobile agent platform is used, by a mobile
agent residing on the server-side host). We will look at JSR-179, which provides
a J2ME-based API for access by resource-starved devices running J2ME. At this
time, the tool of choice for open platforms to access location-based information
provided by the network is Java.

12.4.4 SLP and SLoP
One of the important standards in acquiring, processing, and using location in-
formation in mobile applications promises to be IETF’s SLoP. SLoP allows us to
represent the coordinates of a single point. At the same time, the OGC is working
on a similar, and somewhat complementary standard, called SLP, standing once

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

696 MOBILITY AND LOCATION-BASED SERVICES

again for Spatial Location Protocol. The difference, in general, seems to be that
SLP defines a more detailed ontology of location types whereas SLoP sticks with
defining general location information that can be leveraged on a per-application
basis to build application-specific ontology definitions of location types. Whereas
SLP gives us a more defined model, SLoP offers a smaller and more flexible defi-
nition of location information. SLP, for example, creates definitions for addresses,
roads, etc. SLoP focuses on defining a flexible framework for absolute and relative
locations of things.

12.4.5 Location Interoperability Forum
The Location Interoperability Forum (LIF) is a commercial consortium established
in September of 2000 whose goal is to promote (not to create) interoperability
standards for location services used by mobile devices and users. This means that
LIF works with other standards bodies to align their efforts to avoid redundancy
and conflict among the standards and to call attention to any shortfalls that a given
standard may have. These standards cover four general areas:

1. MMI (Machine-to-Machine Interface) Content: These are the standards govern-
ing the interface to location-based services and the methods by which mobile
applications communicate with location-based services.

2. Location Content: As we have seen with GML, one of the biggest technical prob-
lems is the uniform and canonical representation of the location data provided
by the location service. LIF attempts to standardize this content.

3. Roaming and Billing: One of the biggest problems in wireless telecommuni-
cations, and for that matter all of telecommunications, is billing. LIF’s charter
includes standardizing the interfaces for billing among disparate systems, con-
trolled by disparate commercial entities, some providing location information
and others consuming location information.

4. Privacy and Security: As we will see at the end of this chapter, security is of
utmost concern when it comes to location information. The location of a user,
the patterns of where he or she travels, and any other related information are
some of the most private information about a person. It is of utmost importance
that such information remain privy only to those parties authorized by the user
during and after the information exchange.

The Mobile Location Protocol (MLP) is one of the first standards constituted by
LIF. It defines an MMI interface for location-based services to communicate with
location-based consuming applications and has been adopted by 3GPP (3GPP
is discussed in Chapter 11). MLP is an application-level protocol for querying the
position of mobile stations independent of underlying network technology [LIF
Specifications 2000]. Version 3.0 of MLP specifies a service-layer protocol that
can be piggybacked on top of any application-layer transport protocol such as
HTTP or SOAP. In other words, MLP only specifies the content and context of
content exchanged between a location-based service provider and a client using
the Web-service communication model. The basic services specified by MLP are
as follows:

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.4 Location Information Modeling 697

1. Standard Location Immediate Service (SLI): Through this service, a client can
request be to sent obtain location information about a single location and is
guaranteed to have its request fulfilled by a response within a predefined time
period.

2. Emergency Location Immediate Service (ELI): This service is used to obtain the
location information for the user of a mobile device who has initiated an emer-
gency call. Like SLI, the response to a request sent to this service must be
fulfilled within a predefined time period.

3. Standard Location Reporting Service (SLRS): This is a service that is used when
a mobile subscriber wants an LCS client to receive the MS (mobile device)
location [LIF Specifications 2000]. This service is an active transaction.

4. Triggered Location Reporting Service (TLRS): This service provides a way to set
up an automatic update of the location information for a particular device based
on some time frequency accomplished through polling.

As of MLP Version 3.0, there are six separate DTDs, each describing the content of
some part of the required data exchanged between systems regarding the location
of a mobile user. We will not go through every DTD, but here is a summary of the
structure of the DTDs that make up the location definition as defined by MLP:

1. Element Layer Definitions: This DTD defines how a mobile device is identified,
the current location and speed of the mobile device, metadata on the collection
method and accuracy of the location information, any contextual information
that may be relevant in obtaining the location information such as the identifi-
cation of the requester and the service responding to the requester, properties
of the network used to acquire location information, and the error margin.

2. Service Layer Definitions: Each message may have two main parts: a context or
header part and a body part [LIF Specifications 2000]. The header, as in the
case of an HTTP request header, includes information about the client making
the request.

These DTDs have been tied together, and wrapped into a group, with an exten-
sion mechanism using a parameter %extension.param. This mechanism allows the
extension of the individual DTDs or the sum of the collection of DTDs as a single
extensible mechanism.

This brings us to the end of our discussion on protocols and specific technolo-
gies that provide location acquisition or access to systems that provide location
acquisition. Our intent here was to impart a feel for what APIs and protocols in the
realm of location-based services accomplish and how they accomplish it. There is
a very large set of standards, APIs, and protocols. Some are complementary and
others are competitive. The choice of the specific protocol, APIs, and tools that
you use to build your location-sensitive mobile application must depend on the
requirements as well as the availability of technologies.

Now, let us look at how we use location information in building a mobile
application.

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

698 MOBILITY AND LOCATION-BASED SERVICES

SIDE D ISCUSSION 12 .1

The Killer Mobile or Location-Based Application

Some have argued that there are no “killer applications” for mobile computing or
location-based systems. The fallacy of such an argument is that today’s stationary
killer applications are merely a collection of smaller useful applications that have
grown together to form a larger killer application. For example, the word proces-
sor is the collection of spell-check, thesaurus, text-entry, text formatting, document
template creation, and other functionalities that existed alone at some point in the
past.

The killer mobile or location-based applications will themselves evolve over time
as various smaller applications gravitate together in an organic manner to form larger
applications. Like most great advances in technology and science, killer applications
are only born after years of hard work, persistence, and evolution accompanied by
some degree of ingenuity.

12.5 LOCATION-BASED SERVICES APPLIED

As in the case of the other dimensions of mobility, very few developers have a good
intuition and sense for usage of location information in a mobile application.
There are some obvious uses that come to mind, among which are navigation
applications, emergency road-side assistance, and active notification of the user
when he or she is located in a particular place. However, location information
can be used in many other ingenious ways to enhance mobile applications whose
primary purpose is not sensing the location or mobile applications but to combine
location information with other dimensions of mobility or business logic to create
new usages of computing power or improve efficiency in processes.

In this segment, we will go through few novel experiments and ideas that are
the results of research done by academic and commercial institutions to create
unique applications that utilize location information. Here are some examples:

1. Created at the University of Glasgow’s Department of Computing Science, the
Lab Support System is a Web-based application, deployed on static workstations
and wireless-enabled palmtop computers, that supports student–tutor interac-
tion in computer laboratories, particularly the process of students asking for
help and tutors delivering it [Crease, Gray, and Cargill 2001]. Whereas the
students are at the same stations during most of the lab time, the tutors move
around. They are requested based on the progress of the students in the lab.
There are a variety of topic types and, depending on the information exchanged
between the tutor and the student, the information may be broadcast to the
entire lab (of course, every lab station has a computer). For more details refer-
ence the cited paper. This project is an excellent example of how an otherwise
stationary application can first be made mobile by giving the tutors mobile de-
vices and then further augmented by location information to make helping the
students more efficient.

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.5 Location-Based Services Applied 699

2. Another project, at University of California at San Diego, utilizes the user’s
location information to facilitate interactions in an academic community such
as a college campus. By using the context of location, time, and one’s stated
colleagues, a display in the form of a map or labeled list helps a participant see
opportunities that are within reach and act upon them by physically moving to
them or clicking on their links to learn more [Griswold et al. 2001].

3. There are a variety of mobile research efforts that involve tracking the user, with
some sort of a mobile device that may be wearable, through various locations.
At a rudimentary level, this information can be used for emergency situations
such as a user having a seizure or a heart attack. However, it can also be used for
nonemergency situations. There may be a correlation between the user’s location
and environmental conditions that affect short-term or long-term health. Such
correlations may only be discoverable through a long-term tracking process.
There may be other environmental correlations with medical conditions that
may be revealed by the analysis of location information of a group of individu-
als instead of a single person. Applications of mobile computing and location
information in the medical field are countless. Locating patients during crisis
time, hospital resources, and monitoring patient habits are some examples.

4. If a mobile agent framework is used to build the mobile application or to sup-
port it, location information exists symbiotically with the system providing the
location information. Agents can move from one host to another based on lo-
cation information (e.g., based on the user’s location, a restaurant finder agent
may migrate from the network to the device to present the menu of a specific
restaurant). Likewise, the agents can direct the user to go to a specific location
based on the information provided by the location system (e.g., tell the user to
go one block north, two blocks east to find a great three-star restaurant).

5. Goßmann and Specht show how location information is used to augment the
LISTEN project, which provides users with intuitive access to personalized and
situated audio information spaces while they naturally explore everyday en-
vironments [Goßmann and Specht 2001]. In this project, the user’s location
information is used to improve the user’s experience by guiding him or her
through audio zones that are defined by location parameters. In this case, we
can see the beginnings of usage of location-based awareness and mobile com-
puting in creating a virtual reality environment, enhancing the user’s interface
experience to the computing system, or creating other immersive applications.

There are numerous other examples. Here, we have only tried to give the reader a
taste of what is possible. It is noteworthy that a couple of our examples were related
to college campuses. This is not only because of the obvious (academic research is
done by people on university campuses who try to leverage technology in examples
useful to the immediate environment) but also because of the less than obvious:
The people on a campus are typically very mobile and that daily experience with
physical mobility creates an environment where necessity becomes the mother of
invention.

Usefulness of location information and mobile applications typically go hand
in hand. If an application is mobile, then the chances are that it needs, or can be

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

700 MOBILITY AND LOCATION-BASED SERVICES

Location
Acquisition

Location
Processing

Device
Processing

Network
Processing

GPS-Based
Location Acquisition

Network-Based
Location Acquisition

Location-
Based

Service A

Location-
Based

Service A

Location-
Based

Service B

Location-
Based

Service B

FIGURE 12.7. Taxonomy of Functional Delivery of Location-Based Services to Mobile Applica-
tions.

improved by having, location information. If the location of the user is changing
frequently, then the chances are that a mobile application is a good fit.

Now, let us work our way to building a mobile application that takes advantage
of location information, starting with the high-level analysis.

12.5.1 System Architecture for Offering Location Services
Whenever an application developer or a team of developers sets off to build a
distributed application, one of the most critical things to do is to have a system-
level picture of “what the world should look like” if the application is successfully
designed and implemented. This has been one of the reasons we have touched
upon architectural concerns for mobile applications throughout this text.

What the system architecture of your location-based mobile application looks
like depends mostly on two things: the location acquisition mechanism and the
usage of the location information. We have already looked at several location ac-
quisition techniques and have seen that these techniques can be categorized along
two axes: GPS or non-GPS based on one axis and on-device or in-network process-
ing of the information on the other (Figure 12.7). In Figure 12.7, Location-Based
Service A uses the network infrastructure for obtaining the location information
and does all the processing of the location information, to present programmat-
ically useful location information, in the network; an example of this could be
a location-based service that uses MPP infrastructure with network-based TAO.
Conversely, Location-Based Service B uses the network infrastructure and GPS
to acquire location information. A client application may be involved in doing
some of the processing of the location information. An example of this would
be a system that uses GPS location accessed through a J2ME application on the
client augmented by some network location-based technology. The processing of

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.5 Location-Based Services Applied 701

Abstraction

Control

Presentation

GIS
Location-Based

Service

GPS

Wireless
Network
Location

Discovery

Internationalization

Localization

Generic Presentation

Internationalization

Localization

Transformation

Internationalization

Localization

FIGURE 12.8. Layering a Mobile Application for Offering Location-Based Services.

the data may be distributed between the J2ME application running on the GPS-
enabled mobile device and the network.

Based on this architecture, the mobile application must interface with systems
that provide network-based location services, GPS, systems that process location
information, or a combination thereof. Furthermore, the location information can
be used as a cross-reference key for other information to be pulled from a GIS
system or other systems that hold location information. Figure 12.8 shows how
we can extend our previous layered model to include location-based functionality.
Note that because localization and internationalization can affect the logic of the
application, the control of the application, generic interactions of the user with
the system, and the transformation of the generic presentation to a specialized
presentation, Control, Generic Presentation, and Transformation layers must all
have localization and internationalization logic. The location information, itself, is
obtained from the location-based service whereas any cross-referenced information
is obtained from a GIS system. Here, we did not make the separation between any
internationalization and localization logic at the abstraction layer and the so-called
business logic of the application. Making such a distinction is optional as, most
probably, separation of concerns and its implementation in the abstraction layer
are domain dependent. The application described in Figure 12.8 could be a mobile
application whose parts are running on a mobile device, one that runs completely
on the network and provides a thin-client user interface to the mobile device, or
one whose parts are distributed between running on the network servers and the
mobile device (GIS is almost certainly not implemented on the mobile device).

There may also be other systems and subsystems that offer functionality such
as navigation, location-based billing, travel services, and emergency assistance
services that depend on information obtained from the location-based service.
Such systems and subsystems would typically interface with the control and ab-
straction components and do not have a direct effect on the presentation-related
components.

So, a system-level architecture may look something like that of Figure 12.9.
You should now have a good high-level view of some of the alternative designs for
integrating location information to your mobile application infrastructure. Next,

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

702 MOBILITY AND LOCATION-BASED SERVICES

GPS

Wireless InfrastructureWireless Infrastructure

Cellular
Infrastructure

(CDMA, TDMA, etc.)

Application
Servers

Location-Based
Back-end Processing

GIS
System

Mobile Devices
Connected to Wireless

Infrastructure

Application
Servers

Distributed
Mobile Application

FIGURE 12.9. High-Level View of Mobile Applications Supporting Location-Based Functionality.

we are going to dig a bit deeper and look at the architecture, implementation, and
interface of the location-based systems to gain better insight into how to utilize
them. Then we will look at implementation details of accessing systems that offer
location-based services.

12.6 UTILIZING LOCATION-BASED SERVICES WITH
MOBILE APPLICATIONS

We have seen that location is a dimension of mobility, looked at a variety of
methods to obtain location information, and have overviewed some programmatic
tools such as GML and MPP that help us in building mobile applications that take
advantage of location sensitivity.

Our first task is to set forth a set of design and architectural principles to do this.
As location sensitivity and mobile applications are very young areas of software
development, it is difficult to model such designs and principles after real-life suc-
cesses. What we will present here utilizes largely research work done commercially
and academically. As with all research, you will need to make adjustments suitable
to your application of these technologies.

Jonathan Agre [Agre et al. 2001] and colleagues at Fujitsu Laboratories present
a taxonomy of accessing the subsystem providing the location-based information.
First, they define a logical abstraction for the software subsystem that provides
the location information, calling this a Location Service Module or LSM. The LSM
is composed of a Location Dependent Layer (LDL), basically representing the
abstraction of the actual method used to retrieve the location information, and
the Location Adaptation Layer (LAL), which is used to convert the information
retrieved to a format easily usable by applications that need this information.

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.6 Utilizing Location-Based Services with Mobile Applications 703

Mobile Location-Based
Application

API

Location Adaptation Layer
(LAL)

Location Dependent Layer
(LDL)

Location Acquisition Hardware
And Network (GPS, non-GPS, etc.)

FIGURE 12.10. Software Abstraction Layers for Developing Mobile Applications That Use Location
Information.

Figure 12.10 shows this type of abstraction as applied to mobile applications and
their usage of location-based information.

Agre and colleagues define a minimal subset of a functional interfaces that must
be supported, by the API layer, to provide a behavioral interface to the location
sensitivity system [Agre et al. 2001]. Their interface provides the following:

1. an absolute position—for example, a method called GetPositionAbsolute(),
2. a relative position—for example, a method called GetPositionRelative(),
3. a symbolic position (rooms, roads, etc.)—for example, a method called

GetPositionSymbolic(),
4. a flexible mechanism to set the point whose location is used to measure relative

positions—for example, a method called SetRelativeCoordinates(Coordinates
someCoordinates),

5. a flexible mechanism to input customizable information into the location-
sensing subsystem to build a symbolic coordinate system—for example,
SetSymbolicInformation(InformationSet someSymbolicReferenceSystem), and

6. an optional support for orientation of the device—for example, information
regarding which way the device points may be used to render a map in the
proper direction such as GetOrientation().

Next, naturally, one may want to know how to design and implement a real appli-
cation using location-based information. Though there will soon, perhaps by the
time you read this text, be many different products and tools that allow software
developers to take advantage of location information, at present, the number of
tools are limited. In practical terms, we can build a mobile application that takes
advantage of location information under three conditions: when the device has
some sort of access to an implementation of MPP (through WAP or otherwise),
then the device has a GPS unit with the appropriate integrated software develop-
ment tools, or when the device is enabled with short-range wireless networking
access such as WIFI or Bluetooth. A fourth solution is proprietary and specific

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

704 MOBILITY AND LOCATION-BASED SERVICES

to Qualcomm’s BREW infrastructure on CDMA. We will stick with the first three
solutions.

J2ME and MPP provide solutions at the LAL. In other words, the network may
or may not support MPP; if it does, then you can write an application that uses
the MPP to communicate with a service that already provides neatly packaged
location information. The same is true for J2ME with JSR-179. The method of
retrieving the location information is abstracted away. There are currently several
standards being worked on for short-range wireless networks (typically ad hoc),
such as WIFI-based location sensitivity APIs at the LAL.

Another approach is presented by Hightower and colleagues [Hightower et al.
2002].

As you may recall, in Chapter 9, we also eluded to a symbiotic relationship
between mobile agents and location sensitivity. Because mobile agents can move
from one host to another, they can facilitate processing of location information
by first migrating based on the location of the user, the mobile device, or the
network and then obtaining the location information closer to the “edge” of the
network where the application is actually being used, thereby allowing for better
performance properties.

Let us first assume the most universal case where the location information is
provided by a GPS.

12.6.1 Accessing a GPS Device Programmatically
The National Marine Electronics Association (NMEA) published a standard
method of communicating with GPS devices, by establishing a superset stan-
dard for MMI for marine devices. Most GPS devices today are accessible through
this standard. This interface is a character-based standard that specifies a mes-
sage header, latitude (north–south), longitude (east–west), and altitude (in me-
ters above sea level). The information is extracted as multiple “sentences” (with
a sentence often used to refer to a character-based string). The keyword in the
beginning of the sentence specifies the format and meaning of the data included
in the sentence. A particular sentence may be the following:

$GPGGA,111323,4356.323,N,32310.047,W,2,04,6,111,M,12,M,,*44

Before the advent of the World Wide Web, a hybrid device that included a GPS
component could typically access the GPS subsystem through a serial (RS232)
interface. Since the advent of the Internet, some GPS devices also provide an
HTTP interface.

If you have a stand-alone GPS device with a serial port, you can connect it to your
PC and programmatically access it through the serial port; you could do the same if
you have a hybrid device (a device that has a GPS unit on it but whose functionality
is not limited to providing location information—such as GPS-enabled PDA, etc.).
Some GPS-enabled mobile devices may provide programmatic access integrated
with custom C/C++ APIs for the platform.

In some cases, as the case of J2ME, there are evolving standards for further
definition of a programmatic interface to GPS devices. We will look at JSR-179,

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.6 Utilizing Location-Based Services with Mobile Applications 705

which deals with accessing location information on the device, in the next section.
Also, as there is a move toward converting all forms of content to XML, standards
bodies are moving toward representing the location information in XML as in the
case of GML. This has one disadvantage: XML parsing can be resource intensive
for a resource-starved device. This is somewhat offset by the fact that, because
of the importance of XML, even the most starved devices now have some way of
parsing XML.

Although we can use a variety of client-side applications that we have talked
about in this text such as BREW, J2ME, and others, we will use J2ME as our
reference model in the next sections. There is a direct mapping for most concepts
that we will discuss.

12.6.2 Location-Based J2ME Application
J2ME can be used in two ways to get the location information. First, it can get
the location information of the device from the network. Alternatively, if there
GPS is available on the mobile device or there is a GPS attachment, and if either
provides some programmatic access, we can use J2ME to get GPS-based location
information. Figure 12.11 shows an example of a simple class that allows access
to a GPS-enabled J2ME device that provides access to its functionality through
either an RS-232 interface or an HTTP interface.

Note that we have only extracted information regarding the longitude, latitude,
altitude, and the time at which the location information was obtained. As we have
noted, there is much more that an LAL interface, which J2ME is, can do for us.
For this reason, Java Community Process in JSR-179 is developing a location API
for J2ME.

JSR-179
J2ME is evolving to offering a full treatment of various dimensions of mobility
on resource-starved mobile devices. Although there is as yet no part of J2ME
implemented on available platforms that support obtaining or processing of loca-
tion information, things are in the works through the Java Community Process.
Namely, JSR-179, principally let by Nokia, is in the public review process. In this
section, we will review JSR-179 as a possible up–and-coming solution to acquiring
and processing location information on mobile devices.

The location model defined by JSR-179 is a small one. We have created a UML
class diagram of the JSR-179 classes in Figure 12.12.

Note that there are two main concepts: landmarks and locations. Also, note that
the classes are all in a javax.microedition.location package and that all classes but
the interfaces extend java.lang.Object or java.lang.Exception.

The location model supported by JSR-179 currently implements the following
features:

1. It supports the concept of an address, typically associated with a human-made
defined system of countries, states, counties, cities, streets, etc. The necessary
attributes of an address are implemented in AddressInfo. This object encapsu-
lates the necessary data, but not much in the way of behavior.

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

706 MOBILITY AND LOCATION-BASED SERVICES

public class locator {
private String mSerialDestination="comm.:2;

baudrate=2400;bitsper char=8"

private String mHttpDestination = "http://gps/GPS.html";

private String mLongitude;

private String mLatitude;

private String mAltitude;

private long mTime;

private int mConnectionMethod;

public locator(int aConnectionMethod) {
mConnectionMethod = aConnectionMethod;

}

public void refresh() {
InputConnection mySerialInput;

InputStream myInputStream;

switch(mConnectionMethod) {
case 1: {

InputConnection mySerialInput =

(InputConnection) Connector.open(

mSerialDestination);

myInputStream = mySerialInput.

openInputStream();

break;

}
default: {

HttpConnection myHttpInput = (HttpConnection)

Connector.open(mHttpDestination);

myInputStream = myHttpInput.openInputStream();

break;

}
}
parseInput(myInputStream);

}

public void parseInput(InputStream anInputStream) {
// Implement the parsing of the NMEA String here . . .

}

public String getLongitude() {return mLongitude;}
public String getAltitude() {return mAltitude;}
public String getLatitude() {return mLatitude;}
public long getRefreshTime() {return mTime;}

}

FIGURE 12.11. Accessing GPS Data with J2ME.

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

ja
va

.la
ng

.O
bj

ec
t

ja
va

.la
ng

.T
hr

ow
ab

le
ja

va
.la

ng
.E

xc
ep

tio
n

A
dd

re
ss

In
fo

Lo
ca

tio
n

C
oo

rd
in

at
es

Lo
ca

tio
n

P
ro

vi
de

r
Lo

ca
tio

nE
xc

ep
tio

n

La
nd

M
ar

kE
xc

ep
tio

n
La

nd
M

ar
kS

to
re

La
nd

M
ar

k

Q
ua

lif
ie

dC
oo

rd
in

at
es

ja
va

x.
m

ic
ro

ed
iti

on
.lo

ca
tio

n

C
rit

er
ia

O
rie

nt
at

io
n

La
nd

M
ar

kL
is

te
ne

r

Lo
ca

tio
nL

is
te

ne
r

FI
G

U
RE

12
.1

2.
U

M
L

Cl
as

s
Di

ag
ra

m
of

JS
R-

17
9.

707

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

708 MOBILITY AND LOCATION-BASED SERVICES

2. The Coordinate class encapsulates the necessary data for a WGS84-based lo-
cation, which is a geographical location specified by a longitude, latitude, and
altitude. The supported behavior allows for calculation of bearings between two
points, locations between two points, and conversion of formats.

3. The LocationProvider class gives us a singleton to the implementation, on the
device, of the location-based service. This class relies on the Criteria class to
determine how the location information should be gathered. This is because
devices may offer more than one way of obtaining location information with
a various set of options including cost, speed, where the information is being
requested, etc. All of the other classes that begin with Location provide a mech-
anism for handling Location information encapsulated in the Location class.
The Location class encapsulates the coordinate-based specification of a location
as well as how the information was obtained, the margin of error, when it was
obtained, where the thing whose location was measured is heading, and how
frequently measurements may be taken. Location class is the mechanism that
provides support for absolute and relative locations.

4. Symbolic locations are supported through the LandMark class. Though this
support is not full or flexible, we are talking about J2ME, which is designed
for resource-starved devices after all. LandMarkStore does the same thing for
LandMark as LocationProvider does for Location: It provides a singleton with
which one can obtain actual LandMark information. Like those classes that start
with Location, those classes that start with LandMark are supporting classes that
allow the LandMark provider to give us LandMarks.

5. The Orientation class allows us to determine the orientation of the device whose
location is being reported. Orientation, as defined by JSR-179, is bearing, pitch,
and roll. This information can be extremely important in future devices that may
depend on orientation as an information input mechanism such as Compaq’s
Itsy.

By the time this text is published, JSR-179 should be ratified and implementa-
tions by cell phone and PDA manufacturers will be on their way. At such time,
and when location information is made available by the carriers, it will facilitate
implementation of location-based mobile applications on mobile devices.

We have now looked at two disparate areas of implementing a mobile appli-
cation that supports location sensitivity. We have seen a quick summary of using
GPS-based information. Using GPS directly is an example of a case where we ob-
tain just the raw information and have to do the processing within the mobile
application. Obviously, processing the location information is something that a
well-thought-out location model does better, so we have looked at JSR-179 as
an example of an API that gives us an interface to processed location informa-
tion on the device for accessing location information based on a location model.
Next, we will take a high-level look at the relationships among the context of
usage of an application, location information, and the user interface to a mobile
application.

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.6 Utilizing Location-Based Services with Mobile Applications 709

12.6.3 Mobile Applications, Location, Context,
and User Interfaces
In Chapters 5–8, we looked at the various concerns of mobile user interfaces.
Recall that some of the problems of mobile user interfaces are that mobile devices
are limited in the graphical user interfaces that they offer. There are other concerns
with voice user interfaces such as ambiguity of prompts to get the correct response
from the user, creating natural interfaces, and others. One of the conclusions we
drew then was that we need to do whatever we possibly can to make the user
interface convenient and easy to use. We also noted that the more contextual
information we are able to leverage into building our application, the more user
friendly we can make the user interface and the rest of the application.

Location information gives us one of the best sources for context. Where the
user is, how he or she came to be there, where he or she is going, things that are
in the user’s vicinity, and the entire set of variables that are location dependent
give us context for improving our application as a whole and the user interface
in particular. Furthermore, time and location are the two best triggers for active
transactions. Before we go on to show the different ways we can improve the
contextual information of our application with location information, notice that
there is always a certain amount of ambiguity in the location information too.
This ambiguity is associated with the margin of error in acquisition of the location
information and with the user’s motion through the coverage area of whatever the
location-sensing technology may be.

Moreover, the type of location information that is useful in determining bet-
ter context for the usage of an application depends on the type of application.
Some applications require very exact location information with frequent updates
whereas others need occasional updates and can afford more error without loss of
contextual information.

Because of the complexity of dealing with contextual location information,
we need something that resolves the complexity of location information and its
relationship with the context of the application usage. Rather than a location
model, what is needed is a comprehensive object model that captures properties
that describe the object within the context of the space in which it exists [Burnett,
Prekop, and Rainsford 2001]. Of course, there have been a variety of models
suggested, each with some bias toward solving the problems of a particular domain,
much in the same way that XML standards and programming APIs for location
information have evolved. A domain-independent model to location information
used by mobile applications may not even be a feasible one. Nevertheless, we
will present pieces of the models suggested by various studies and projects in this
section. Embellishing on the work by Burnett, Prekop, and Rainsford [Burnett,
Prekop, and Rainsford 2001], we represent a piece of the puzzle in Figure 12.13.
Here a class diagram is used to model some basic location-related pieces of the
location-aware context-sensitive mobile application.

Note that this is just the start of a simplified model of an object that shows the
relationships among the entities involved in locating something and then using
it. The model can be further augmented in a domain-specific manner. In our

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

P
os

iti
on

Lo
ca

tio
n

S
er

vi
ce

 P
ro

vi
de

r
Lo

ca
tio

n
Lo

ca
tio

n
H

is
to

ry

H
ea

di
ng

D
ire

ct
io

n
D

ur
at

io
n

N
on

-G
P

S
-B

as
ed

 L
B

S
G

P
S

 B
as

ed
 L

B
S

D
ev

ic
e

E
nt

ity

P
er

so
n

C
om

po
si

te
Lo

ca
tio

n-
B

as
ed

 C
on

te
xt

G
IS

 In
te

rf
ac

e

*
1

FI
G

U
RE

12
.1

3.
Ru

di
m

en
ta

ry
Re

pr
es

en
ta

tio
n

of
Lo

ca
tio

n-
Ba

se
d

Co
nt

ex
t.

710

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.7 Representing Location with UML 711

model, we have also leveraged work by Schleider, Vogele, and Werner, who look
at the spatial relevance of chunks of application functionality. Each spatial region
determines a subpattern: the sequence of elementary motions that occur within a
region; this hierarchical structure is called a partitioned motioned pattern [Schlieder
et al. 2001]. Finally, keep in mind that location-based context is not orthogonal
to the location-based model we use. The way we model location depends on the
context of usage of location information and how useful location information is;
how we use it depends on the location-based model that we choose.

Depending on the type of location-based information available, the mobile ap-
plication can be designed to adjust its behavior to fit the mobile condition of the
user. Namely, the location of the user and the changes in the location of the user
give us a big chunk of information about his or her mobile condition. The work
done by Shlieder, Vogele, and Werner clearly demonstrates this as applied to an
application in a museum. Once they define the concept of “spatiothematic re-
gions,” in which there is a theme associated with some region defined by specific
physical boundaries (such as rooms, wings, exhibits, etc.), they continue on to
relate these spatiothematic regions to appropriateness of application functionality,
thereby first creating a framework for representing location-based context and then
demonstrating how to use this location-based context to improve the functionality
of an application.

This approach is extremely useful in design and implementation of mobile user
interfaces in two ways. First, as we have mentioned, we can adapt the functionality
offered by the application to suit the condition of the user based on his or her
location. Second, we can adapt the user interface, not the core functionality, offered
by the application to suit the location and motion of the user.

12.7 REPRESENTING LOCATION WITH UML

As with the other aspects of mobility and the various solution techniques that
we have looked at in this text, it is desirable to model location information and
the change in location information in UML. In the case of representing location,
UML, with no additional extensions, actually is fairly sufficient in providing most
of what we need.

However, there is nothing in UML that provides a good representation for mo-
tion. We already saw this in the case of mobile agents. So, in this section, we will
first take a quick look at how we can use standard UML tools to model location
information and the behavioral aspects of location-based models. Then, we will
present a few stereotyped extensions that allow for better representation of the
mobile user and the mobile applications.

One important thing to remember here is that there are two levels of modeling
that are of concern when it comes to location-based systems. First, we have to select
some general method for modeling the location information and interacting with
the location information to describe this information. For example, GML defines
a model for geographic information. So do some of the other standards defined by
ISO, the OGC, LIF, and other standards bodies. Although we have reviewed some

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

712 MOBILITY AND LOCATION-BASED SERVICES

of these standards and have gotten a bird’s-eye view of the models they define for
location information, the discussion of that arena lies outside of the scope of a
discussion on mobile computing. Second, there is another type of modeling that
concerns mobile computing more; this modeling is done with UML or a similar
tool that lets us define location information, interactions with systems that provide
location information, and data or behavior information concerning mobility that is
a function of a variable location. UML is our obvious choice because it has allowed
us to model the other dimensions of mobility and aspects of mobile computing
discussed in this text.

With this in mind, let us see how we can use various UML diagrams to help
us model location information and location mobility. We will start with class
diagrams.

12.7.1 Using Class Diagrams to Represent Location Information
As we mentioned previously, there are symbolic locations, relative locations, and
absolute locations. Relative and absolute locations specify some location that may
be specified in a Cartesian coordinate system with a single point, though there may
be inaccuracies involved, and other coordinate systems used to represent the actual
value. In both cases, we are either specifying the distance to something else whose
location is known or specifying a latitude, longitude, and altitude that tell us the
exact location. Symbolic locations are largely domain dependent—how we define
a symbolic location is based on how we use it. For example, a symbolic location
may be a room number; this room number is meaningful within the context of a
building and usage of rooms as a measure of location by the domain. The domain
in this case may be a medical application that tells a nurse which room to visit
next based on the current condition of patients.

Based on this, symbolic locations can be modeled within the constructs used
by the actual application. In this way, our example of the hospital and nurse
is almost identical to the infamous “elevator” example that many OOP courses
use to introduce objects to novice computer scientists. There is almost a one-
to-one mapping between symbolic location models and a UML class diagram. In
other words, we can model atomic abstractions in our location model with object-
oriented classes and, subsequently, show the relationships among these atomic
abstractions, represented by classes, in a UML class diagram.

Representing absolute and relative locations depends on how we define them.
We will look at work done by Gronmo, Solheim, and Skogan that focuses on
generation of various representations of absolute and relative locations by using
UML.

12.7.2 Using UML for Modeling Relative and Absolute
Geographical Locations
In this chapter, we have already seen that representing a geographical position,
whether it is absolute or relative, can be done in many different ways. In Norway, a
small country that does much more than its fair share of research and development
in mobile computing, a group of researchers with SNITEF Telecom and Informatics
have suggested that code generation can be one way of resolving the impedance

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

C
it

yM
em

b
er

C
it

yM
o

d
el

M
o

u
n

ta
in

R
iv

er
R

o
ad

+
m

D
at

eC
re

at
ed

: D
at

e

+
m

C
la

ss
ifi

ca
tio

n:
 C

ha
ra

ct
er

S
tr

in
g

+
m

Li
ne

ar
G

eo
m

et
ry

: G
M

_C
ur

ve
+

m
C

en
te

rO
fL

in
e:

 G
M

_C
ur

ve
+

m
E

le
va

tio
n:

 In
te

ge
r

+
m

N
um

be
r:

 C
ha

ra
ct

er
S

tr
in

g

0.
.*

FI
G

U
RE

12
.1

4.
Ex

am
pl

e
of

U
si

ng
U

M
L

Cl
as

s
Di

ag
ra

m
s

to
Re

pr
es

en
tS

ym
bo

lic
M

od
el

s
of

Lo
ca

tio
n

Re
pr

es
en

ta
tio

n
[B

er
re

20
01

].

713

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

714 MOBILITY AND LOCATION-BASED SERVICES

mismatch among the different models of location and changing of location. Earlier
in this text, we have noted that code generation with UML is not a golden hammer
that can be used for any project and any time; in fact, we have generally discouraged
extensive use of code generation because UML was not designed to have the level
of detail that a programming language does and putting that type of detail into a
model is just as, or more, laborious than creating the code to begin with. This is
not to say that things are stagnant. With UML 2.0 and later versions, the designers
of UML are equipping UML with features that get it closer and closer to a tool
suitable for code generation.

Furthermore, if UML is used in modeling something that is fairly dynamic, a
dynamic business domain or many different business domains, there is potentially
more complexity introduced by the nuances of modifying the generated code,
modifying the model, and keeping all modifications in sync. The domain of loca-
tion information, however, is an area where code generation with UML can be very
useful. There is another point to make: Diagrammatic environments are simply
not that good for expressing lots of details. Even though you can combine OCL
with your diagrams, then it is still more difficult to combine diagrams and OCLs
than to just read code! Also, the top programming languages such as C++, Java,
and C# are practically the same syntactically so it is not that hard reading Java
code if you only know C++.

First, the inherent domain of location information and location mobility does
not change much. Locations are described by a set of spatial and physical attributes.
In the case of absolute and relative geographic locations, despite the fact that we
can describe them with a variety of coordinate systems, the domains remain very
static. The definitions of points, shapes, and geographic terrain are described by a
finite and small number of models. Even in the case of symbolic locations, there
are a finite and small number of permutations that are used to describe locations:
architectural models (buildings, rooms, etc.), boundary-based models (countries,
states, counties, cities, etc.), and some others. Gronmo, Solheim, and Skogan of
SINTEF [Gronmo, Solheim, and Skogan 2002] agree that representing location
and aspects of mobility that concern location in UML is beneficial. Their efforts
focus in generating GML based on UML. Note that the actual model that generates
the code is not significant. Rather, the study focuses on whether it is possible to
generate GML based on UML and what the advantages and disadvantages of such
an effort might be. Their work [Gronomo, Solheim, and Skogan 2002] can then
be summarized as follows:

1. It is possible to model location information, particularly represented in GML,
in UML.

2. It is best to avoid multiple inheritance. Of course, this is something that every
good object-oriented programmer knows; multiple inheritance is a very rarely
used properly and, even when used properly, it is likely to cause the object
model to be overly rigid as an application matures. In this case, it is particularly
important because multiple inheritance cannot be implemented with XML (the
document format on which most location information standards are based) and

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.7 Representing Location with UML 715

some programming languages such as Java. The goal of using UML to model
location information is to introduce flexibility.

3. OCL or stereotypes may be used to define the differences among various static
models of location information and mobility.

4. Gronomo, Solheim, and Skogan also specify a mapping of the XML Schema to
UML classes. This mapping has been done with two things in mind: 1. the needs
and definition of a location-based system and 2. the location model defined in
the GML Schema.

When we looked at GML, we also saw that the GML specification has been written
so that the location model is actually represented in UML. Not only is this further
affirmation of UML class diagrams being a suitable tool for representing location
models, but it also makes a great starting point for any mapping that one might
want to do between UML and GML at a detailed level.

We have now discussed relative, absolute, and symbolic location modeling tech-
niques and their representations using UML artifacts. There is yet another category
of modeling techniques—hybrid location modeling techniques—that combine
two or more of the aforementioned techniques (relative, absolute, and symbolic
modeling). Domitcheva [Domnitcheva 2002] addresses the relationships between
these modeling techniques. For example, a particular location model could use
both symbolic and absolute location models, specifying which room in a building
as well as exact coordinates of a device. The combination of the two may be much
more useful than either one for particular types of applications.

Figure 12.14 shows how class diagrams can be used to represent various sym-
bolic location models. UML class diagrams can also be used in these cases where the
goal is to show the relationships among the parts that make such hybrid models.

12.7.3 Modeling Motion in UML
To date, we have not found any published works that enable us to represent a
mobile user or a mobile system. Therefore, we leverage previously introduced
works in Chapters 9 and 6, where works by Nunes (Wisdom UML extensions)
and others were leveraged to create new stereotypes for mobile agents and user
interfaces. We propose the extensions in Table 12.1. We have introduced some of
these extensions previously when dealing with modeling mobile user interfaces.
Under the context of location sensitivity, we can use some of the same stereotypes
and add new ones.

Once again, we have leveraged Nunes’ Wisdom work greatly, first recognizing
how we can create new stereotypes to facilitate reading use case diagrams that invo-
lve location information and then creating widgets that properly represent them.

This brings us to the end of our discussion of modeling location-based services
and location sensitivity aspect of mobile computing with UML. We used class dia-
grams to represent location models and augmented use case diagrams to represent
high-level specification of a system that involves mobile components.

Now, let us take a quick look at security and privacy aspects of location-based
services before ending this chapter.

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

TA
B

LE
1
2
.1

.
U

M
L

E
xt

e
ns

io
ns

to
M

o
de

l
Lo

ca
ti

o
n

an
d

M
o
ti

o
n

in
M

o
bi

le
A

pp
li
ca

ti
o
ns

St
er

eo
ty

pe
D

es
cr

ip
ti

on
Ic

on

<
<

M
ob

il
e

A
ct

or
>

>
T

h
is

st
er

eo
ty

pe
ex

te
n

ds
W

is
do

m
’s

<
<

H
u

m
an

A
ct

or
>

>
to

be
u

se
d

in
u

se
ca

se
di

ag
ra

m
s

an
d

se
qu

en
ce

di
ag

ra
m

s.
It

is
in

te
n

de
d

to
in

di
ca

te
a

h
u

m
an

ac
to

r
w

h
o

is
de

fi
n

it
el

y
m

ob
il

e
at

th
e

ti
m

e
of

in
te

ra
ct

in
g

w
it

h
a

pa
rt

ic
u

la
r

u
se

ca
se

or
in

te
ra

ct
in

g
w

it
h

an
ot

h
er

ac
to

r.
(T

h
e

ar
ro

w
n

ot
at

io
n

is
bo

rr
ow

ed
fr

om
th

e
m

ob
il

e
ag

en
t

U
M

L
ex

te
n

si
on

s
w

e
lo

ok
ed

at
in

C
h

ap
te

r
9.

)
T

h
is

st
er

eo
ty

pe
is

st
ri

ct
ly

in
tr

od
u

ce
d

to
in

di
ca

te
th

e
co

n
di

ti
on

of
th

e
u

se
r

at
th

e
ti

m
e

of
u

si
n

g
th

e
ap

pl
ic

at
io

n
.I

t
do

es
n

ot
in

di
ca

te
w

h
et

h
er

th
e

ap
pl

ic
at

io
n

it
se

lf
is

on
e

th
at

is
de

si
gn

ed
or

im
pl

em
en

te
d

as
a

m
ob

il
e

ap
pl

ic
at

io
n

.I
f

th
e

qu
es

ti
on

is
th

e
m

ob
il

it
y

of
th

e
u

se
r

in
te

ra
ct

in
g

w
it

h
th

e
ap

pl
ic

at
io

n
,

W
is

do
m

’s
<

<
H

u
m

an
A

ct
or

>
>

st
er

eo
ty

pe
sh

ou
ld

be
u

se
d.

<
<

M
ob

il
e

Sy
st

em
A

ct
or

>
>

T
h

is
st

er
eo

ty
pe

ex
te

n
ds

W
is

do
m

’s
<

<
Sy

st
em

A
ct

or
>

>
to

be
u

se
d

in
u

se
ca

se
di

ag
ra

m
s

an
d

se
qu

en
ce

di
ag

ra
m

s.
It

is
u

se
d

to
in

di
ca

te
th

at
a

pa
rt

ic
u

la
r

sy
st

em
is

m
ob

il
e.

F
or

ex
am

pl
e,

a
m

ob
il

e
ph

on
e

is
a

m
ob

il
e

sy
st

em
ac

to
r.

A
n

y
ap

pl
ic

at
io

n
s

th
at

ru
n

on
a

m
ob

il
e

sy
st

em
,b

y
de

fi
n

it
io

n
,a

re
m

ob
il

e
ap

pl
ic

at
io

n
s.

<
<

St
at

io
n

ar
y

A
ct

or
>

>
T

h
is

st
er

eo
ty

pe
ex

te
n

ds
W

is
do

m
’s

<
<

H
u

m
an

A
ct

or
>

>
to

be
u

se
d

in
u

se
ca

se
di

ag
ra

m
s

an
d

is
in

te
n

de
d

to
in

di
ca

te
a

h
u

m
an

ac
to

r
w

h
o

is
de

fi
n

it
el

y
st

at
io

n
ar

y
at

th
e

ti
m

e
of

in
te

ra
ct

in
g

w
it

h
a

pa
rt

ic
u

la
r

u
se

ca
se

or
in

te
ra

ct
in

g
w

it
h

an
ot

h
er

ac
to

r.
T

h
is

st
er

eo
ty

pe
do

es
n

ot
in

di
ca

te
th

at
th

e
ap

pl
ic

at
io

n
is

it
se

lf
de

si
gn

ed
as

a
st

at
io

n
ar

y
ap

pl
ic

at
io

n
.T

h
e

ap
pl

ic
at

io
n

m
ay

be
m

ob
il

e,
bu

t
a

pa
rt

ic
u

la
r

u
se

ca
se

m
ay

on
ly

be
re

le
va

n
t

w
h

en
th

e
u

se
r

is
st

at
io

n
ar

y.
If

it
is

n
ot

,w
h

et
h

er
th

e
u

se
r

is
m

ob
il

e
or

st
at

io
n

ar
y

at
th

e
ti

m
e

of
in

te
ra

ct
in

g
w

it
h

th
e

ap
pl

ic
at

io
n

,W
is

do
m

’s
<

<
H

u
m

an
A

ct
or

>
>

st
er

eo
ty

pe
sh

ou
ld

be
u

se
d.

716

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

<
<

M
ob

il
e

U
se

C
as

e>
>

T
h

is
st

er
eo

ty
pe

ex
te

n
ds

U
M

L
’s

u
se

ca
se

st
er

eo
ty

pe
.I

t
is

u
se

d
to

in
di

ca
te

th
at

th
e

u
se

ca
se

is
a

m
ob

il
e

u
se

ca
se

.B
y

a
m

ob
il

e
u

se
ca

se
,w

e
m

ea
n

th
at

th
e

im
pl

em
en

ta
ti

on
of

th
e

u
se

ca
se

in
vo

lv
es

u
sa

ge
or

co
n

si
de

ra
ti

on
of

th
e

di
m

en
si

on
s

of
m

ob
il

it
y.

<
<

E
ss

en
ti

al
M

ob
il

e
U

se
C

as
e>

>
T

h
is

st
er

eo
ty

pe
ex

te
n

ds
W

is
do

m
’s

<
<

E
ss

en
ti

al
U

se
C

as
e>

>
.I

t
is

to
be

u
se

d
to

in
di

ca
te

th
at

th
e

pa
rt

ic
u

la
r

u
se

ca
se

is
a

m
ob

il
e

u
se

ca
se

an
d

th
at

it
is

n
ec

es
sa

ry
to

de
sc

ri
be

th
e

fu
n

ct
io

n
al

it
y

of
a

m
ob

il
e

ap
pl

ic
at

io
n

.T
h

is
st

er
eo

ty
pe

is
to

be
u

se
d

in
W

is
do

m
in

te
ra

ct
io

n
m

od
el

s
(t

h
e

u
se

r
in

te
rf

ac
e—

or
ie

n
te

d
ex

te
n

si
on

to
th

e
u

se
ca

se
di

ag
ra

m
s)

.
<

<
M

ob
il

e
C

om
m

u
n

ic
at

e>
>

T
h

is
st

er
eo

ty
pe

ex
te

n
ds

W
is

do
m

’s
<

<
co

m
m

u
n

ic
at

e>
>

st
er

eo
ty

pe
in

th
e

in
te

ra
ct

io
n

m
od

el
.I

t
in

di
ca

te
s

co
m

m
u

n
ic

at
io

n
be

tw
ee

n
an

y
ac

to
r

an
d

an
y

u
se

ca
se

w
h

il
e

th
at

ac
to

r
is

m
ob

il
e.

N
ot

e
th

at
th

is
sy

m
bo

li
s

n
ot

to
be

u
se

d
to

in
di

ca
te

co
m

m
u

n
ic

at
io

n
am

on
g

th
e

in
te

rn
al

cl
as

se
s

of
a

m
ob

il
e

ap
pl

ic
at

io
n

as
it

w
ou

ld
ca

u
se

co
n

fu
si

on
w

it
h

ex
te

n
si

on
s

al
re

ad
y

de
fi

n
ed

fo
r

m
ob

il
e

ag
en

ts
(d

is
cu

ss
ed

C
h

ap
te

r
9)

.A
s

yo
u

re
ca

ll
in

th
e

de
fi

n
it

io
n

of
th

e
in

te
ra

ct
io

n
m

od
el

,t
h

e
fo

cu
s

is
on

th
e

u
se

r
in

te
rf

ac
e

in
te

ra
ct

io
n

s.
<

<
Si

n
gl

e-
C

h
an

n
el

C
om

m
u

n
ic

at
e>

>
T

h
is

st
er

eo
ty

pe
ex

te
n

ds
<

<
M

ob
il

e
C

om
m

u
n

ic
at

e>
>

.T
h

is
st

er
eo

ty
pe

is
to

be
u

se
d

w
h

en
co

m
m

u
n

ic
at

io
n

be
tw

ee
n

th
e

ac
to

rs
an

d
u

se
ca

se
s

ar
e

do
n

e
th

ro
u

gh
on

ly
on

e
co

m
m

u
n

ic
at

io
n

ch
an

n
el

.W
e

de
fi

n
ed

ch
an

n
el

s
in

C
h

ap
te

r
5.

Sp
ec

ifi
ca

ti
on

of
th

e
ch

an
n

el
ca

n
be

do
n

e
th

ro
u

gh
te

xt
ad

de
d

to
th

e
sy

m
bo

l.
<

<
M

u
lt

i-
C

h
an

n
el

C
om

m
u

n
ic

at
e>

>
T

h
is

st
er

eo
ty

pe
ex

te
n

ds
<

<
M

ob
il

e
C

om
m

u
n

ic
at

e>
>

.T
h

is
st

er
eo

ty
pe

is
u

se
d

be
tw

ee
n

ac
to

rs
an

d
u

se
ca

se
s

or
ac

to
rs

an
d

ot
h

er
ac

to
rs

in
in

te
ra

ct
io

n
m

od
el

di
ag

ra
m

s.
It

in
di

ca
te

s
th

at
th

e
co

m
m

u
n

ic
at

io
n

w
it

h
a

sp
ec

ifi
c

u
se

ca
se

is
do

n
e

th
ro

u
gh

tw
o

or
m

or
e

ch
an

n
el

s.
O

C
L

m
ay

be
u

se
d

to
sp

ec
if

y
w

h
et

h
er

m
es

sa
ge

s
m

ay
be

pa
ss

ed
sy

n
ch

ro
n

ou
sl

y
or

as
yn

ch
ro

n
ou

sl
y

th
ro

u
gh

ev
er

y
ch

an
n

el
.S

pe
ci

fi
c

ch
an

n
el

s
m

ay
be

sp
ec

ifi
ed

th
ro

u
gh

te
xt

ad
de

d
to

th
e

sy
m

bo
l.

(c
on

ti
nu

ed
)

717

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

TA
B

LE
1
2
.1

(c
on

ti
n

u
e

d
)

St
er

eo
ty

pe
D

es
cr

ip
ti

on
Ic

on

<
<

G
IS

C
on

tr
ol

>
>

T
h

is
st

er
eo

ty
pe

ex
te

n
ds

th
e

<
<

C
on

tr
ol

>
>

st
er

eo
ty

pe
of

W
is

do
m

.A
s

yo
u

re
ca

ll
,t

h
e

<
<

C
on

tr
ol

>
>

st
er

eo
ty

pe
w

as
pu

t
on

a
cl

as
s

th
at

pr
ov

id
es

co
or

di
n

at
io

n
am

on
g

ot
h

er
cl

as
se

s,
ob

je
ct

s,
an

d
co

m
po

n
en

ts
(W

is
do

m
an

al
ys

is
m

od
el

).
A

G
IS

-b
as

ed
co

n
tr

ol
is

a
sp

ec
ia

lt
yp

e
of

co
n

tr
ol

th
at

u
se

s
G

IS
in

fo
rm

at
io

n
to

pe
rf

or
m

on
e

or
m

or
e

of
it

s
ta

sk
s.

G
IS

<
<

L
oc

at
io

n
-B

as
ed

C
on

tr
ol

>
>

T
h

is
st

er
eo

ty
pe

ex
te

n
ds

th
e

<
<

C
on

tr
ol

>
>

st
er

eo
ty

pe
of

W
is

do
m

.A
s

yo
u

re
ca

ll
,t

h
e

<
<

C
on

tr
ol

>
>

st
er

eo
ty

pe
w

as
pu

t
on

a
cl

as
s

th
at

pr
ov

id
es

co
or

di
n

at
io

n
am

on
gs

t
ot

h
er

cl
as

se
s,

ob
je

ct
s,

an
d

co
m

po
n

en
ts

(W
is

do
m

A
n

al
ys

is
M

od
el

).
A

lo
ca

ti
on

-b
as

ed
co

n
tr

ol
is

a
sp

ec
ia

lt
yp

e
of

co
n

tr
ol

th
at

u
se

s
lo

ca
ti

on
in

fo
rm

at
io

n
to

pe
rf

or
m

on
e

or
m

or
e

of
it

s
ta

sk
s.

L
B

S

<
<

G
IS

B
ou

n
da

ry
>

>
T

h
is

st
er

eo
ty

pe
ex

te
n

ds
th

e
<

<
B

ou
n

da
ry

>
>

st
er

eo
ty

pe
of

W
is

do
m

.A
s

yo
u

re
ca

ll
,b

ou
n

da
ri

es
ar

e
u

se
d

to
in

di
ca

te
th

e
in

te
rf

ac
e

li
n

es
be

tw
ee

n
su

bs
ys

te
m

s
an

d
co

m
po

n
en

ts
th

at
m

ak
e

u
p

th
e

ap
pl

ic
at

io
n

.T
h

is
st

er
eo

ty
pe

is
u

se
d

to
sp

ec
if

y
a

bo
u

n
da

ry
be

tw
ee

n
a

G
IS

sy
st

em
an

d
th

e
re

st
of

th
e

m
ob

il
e

ap
pl

ic
at

io
n

.

G
IS

<
<

L
oc

at
io

n
-B

as
ed

B
ou

n
da

ry
>

>
T

h
is

st
er

eo
ty

pe
ex

te
n

ds
th

e
<

<
B

ou
n

da
ry

>
>

st
er

eo
ty

pe
of

W
is

do
m

.A
s

yo
u

re
ca

ll
,b

ou
n

da
ri

es
ar

e
u

se
d

to
in

di
ca

te
th

e
in

te
rf

ac
e

li
n

es
be

tw
ee

n
su

bs
ys

te
m

s
an

d
co

m
po

n
en

ts
th

at
m

ak
e

u
p

th
e

ap
pl

ic
at

io
n

.L
oc

at
io

n
-b

as
ed

bo
u

n
da

ri
es

ar
e

u
se

d
to

sp
ec

if
y

th
e

bo
u

n
da

ri
es

be
tw

ee
n

th
e

co
re

fu
n

ct
io

n
al

it
y

of
th

e
ap

pl
ic

at
io

n
an

d
th

e
sy

st
em

(s
)

or
su

bs
ys

te
m

(s
)

w
h

os
e

so
le

fu
n

ct
io

n
al

it
y

is
to

pr
ov

id
e

G
IS

in
fo

rm
at

io
n

.

L
B

S

<
<

M
ob

il
e

Ta
sk

>
>

T
h

is
st

er
eo

ty
pe

ex
te

n
ds

W
is

do
m

’s
<

<
Ta

sk
>

>
st

er
eo

ty
pe

.T
h

is
st

er
eo

ty
pe

de
fi

n
es

a
co

m
pl

et
e

se
t

of
in

te
ra

ct
io

n
s

be
tw

ee
n

th
e

m
ob

il
e

u
se

r
an

d
th

e
sy

st
em

to
ac

h
ie

ve
so

m
et

h
in

g
m

ea
n

in
gf

u
li

n
te

rm
s

of
th

e
bu

si
n

es
s

pr
oc

es
s.

718

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.8 Security and Privacy of Location Information 719

12.8 SECURITY AND PRIVACY OF LOCATION INFORMATION

Security and privacy are of utmost importance to location-based services. Without
providing proper security and privacy, few users are willing to use a system that
can reveal their current location or history of locations to third parties. Exam-
ples of problems that may arise if proper security is not implemented for location
services are unwanted marketing, invasion of privacy by governmental or com-
mercial entities, and identity theft or other criminal activities. There are several
aspects to security and privacy of location information, The most important are
the following:

1. Access Security: There must be a proper authentication and authorization mech-
anism in place for those systems that access the location of a given device. Any
system that can obtain location information must in turn provide secure access
to any related data through proper authentication and authorization.

2. Data Security: Any system used to cross-reference any information that iden-
tifies the user associated with a device through profiles, billing, etc. must be
completely secured. The content that specifies the location of the device must
be transmitted through a secure mechanism (e.g., encryption).

3. User Control: The user must have control in specifying whether the location of
his or her device is shared with any secondary systems within or outside of the
primary wireless network.

Some of the key features of a system that offers location-based service and the
clients to such a system must be the following:

1. The system must allow the users to configure policies regarding where and
when their location information may be obtained and/or shared.

2. The system must allow the users to specify with whom their location informa-
tion may be shared.

3. The system must automatically remove all historical data about a user’s location
unless otherwise allowed by the user.

4. The location-based service must not expose specific information to its client
systems on why the location of a particular user may not be available. For
example, the client system must not be able to request whether the user has
specified to be unavailable to that particular client or during a particular time
window.

5. The error margin in the exact location of the user must not be provided unless
specified by the user.

6. The client system must specify a reason for which the location is obtained. Only
trusted systems should be able to obtain location information.

All other features typical to a secure computing interface such as authentication,
authorization, and encryption must be made available by the location-based service
to its clients. Of course, what we have outlined here is only a small, but important,
subset of features needed for truly secure acquisition and exchange of location

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

720 MOBILITY AND LOCATION-BASED SERVICES

information. In Europe and the United States there are existing and evolving
legislation to assure the privacy rights of the users.

Then there is the matter of privacy. There are many instances when a user will
allow his or her location to be known, but only within a certain range of accuracy
and with anonymity. In this context, we describe two metrics that Beresford and
Stajano have developed for measuring location privacy, one based on anonymity
sets and the other based on entropy [Beresford and Stajano 2003]. The two hy-
pothesize that although location information may be exposed, the number of
nodes that can link a given location to an actual identity associated with the thing
whose location was measured make up the anonymity set. It should seem obvi-
ous that the bigger the anonymity set size is, the more private the interactions of
the thing with the outside world become. Likewise, the more things inside the
set move around and the more the locations that we are measuring move around
(entropy), the more privacy the thing whose location is being measured at some
fixed time(s) has. This work is significant as a start in allowing us to quantify just
how private the location information associated with something or someone may
be. This quantification of privacy may eventually be used, directly or indirectly, as
a user-adjustable threshold.

The security and privacy of the location of devices that are open to the network
is one of the ongoing areas of research, development, and legislation brought about
by consumer concerns. Whereas location data about a particular user or aggregates
of users can be extremely helpful in many applications, the user must always have
the control over whether or not such information is obtained and with whom and
which subsystems it may be shared.

12.9 LOCALIZATION AND INTERNATIONALIZATION

Internationalization and localization standards for mobile applications are typi-
cally much more stringent than their stationary counterparts. Namely, because the
users of mobile applications are moving, they are passing through different locales.
An application whose business rules may change (e.g., the tax rate may be differ-
ent between adjacent locale boundaries such as states or provinces) can benefit
greatly from knowing where the user is or where the user is heading—information
that may be provided by a location-based service. Likewise, because the spoken
language, the written language, units of measurement, business rules, and a va-
riety of other things may change when the mobile user crosses the boundaries
of one country into another, location information can be of great help in deter-
mining the location. The key here is that internationalization and localization can
benefit from location-based information in that determining the location of the
user and the subsequently reliant application rules can be automated. However,
location-based systems do not really rely on internationalization and localization
techniques; the location model as well as the implementation of the location-based
system typically does not depend on the location being measured. The associa-
tion between location and locale information may need to be personalized. For

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

12.10 Latest Developments in Location-Based Efforts 721

example, a bilingual user who speaks both English and German may travel from
the United States to Germany with a GSM phone and want to see the appropriate
interface depending on the location. In contrast, an American user who does not
speak German may go to Germany and may want to continue viewing the system
in English though there may be some incorrect data (e.g., prices may have a dollar
sign instead of a Euro sign).

Therefore, location information facilitates easier, better, and more automated
localization and internationalization of other aspects of the mobile application
such as the user interface. Also, based on the network infrastructure, the imple-
mentation of the location-based systems may vary. Nonetheless, inherently, neither
the implementation of location-based system, nor the interface to it, requires lo-
calization and internationalization.

12.10 LATEST DEVELOPMENTS IN LOCATION-BASED EFFORTS

At the time of authoring this text, location-based services are one of the fastest
growing areas of computing. The most recent efforts focus on making location
information pervasive throughout all computing systems while allowing mobile
computing devices and systems to take advantage of this information. A prime
example is the SRI International’s Digital Earth project. The goal of the Digital Earth
project was to develop infrastructure for an open, distributed, multiresolution,
three-dimensional representation of the earth, into which massive quantities of
georeferenced information can be embedded [Brecht et al. 2002].

Digital Earth has been designed to be able to provide geographic representations
of locations in three modes: text based, map based, and TerraVision based. The text-
based format is for the simplest of devices, within which the resource-starved
low-end mobile devices such as some mobile phones may fall. The map-based
representation allows viewing of locations with PCs, high-end mobile devices
capable of rendering graphics well, and other devices with sophisticated two-
dimensional GUIs. TerraVision is a distributed, interactive terrain visualization
system developed by SRI International [Brecht et al.]. It allows three-dimensional
viewing of geographical locations, using GeoVRML, a set of extensions for VRML.
It is important to note that this project takes into account human-made structures
as well as the natural terrain of earth. Consequently, buildings and other types of
human-made structures are modeled and updated periodically.

Along with this, the Digital Earth project leverages DNS (Domain Name Server)
and HTTP, two of the base technologies for the Internet, to build a fault-tolerant,
scalable, and secure system for providing location information. SRI has recently
proposed a new DNS extension of .geo, to ICANN, to be used for retrieval of
location information using the Digital Earth project.

There is one more crucial thing about the Digital Earth project. The GeoWeb is
fully described in RDF. This is a very significant achievement because it allows the
integration of geographical information with other semantic information available
on the Web. This in turn gets us one step closer to producing a better environmental

P1: KPB

0521817331c12 CB752-B’Far-v3 May 4, 2005 17:13

722 MOBILITY AND LOCATION-BASED SERVICES

context for applications by integrating the semantic meaning of the geographical
information with semantic meanings of all of the other information and behavior
involved in the application.

There are also remaining challenges. As Jensen recognizes [Jensen 2002], cur-
rent GIS systems and supporting applications do not posses the necessary robust-
ness and scalability criteria to hold detailed data about movement of mobile things,
whether these are users or things that make up the topography of the geography,
as rapidly as needed. We still need further standardization in the modeling of
spatial information, and we need to create standards accepted by governmental,
academic, and commercial entities that implement solutions for accessing location
and mobility information.

Location sensitivity is one of the dimensions of mobility that offers the most
promise for new ideas in automating tasks to make mobile computing valuable.
Usage of location information is certain to become more prevalent in mobile
computing.

P1: JPJ/KPP P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c13 CB752-B’Far-v3 May 4, 2005 20:17

CHAPTER 13

Active Transactions

People demand freedom of speech as a compensation for the freedom of thought
which they seldom use!

Søren Kierkegaard

13.1 INTRODUCTION

We have used the term active transactions in this text only for the lack of a better
term that encapsulates the active participation of a computing system in interacting
with the user. What we refer to as active transactions in this text includes all those
behaviors exhibited by the system that are started autonomously by the applica-
tion without the immediate and synchronous invocation of the software by the
user. A subset of active transactions is often referred to as push-based technologies.
Although the term “push” is better used in defining the implementation of the
application, one part of the application could “poll” or “pull” and still exhibit
active participation in interacting with the user.

What is important to note right away is that active transactions are not limited
to push. Let us look at some examples of what we may mean by active transactions:

� An active mobile application that collects end-of-day field results can scan
through the records of a salesperson’s visits and if he or she has failed to fill out
a time sheet with the appropriate visits, the application locates the salesperson
by contacting him or her at all pertinent contact points. For example, the ap-
plication may call the salesperson on the phone and ask him or her to say how
many hours were worked and where the work was performed. The salesperson
may have simply forgotten to log his or her hours; this process would not only
contact the salesperson but also give the salesperson the opportunity to provide
the required information during the same session. Conversely, if the salesperson

723

P1: JPJ/KPP P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c13 CB752-B’Far-v3 May 4, 2005 20:17

724 ACTIVE TRANSACTIONS

is purposely avoiding logging in his or her hours or picks up the phone but
does not respond, the system may send a report to the supervisor indicating the
time the user was contacted, whether the user answered the phone call, etc.

� An active mobile application can monitor various air-travel fares while looking
for a particular route and time to be available at a certain rate. The application
notifies the user as soon as there is an available ticket that meets the criteria.
Furthermore, by continuing the interaction initiated by the mobile application,
the application may allow the user to proceed to purchase the ticket.

Obviously, this type of active behavior is not required of a mobile application.
However, it enhances the value of mobile applications greatly; remember that
one of the conditions of the mobile user is that he or she is not focused on
the task of computing. Therefore, the application must take greater initiative in
initiating interactions with the user to make itself worthwhile. Regardless of the
implementation techniques used in providing active behavior, one or more of the
following is always exhibited by active mobile applications:

1. The components of the system must have the ability to be persistently, identifi-
ably, and reliably connected to the network.

2. There must be an identifiable presence of the user or the mobile device used by
the user. For the system to begin one or more interactions with the user, it has
to be able to identify the user and the specific device being used by the user
at the time the first interaction is to be initiated by the system. Presence is a
concept that is necessary for instant messaging, but it is also a desired attribute
for many active interactions with the user. Knowing whether a user is present
and whether he or she wants to be allowed to be contacted can be very helpful
if not essential to commencing an active interaction with the user.

3. Intelligent agentlike behavior is often exhibited by active mobile applications.
For example, many times the reason for an application being active is that the
user wants to set it off searching for something and come back and notify him
or her with the results when found.

These three properties can be seen in other computing applications such as mes-
saging (asynchronous or instant) and agent applications (i.e., not mobile agents
but rather agents that do work on behalf of users). Messaging and intelligent agents
share many attributes with effective mobile applications, and a well-built mobile
application borrows from years of experience in those fields. Note that we exclude
single-event notifications such as an alarm clock going off. Though these types of
notifications are absolutely crucial in mobile applications, they are not “transac-
tions” per se. In other words, there is no “transacting” taking place between the
user and the machine. The machine simply notifies the user of something and
then goes away. Such notifications are indeed active but do not have transactional
or interactive properties.

Our focus in this chapter will be on those technologies that enable this desired
active behavior by our mobile applications and on seeing how best to integrate this

P1: JPJ/KPP P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c13 CB752-B’Far-v3 May 4, 2005 20:17

13.2 Active Computing and Wireless Infrastructure 725

behavior into our mobile applications. We have already covered some of the basic
technologies involved such as SMS. In a way, SMS is the most rudimentary type
pf enabling technology for active transactions: a simple message initiated by the
system that requires no reply from the user. SMS is typically used as a messaging
system between two users but it can be used to send messages to the user that are
generated by the system.

However, SMS does not allow the user to enter into a transactional interaction
with the system. So, it is not the complete solution that we need. As of yet, there
are no deployments of such a complete solution that allows a fully active behavior
by the mobile application to be implemented. But this will change in the near
future. Examples that we will look at will be WAP 2.0, Mobile IP, and SIP.

Finally, before delving into a detailed discussion of various technologies, it
should be noted that everything we discuss here is at the session layer and up
on the OSI (Open Systems Interconnection) model. Most of the functionality
of push-based technologies, or any other type of technology that can initiate an
interaction with the user, is implemented at the application layer (the highest layer
of the OSI model) with some implementation seeping into the presentation layer
and session layer (gateways such as those seen in the case of the WAP 2.0 Push
Proxy Gateway). There is no fundamental difference between active and passive
interactions between two computing systems at the transport layer or lower down:
Packets are packets, regardless of the direction of travel.

Let us begin our discussion with an overall look at the wireless infrastructure
that offers the skeleton for the system to send the initial message out to the user
and allow the user to follow with subsequent messages from thereon.

13.2 ACTIVE COMPUTING AND WIRELESS INFRASTRUCTURE

For the system to actively initiate interactions with the user, we can have one of
the two following conditions:

1. Some condition, observable by the mobile device or the application running
on it, occurs and there is a mobile application running on the mobile device
that can recognize this condition. This application can then decide to initiate a
series of interactions with the user. For example, this may be a simple reminder
of an appointment that allows the user to push a snooze or a cancel button. The
information for the appointment may reside in the PIM (mobile application on
the device) that notifies the user.

2. The condition that is to trigger the initiation of the interaction with the user,
part of the application that interacts with the user, or all of the application that
interacts with the user is somewhere else than the mobile device on the network.
This means that the act of initiating an interaction with the user includes some
network traffic. This is a more complicated model because it requires some
way of connecting to a device, recognizing the presence state (whether the user
has the device on, wants to be contacted, etc.), and finally pushing the initial
message out over the network.

P1: JPJ/KPP P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c13 CB752-B’Far-v3 May 4, 2005 20:17

726 ACTIVE TRANSACTIONS

For the first case, in which all of the application and the data it needs are on the
mobile device, active behavior of the mobile application can be implemented in
several different ways:

1. The underlying API on top of which the mobile application is being written
(device operating system, device drivers, etc.) may offer events that are thrown
when certain events (timers, ad hoc network handshakes, etc.) occur. These
events may then “wake up” the mobile application (or a part of the mobile ap-
plication or some tertiary application that in turn signals the mobile application)
and start it on a path to eventually interact with the user.

2. Some sort of polling, either inside the mobile application or through an external
agent on the mobile device, may be monitoring various states of the physical
device. In other words, the mobile application, directly or indirectly, may be
polling the device for states that will trigger some event in the application.

3. The first two cases here assumed that the trigger lies within some event in the
device. The trigger could also be a logical event (e.g., it could notify the user
when he or she is more than 60% over scheduled in his or her calendar). In
this case, the application typically polls the data that it has access to or the
application framework does the polling and bubbles up, through the API, an
event to the mobile application.

Any one of these three cases are basically dictated by the type of device and the
available operating system and application development framework that make
up the mobile platform (e.g., J2ME on Nokia phones). The reason for recognizing
these different approaches is that each dictates a different implementation strategy.
Strategies and design patterns for event models and polling are common to station-
ary applications. We will leave the reader to research such strategies and patterns
in textbooks regarding multithreading, software design patterns, and push–pull
implementation.

The more complicated case is when network-based transactions are required
to establish an active interaction with the user. And as we have stressed, there
are both wired and wireless mobile applications. For the wired case, we go back
to the paradigms developed for distributed computing techniques for stationary
systems such as Java’s RMI or IIOP where, once the mobile application establishes
the connection with the network through a wired network, things work much
the same way as the stationary applications when it comes to initiating active
interactions with the mobile application at the node.

In the wireless case, we have to have wireless infrastructures that support a
mechanism by which we can notify the mobile device. Before looking at how
the wireless infrastructure may provide a substrate for active transactions, let us
define some terms that we have already seen a few times in this chapter: push
and pull. The terms push and pull have been used differently within various
disciplines of computer science such as network management, communication,
content management, and others. For our purposes, communication, most likely
in the form of messaging in an MMI, is the domain within which to define these
terms.

P1: JPJ/KPP P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c13 CB752-B’Far-v3 May 4, 2005 20:17

13.2 Active Computing and Wireless Infrastructure 727

First let us look at a pull. The HTTP request–response mechanism is a good
example of a pull mechanism. In a pull mechanism, one party sends a message to
the other party and blocks (a term used to indicate synchronous waiting) until the
other party returns a response. In this way, pull is synchronous. Typical usage of
the pull model in building an active interaction with a mobile device would be a
case where the mobile device (or the application running on it) submits a request
to a server and blocks until the response is sent back, then proceeds to interact
with the user based on the returned results. The initial request may be invoked by a
timer, a background thread polling a local event, or some other event. Conversely,
if we have a listener (microserver, etc.) running on the mobile device, some other
node on the network can send it a request and wait for a response. The initial
request may start a chain of actions that lead to an active interaction with the user.
The response back to the initiator node may be a simple acknowledgement of the
receipt of the message or it may hold data regarding the state of the device, the
subsequent interactions of the user with the application, etc.

Like pull, push is used in many different contexts to mean different things.
Push is defined, by Openwave’s WAP 2.0 Technology Overview, to be “the deliv-
ery of content to the mobile device without previous user interaction” [Openwave
2002]. However, this is probably not enough of a specific definition because we can
deliver content to the mobile device with pull without previous user interaction.
The additional factor that makes push unique is that it is asynchronous in nature.
In other words, when node A pushes something to node B, it does not block and
wait for something to come back, though something may eventually come back.
Whatever message is sent back is sent asynchronously and without timing guar-
antees. Of course, specific implementations can add in application-type timeouts,
but these timeouts should be configurable as they are not part of the semantics of
defining push. Push has gained a bad reputation based on the failure of some In-
ternet companies such as PointCast whose claim to fame was going to be based on
a proprietary network that pushed content to the user’s desktop. Other companies
have used push exclusively as the primary mechanism for updating and provi-
sioning software. Within the context of this text, because we are referring to push
in the realm of communication, specifically mobile communications, we define
push as delivery of application layer messages, without invocation of the message from
the recipient, and in an asynchronous manner. This definition is why SMS makes
the simplest form of a push: It is a text message sent to a mobile device without a
synchronous wait for a reliability reply (or any other type of reply for that matter),
though the SMSCs can send a message to the initiator of the message if there is a
problem with the delivery of the message to its destination.

It is very preferable for wireless infrastructures to support some sort of a push
in the application-layer infrastructure so that messages of an asynchronous nature
may be sent to a device destination by an initiator. Otherwise, the only other way
of delivering an active interaction with the user is to have a client-side piece of
software running on the mobile device; this application should then serve as a
listening server or a polling client. Neither of these situations is ideal, as we have
seen, devices are resource-starved. Even as these devices become more and more
powerful, the asynchronous nature of a push makes it desirable in providing

P1: JPJ/KPP P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c13 CB752-B’Far-v3 May 4, 2005 20:17

728 ACTIVE TRANSACTIONS

active interactions because the unreliable device connectivity resulting from the
mobile nature of mobile devices makes implementation of synchronous interac-
tions between clients and servers difficult. The mobile device is not always on,
nor is it always connected. Moreover, the QOS or available resources may not be
desirable to accept a message. In such situations, asynchronous delivery of mes-
sages to the device makes much more sense. Note also that whatever mechanism
is deployed should minimize power usage.

Both push and pull can be performed in either an aperiodic or a periodic fashion;
aperiodic delivery is event driven—a data request (for pull) or transmission (for
push) is triggered by an event such as a user action (for pull) or data update (for
push) [Franklin and Zdonik 1998]. Also, we can unicast, multicast, or broad-
cast push. In other words, we can send the same initial message to one des-
tination, several specific destinations, or all destinations present in a network.
Various wireless network infrastructures provide different levels of support for the
permutations of destination addressing (unicast, multicast, and broadcast) and
periodicity of the message arrangements.

We will look at WAP 1.2 and 2.0 Push in the next section. At present, WAP
Push is the most widely implemented push mechanism in the wireless world.

13.2.1 WAP Push
We discussed WAP in the earlier chapters of this text. WAP creates a very well
defined infrastructure for pushing information to WAP-enabled mobile devices.
WAP Push was first made available in WAP 1.2, which saw very little deployment
and is being superseded by WAP 2.0.

The WAP 1.2 Push architecture relies on a Push Proxy Gateway, commonly
referred to as a PPG, and a Push Initiator, PI. The PI contacts the PPG through
PAP. PAP is a high-level application-layer protocol that can be piggybacked on top
of HTTP, SMTP, or other like protocols. The interactions coming from and going
to the PI in PAP are translated to the Push OTA (over-the-air) protocol of WAP by
the PPG, which allows the PPG to reach the WAP client. Note that the PPG is a
WAP gateway with additional functionality for implementing push.

The PPG also takes care of addressing translation. To begin the push process
to a WAP client, we need to be able to address that client. This addressing can be
done by uniquely identifying a device (device address) or uniquely defining the
user of the device. Whereas addressing the device is straightforward, addressing
the user is a bit more complex as the user may be using one of many devices and
which device is used by the user is unknown to the network. Device addressing
is done by using IPv4/6 or Mobile Subscriber ISDN Number (MSISDN). IPv4 is
the prevalent addressing scheme for IP-based networks (addresses in the form of
xxx.xxx.xxx.xxx, where x is a numeric value), IPv6 is the standard for which most
Mobile IP–based standards are designed to be integrated with, and MSISDN is an
addressing scheme that is somewhat specific to the type of underlying network.
MSISDN will probably give way to Mobile IP–based addressing and IPv6, but do
not expect this to happen very soon. The MSISDN install base is very large globally
and includes a variety of telephony systems. It will be challenging to migrate even
a significant portion of the infrastructure and devices to supporting IPv6.

P1: JPJ/KPP P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c13 CB752-B’Far-v3 May 4, 2005 20:17

13.2 Active Computing and Wireless Infrastructure 729

Whereas a device can have one of these three specific types of addresses, the
PPG takes care of user-based addressing. The PPG can hold the logic, or can be
connected to an application server that holds the logic, for the link between a
specific device and a specific user at a given time.

Because we have already looked at the different types of underlying networks,
the two things worth further discussion here are PAP and WAP OTA. How do
messages get pushed to the PPG and then pushed, by the PPG, to the WAP client?

PAP’s payload is XML and it is defined with a DTD in WAP 1.2, though it will
eventually be defined by a schema. PAP specifies two types of operations: those
that are required to implement WAP 1.2 and those that are optional. The required
operations are the following:

1. Submission: This includes the initial message sent from the PI to the PPG and
a response from the PPG to the PI. The content of the message sent by the PI
to the PPG is a MIME document that may be made of multiple segments. If
the message gets to the PPG in good order, then the PPG must send back an
acknowledgment of the good receipt to the PI.

2. Bad Message Response: If the PPG has a problem with receiving a message from
the PI or if the message is corrupted, it sends back a Bad Message Response to
the PI.

3. Result Notification: Simply making sure that the message is delivered to the
PPG by the PI is not good enough. We need to know if the end client received
the message. However, the end client and the PPG communicate through a
fundamentally different infrastructure than the PI and the PPG. The PI and the
PPG typically communicate through a much more reliable network whereas the
connection between the PPG and the end client is much more unstable.

The optional operations of PAP are the following:

1. Push Cancellation: This operation is like the “unsend” that every e-mail user
wishes, at one time or the other, he or she had. As there is a finite amount
of time spanned between the time when the message is first generated by the
PI and sent to the PPG and the time when the message is sent, through the
Push OTA and by the PPG, to the end device, the PI may decide to cancel
the sending of the message. This could be caused logically (based on application
logic) if the response received from the PPG is not the desired response (e.g., a
bad push submission is received or no response is received).

2. Status Query: Once the PI sends a message to the PPG, then it should have a
way to know the status of the delivery of the message to the end client. This
mechanism is provided by the Status Query operation. This status could be used
by some external application, used as a means to time out and call a cancellation,
or used by one of many other application-based operations that depend on the
specific usage of the pushed message.

3. Client Capabilities Query: Because any type of content can be pushed out to
the client, then the PI and/or the back-end applications using the PI should
know what types of content the end client can handle and what other general

P1: JPJ/KPP P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c13 CB752-B’Far-v3 May 4, 2005 20:17

730 ACTIVE TRANSACTIONS

capabilities it has. This operation allows the PI to query the PPG for the capa-
bilities of the client. In the case of more sophisticated clients, the PPG may then
query the device and proxy the response back to the PI. However, most of the
time, the PPG knows the type of the connected device and its capabilities and
simply responds to the PI based on this known information.

4. Quality of Service: As we saw in previous chapters, one of the dimensions of
mobility is the QOS of the connectivity of the device to the network. PAP allows,
optionally, for specifying the delivery of messages to the end client based on
the available QOS. For example, we do not want to push advertisements to a
user who is currently experiencing bad QOS conditions and take up the little
bandwidth that he or she has available.

5. Delivery Timing: Once again, optionally, PAP allows us to specify when a message
should be delivered to the target and then request a notification when the
message is received by the end user.

There can be three entity types in a multipart PAP message as specified in the
WAP 1.2 Specification: a Control Entity, which has information about the delivery
of messages throughout the WAP-based infrastructure such as addressing; a Con-
tent Entity, which can hold any valid XML or MIME type that either the PPG or the
end-client understand; and a Capabilities Entity, which is used to communicate
the capabilities of a device. (Incidentally, it is a mystery why CC/PP and UAProf
have not been used for this latter purpose in PAP.)

As far as the mobile application developer is concerned, the PI is the integration
point for the back end of the mobile application. Rarely do carriers expose the
PPGs to third parties; therefore, a WAP Push to the mobile application developer
means interfacing with an existing PI or creating an application that acts as a PI and
communicates with the PPG. If you are dealing with a third party vendor’s software
whose tools are installed within the carrier’s telecommunications infrastructure
(such as Nokia or Phone.com’s WAP infrastructure software), you may also be able
to get your hands on some tools that provide custom interfaces to these servers.
By now, you may be asking yourself how the device is notified by the PPG.

A WAP 1.2–enabled device must first support the Push OTA protocol as specified
by the WAP Forum. In addition, it also has to have a Session Initiation Application
(SIA). The SIA application is alive while the device is on and is listening for
messages being sent to it. Once it receives a message, it passes it on to the WAP-
enabled application (WAP browser, etc.), which is also referred to as the application
dispatcher.

As you will see later in this chapter, PAP is very similar, in design and intent,
to SIP (Session Initiation Protocol). Although PAP and SIP were designed for
entirely different purposes, it is interesting to see how they have both evolved
from HTTP and how similar they are in some of their basic operations. This leads
us to recognize the inherent similarities in the requirements for a system that
supports push such as PAP and a system that supports instant messaging such
as SIP.

Architecturally, there is not much difference between WAP 1.2 and WAP 2.0
Push. But there are some differences at the implementation level. For example,

P1: JPJ/KPP P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c13 CB752-B’Far-v3 May 4, 2005 20:17

13.2 Active Computing and Wireless Infrastructure 731

as the content compilation and encoding scheme moves from WML, WMLC, and
WBXML in WAP 1.x to XHTML in WAP 2.0, the content handled by a WAP 2.0
Push proxy may be different from that handled by a WAP 1.2 Push proxy. Of
course, a WAP 2.0 Push proxy should be able to handle the older content types
(being backward compatible), but, in real-life, this may prove to be somewhat
unreliable as WAP deployments are often pieced together (at least in the United
States) and are made of a various servers by different vendors, not all of which
may provide the same amount of backward compatibility. So, though in theory
backward compatibility should always be there, it is sometimes not seen in the
real deployments of WAP 2.0 infrastructure because of such differences as the
content type.

Although WAP 2.0 can use a Mobile IP–like addressing scheme, its core infras-
tructure is not based on Mobile IP. Future versions of WAP will continue to move
toward a completely IP-based network, perhaps Mobile IP.

13.2.2 Mobile IP and Push
The goal of IP mobility support is to provide the means by which applications on
distinct computers are able to communicate when one or both computers have
changed their physical network location; Mobile IP tries to provide such support
with a solution at the network layer [Singh et al. 1999]. Mobile IP is significant
to active interactions with the mobile device because it offers the only IP-based
solution, to date, to providing a persistent connection between the device and the
network regardless of the type of connectivity.

It is easy to fall into the trap of assuming that the mobile device may be connected
only through long-range wireless networking technology, or conversely, only
through short-range wireless networking technology. This situation is becoming
more and more not the case! As device manufacturers are realizing, the type of
wireless connectivity to the network desired may be different depending on the
location. As an example, a particular user may always have GSM connectivity on
his or her PDA, but when the user crosses into a short-range wireless hot spot
(Bluetooth or WIFI), it may be desirable to switch to the connectivity mechanism
through the hot spot and, as the user exits the hot spot, it may again be desirable
to switch to GSM for an uninterrupted usage experience by the user.

The implementation of Mobile IP across the different types of wireless networks
(short range and long range, including technologies such as GSM as well as WIFI)
not only allows seamless roaming among different networks but also guarantees
us a reliable and clean fabric on which to build mobile applications. Mobile IP
would allow us to start an active set of interactions with the user in one network
and end it in another network without violating the transactional integrity of the
session.

13.2.3 Session Initiation Protocol
SIP is an IETF standard for communications between users and is addressed by
the 3GPP Specifications. The strongest supporter and implementer of SIP today is
Microsoft and its most pervasive usage is in instant messaging applications, mobile
or not. SIP addresses how to establish a session between peers, how to maintain

P1: JPJ/KPP P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c13 CB752-B’Far-v3 May 4, 2005 20:17

732 ACTIVE TRANSACTIONS

INVITE sip:user@cienecs.com SIP/2.0

From: Susan Boettger<sip:susan@pianoedge.com>

Subject: Piano Lessons

To: Laurna Griffits <sip:laurna@pianoedge.com>

Via: SIP/2.0/UDP someserver.someisp.com

Call-ID: 15555555.1.1@1.1.1.1

Content-type: application/sdp

CSeq: 1 INVITE

Content-Length:

v=0

o=A1 53655765 2353687637 IN IP4 1.1.1.2

c=IN IP4 1.1.1.1

t=0 0

m=audio 7865 RTP/AVP 0

FIGURE 13.1. Sample SIP Code.

this session, and how to exchange data during a established session. Like HTTP,
SIP is an application-layer protocol built for IP-based networks.

A sample SIP code is shown in Figure 13.1.
SIP defines transactional boundaries for its messages: Each complete message

passed from one node to the other is called a transaction. All transactions are
independent and are identified by a sequence number. SIP defines the following
roles for the components involved in a SIP-based transaction:

1. User Agent Client: This is also referred to as UAC and is equivalent to the client
in the HTTP world. In our case, this is the mobile device. Note that defining a
client and a server makes SIP a client–server protocol.

2. User Agent Server: This is also referred to as UAS and is the server listening for
client requests.

3. Proxy Server: Once again, just like HTTP proxies, SIP proxies sit between a
client and a server, passing the requests through the network. They can also
create multiple requests from a single request.

4. Redirect Server: These servers simply redirect requests to other servers.
5. Registrar: This is a concept unique to SIP; it allows the users to register with a

centralized mechanism so that this centralized mechanism can provide presence
information.

Either the proxy or the registrar system(s) can be responsible for maintaining
the presence state of the connected devices. Alternatively, another system can be
used to maintain the presence information. Whatever system is used to do this is
referred to as the presence agent. This presence is addressed in a single user and
multidevice manner. In other words, it is able to maintain the presence information
about a user who may be connected through multiple devices at the same time
or different times. This functionality is crucial in being able to deliver a robust

P1: JPJ/KPP P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c13 CB752-B’Far-v3 May 4, 2005 20:17

13.3 Practical Considerations of Building Active Systems 733

active mobile application because a mobile user may be changing what device he
or she is using rapidly and unpredictably. The presence agent is also responsible
for authenticating the user. Unfortunately, the SIP specification does not address
authorization, but it is assumed that authorization is application specific.

Seeing all of the similarities of SIP with HTTP, you should not be surprised that
SIP also defines a set of methods. These methods are as follows:

1. INVITE: This method invites another registered user to a session.
2. OPTIONS: This method queries another user about the capabilities of the device

and platform being used. Note that this is only a query about the capability of
the other user; no invitation is made to participate in a session.

3. BYE: This method ends a current session in progress with another user.
4. ACK: Much like the ACK used in TCP, it is used to acknowledge the receipt of

a message.
5. CANCEL: This message stops a search.
6. SUBSCRIBE: This method allows a subscriber (which could be an end system

or a proxy) to be notified of the presence state of a user (or his or her device).
7. NOTIFY: This is the message sent to a subscriber about the presence information

to which he or she has subscribed.
8. MESSAGE: This is basically a single text-based message sent from one partici-

pant to another.

Once again, just like HTTP, there is a header and a body. Many of the headers,
as you will see, are borrowed from HTTP. SIP also uses the concept of URIs ex-
tensively. As you can see at this point, SIP is really just a modified version of
HTTP that fits instant messaging better than HTTP does. Overall, this is probably
a much better idea than simply using HTTP for instant messaging (which is still
being tried, demonstrating that the antipattern mentality lives on!). So, why not
just use HTTP? Not only does SIP address the question of presence, but it also
makes special considerations for voice-based interactions. This is particularly im-
portant in the multichannel and multimodal mobile world.

There is something else that is important. SIP and similar technologies are
really somewhat competitive with push-based technologies. Although the imple-
mentation of the technologies are vastly different, they enable essentially the same
functionality: allowing software systems to exhibit active behavior. Of course, SIP
and SIP-like technologies were primarily designed for instant messaging, but the
functionality that is delivered is well suited for active interactions between the
user and a computer system. Besides, instant messaging and active interactions
share many properties; the main difference between them is that, in instant mes-
saging, the messages are being sent back and forth between live users and, in active
interactions, some software agent is producing at least some of the messages.

13.3 PRACTICAL CONSIDERATIONS OF BUILDING ACTIVE SYSTEMS

By now, you know that it is important to consider various ways of actively
keeping the user of your mobile application involved. There are some practical

P1: JPJ/KPP P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c13 CB752-B’Far-v3 May 4, 2005 20:17

734 ACTIVE TRANSACTIONS

considerations, when implementing active behavior for the different parts of your
system, that you should keep in mind. These are as follows:

1. You must assure that your user has the ability to protect his or her privacy in
any sort of an active interaction. If the user does not want to be contacted by the
application and/or is not bound by his or her employer or another organization
to participate in some interaction with your application, allow the user to per-
sonalize it so. Personalization and active behavior of an application go hand in
hand. The problem that active interactions solve stem from the condition of the
mobile user: a fundamental lack of focus on the task of computing. Make sure
your application does not “annoy” the user (e.g., avoid things such as unwanted
advertisements pushed to the mobile device).

2. We have talked about push and pull in this chapter. Surely we want to pick the
best way to implement the solution, but we often do not have enough control
over the infrastructure that we are going to use. More often than not, we are
given an infrastructure and have to implement the application on top of it.
The point is to make the user experience as good as possible. The value of any
software application is not in its artistic architectural beauty but rather in the
value it delivers to solving some problem. So, implement the active behavior in
the best possible manner.

3. Some implementations of push take up enormous amounts of bandwidth be-
cause they keep the data channel between the mobile device and the network
fairly busy. Make sure that, if you are going to use some push-based technology
as the underlying implementation of the active behavior in your system, it does
not suck up a great deal of the valuable wireless bandwidth to the mobile device.

4. Mobile agent–based systems, discussed in some detail in Chapter 9, inherently
implement active behavior. There is no need for a “push” in such systems
because they can simply migrate to the host where the active behavior must be
displayed. This is a great advantage of mobile agent systems. Combined with
some intelligence (sometimes referred to as intelligent agents) that implement
some work that the end user may otherwise have to do, mobile agents give us
much of the infrastructure we need to build active behavior into our mobile
application.

5. Because the wired Internet is based on TCP/IP, UDP is often neglected as an
option. As UDP does not guarantee the reliable delivery of datagrams, it is by
nature asynchronous—it does not block waiting for some response. In this way,
UDP can be extremely useful in building systems that exhibit active behavior.
It can be used in broadcasts and multicasts. It can also be used as a mechanism
to “wake up” some application on the mobile device that begins interacting
with the user. That initial atomic interaction and its trigger are the keys for the
mobile application to exhibit active behavior at the application layer, and UDP
is ideally suited for addressing this problem.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

CHAPTER 14

Mobile Security

Everything that man does in his symbolic world is an attempt to deny and overcome
his grotesque fate.

Ernst Becker

14.1 INTRODUCTION

Security is always one of the biggest concerns when designing any application,
but particularly distributed applications. Distributed applications operate over
networks, involve multiple users, and have many other properties that make them
more vulnerable to security breaches. Though there are stand-alone mobile ap-
plications, as we have discussed earlier in this text, most mobile applications, at
their core, are distributed applications. Unfortunately, to date, there remain many
unsolved problems with security concerns of mobile applications.

Our goal in this chapter will be to first introduce a taxonomy of mobile ap-
plication security problems, look at a few general approaches in solving these
problems, and finally review those problems that remain unsolved. Security also
tends to be a system-wide problem, not just an application problem, whether deal-
ing with mobile or stationary applications. So, we are not out to show you sample
code, standards, or specific techniques; such discussions are completely beyond
the scope of our discussion. Our main purpose is to take a step back and look
at the big picture of mobile application design and see where security concerns
may be. Security is intimately bound to the design of the platform for which the
mobile application is being built. Dealing with such concerns can be trivial as
all we need to do is to understand the security infrastructure of the mobile plat-
form and implement the appropriate APIs in our applications (e.g., what WAP
may let us do with WTLS or how we can author secure applications on the Palm
platform).

735

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

736 MOBILE SECURITY

However, most mobile application or mobile platforms do not exist in isolation.
Therefore, the bigger picture is that most mobile applications are really distributed
applications being used by mobile users on mobile devices. And this is where
security gets tricky. In this chapter, we will concentrate on the big picture that
lets us see as many holes as possible. The solutions may be dependent on the
mobile infrastructure on which you must deploy your application or the mobile
application itself.

Just like all of the other topics in this text, our interest is not in reviewing
solutions and problems specific to some specific technology or review APIs. We
consistently believe, in approaching the various problems associated with mobile
application development, that focusing on specific implementations is not the
right approach because mobile technologies are changing far too quickly. So, let
us start with a general taxonomy of the type of security problems that we may
approach during the life cycle of our application.

14.1.1 Taxonomy of Mobile Security Problems
We need security for two reasons: 1. to keep out those malicious parties who
are trying to get access to things that they are not allowed to access and 2. to
ensure that information and system access are not inadvertently given to parties
not actively seeking a system breach. So, the goal is to keep data and system access
from being exposed to parties who should not access them, whether or not those
parties are actively seeking a breach. Such a breach can happen at different points:
hardware, software, and communication channels. Because of this, we can use the
OSI model and its taxonomy to group the various types of security concerns for
mobile applications. We will start from the top and work our way down:

1. Application Layer Security: This the most important layer for securing our mo-
bile application. As software application developers, practically speaking, we
have the most control at this layer. Assuming that all other layers below this one
are not secure, we can still build a secure application if we exercise due caution
at this layer. This does not mean that this is the best course of action to take,
but as this is the layer over which we as software application developers have
the most control, we need to pay the most attention to it. In the case of stand-
alone applications, the OSI model does not have much meaning as it is primarily
used to represent networked applications. Nevertheless, we can think of a stand-
alone application to exist entirely at this level: We have complete control over
whatever security features we need to implement. The operating system may
provide features that make things easier. For example, for a simple Palm ap-
plication that uses no networking, the security concerns may entail encrypting
all of the data and using sufficient usernames and passwords for authentication
and authorization in the application. At this same layer, the application layer,
a networked application that uses HTTP for communication on the same plat-
form (Palm OS) may additionally include usage of encrypted communication
using techniques such as DS3 or a similar technology as well as authentication
for whatever other computing system is communicating with our application.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

14.1 Introduction 737

2. Presentation Layer and Session Layer Security: SSL (Secured Socket Layer) is
probably the most important technology of interest here. Though there are other
possible techniques that use public and private keys for secure transfer of data,
SSL is by far the most popular and the one for which nearly all platforms provide
support. If you remember, when we looked at WAP, the security mechanism of
WTLS provides the SSL implementation for the WAP protocol. Implementing
SSL (by which we mean actually writing the SSL specification as a library for
your operating system or trying to implement it on an end-to-end system such
as WAP) is not something that we will worry about in this text as it is outside
of the scope of the typical work that an application developer has to do; it is
nothing trivial! What is interesting to note is that the size of the public and
private keys may be smaller than desired because of the resource limitations on
mobile devices. Keep in mind that the effort to break a security key by brute
force is, in the case of the best encryption algorithms, exponentially relative to
the size of the public and private keys. Here we encounter a problem that is not
solved in a simple manner: If the device does not have enough resources, it is
tough to justify spending whatever it has on encryption and decryption. There
has been discussion among mobile device vendors in providing hardware-based
solutions for SSL to provide a more efficient method for secure communications.

3. Transport Layer and Network Layer Security (IPSec): These layers are, respec-
tively, the home of TCP and IP (as well as other equivalent protocols). Whereas
SSL assures that all communications are secure, IPSec assures that the nodes
that are communicating are not malicious and masquerading as nodes that they
are not. IPSec also provides more low-level encryption and allows us to do “IP
Tunneling.” IPSec is particularly important in the infrastructure that supports
the mobile application. As Mobile IP technologies mature, IPSec will become
more and more relevant to the actual mobile device. Because of the lack of de-
ployment prevalence, there are no solid security solutions introduced specific to
the needs of Mobile IP (but, as discussed in Chapter 10, there are home agents
and foreign agents and this architecture brings additional considerations not
properly addressed by IPSec). There are some suggested solutions. For instance,
Fasbender, Kesdogan, and Kubits [Fasbender et al.] propose a nondisclosure
method that first recognizes the differences between a system based on Mobile
IP deployment and a regular IP-based system and then tries to address these
new requirements (see the reference for further details). However, these various
techniques have yet to be employed in real deployments and stand the test of
time and the patience of hackers.

4. Data Link Layer Security: This is where things like MAC (Medium Access Con-
trol) addresses belong. It is tough to cause a security breach through the data link
layer because it is typically hardware implemented. Hardware is also, of course,
susceptible to security problems, but hardware vendors typically test much more
rigorously than software vendors (as the costs of mistakes are much higher) and
it is much more difficult to get significant malicious programs such as viruses
onto the hardware to begin with.

5. Physical Layer Security: Perhaps the biggest differences between security im-
plementations of mobile systems and stationary systems are a byproduct of the

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

738 MOBILE SECURITY

fact that mobile systems are typically connected to the network through a wire-
less connection. Wired systems, whether fiber-optic cables, coaxial cable, or
twisted-pair wires, limit access to the bits and bytes traveling across the com-
munication channels that they provide inside their physical medium. However,
bits and bytes are all over the space between two wireless nodes waiting to be
read as there is no limiting “conduit” in the case of wireless communication.
Not only that, but intrusion detection is enormously more difficult in wireless
systems where signal attenuations, phase shifts, and other phenomena are part
of the physical condition of the network and cannot be used reliably to indicate
security breaches.

Considering this taxonomy of security issues based on the OSI model, the dimen-
sions of mobility, and the mobile condition of the mobile user leads us to the
following security issues that are unique from any of those concerns experienced
by stationary applications:

1. secure authentication and authorization of nodes,
2. secure communications between the authenticated and authorized nodes of

the network over a wireless connection (at various OSI layers using the cor-
respondingly appropriate techniques such as SSL at the presentation/session
layers),

3. secure deployment of an application on the target device,
4. secure storage and retrieval of information on the mobile device,
5. securing information collected or provided by the mobile application infra-

structure (e.g., location information),
6. securing any conversion of content required for supporting multimodal appli-

cations,
7. securing synchronization and exchange of information among different chan-

nels in a multichannel communication environment,
8. defending against the fraudulent usage of the wireless service, and
9. defending against various Denial of Service attacks that may interrupt service to

the network users (mobile application users in our case) or make other security
breaches possible.

In addition to these concerns, once again, we bring up the dimensions of mobility.
As we have repeatedly mentioned in this text, the dimensions of mobility are the
fundamental bases for those difference we see between mobile applications and
stationary applications. Security is a part of most stationary and mobile applica-
tions. So, we can go back to the dimensions of mobility to see the differences
in requirements, design, and implementations of security between mobile and
stationary applications. In other words, wee need to consider the following:

1. How do security concerns change when the location of the device and appli-
cation are changing, when the application is using location information in its
internal logic, when there exists some LBS infrastructure, and when the location
information must be provided not only securely but also privately?

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

14.1 Introduction 739

2. Is security compromised by the QOS? For example, some systems do not ap-
propriately secure dropped packets. Although this level of security may not be
important for a given system, we still need to be aware of it. Also, we noted
that QOS is a dimension of mobility largely because of the intermittent con-
nectivity of the mobile user but also because the connectivity may be provided
through a wireless network. As most wireless networks for consumer mobile
devices are cell based, we need to be worried about an entire arena of security
problems that occur because of the cell-based architecture such as security at
handover points. It is also important to keep in mind that we have to provide
offline-security. The user may need to use the application while it is not con-
nected to the network, so we may be required to implement different security
mechanisms including implementing authentication and authorization on the
device and on the network.

3. Security is almost always dependent on device capabilities as it takes device
resources to encrypt/decrypt data. For example, the size of the encryption key
may need to be smaller for some devices than others as they may not have the
processing power to encrypt and decrypt the data in a timely manner.

4. The power supply is only important in security if the device has different modes
of operation depending on the available amount of power. Obviously, not every
application or transaction within the same application requires the same amount
of security. The key is to make sure that the security of those transactions that
must be secure is never compromised regardless of the device mode of operation.

5. Various user interfaces require different types of security. For those developers
who have developed GUI-based applications, the biggest difference is in un-
derstanding the very different security techniques used in VUIs. For example,
it may be fine to display some secure and private information to the user on
the GUI application as he or she may be able to hide it from the surroundings,
but the same is not true in the case of a VUI; we do not want to play a text-
to-speech clip of the user’s bank account balance or, at the very least, we want
to give the user the choice to hear or view his or her balance. Voice itself can
also be used to test liveliness as well as authentication. These features are very
critical. Although there is no way to tell who is typing information on a mo-
bile device (unless the device has a fingerprint reader or some other biometric
interface, which is very unlikely), there are proven technologies that not only
allow us to recognize a user but also allow us to make sure that the user is live
at the time of the recognition and the audio being received by the system is
not a recording. Examples of such technologies are included in products of-
fered by Nuance, IBM, and Speech Works. Another critical issue is to provide
proper security for intermodal and interchannel communications. As we saw in
Chapters 5–8, the modes and channels involved in a multimodal user interface
are not independent. There are interactions that may be linked to one of many
different aspects such as temporal synchronization between different channels
or multimodal sessions that involve some user interface logic to render various
components through the appropriate channel and mode. Many security issues
are compounded by the multichannel and multimodal nature of interactions in
mobile applications.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

740 MOBILE SECURITY

6. As we have noted, because mobile devices are smaller and cheaper than PCs,
they have proliferated greatly. There are more different types of devices in the
mobile market; their life cycle is shorter than the life cycle of PCs for many rea-
sons, among which is the much lower cost to manufacture them. The problem
of device proliferation, coupled with the distributed nature of mobile appli-
cations, magnifies the scalability problem of implementing security. Each user
may have many different mobile devices. For example, a typical user may have a
mobile device in his or her automobile (telematic device), a cell phone, a PDA,
a laptop, and possibly a tablet PC, each of which may connect to the network
thorough a distinct channel or set of channels and have its own set of security
needs and requirements.

7. Actively interacting with the user presents us with more privacy problems then
security problems. Whereas we can use the user’s response to the initial transac-
tion for authorization, we must be able to authenticate the user prior to sending
out that initial message. Sending the initial interaction or pushed message to
the wrong user in itself is a security flaw.

8. In addition to the dimensions of mobility outlined in Chapter 1 (whose effect
on security has been discussed in points 1 through 7), the mobile condition of
the user introduces the following new concerns:
a. Mobile devices are more susceptible to theft and loss. It is much more difficult

to misplace your PC than it is your phone. The physical size of the device
has much to do with this. The smaller things become, the easier it is to lose
them. Though location-based technologies can help us in finding the device,
device security and important information may be compromised by the time
the device is found or recovered.

b. With mobile users, there is a range of environments to consider in a security
policy; with or without a VPN (Virtual Private Network), users may con-
nect to the network directly, through a corporate Internet service provider,
or through their own Internet servive provider, thereby using a variety of
different security guidelines established by different organizations [Clarkin
2003]. These differences may cause security breaches because something
that is secure in one network may not be secure in another.

c. As we noted, the life cycle of mobile devices tends to be shorter than their
stationary counterparts, the average being somewhere between eighteen and
twenty-four months. Rapid development of mobile technology to meet higher
user expectations has led to security being seen as too much work in a
compressed timeline [Claessens et al. 2003].

d. Many mobile devices use SIM cards. Securing the configuration and recon-
figuration of these SIM cards in itself is a security issue. Although this is
largely out of the hands of a mobile developer who is developing third-party
software for mobile devices, it is crucial to have a system for detecting when
the configurations on the SIM card change, thereby leading to a change of
behavior or intention on the part of the device.

Having discussed all of these various concerns and how we can categorize them
for mobile applications, we must take a further step, before all others, in designing

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

14.1 Introduction 741

a secure system: We must determine the threat levels. This is perhaps the single most
neglected step in most systems. One of the antipatterns that we have mentioned
has been that, once a solution works, we have a tendency to use that solution for
all sorts of problems, whether or not the solution is a good fit. This is often the case
for system-wide or application-layer security implementations. Without the proper
threat recognition in which the various levels of threat, sources of threat, and the
cost of security are addressed, trying to solve the security problems of a system,
whether mobile or not, becomes a haphazard series of jumps between isolated
symptoms instead of a systematic solution to the roots of security problems. In
the case of mobile applications, what you need to keep in mind while determining
the threat levels are the following:

1. Mobile applications are a superset of their stationary counterpart. Therefore,
you must take into account all of those concerns of stationary applications.

2. Consider the new security concerns introduced by the various dimensions of
mobility and the very distributed nature of mobile applications.

3. Consider the appropriateness of the level of security concern for each part of
the mobile application. It is easy to overestimate or underestimate the level
of security required for a particular transaction. The requirements-gathering
process is critical here. Also, different parts of the application may require
different security levels.

Finally, determining the threat level alone will not answer the questions that man-
agement will ask. Management is always looking for a return on investment in
any project and implementing security is no different. In fact, security tends to
be an area that is often not properly assessed. Some numbers that can help here
have been published by Stanford and MIT’s Sloan School of Management. They
have defined a Risk on Security Investment (ROSI) that, based on the empirical
evidence they have gathered, is at 21% at the design stage, 15% at the implemen-
tation stage, and 12% at the testing stage. This further verifies our approach that
security is largely an architectural and a system-wide problem that must be solved
at design time [Intel 2003]. We will not go into the details of the justifications of
these numbers; refer to the papers referenced here for those justifications.

Although in this chapter we will concentrate on the security provided by wire-
less technologies that give the mobile application connectivity to the network,
somewhere along the line we will also look at security issues of things that are
very unique to mobile applications such as security within ad hoc networking
technologies and mobile agent security.

Currently (and likely to be the case for the near future), security is implemented
in a very proprietary manner by many wireless networks that provide network
connectivity for mobile applications. This is particularly true in the long-range
wireless technologies, where it makes sense for the large telecommunication com-
panies to implement proprietary technologies closely tied to their infrastructure
assets (such as CDMA equipment). However, there are also standards that give
security a full and open treatment such as WAP, Bluetooth, and 802.11 standards
(though, as we will see, 802.11 security features have been much maligned).

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

742 MOBILE SECURITY

In this next section, we will look at the specific concerns associated with some
of the wireless technologies we have discussed earlier in Chapter 10.

14.2 SECURITY IN WIRELESS NETWORKS

Before reading this section, make sure that you have read Chapter 10 because
we will make references to concepts and technologies initially introduced in that
chapter.

A general problem with wireless communication is that the data can simply be
plucked right out of the air! Because the medium of communication is space itself,
the data being communicated is more accessible. With wired communications,
there is a communication conduit that must be tapped (twisted-pair wires, coaxial
cable, fiber optics, etc.). This is not the case in wireless communication. There are
no conduits nor physical barriers: The bits and bytes are everywhere out in space
to be picked up by all listeners, legitimate or otherwise.

In Chapter 10, we looked at various wireless technologies that are most relevant
to mobile computing. Particularly of interest are Bluetooth and WIFI in the short-
range family and CDMA-based and GSM/3GPP/TDMA technologies in the long-
range family. We will look at the various security aspects of these technologies
individually in this section.

Generally speaking, we are not only concerned with securely establishing com-
munication channels and securing the transmission over the channel, but there is
a concern typically foreign to stationary devices and networks: fraudulent usage of
bandwidth. Because of the physical barrier that exists with the wired infrastructure
in wired communications, stealing network bandwidth typically costs more than
it is worth. This is not so in the case of wireless communications because there
are no physical barriers.

There are numerous problems at the bottom layers of the OSI model that hard-
ware manufacturers must deal with. For example, maintaining the ability to de-
crypt data packets in the presence of packet loss is very difficult [Aziz and Diffie
1993]. This is especially true when we also do not want the dropped packets them-
selves to become a tool for a security breach. Fortunately, most if not all of these
problems are the concerns of hardware manufacturers and typically do not even
concern those writing operating systems for mobile devices.

14.2.1 Bluetooth Security
One of the short-range wireless networking technologies that we discussed in
Chapter 10 was Bluetooth. Every Bluetooth device in a Piconet generates a se-
cret key when the user enters a personal identification number (PIN). Devices
authenticate each other in multiple steps as follows:

1. The claimant (the device trying to be authenticated) sends a message based on
a 48-bit address to the verifier (the device challenging the authentication).

2. The verifier sends back a 128-bit random number as a challenge.
3. The claimant then creates a signed response based on using a Secure Hash

Function (specifically SRES). This function is, in turn, based on the secret key

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

14.2 Security in Wireless Networks 743

of the device, the random number sent during the challenge, and the 48-bit
address and sends the message back to the verifier.

4. The verifier generates its own SRES and compares the SRES received from the
claimant to the one that it generated.

5. The claimant also creates its own 96-bit cipher to encrypt the messages once
authenticated.

A Bluetooth deployment can operate in three different security modes. First, we
can have no security, which means any Bluetooth-enabled device can join the
network without requiring authentication. Second, we can enable service-level
security, which basically means turning on security at the data link layer and
monitoring access to various services. In this method, we have authenticated and
authorized nodes accessing services in each other and the communication between
them is confidential. Finally, in the third method, link-layer security is enforced
by having each node authenticate the other node that it connects to (two-way
authentication) and then encrypt all of the messages back and forth based on a
key that only the two nodes involved in the communication share. The general
problem with ad hoc PANs such as Bluetooth is that once the security of one node
is compromised, it spreads throughout the system; it is tough to track down where
the breach started.

The basic assumption of Bluetooth and similar PANs is that the user is in control
of the network and participates in the process of distributing the secrets that are to
be shared among the nodes [Candolin 2000]. This should be somewhat obvious
based on the definition of PANs, but it tends to get lost in the fact that Bluetooth is
being used to form larger networks that are more like LANs. Bluetooth provided
adequate security for what it is meant to do: replace wires!

14.2.2 802.11 Security
The other set of short-range wireless technologies that we discussed were 802.11-
based technologies. The first version of the security mechanism in 802.11 is called
Wired Equivalent Protocol (WEP). 802.11 requires the maintenance of an ACL of
MAC addresses. The access point is always considered to be secure and maintains
this list of MAC addresses. So, the end points have to authenticate with the access
point. This is done by a 40-bit shared-key RC4 (Rivest Cipher four, designed by
Ron Rivest of RSA) for exchanging the data and an encryption challenge issued
by the access point followed by response encrypted by the end station. There
is also the temporal key integrity protocol (TKIP), which is a patch for 802.11
implementations designed to correct vulnerabilities in the wired equivalent privacy
protocol, particularly the reuse of encryption keys [Varshney 2003]. TKIP is also
to be addressed under the yet to be released (at the time of authoring this text)
802.11i standard.

This security scheme has been highly scrutinized because the birth of 802.11.
In fact, security varies in the different flavors of 802.11. The criticisms of 802.11,
particularly 802.11b, have been that eavesdropping is possible (though not easy)
and that the dropped packets are not properly encrypted. Typical security threats
to 802.11 come at the physical layer. Active attacks include simple transmission

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

744 MOBILE SECURITY

at the 2.4-GHz frequency range that can cause denial of service as well as a host
of other problems. Passive attacks can include masquerading a malignant client
as a valid participant in the network and causing problems by flooding the access
point with bad transmission or using other techniques. Another type of attack
may include sniffing packets in the air, modifying them, and retransmitting them
either to reveal information that will open other security holes or to send bad data
so that the messages are altered even though parties remain authenticated and
authorized. Finally, RC4 key generation implementations in the first versions of
802.11 devices were “weak” and left a security hole by producing keys that could
be discovered in a matter of hours.

When an 802.11 network is deployed, we can set it to authenticate the users
that try to join with a one-stage challenge–response called Open System Authenti-
cation or with a two-stage challenge–response called Shared-Key Authentication.
The Open System Authentication model is the default setting on most 802.11
equipment (routers, etc.) and basically allows anyone to join the network. This is
actually one of the most significant ways in which an 802.11 network is exposed!
Many home users and even some commercial users of 802.11 equipment buy the
equipment and install it without understanding the security implementations.

We can also set the 802.11 equipment to operate in a Shared-Key Authentication
mode, which basically means enabling encryption of transmissions between the
joining node and the network. Joining the network is only possible if the node
trying to join has knowledge of the “secret key” (a password) based on which
cryptographic keys are generated. Some of the common complaints about this
have been the following:

1. RC4 key scheduling is weak. It is not impossible to break RC4 keys.
2. The client does not authenticate the access point. This is a big problem! This

means that a malicious party masquerading as the access point has a good
chance of hijacking unsuspecting nodes.

3. The user does not participate in the authentication process. Many have sug-
gested that every session should have its own “secret key” to enable user par-
ticipation.

4. Denial of Service attacks are fairly easy to stage as you can keep the access point
busy by continually trying to authenticate with it.

5. There is nothing currently built into the 802.11 standard that addresses anoma-
lies or intrusions. For instance, data can be extracted out of the air and analyzed
so that the encryption keys may be discovered. It is hard to tell if a full-proof
technology for intrusion and anomaly detection will exist for wireless transmis-
sions but being aware of this vulnerability is important. A suggested solution
here is to have an external system monitor the over-the-air transmissions exter-
nal from the 802.11 network itself to assure that there are no malicious parties.

6. Because 802.11 deploys one-way authentication, it is vulnerable to man-in-the-
middle attacks.

One of the common mistakes in deploying 802.11x-based networks, or any other
type of short-range wireless network in the same frequency range, is relying on

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

14.2 Security in Wireless Networks 745

the coverage range as a security mechanism. The “Pringles can” trick (where
the aluminum-coated cylindrical can of Pringles potato chips is used to form an
antenna) or other types of antennas can catch signals considerably beyond the
maximum range specified.

Another big way that network security may become compromised in 802.11x
networks is with the theft or loss of the device. Because each device that connects
to a WAP-enabled 802.11 network has a key, security is compromised by loss
or theft of the device. As with any other point of breach, this can cause further
security breaches in the system.

Of course, one suggested solution to all of these problems has been to strengthen
the application-layer security (firewalls, antivirus software, etc.). Nonetheless,
802.11 technologies have some significant security holes. Perhaps the single best
solution to making 802.11 networks secure is to use all of the measures that are
available to us at the same time: LEAP, TKIP, TLS/SSL, and whatever else may be
offered by the vendors. Most of the time, even in wired systems, either we cannot
make a system 100% full-proof secure or the cost of doing so is much higher than
the cost of data loss and security breach. In the end, success derives from the
value delivered to the customers. So, the best solution is to make it as difficult as
possible for malicious parties to breach the security of the system. Of course, an
inefficient alternative to all of this is to use a VPN that encrypts all transmissions.
This is a bit redundant and inefficient because of multiple encryptions performed
by different layers of hardware and software.

14.2.3 Security in Long-Range Wireless Networking Technologies
We discussed long-range wireless network technologies and standards such as
CDMA, TDMA, GSM, and 3GPP in considerable detail previously in this text. As
previously discussed, we are most interested in various cellular-based long-range
technologies. Each one of the technologies and standards that we discussed in
Chapter 10 addresses security concerns in its own way. Some standards build on
other standards while adding their own security mechanisms on top of the security
mechanism offered by the underlying technologies. Of particular interest in the real
world are two categories of cellular technologies: those tied to the CDMA family
of technologies and those tied to the GSM family of technologies (remember that
most GSM deployments are currently on TDMA-based networks).

One of the first and most prevalent security problem with 1G and 2G networks
has been the fraudulent usage of the network, also known as “bandwidth theft.”
These thefts include simple techniques such as stealing identification codes of vul-
nerable devices and masquerading as those devices and more sophisticated attacks
such as redirection attacks, in which a device is redirected to contact a false base
station, thereby giving it the authentications signals it needs to contact a valid base
station, authenticate, and authorize. Subsequently, the false base station uses the
authenticated session for fraudulent network usage or may cause other security
breaches such as stealing and modifying the communications emanating from or
going to the wireless node. To prevent fraudulent use of wireless service, the GSM
network authenticates the identity of a user through a challenge–response mecha-
nism, in which the user proves its identity by providing a response to a time-variant

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

746 MOBILE SECURITY

challenge raised by the network [Zhang 2002]. Keep in mind that 3GPP addresses
both CDMA- and TDMA-based networks. 3GPP expands on the 3G security by
adding features to prevent false base stations from hijack devices, increasing the
length of the encryption keys for stronger security, adding inter-network security
for secure communication among different networks, and moving security from
the base station (where servers are a bit more susceptible to attacks) to switches
[3GPP 2000].

Most 3G cellular telephony networks have some sort of Anomaly Detection
System (ADS) or an Intrusion Detection System (IDS). As networks evolve, those
who have deployed IDSs are moving toward ADSs. This is because although an IDS
can detect only intrusions, an ADS can also detect other types of anomalies that
could possible be security breaches. In a way, we can think of ADS as a superset of
IDS in functionality. ADSs have a couple of major advantages compared to other
intrusion detection approaches [Buschkes et al.]:

1. They do not require any prior knowledge of the target system.
2. They provide a way to detect unknown attacks.

The downside is that there is much more data to analyze in an ADS, so there is
a scalability problem. Also, because the definition of an “anomaly” is difficult to
define based on the distributed nature of cellular networks and the mobile devices
connected to them, the privacy of a user’s data may be compromised in search for
a security breach.

For long-range wireless connectivity, most of the time the mobile developer
is building on top of a higher level protocol such as TCP/IP or even WAP and
HTTP. For example, WAP security includes an implementation of TLS/SSL. WAP
provides a handshake process that uses UDP datagrams. After that, it uses TLS on
top of whatever the WDP implementation may be (again, typically UDP or TCP).
WTLS certificates are smaller in size; the WAP gateway does the job of being the
intermediary between WTLS and HTTPS implementations on the Internet. As
devices are becoming more powerful and WAP is evolving, there is a move toward
implementing TLS/SSL throughout all layers.

Like WAP, BREW offers its own security mechanism. As we saw previously,
BREW provides a TCP/IP connection mechanism. Because BREW communica-
tion is built for CDMA networks with little backward compatibility to1G and 2G
networks, and because SSL implementation for HTTP is made available for the
BREW platform, BREW provides a security mechanism very similar to that pro-
vided on the wired Web. Also, as CDMA is inherently based on code-division multi-
plexing, there is a certain amount of low-layer fundamental security within it.

Long-range wireless systems (cellular systems being the most prevalent) are
much more mature and secure than their short-range partners principally because
they have had more time to evolve and there is a great amount of financial mo-
tivation on the part of the carriers to make them secure to avoid revenue loss. If
you are building a mobile application based on GSM, GPRS, CDMA, or any of the
other 3G and 4G technologies that we discussed earlier, you are probably envious
of the amount of bandwidth available for developing for wireless LANs and PANs.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

14.3 Security and Ad Hoc Networking Technologies 747

However, you do have one advantage: Your security concerns are diminutive com-
pared to those of WLANs. The flip side of the coin is that carriers have a tendency
to take away features (often for financial reasons) and use security as an excuse.
For example, security might be used as an excuse to stop users from pointing to
a preferred WAP gateway.

14.3 SECURITY AND AD HOC NETWORKING TECHNOLOGIES

Unlike stationary computing systems where a device is bound to be connected to
the same network for an elongated period of time, mobile devices come in and
out of networks frequently. This has been part of the rise in ad hoc networking
technologies implemented at different layers of the OSI model that we looked at
previously. MANETs (mobile ad hoc networks) introduce an entirely new set of
concerns in security. Let us see how some of the previously discussed concerns
change when dealing with MANETs:

1. Because most MANETs allow more information exchange with an unknown
network (e.g., unknown IP address) and because the communicating nodes of
a network are constantly changing, masquerading is a larger threat in MANETs
than other comparable environments. Extra caution must be taken in authen-
tication of a participating node before any data are exchanged.

2. Eavesdropping is always a threat and even more so in wireless environments,
but this probably increases even more with ad hoc networks because every
participating node is always revealing just a little more information than it
would if it were not a participant in an ad hoc network.

3. Depending on the type of MANET, DOS attacks may become very easy. The most
rudimentary attack may be simply disguising as a different node every single
time and going through the discovery process. Though without the proper
credentials no access is granted, the system may be flooded with network traffic
and one or more nodes may be stressed while participating in the discovery
process an endless number of times.

4. The possibility of attacks from previously authenticated nodes is substantially
increased in MANETs. Although prior, during, and shortly after authentication,
a node may not be acting malicious or become infected with a malicious program
such as a worm or virus, it may become malicious or become infected after it
has been authenticated because it may be participating in other MANETs.

Ad hoc and peer-to-peer systems have an entire slew of security concerns of their
own that lie outside the scope of this text. Keep in mind that all of these prob-
lems are typically at the application layer unless the peering or ad hoc connec-
tivity features are being provided by the wireless networking infrastructure. If so,
you need to make sure that you understand the features of the underlying in-
frastructure and the settings that will allow your particular application to operate
securely within the boundary of the threat-level assessment and return on security
investment.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

748 MOBILE SECURITY

14.4 LOCATION INFORMATION, SECURITY, AND PRIVACY

One of the biggest hurdles in making location information available to mobile ap-
plications has been security and privacy concerns. In a world where users find more
and more information collected about them every day, it is very important to make
sure that they retain the right to block the mobile application from discovering
their location. Furthermore, we must ensure that whatever location information
is exchanged remains completely safe within the system. From this perspective,
the availability of location information opens a whole new can of worms when it
comes to security. At the same time, location information can be used to strengthen
whatever security mechanism is in place.

Specifically, we can use location information to keep malicious parties from
spoofing and making DOS attacks. If a given device is introducing itself with one
identity and the location information about the device indicates some conflict
with this identity, we know that there is a significant possibility that this device
poses a security threat to our system. Also, if one node tries to initiate DOS attacks
on a MANET or similar type of a network where the discovery mechanism of
the network can be used to attack it, location information may be used to “block
out” nodes that may be exhibiting such behavior because identifying them any
other way may not be possible (for if they are masquerading, then we cannot use
their identity to block them out).

We strongly recommend that all information regarding location information,
whether relative or absolute, be encrypted when transmitting at the application
layer. In addition, it is also recommended that all networked mobile applications
use SSL or a similar technology for transmitting the location information at the
presentation and session layers. Although this may seem overkill, we simply rec-
ommend it to keep the data secure if the system is compromised either at the
application layer or at the presentation and session layers.

We know by now that most of our concerns lie within the application layer
where we have the most amount of control So, how is security different here for
location-based services and applications that use those services? Leonhardt and
Magee [Leonhardt and Magee 1997] recognize two different methods of solving the
problem within distributed applications: label-based and matrix-based protection.
The label-based model, also referred to as the Mandatory Access Control, specifies a
read and write level for a resource that a user is trying to access. The matrix-based
access control list basically extends the traditional one-dimensional ACL security
model where each security right is mapped to a specific location, be it relative
or absolute, depending on the implementation of the application. Matrix-based
access control offers a flexibility and expressiveness far superior to label-based
access control [Leonhardt and Magee 1997].

14.5 SECURITY: THE UNSOLVED PROBLEM FOR MOBILE AGENTS

In Chapter 9, we talked about mobile agents in detail. We also mentioned that the
central reason that is keeping mobile agents from being more widely deployed is

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

14.6 Distinguishing Privacy and Security 749

security. The various security problems with mobile agents stems from the fact that
they are autonomous; this autonomy makes it difficult if not impossible to identify
mobile agents with complete certainty (an authentication problem) and keep them
from doing something they should not be doing (an authorization problem). The
security threats of mobile agents can be classified into four broad categories: agent
to agent, agent to platform, platform to agent, and other to agent [Jansen et al.
1999].

At the same time, because of their autonomy, mobile agents can come in handy
in building security software such as an antivirus and intrusion detection software.
Jansen and colleagues, for example, show how to build an intrusion detection sys-
tem. In fact, in the mobile environment where there is a proliferation of devices,
mobile agents can present an ideal way of detecting intrusion as they provide a
scalable solution to a distributed security problem (both because they can run on
multiple platforms where the mobile agent host is available and because the work-
load is distributed among many nodes at run time). In fact, Jensen and colleagues
specifically recognized several technologies of interest to us as areas where either
we need to consider the security aspects of mobile agents or mobile agents may
be a suitable solution for our system:

� wearable computing, in which the mobile computing device may be worn,
� pico-cellular wireless systems, in which the network is made of many very small

cells,
� ad hoc networks, in which autonomous systems are used for networks in an ad

hoc manner (as previously discussed),
� and other mobile devices in general where mobile agents may make sense.

Also, active networks are another novel approach to network architecture. In such
networks the switches of the network perform customized computations on the
messages flowing through them; active networks make use of intelligent packets
that are no longer just data bits but contain mobile code that allows for the active
participation in routing, fault-tolerance, and QOS decisions [Jansen et al. 1999].
Hence, mobile agents can be a suitable solution for addressing the various security
concerns within active networks.

14.6 DISTINGUISHING PRIVACY AND SECURITY

The mobile application developer faces two distinct challenges: delivering a se-
cure application and delivering a private application. Privacy means very different
things in different countries and is subject to country-specific sets of laws. For
our purposes, we define security within the confines of laws and regulations in
United States, Australia, and Europe, which tend to be somewhat similar compared
to the rest of the world. Candolin defines privacy within the realm of wirelessly
connected systems to be of four components [Candolin 2002]:

1. Data Privacy: The contents of the transaction should be protected from disclo-
sure to an unauthorized party.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

U
se

r
R

ol
e

R
ol

eA
ss

ig
nm

en
t

In
he

rit
an

ce

In
he

rit
an

ce

C
on

ta
in

m
en

t

R
es

ou
rc

eT
yp

e

ba
se

C
la

ss

A
ct

io
nT

yp
eA

ss
ig

nm
en

t

R
es

ou
rc

eS
et

+
cl

as
si

fic
at

io
n

+
co

nt
ai

ns

+
co

ns
tr

ai
ne

dE
le

m
en

t

+
co

nt
ex

t

P
er

m
is

si
on

A
ss

ig
nm

en
t

A
ct

io
nT

yp
e

P
ro

te
ct

ed
O

bj
ec

t
P

er
m

is
si

on
M

od
el

E
le

m
en

t
(f

ro
m

 U
M

L)

A
ut

ho
riz

at
io

nC
on

st
ra

in
t

1.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.1

0.
.1

0.
.*

0
0.

.*

0.
.*

1.
.*

1

0.
.*

1

FI
G

U
RE

14
.1

.
Se

cu
re

U
M

L
M

et
am

od
el

[L
od

de
rs

te
dt

et
al

.2
00

2]
.

750

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

14.7 Modeling Security with UML 751

2. Source and Destination Privacy: The parties involved in the transaction should
not be revealed to an unauthorized party.

3. Location Privacy: The location of the parties making the transaction, whether
physical (geographical) or logical (with respect to the network), should not be
disclosed to an unauthorized party.

4. Time Privacy: The exact time when a transaction occurs should not be disclosed
to an unauthorized party.

The definition by Candolin is meant to address wirelessly connected mobile ap-
plications, but it is indeed sufficient for all mobile applications as the wirelessly
connected mobile applications face a superset of challenges of wired mobile ap-
plications to provide proper security and privacy.

Obviously, the first step in providing privacy is achieving security. So, in a way,
although security and privacy are two completely different things, security is a
precondition to privacy.

14.7 MODELING SECURITY WITH UML

As we mentioned previously, security is largely a design-time problem. So, in the
manner that we have selected in this text, let us try to use UML to document this
design-time concern and its effect on the implementation of the system.

We have already seen that UML component diagrams allow us to show high-
level system diagrams, interaction diagrams provide a way for showing how various
systems may interact securely, and class diagrams are ideal for the internal imple-
mentation of our application. We can still apply all of these diagrams to show the
high-level design and behavior of secure applications. SecureUML, as proposed by
Lodderstedt and colleagues, is a methodology, with UML extensions, to integrate
information relevant to access control into application models defined with UML
[Lodderstedt et al. 2002]. The SecureUML metamodel can be seen in Figure 14.1.
The focus of SecureUML is to define a metamodel that can be used to define a
framework within UML with which to model various security processes such as
authentication and authorization.

As conceived by its authors, SecureUML is mainly used for stationary server-
side applications. Nonetheless, there is nothing in the metamodel that would keep
us from applying it to mobile applications. Along with the other extensions that
we have introduced, particularly those that address location mobility, SecureUML
allows us to create diagrams that represent the three basic principles of security:
determining who has what roles and what roles and users in those roles should be
able to access which resources.

P1: KPP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c14 CB752-B’Far-v3 May 4, 2005 20:19

752

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331pt4 CB752-B’Far-v3 April 29, 2005 12:23

SECTION 4

Putting the Project Together

753

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331pt4 CB752-B’Far-v3 April 29, 2005 12:23

754

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

CHAPTER 15

The Mobile Development
Process

Yazdi Koja Tashreef Darad? (Where has the one from Yazd descended upon?)
M. Ali Karimzadeh (my grandfather)

15.1 INTRODUCTION

Thus far, in the first three sections of this text, we have focused on recognizing the
new problems facing mobile application developers, tools to solve those problems,
and how to use those tools to solve each specific problem.

Let us now look at the macro view of developing mobile applications. When we
develop a stationary application, we gather requirements, lay out an architecture
and design, select some tools to help us implement the application, develop the
application, test, and deliver. Although this is a gross oversimplification of the ap-
plication development process, it lays out the rough steps of developing stationary
applications. There are development methodologies that go into each of these steps
in a detailed manner and lay out a methodical approach to tackle them.

The question to ask now that we know how to deal with the detailed problems
of mobile application development is whether these methodologies can be used
as is or whether they must be modified to develop mobile applications.

15.2 BACK TO THE DIMENSIONS OF MOBILITY

If there is one thing you should know by now, it is that the dimensions of mobility
are what make mobile applications different from their stationary counterparts.

755

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

756 THE MOBILE DEVELOPMENT PROCESS

The dimensions of mobility and the mobile condition of the user, cumulatively,
are what make the process of developing mobile applications different from the
process of developing stationary applications.

Today, there are plenty of software development methodologies that claim to
solve everything but world hunger! And most software development processes
claim that they can be applied in just about any environment and for developing
any type of application. Obviously, this is a gross case of the “golden-hammer”
syndrome we have so often talked about in this text. We will not outline another
golden-hammer methodology in this text. Rather, we will outline one suggested
method of how to build mobile applications based on the dimensions of mobility,
the mobile condition of the user, and UML as a central tool for the development
process. Keep in mind that our method is nothing more than a set of suggestions
to point out a road map to building mobile applications. It is not exclusionary of
your application of any other methodologies to your software development process
as long as you are able to discern the important principles that we are trying to
integrate into the development methodology.

We have used UML to facilitate development of pieces of the application
throughout this text. There are a variety of methodologies that use UML as the
centerpiece of development and build a methodology around it; these include the
Rational Unified Process (RUP) and Model Driven Architecture (MDA). Let us
start by looking at the Wisdom methodology, a development methodology cen-
tered not only on UML but also in the user interface, suggested by Nunes [Nunes
2001], whose worked we looked at in Chapter 6.

15.3 APPLYING THE WISDOM METHODOLOGY TO MOBILE DEVELOPMENT

As you may recall, we used Nunes’ work [Nunes 2001] to establish a foundation
for one of our suggested methods of using UML diagrams to represent user in-
terfaces. Nunes also outlines a development process to better accommodate the
development of user interfaces. This is not exactly what we need, but it gives us
a piece of the puzzle to come up with an approximate model for the process of
developing mobile applications because some of the biggest problems of mobile
computing concern the user interface.

What is it that makes Wisdom a good pointing start? First, it uses UML. Second,
it focuses on better integration of developing user interfaces into the development
process. This is essential for mobile application development because although
we used activity diagrams to model fairly detailed views of the users’ interactions
with the user interface, the Wisdom methodology suggests that we accompany
use cases with UML activity diagrams as well. These sets of diagrams focus on the
large-grained processes involving the user interfaces. Nunes defines these large-
grained processes as Wisdom essential task flows represented by Wisdom essential use
cases. Nunes states “The critical difference between the Wisdom use case modeling
approach and the conventional use case approach is related to the fact that top
level tasks, required by the users to accomplish actual work, drive development
not the inherent internal functionality” [Nunes 2001]. The premise is that use

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

15.4 UML-Based Development Cycle for Mobile Applications 757

case diagrams are far too high level to convey enough information to gather the
requirements and convey them to the user interface developers in a meaningful
way. More importantly, typical use case diagrams are not user interface–centric.
What Nunes’ extensions offer us are additional diagrams that allow us to rep-
resent the use cases from the perspective of the user interface interactions and
components. This is particularly helpful because of the nth degree of complexity
with which the typical complexity of an application is multiplied for supporting n
different user interfaces. This is not to say that we do not need use case diagrams
but rather that they must be augmented by activity diagrams that describe the
user interface interactions provided by the user interface of each use case. So, to
establish a UML-based methodology for developing mobile applications, we will
take the lessons from typical UML-based development methodologies, add in the
Wisdom extensions, and introduce some new ideas to cover the remaining issues
to treat the dimensions of mobility and the mobile condition of the user.

15.4 UML-BASED DEVELOPMENT CYCLE FOR MOBILE APPLICATIONS

Taking all of what we have learned throughout this text on solving the individual
problems involved with developing mobile applications, we need a straightfor-
ward, lightweight, and UML-based outline of the development process. In this
text, we are not intending to create development processes like the Rational Uni-
fied Process. We are simply going to outline some of the steps that must be part
of any development process that intends to address the problem of developing
mobile applications.

Along the way, our goal will be to fill any holes that are introduced by the fact
that existing methodologies such as RUP and others fail to address the dimensions
of mobility.

We will start at the beginning with UML use cases. Use cases are a tool that
can be used by not just engineers (actually, preferably not engineers because most
engineers do not do a very good job of understanding the users’ requirements),
but also business analysts, project managers, and others involved in interfacing
with the customer and delivering the desired application.

At present, and for the next several years, the biggest difference in dealing with
customers of mobile applications as opposed to their stationary counterparts will
be their ignorance of what mobile applications are and how they can get the
most value out of a mobile application. Because of this, the major component
we will need to integrate into the development process involves educating the
customer and the users of the system of what they can do, what they cannot do,
and the ramifications of the decisions they make. Let us see how we adapt the
requirements-gathering process to mobile application development.

15.4.1 Mobile Use Cases
Mobile applications are a superset of their stationary counterparts. So, by nature,
the first step of creating mobile use cases is to gather whatever use cases may be
required by the customer and then introduce additional use cases as necessary. If

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

758 THE MOBILE DEVELOPMENT PROCESS

you are building a mobile application, the chances are that the customer already
expects you to provide a PC-based interface, such as a Web-based interface, to
the system. Let us take a sample application that delivers driving directions to the
users. The use cases could be those defined as follows:

Use Case 1: User uses home as the source address, enters a destination, and requests
directions.

Use Case 2: User enters source address, destination address, and requests direc-
tions.

Use Case 3: User enters source address, destination address, and requests a map.
Use Case 4: User requests the “time-in-transport” (the time it takes to go from

the source to the destination or from the current location to the destination if
already in transport).

Use Case 5: User asks the system for some means of transportation between the
source and the destination.

At this point, we still do not really know anything about the mobile users of the
system or care about the ramifications of the application being usable by mobile
users.

Now, let us assume that the customer (user) is asking for the ability to be able to
have the directions heard while driving. However, the customer may have ignored
all the other values that a mobile directions application can offer. Let us see what
else we may be able to offer the user:

1. We may be able to sense the location of the user, or at least the user’s approximate
location, thereby avoiding the data entry for the user’s current address.

2. We can have the user put in the starting and ending addresses prior to the
beginning of the drive on his or her PC and send the directions to his or her
phone.

3. The directions can be sent to the user at a specified time, when the user is
at a specified location, based on some other rules set by the user’s personal
preferences, or by the explicit request of the user (such as dialing up to receive
the directions).

4. The user may want to receive the directions through the voice channel and the
address via text.

5. When the quality of the user’s connection (QOS) is too low or erratic, the
directions should be sent to the user as a text message in one complete message
instead of multiple messages.

We will assume that the infrastructure for the mobile application provides us
with all reasonable functionality (such as providing the location information, QOS
information, etc.). Although at the time of authoring this text, this is not necessarily
true, wireless infrastructure and devices are evolving rapidly and will likely be
offering such functionality by the time you read this.

The key is to inform your customers of all those things that they may be able to
do, and conversely, what they may not be able to do. Among the things we want

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

15.4 UML-Based Development Cycle for Mobile Applications 759

the customer to ponder are the following:

1. Does the customer understand the value of VUIs? Do they know that voice tran-
scription is not yet a reality with existing technologies? Under what conditions
(e.g., a noisy room) will the VUI be used?

2. Has the customer considered all of the scenarios under which the system may
be used by a mobile user (connected, disconnected, connected but running out
of battery, etc.)?

3. What are the exact target devices? Which channels fit which devices?
4. Are all devices equally as likely to be used? Do different classifications of users

use different families of devices? Under what conditions may each device or
device family be used?

5. Are there any scenarios for notifications and active transactions that the cus-
tomer has not considered?

We also need to consider factors such as the available budget and requirements
for scalability, reliability, and fault tolerance of the system. These factors must
be addressed whether the application is a mobile or stationary one. Once again,
remember that the concerns of a mobile application are a superset of the concerns
of a stationary application.

Considering all of what we have mentioned, we should now revisit the use
cases with the customer and come up with whatever additional use cases may be
required. It may be that the customer had a full understanding of mobile applica-
tions and had a very specific task in mind for the application. Or, perhaps the user
interfaces devised as a result of the aforementioned points lead to additional use
cases or modification of some of the existing use cases. Once we have reviewed all
of the possible functionality available (within reasonable limits on budget, time,
etc.) for the mobile application, and come up with a revised use cases based on
these reviews, we are left with what we will call the mobile use cases. Obviously,
we can model and document these mobile use cases with the techniques previ-
ously outlined in this text. Once again, these use cases should be a superset of the
stationary use cases, though the user may decide to eliminate some of the typical
use cases after considering the mobile condition of the user, the dimensions of
mobility, and the additional functionality available given the infrastructure and
devices used for mobile applications.

Now we have a set of use cases that must be implemented by a development
team with members who have a variety of skills. Also, as in just about every
development methodology today interim deliverables and milestones are a must,
we must also prioritize which use cases should be delivered first so that we may
iterate to a final application with customer input in the process.

The mobile use case evaluation matrix, shown in Table 15.1, provides us with
a tool to manage some of these issues. On the left side of the matrix, we have
specified the various functional pieces that give mobile applications added value:

1. Mobile applications can be used by mobile users (who may be connected to the
network through a wireless connection).

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

760 THE MOBILE DEVELOPMENT PROCESS

TABLE 15.1. Mobile Use Case Evaluation Matrix

Relevance Index Use Use Use Use Use
Table Case 1 Case 2 Case 3 Case 4 Case N

Aural User
Interface

Location-Based
Functionality

Active
Functionality

Wireless Access

Multichannel
Access

Disconnected
Usage

2. Mobile applications may need to use a variety of user interfaces depending
on what devices are available and what interfaces are convenient (VUIs and
multichannel user interfaces).

3. Knowing the location of the user may be of value (location sensitivity).
4. It is important to deliver information and functionality to the user actively

without the user’s invocation of the application (active transactions).

The six items that make up the rows of the matrix provide a taxonomy of function-
ality, mobile condition of the user, and dimensions of mobility of the application
to help us categorize and prioritize our use cases. The columns headings are the
mobile use cases that we have gathered. The empty squares in the matrix are to be
filled with a number between 0 and 1 (or alternatively 0% to 100%) called mobile
evaluation indices. We can have multiple instances of this matrix, each helping us
with a different set of problems as follows:

1. User Usage Evaluation Matrix : Because of the large variety of functionality that
a mobile application may deliver to the end users, we need to understand
how important each use case is to the users. We can recognize user usage as a
metric that is simply determined by polling a sample of the users (or asking
the customer for this information) on the predicted usage of each use case.
What every polled user needs to provide us with is whether or not they will
use the use case and how often they will use it if at all. The number indicates
the fraction of the users using the functionality of the use case (functionality
is specified by the row and use case is specified by the column). It is critical
that we do not mix the different groups of users who may be using different
use cases altogether. Let us take for example a field automation application in
which the mobile application facilitates the work of delivery personnel in the

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

15.4 UML-Based Development Cycle for Mobile Applications 761

field as well as the sales force. In this case, the project may consist of two sets
of use cases, use cases that provide functionality for the sales personnel and
another set that provides functionality for the delivery personnel.

Polling the delivery personnel on whether they use a use case involving the sales
force is probably going to lead to an index of 0 or close to 0. Each instance of the
user usage mobile use case evaluation matrix should have use cases that are used
by the same group of user to yield meaningful data. Table 15.2 shows an example
of the user usage mobile use case matrix for our driving-directions example. The
user (corresponding to the Wisdom human actor) is the end user. Alternative users
may be the operator contacted by the user (if the user becomes frustrated with
the system) or a specialization of the end user such as “the lost end user” or “the
geographically challenged end user.”

Let us go through what the matrix in Table 15.2 reflects. Of the ten surveyed
users,

six would sometimes or always use a VUI to get directions;
six would sometimes or always use a VUI to make an association between a contact

person in their PIM and the driving directions;
zero would want to retrieve map-related information by aural description of area

from the system;
five would sometimes or always use a VUI to retrieve the time-in-transport;
eight would sometimes or always use a VUI to find transport (such as a taxi, bus

route and times, etc.) to go from the source to the destination;
seven would sometimes or always depend on the location-sensitivity system built

into their devices for discovery of their current location compared to manually
specifying it;

all would depend on the system to make an association between the destination,
once they have reached it, and a contact person in their PIM;

three would sometimes or always want the system to retrieve the map for their
current location discovered automatically by the system;

five would sometimes or always want updates on the time of arrival based on the
current location;

three would sometimes or always would want to find the most convenient transport
method based on their current location (e.g., which is closer, the bus station or
the subway station?);

ten would sometimes or always retrieve their directions by using a wireless device;
four would use a wireless device to make associations between the directions and

a contact person in their PIM;
six would sometimes or always use a wireless device to find out their time of

arrival;
eight would use a wireless device to find transportation to go from the source to

the destination;
four would ask for the directions through one channel (voice or text) and receive

it through another channel (voice, text, or animated video directions);
seven would find the directions through an aural interface but make the association

between the directions and the contact person through the text user interface;

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

TA
B

LE
1
5
.2

.
E
nd

-U
se

r
M

o
bi

le
E
va

lu
at

io
n

U
se

C
as

e
M

at
ri

x

R
et

ri
ev

in
g

A
ss

oc
ia

ti
n

g
G

et
T

im
e-

In
-

D
ir

ec
ti

on
s

D
ir

ec
ti

on
s

Tr
an

sp
or

t
fr

om
F

in
d

Tr
an

sp
or

t
fr

om
H

om
e

to
w

it
h

C
on

ta
ct

R
et

ri
ev

e
M

ap
So

u
rc

e
to

fr
om

So
u

rc
e

to
R

el
ev

an
ce

In
de

x
Ta

bl
e

A
dd

re
ss

P
er

so
n

of
A

re
a

D
es

ti
n

at
io

n
D

es
ti

n
at

io
n

A
u

ra
lU

se
r

In
te

rf
ac

e
0.

6
0.

6
0

0.
5

0.
8

L
oc

at
io

n
B

as
ed

F
u

n
ct

io
n

al
it

y
0.

7
1.

0
0.

3
0.

5
0.

9
A

ct
iv

e
F

u
n

ct
io

n
al

it
y

0.
8

0.
8

0.
3

0.
1

0.
3

W
ir

el
es

s
A

cc
es

s
1.

0
1.

0
0.

4
0.

6
0.

8
M

u
lt

ic
h

an
n

el
A

cc
es

s
0.

4
0.

4
0.

7
0.

4
0.

3
D

is
co

n
n

ec
te

d
U

sa
ge

1.
0

1.
0

1.
0

0.
1

0.
1

762

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

15.4 UML-Based Development Cycle for Mobile Applications 763

three would find directions through one channel (voice or text) and ask for trans-
port through another channel (voice or text);

all would, sometimes or always, want the directions stored in their device in case
they are disconnected;

all would, sometimes or always, want to store the map in their devices for discon-
nected access;

one would, sometimes or always, want to retrieve a time-in-transport table into
his or her device to access it in case he or she is disconnected;

one would, sometimes or always, want to put in a request for finding transport
while disconnected and be notified of the information whenever the device is
able to connect to the network.

Note that an argument could be made that each one of the cells in the matrix
represents a different use case. Our choice to represent the use cases in this manner
comes from the fact that we have recognized mobile applications as a superset of
stationary applications and that our end goal is to recognize the effects of the
dimensions of mobility and the differences between the stationary and mobile
version of an application.

2. Infrastructure Integration: One of the most complex tasks in developing mobile
applications is to integrate the different infrastructure technologies such as the
wireless communications platform, the mobile devices, the voice recognition
platform, the speech synthesis platform, and others into the core application.
Consequently, we need to prioritize the treatment of every infrastructure. In
our case, being customer driven as we are, we accomplish this task by instances
of the mobile use case evaluation matrix for each infrastructure piece. In this
case, our indices are specified somewhat subjectively because there is no way to
know the exact relevance of a use case to the infrastructure until what sits in the
middle—namely the application we are trying to build—is actually built. So,
these indices are largely “guesstimates.” Nevertheless, these guesstimates can
show the predicted amount of integration with different infrastructure pieces.
Let us take the same set of use cases as the last example and create an infrastruc-
ture mobile evaluation use case matrix for integration with a location sensitivity
infrastructure in Table 15.3.

For this example, we will assume that location information is provided through
GPS. Note that infrastructure components are often orthogonal to some dimen-
sions of mobility or the functionality to satisfy solving the problems associated
with those dimensions of mobility. Table 15.3 was based on the following obser-
vations on the boundary points of the location system (GPS in this case) with the
use case and the mobile functionality:

1. The VUIs for retrieving directions do not interface with the GPS system.
2. The VUI for describing the map to the user may interact, in the background,

with the GPS system. Because a map is not something that can be rendered
through a VUI, the VUI may use the user’s current location and location history

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

TA
B

LE
1
5
.3

.
Lo

ca
ti

o
n

S
e
ns

it
iv

it
y

In
fr

as
tr

u
ct

u
re

M
o
bi

le
E
va

lu
at

io
n

U
se

C
as

e
M

at
ri

x

R
et

ri
ev

in
g

A
ss

oc
ia

ti
n

g
G

et
T

im
e-

In
-

D
ir

ec
ti

on
s

D
ir

ec
ti

on
s

Tr
an

sp
or

t
fr

om
F

in
d

Tr
an

sp
or

t
fr

om
H

om
e

to
w

it
h

C
on

ta
ct

R
et

ri
ev

e
M

ap
So

u
rc

e
to

fr
om

So
u

rc
e

to
R

el
ev

an
ce

In
de

x
Ta

bl
e

A
dd

re
ss

P
er

so
n

of
A

re
a

D
es

ti
n

at
io

n
D

es
ti

n
at

io
n

A
u

ra
lU

se
r

In
te

rf
ac

e
0

0
1.

0
1.

0
0

L
oc

at
io

n
-B

as
ed

F
u

n
ct

io
n

al
it

y
1.

0
1.

0
1.

0
1.

0
1.

0
A

ct
iv

e
F

u
n

ct
io

n
al

it
y

1.
0

1.
0

1.
0

1.
0

1.
0

W
ir

el
es

s
A

cc
es

s
1.

0
1.

0
1.

0
1.

0
1.

0
M

u
lt

ic
h

an
n

el
A

cc
es

s
0

0
1.

0
1.

0
1.

0
D

is
co

n
n

ec
te

d
U

sa
ge

0
0

1.
0

1.
0

0

764

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

15.4 UML-Based Development Cycle for Mobile Applications 765

to iteratively go back to the GPS system and the other subsystems that can
provide a textual description of the surroundings of the user, the destination,
and the source. This information can then be used to describe the equivalent
of a map to the user.

3. Time-to-transport of the user describes how long the user will be in transport
to his or her destination. This information will depend on the current location
of the user.

4. All location-based services use the location information directly so there is
obvious dependence there.

5. The system can be personalized to send out the directions actively when the
user is in a particular location, so the active transactions involving directions
can be dependent upon the location information provided by the GPS.

6. The map, or the aural equivalent of the map, may be sent to the user based on
the user’s current location.

7. The user may require that the remaining transport time be sent to him or her
actively (e.g., messages sent at some particular interval) based on the location
information.

8. Wireless access to the system may be changed depending on the network.
Though this technology is not provided in most devices today, we are assuming
that our use cases dictate the device switching between networks depending
on the location (which may have some benefits on the billing side). This may
be made possible with devices that can have multiple SIM cards.

9. When the user is disconnected from the network, he or she cannot request
directions or try to find transportation information (assuming that this in-
formation is far too large for the device to store and must be retrieved from
the network). Therefore, there is no dependency between these use cases and
location information.

10. Providing a local map based on current location may still be available based
solely on location information because a limited number of maps can be stored
on the device. Also, time-to-arrival can be computed on the device while
disconnected based on the current location and a destination that may have
been cached.

Keep in mind that this is only an example. Use of information location to switch
between wireless networks, for example, is an esoteric requirement that is not
achievable by most of the devices in the marketplace today. Also note that this
matrix does not dictate or describe design or implementation. It simply shows the
amount of direct or indirect interactions between the subsystem and the cross-
section of the use case and mobile functionality. Use of various UML diagrams,
including those recommended by Nunes in his Wisdom extensions, may be a
good idea for a graphical representation. Our goal here is to simply use numbers
to quantify the relationship between the requirements and various aspects of the
design and implementation of the mobile application.

In this example, we did not delve far enough into the requirements and the
high-level design of the system to see the amount of integration between the
cross-section of each use case and mobile functionality with the external subsystem

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

766 THE MOBILE DEVELOPMENT PROCESS

(location information based on GPS). Therefore, our indices are binary. A more
accurate representation could be obtained (on an analog scale from 0 to 1) if the
relative weights of the integration at the boundary points were used. Once again,
this would be a guesstimate and the only reason to use these guesstimates would be
to first quantify the integration points with the infrastructure and to thenprioritize
design and implementation tasks.

3. Application Distribution: As we have seen throughout this text, mobile appli-
cations can be implemented in a variety of ways using a variety of architec-
tures ranging from fully centralized to fully distributed. The architecture, de-
sign, and implementation of any computing system must be driven by the user
requirements; however, it is easy to select a design a system based on the initial
set of requirements that does not lend itself to accommodating additional user
requirements during the development process or post delivery of the project. To
avoid this problem, we can use instances of the mobile use case matrix whose
indices indicate the estimated relative amount of computing tasks performed on
a particular system. For example, we may have an instance of the mobile use
case matrix for WAP phones, called a WAP client mobile use case matrix, whose
indices indicate the relevance of each mobile functionality category (such as
aural user interface) of the use cases for WAP clients. Another example could
be an instance of the mobile use case matrix for an application server that con-
tains our server-side application, called an application server use case matrix.
Table 15.4 shows the J2ME client mobile use case matrix. Let us go through
how we have arrived at these indices:
a. Currently, J2ME clients are too limited to make an attempt at implementing

voice recognition or any other part of the VUI.
b. It is possible that the device vendor provides a J2ME extension for accessing

the location information provided by GPS. For our hypothetical application,
the information about the current location of the user may be obtained by the
J2ME client and sent to the server for retrieval of directions or other informa-
tion. As the actual information about directions is retrieved by the server, we
are estimating 50% of the task of finding directions to be on the server and
the other 50% to be on the client. These are not necessarily representative of
the “amount of code” or “number of lines.” Rather, they are estimates of the
portion of total tasks achieved by the client and the server.

c. Our hypothetical J2ME client may be fully able to calculate the time-in-
transport by using a small amount of cached information, GPS information,
and some simple logic.

d. Our hypothetical J2ME client may be able cache a short list of transportation
modes based on the GPS location. If others are needed, it can get them off of
the server.

e. The current J2ME MIDP 2.0 profile only offers some minimal access to the
device speaker and no access to the telephony channel on the device. There-
fore, we are estimating that 50% or less of the functionality needed to de-
liver a multimodal and multichannel application can be put into the J2ME
client.

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

TA
B

LE
1
5
.4

.
J2

M
E

C
li
e
nt

M
o
bi

le
U

se
C

as
e

E
va

lu
at

io
n

M
at

ri
x

R
et

ri
ev

in
g

A
ss

oc
ia

ti
n

g
G

et
T

im
e-

In
-

D
ir

ec
ti

on
s

D
ir

ec
ti

on
s

Tr
an

sp
or

t
fr

om
F

in
d

Tr
an

sp
or

t
fr

om
H

om
e

to
w

it
h

C
on

ta
ct

R
et

ri
ev

e
M

ap
So

u
rc

e
to

fr
om

So
u

rc
e

to
R

el
ev

an
ce

In
de

x
Ta

bl
e

A
dd

re
ss

P
er

so
n

of
A

re
a

D
es

ti
n

at
io

n
D

es
ti

n
at

io
n

A
u

ra
lU

se
r

In
te

rf
ac

e
0

0
0

0
0

L
oc

at
io

n
-B

as
ed

F
u

n
ct

io
n

al
it

y
0.

5
0.

5
0.

5
1.

0
0.

8
A

ct
iv

e
F

u
n

ct
io

n
al

it
y

1.
0

1.
0

1.
0

1.
0

1.
0

W
ir

el
es

s
A

cc
es

s
0

0
0

0
0

M
u

lt
ic

h
an

n
el

A
cc

es
s

0.
5

0.
5

0.
5

0.
5

0.
5

D
is

co
n

n
ec

te
d

U
sa

ge
1.

0
1.

0
1.

0
1.

0
1.

0

767

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

768 THE MOBILE DEVELOPMENT PROCESS

f. J2ME does not provide a wireless communication protocol. There is a generic
connection framework that maps to the networking capabilities provided by
the device maker and the carrier to which this API maps. Therefore, J2ME
and wireless networking are orthogonal.

g. When disconnected from the network, the J2ME client can provide minimal
functionality, cached information, or simply messages that let the user know
the network is not available.

The information on any instances of the mobile use case matrices must be updated
in an iterative manner throughout the development process because we are bound
to discover more and more about the requirements of the system as we begin to
design and implement the system.

Getting back to our examples, we may draw the following conclusions from
our mobile use case matrices:

1. Our application requires more than just a thin client to satisfy the users. We
need an application to run on the mobile device for those times when the user
is not connected to the network.

2. If some or all of the devices that will be part of this system do not provide
an API to the GPS system on the client, the server-side application will need
to communicate with the GPS directly, through the wireless infrastructure, or
through some other means. (Note that we are assuming that a GPS subsystem is
available on all of the devices that are to be the end-user devices in this system.)

3. We will need to integrate the system with a messaging system (such as SMS,
MMS, etc.) that allows for actively pushing messages to the client.

Obviously, we could make various other conclusions as well. For example, we
could multiply the indices in the end-user mobile evaluation matrix with the
corresponding matrices in the other two diagrams to determine the priority of
tasks in delivering the location-sensitivity integration compared to integration
with other subsystems or to determine the priority of tasks in delivering the J2ME
client compared to the other clients or components in the system.

From these conclusions, you can see that the mobile use case matrices are not
the end, but rather the means, to understand the customer requirements better.

15.4.2 Mobile Development Process
In the previous section, we looked at a simple matrix as a way to augment the pro-
cess of gathering use cases. But what happens after we gather use cases? We could
probably write another entire book on what follows the requirements-gathering
process. However, that is not in the scope of our discussion. So, what we will do is
take a step back and look at the big picture and see how it changes when dealing
with mobile applications. Whatever the development methodology adapted by the
readers’ organization may be, it is adaptable by integrating some principles. We
will point out the principles and leave the integration up to you.

Today, there are a variety of UML and non-UML-based development processes
such as Ken Beckett’s Extreme Programming or Rational Software’s RUP. At a high

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

15.4 UML-Based Development Cycle for Mobile Applications 769

Requirements
Gathering

Use-Case
Development

User-Interface
Mock-ups

Software
Development

Functional and
Usability Testing

User Acceptance

FIGURE 15.1. High-Level Software Development Cycle.

level, all development processes follow the same processes and flow shown in
Figure 15.1.

Conversely, Figure 15.2 shows this high-level process as modified for mobile
application development. The overall differences can be enumerated as follows:

1. There are proven methodologies for developing VUIs that are very different from
GUI development methodologies. VUIs have much more stringent usability
requirements as we discussed in Chapter 6. The development process is affected
by this.

2. As we discussed in Chapters 5–7, building multichannel user interfaces re-
quires additional layers of abstraction. The implementations of these additional
abstraction layers requires modifications to our existing process.

3. We have bundled the integration of location-based infrastructure as well as
wireless infrastructure into the development box. At this point, there have
been no studies, research projects, or implementations that have been able to
properly recognize the effects of location sensitivity and wireless connectivity
on the application architecture at the application layer (discounting the well-
known effects that wireless connectivity has at the layers that sit under the
actual application we are authoring). As such abstractions become clear, they
must be integrated properly into the development process as has been the case
for the effects of VUIs and multichannel user interface development shown in
Figure 15.2.

Throughout this text, we have solely focused on the steps that follow the devel-
opment of mobile use cases and end at quality assurance. Most of what we have

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

770 THE MOBILE DEVELOPMENT PROCESS

Development

Interface Tunning
Requirements

Gathering

Informing the
Customer of

Additional Available
Functionality

Mobile Use-Case
Development

Aural (Voice) User
Interface

Development

Visual (Graphical)
User Interface
Development

Presentation
Neutral User-

Interface Mock-Ups
(Sequence
Diagrams)

Testing

Acceptance Testing

FIGURE 15.2. High-Level Software Development Cycle for Mobile Application Development.

talked about has focused on the box called Development in our diagram. Let us
review the steps that follow the determination of mobile use cases:

1. Create the relevant and appropriate instances of mobile use case matrices by
polling the users and/or estimating.

2. Create a series of UML diagrams that convey the external functionality of the
user interface as well as the internal functionality of the system. The UML
diagrams that focus on the user interface are abstracted so that we can build
user interfaces in a layered manner, specializing generic user interfaces to
specific user interfaces. The following iterative approach that separates the
concerns of the system is recommended when developing the UML diagrams:

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

15.4 UML-Based Development Cycle for Mobile Applications 771

a. First, develop your use case diagrams and the Wisdom extensions of the
UML diagrams.

b. Develop UML diagrams that represent the various aspects of the user inter-
face by using the techniques we have introduced here. Divide the GUI and
VUI diagrams into two different groups.

c. Develop user interface diagrams that involve multichannel and multimodal
access to the system.

d. Develop use case diagrams that separate the mobile users from the stationary
users and the mobile systems from the stationary systems.

e. Develop UML diagrams that represent any mobile agents in the system.
f. Develop UML diagrams that relate to the internal implementation of the

system for the various components (clients, servers, peers, etc.).
3. Choose an architectural approach and lay out high-level designs of how the

system should implement the expected functionality and meet the customer
requirements.

4. Build the generic user interfaces based on the UML diagrams that convey the
requirements as well as high-level architectural implementations.

5. Consider building user interface mockups. If support for a large number of
user interfaces is required, break them down into families and use a set of
mock-ups to represent the average look-and-feel or persona of a given family.
If there are a large number of families to be supported, simply mock up enough
to first get meaningful feedback from the customer and second communicate
the user interface requirements properly to the development team.

6. Build the internals of the application that delivers the business logic function-
ality to the end user. This includes integration with the mobile infrastructure
such as device specific functionality, location information, wireless network
connectivity, and others.

7. Perform unit tests, white-box tests, and black-box tests on the internals of the
application delivered from step 3.

8. Build the mechanism by which the generic user interfaces are to be specialized.
9. Perform unit tests, white-box tests, and black-box tests on the user interfaces

that allow access to the system. Regressive black-box testing is of crucial im-
portance here.

10. Borrow a page from voice user development and tune the user interface itera-
tively.

11. Go through the customer acceptance process in which the customer sees the
delivered slice of functionality or the entire product, accepts the product, or
gives us additional requirements and modifications to the existing require-
ments that send us back to the first step.

Remember that you can never have too much information about the requirements.
Misunderstanding the requirements is one of the typical pitfalls of software devel-
opment, but it is definitely the biggest pitfall of projects that involve technologies
with which the customers are not familiar. Also, remember that UML, the UML
extensions that we have introduced, and any other techniques such as the mobile
use case matrix are simply tools. Software development tools are to be used at the

P1: KNY/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c15 CB752-B’Far-v3 May 4, 2005 17:21

772 THE MOBILE DEVELOPMENT PROCESS

discretion of the engineers and based on the size, budget, time frame, and specific
business requirements of the project.

15.5 SUMMARY

In this chapter we brought together the various pieces of modeling and high-level
development strategies discussed throughout this text to outline an overall plan
of attack in developing mobile applications. Obviously, any development method-
ology, or component thereof, is only as valuable as the collective improvements
in the efficiency of the development process and the quality of the final product.
Once again, what we have outlined here is not necessarily a methodology, but
rather the features that any development methodology addressing the problems of
mobile application development must address. Augment what we have introduced
here with the experience that you gain as you develop mobile applications.

In the remaining chapters, we will look at selecting the right infrastructure
pieces for your mobile application, some of the typical hurdles in developing
mobile applications, and the process of testing mobile applications.

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c16 CB752-B’Far-v3 May 4, 2005 20:22

CHAPTER 16

Architecture, Design, and
Technology Selection for

Mobile Applications

We’re gonna be rich!
Jos Bergmans (in 1999 while holding shares of AdForce, in which he would not
be vested until after the company’s demise during the post-Internet boom)

16.1 INTRODUCTION

Much of what we have discussed in this text has been focused on design problems
and high-level approaches to building mobile applications. We have intentionally
stayed away from a more syntactical-driven approach because languages and tools
are evolving rapidly in the space of mobile applications. We have looked at a
variety of design patterns and architectural solutions that address the problems
associated with mobile applications. In this chapter, we are going to take a step
back, look at some very high-level architectures, and discuss how we should use
them in building our mobile applications.

In an abstract manner, a software system is to the domain problem it solves
what the solution may be to a math problem. Through the years, mathematicians
have refined “canonical” solutions to a wide variety of mathematical problems.
“Canonical,” as defined by the Webster dictionary, is an adjective for something
“conforming to a general rule or acceptable procedure.” Much of the purpose of
various fields of engineering is to define these canonical “best practices and ways”
of doing things for given problems. A large part of the field of software engineering
involves defining canonical solutions for developing software applications so that

773

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c16 CB752-B’Far-v3 May 4, 2005 20:22

774 ARCHITECTURE, DESIGN, AND TECHNOLOGY

every problem in building a software application does not have to be solved from
scratch.

To define these general rules and acceptable procedures, the software engineer-
ing discipline has borrowed concepts and terminologies from more established
engineering disciplines such as structural engineering. In a physical sense, build-
ing software, at design stages, resembles building physical structures. First, the
builder assesses the requirements of the inhabitants of the structure. Then a high-
level overall plan or design that meets those needs is put together. Finally, the plan
is implemented by carving out pieces of work and then building the structure.
Structural engineers and builders refer to the high-level overall plan as architec-
ture. “Architecture,” as defined by the Webster dictionary, is “the art or science
of building; specifically: the art or practice of designing and building structures
and especially habitable ones.” Webster also defines architecture as “a method or
style of building.” Through years of designing buildings, builders of structures
discovered that one way to improve the design and creation process is to come
up with typical ways of putting the structural pieces together and then use these
methodologies to design a high-level plan of the structure, namely the architecture.
So, the architecture of a building is largely the implementation of these canonical
methods that allow engineers to create standard pieces to be used in structures
(reuse), refine the patterns of doing things in an evolutionary manner (tried-and-
true), and describe, compare, and contrast the structures. Architecture helped
engineers in building complex physical structures to identify types of structures,
divide the complicated problem of building them into pieces, and apply their bag
of best ways and practices to create an overall scheme that ties together the pieces.
Finally, the IEEE 1471 defines architecture to be “the fundamental organization
of a system embodied in its components, their relationships to each other and
to the environment, and the principles guiding its design and evolution” [IEEE
2000].

Much of the nature of software is similar to complex physical structures. Just
as perceiving the overall and high-level plan of a building is one of the most
difficult and most important tasks an architect or structural engineer has, putting
together a high-level organization of software components in an architecture can
be a daunting task for a software engineer. “Software systems have no tangible
representation which allows us to directly perceive the realization of the large
scale abstractions which were used in the design. This makes it difficult to identify
them unambiguously and communicate them to others” [Baragry and Reed 1998].
So, software architectures play the same role for software engineers that building
architectures do for builders; they allow software engineers to get a high-level view
of the computing systems and to divide and concur complex problems. Also, they
allow us to categorize computing systems by their architectures. So, as a summary
of the various perspectives of architecture that we have discussed here, we will
define software architecture to be a particularly high-level abstraction of the system
and how its components fit together.

Designing the architecture of a software system should be the step immediately
following the requirements-gathering process. It is crucial that the system is de-
signed before the tools of implementation are selected. One of the most prevalent

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c16 CB752-B’Far-v3 May 4, 2005 20:22

16.1 Introduction 775

mistakes in designing software systems in general, and mobile software systems
in specific, is that architecture is done as an afterthought to a group of products
and frameworks selected. For example, many engineers design systems using only
a given manufacturer’s platform (such as Microsoft Windows). This means that
they are limiting the architecture of the system, the feature set of the final sys-
tem, and the fulfillment of the requirements of the customer to what the platform
dictates. Platforms and tools should be selected based on the architecture of the
system and the architecture of the system should be based on the required func-
tionality dictated by the user and available budget. Fielding [Fielding 2000] has
a comprehensive study of software architecture and its components. It can serve
as a definitive reference survey of application architectures. Our focus will be on
architectures of mobile computing systems. Now, let us take a look at a few of the
most popular network-based application architectures that have emerged as the
prevalent mobile architectures.

16.1.1 Mobile Computing Architectures
Because access must be granted to the same application ubiquitously through any
device and interface means that mobile applications are inherently distributed
network-based systems. Therefore mobile architectures are inherently network-
based computing architectures. To understand mobile application architectures,
we will first survey today’s prevalent network-based architectures.

The primary distinction between network-based architectures and software ar-
chitectures in general is that communication among components, in network-
based architectures, is restricted to message passing [Andrews 1991, Fielding
2000], or the equivalent of message passing if a more efficient mechanism can
be selected at run time based on the location of components [Fielding 2000,
Tanenbaum and van Renesse 1985]. Therefore, we can say that network-based
architectures are a subset of distributed computing architectures.

Our discussion is limited to issues concerning the design and implementation
of mobile applications; consequently, we are concerned with the application layer.
We will limit our discussion to software architectures at the application layer and
avoid discussions of network topologies, hardware, and other layers of computing
systems that reside at layers beneath the application layer. Then, we will look at the
effects of the mobile condition and the dimensions of mobility on the architecture
of a computing system.

The first network-based systems used a central computer to do all of the com-
plicated computing work such as calculations and data storage. All of the other
computers in the network were simple terminals used to interface with this central
computer. Such systems have been called a variety of names, the most popular of
which are fully centralized systems or mainframe systems.

16.1.2 Fully Centralized Application Architectures
Centralized application architectures (see Figure 16.1) offer the first type of dis-
tributed computing architectures. Perhaps the best way to think of the central-
ized architectures is in terms of the mainframe. For this reason, fully centralized
architectures are often referred to as mainframe architectures. In a centralized

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c16 CB752-B’Far-v3 May 4, 2005 20:22

776 ARCHITECTURE, DESIGN, AND TECHNOLOGY

Dumb Terminal

Dumb Terminal

Dumb Terminal

Dumb Terminal

Dumb Terminal

Dumb Terminal

Main Frame:
software

application
(business logic,
UI rendering,

etc.)

FIGURE 16.1. Centralized Application Architectures.

architecture, all of the intelligence of the computing system resides within a cen-
tral host [Sadoski 1997]. At the edge of the network, remote terminals provide
nothing more than a dumb interface to the central host. Mainframe architectures
are often accessed by a variety of systems such as PCs and other systems; nev-
ertheless, they are fully centralized as no part of the task that they fulfill can be
distributed to the systems that access them. Every computing function including
data storage, logical computations, and rendering of the user interface is done
on the central server. Typically, the terminals at the edge of the network are used
simply to display the prepared content to be displayed at the central server. The
systems that access them are there for one reason: to allow the user to interface
with them.

Fully centralized systems were the first and the oldest type of network comput-
ing systems. Many systems such as automated teller machines (ATM), grocery store
cash registers, air-traffic control terminals, and other mission-critical-type systems
remain centralized to this day. Mainframe architectures tend to be extremely re-
liable because all of the software resides on the central host. This eliminates the
possibility of having software glitches (“bugs”), many of which can occur at the
interfaces of software components interdispersed across multiple systems. It also
reduces the complexity of software design as the networking and the applica-
tion development process are both affected by the distribution of computing in a
minimal manner.

With all of the benefits of mainframe computing, there are several major draw-
backs with fully centralized computing. First, to access the central host, network
connectivity to the central host is a requirement; this means that network con-
nectivity is always required no matter how trivial the computing task. Also, as the
central host should be able to handle large amounts of traffic, make numerous
calculations, and store vast amounts of data (after all, the central host is basi-
cally all there is to this type of computing system), it is typically very expensive.

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c16 CB752-B’Far-v3 May 4, 2005 20:22

16.1 Introduction 777

Client Client

Client

Server

R
esponse

Response Response

R
eq

ue
st

RequestRequest

FIGURE 16.2. Client–Server Architectures.

Fail-over and backup costs are also very high as the entire system fails if any single
part of it fails. Most of the time the only reliable fail-over mechanism is a full
duplicate of the central host that is continually updated and ready to come online
in case of a failure. Fully centralized systems are also very inflexible. Any type
of customization to the application has scalability and maintenance ramifications
because the entire application is in one place as one piece of software.

Many of today’s existing mobile computing systems are fully centralized sys-
tems. For example, many grocery stores use hand-held mobile scanners to keep
track of inventory connected to a central host. However, centralized mobile ap-
plications are very costly and typically very inflexible. Most of these types of
applications can only be implemented when the financial benefits of using the
system exceed the total cost of devices, the centralized hardware, and the soft-
ware. The devices are often designed with very specific needs and requirements
and, as those needs and requirements change, they are rendered obsolete. The
application cannot readily be modified and modification may involve recall of the
end-user devices or hardware modifications.

In the late 1970s and early 1980s, software engineers began to modularize ap-
plications and realize that, by breaking applications up into pieces, they could
reduce the cost and complexity of modifying applications. With the advent of
modern operating systems such as UNIX and databases, it became clear that ap-
plications could be made more flexible by being pieced. At the same time, the PC
was becoming pervasive, and it became obvious that pushing some of the com-
puting to the nodes on the network would make the systems much more flexible.
Out of this arose the client–server architecture.

16.1.3 Client–Server Architectures
Client–server architectures (see Figure 16.2) were the first network-based com-
puting architectures to become commercially viable and prevalent. Distributed

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c16 CB752-B’Far-v3 May 4, 2005 20:22

778 ARCHITECTURE, DESIGN, AND TECHNOLOGY

computing architectures had always existed, but most commercial systems that
allowed network computing were based on a centralized model. In a client–server
model, there are two distinct programs residing on separate machines [Mohseni
1996]. One program is said to be the “client” of the other. The other program
is said to “serve” the client and, therefore, is the “server.” In an abstract sense,
there is one server for one or more clients. Client–server architectures provided a
feasible means of distributing applications and computing in a network.

The distribution of various components of data and logic between the server
and the client was not very well defined in the first versions of the client–server
architecture.

The major feat of the client–server model was an application of one of the basic
principles in software engineering—separation of concerns—to create distributed
applications. In other words, the client–server architecture stipulated that the
client can do more than just being a hardware interface with no computing power.
The change in the role of the client was a significant evolutionary step over the
fully centralized architecture. The benefits were numerous. For example, most
information about the abilities of the client to interface with the user of the system
is available at the client itself. So, it knows best how to render a user interface.
Consequently, it quickly became popular to move the user interface concerns to
the client. Another example of the benefits is the handling of server downtime.
In the fully centralized model, in the event of any problem in the network or
the server, nothing works. In a client–server system, the client can give the user
a message that tells the user why the server is not accessible (e.g., the server is
not responding or cannot be found). During such a time, there may be cached
information at the client for temporary use.

Over time, in an evolutionary manner, variations of the client–server architec-
ture have arisen. These variations are created by the breakdown of the types of
responsibilities assigned to the client and the server. For example, some varia-
tions of the client–server architecture push all of the storage responsibilities to the
server. This allows more efficient usage of storage devices and prohibits creation
of complex software that replicates and synchronizes the data among the clients.

Modern databases were one of the first real commercial examples of the server
in the client–server architecture and have done much in popularizing the client–
server architecture. The primary task of databases, as servers, is to store data, but
they can also hold business logic. This logic can be implicit in the form of the
structure and content of the data or explicit in the form of stored procedures and
queries. Usage of databases through some connectivity protocol is a very good
example of client–server computing. Typically, a database program runs on one
computer and is accessed through some database connectivity protocol such as
ODBC (Open Database Connectivity) or JDBC (Java Database Connectivity) by
the clients. The clients may use the server to store data and retrieve data using
stored procedures or other mechanisms.

A comprehensive of origins and properties of client–server computing systems
can be found in works by Fielding [Fielding 2000] and Orfali and Harkey [Orfali
and Harkey 1997]. Client–server systems are one of the predominant network-
based computing architectures today. As the client–server model evolved, software

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c16 CB752-B’Far-v3 May 4, 2005 20:22

16.1 Introduction 779

Client (User Agent)

Application Server
(Business Logic)

Database
(Data Storage)

HTTP, JNDI, COM, CORBA...

JDBC, ODBC...

FIGURE 16.3. A 3-Tier Architecture.

engineers began to recognize that this network-based computing architecture
could to be better defined by further separation of concerns to better distinguish
the roles of the server and the client. N-tier architectures are the result of this
further evolution in client–server architectures.

16.1.4 N-Tier Architectures
Databases were one of the first types of servers in the client–server model. As the
client–server architectures evolved, it became obvious that there still needed to be
further separation of concerns among tasks. For examples, server applications were
often being written as monolithic applications that held data, business logic, and
user interface information. Clients, as well, were being written with no predefined
communication semantics with the servers, with no standard way to deal with user
interface issues, and with other issues left unaddressed. This made client–server
applications difficult to maintain, trouble-shoot, and improve.

It was clear that some distinct tasks, whether at the client or the server, needed
to be decoupled. Some tasks needed to be centralized and others needed to be
at the clients. N-tier architectures try to further apply the principle of separation
of concerns to the client–server model by separating the concerns into a set of
n layers. N-tier architectures began with the 2-tier architecture. The client was
the application and the database was the server. In the 2-tier model, the client
application was typically responsible for performing business logic calculations,
the rendering of the user interface, and whatever additional computational tasks
needed to be done to complete the application functionality. In the context of this
text, we will refer to the logical computations that the application makes to model
the tasks of some domain as business logic. For example, in a mortgage banking
application, calculation of the interest rates may be part of the business logic.

Because the 2-tier architecture did not scale well for complicated server appli-
cations, 3-tier architectures were devised (see Figure 16.3). The 3-tier architecture
separated the concern of business logic computations from the rest of the appli-
cation. The database did the storage of the data and the “application server” took
care of the computation of the business logic that needed to be accessed by the
clients. Hence, in the 3-tier architecture, the application server is the client to

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c16 CB752-B’Far-v3 May 4, 2005 20:22

780 ARCHITECTURE, DESIGN, AND TECHNOLOGY

the database server and the user interface application, or whatever renders the
user interface components, is the client to the application server. This chaining
of components in a client-to-server manner is essentially the evolutionary step in
the N-tier architectures over the simple 2-tier client–server models.

These 3-tier application architectures had numerous benefits, including better
scalability and reliability properties. They achieved this by separating three con-
cerns: storage of data in the database, business logic in the application server, and
rendering the user interface in the client. Today, a large portion of the infrastruc-
ture of the WWW, arguably the most successful model of distributed computing,
is based on 2-tier and 3-tier architectures. Let us look at the WWW and how N-tier
architectures have symbiotically flourished along with it.

N-Tier Architectures and the World Wide Web
The Web is essentially a client–server system where the clients and servers com-
municate through HTTP (Hyper-Text Transfer Protocol). The clients are browsers
that interpret user interface instructions in HTML (Hyper-Text Markup Language)
and other client-side scripting languages such as JavaScript for rendering a graph-
ical user interface. The servers are so-called Web servers that serve the requests of
the clients coming in through HTTP with responses that contain HTML. Though
there are other types of content that can be served by the Web server, the most
popular is HTML. The format of content is often referred to as the MIME (Multi-
media Internet Mail Extensions) type of the content. Regardless of the format of
the content, content can be grouped into two families: static and dynamic.

Static Web content is the content that does not change at the time of the request
from the client or because of the request from the client. Examples of static Web
content are static HTML files, static pictures in JPEG and other formats, and
static video clips in MPEG and other formats. Static content can be dynamically
generated in a batch mode. Even at that state, we call them static pages because,
as far as the server is concerned, the page is a static resource that may be retrieved
through access to the file system. Web servers such as the Apache Web server
[Apache 2000] implement the specifications of the HTTP as a server and serve
static content to the clients. The 2-tier model worked perfectly fine for the static
content.

Dynamic content is generated at run time and is based on information specific
to the instance of the client, the request, or the session. A good example of dy-
namic content is a personalized Web portal. The pages are tailored to the needs
of the user and every time the same user goes back to the portal, the arrangement
of the information is tailored to his or her specifications. Most of the e-commerce
industry on the Web is based on the creation of dynamic content with request-
and session-based functionality such as shopping carts that are filled and emp-
tied by the client’s requests. CGI (Common Gateway Interface) programs were
the first tools to create dynamic content. CGI programs used the URL (Univer-
sal Resource Locator) and the GET/POST mechanisms of the Web to specify a
command to a server application along with some parameters passed to this com-
mand. The CGI program, in turn, dynamically creates content based on the com-
mand and the parameters passed to it. The Web server then serves this content

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c16 CB752-B’Far-v3 May 4, 2005 20:22

16.1 Introduction 781

to the client. This mechanism remains a popular method of creating dynamic
content.

However, retrieval of data and logical computations were tightly coupled. This
created monolithic server applications that had some of the same problems as the
mainframes; namely, scaling was expensive and only possible through additional
hardware, adding functionality to monolithic applications was difficult, and fault
tolerance of any component of the system was only possible by replicating the
entire system. As mentioned previously, application servers attempted to solve this
problem by separating the concerns of data storage and business logic. Therefore,
most of today’s scalable and reliable Web applications with a large amount of
dynamic content are based on N-tier architectural models.

Today’s most popular N-tier systems are or the 3-tier type simply because the
Web is the most pervasive network. HTTP and the Web dictate a thin client. This
means that the primary purpose of the client nodes on the Web is presentation.
Clients on the Web are the browsers and they provide a user interface to the
user. On the Web, the browsers are clients to the Web servers, the Web servers
are clients to the application servers, and the application servers are clients to
database servers.

So, for most typical Web systems, the concerns are storage, business logic, and
presentation of data to the client. This yields n = 3 for the N-tier architecture. The
important thing to note about N-tier architectures is that they favor centralization
over decentralization. Because the clients of N-tier systems, such as Web browsers,
can communicate with each other, doing logical operations or storing data at the
client either is very cumbersome or creates big problems. The strength of N-tier
architectures lies in their ability to separate concerns at a central node in the
network, thereby allowing for scalability and reliability. It is also important to
note that N-tier architectures are an evolution of client–server architectures: The
layering is done at the server and there is no change in the construct of the client.

N > 3 for Mobile Applications
The first generation of mobile applications quickly exposed a weakness of the 3-
tier variation of the N-tier architecture: Every device type needed a different type
of content and the application server began to be responsible for both business
and presentation logic. The first-generation Internet-enabled mobile systems had
many of the properties of the mobile systems that we have talked about: The
user interfaces varied, the QOS was unreliable, etc. This was not what the 3-tier
systems of the Web were designed for. Already, HTML had been a marvel that
was beginning to be stretched to its limitations by developers trying to create
rich graphical user interfaces with a markup language whose original purpose
was simple presentation of information. Now, with the mobile systems, it was
obvious that HTML just would not do. WAP and i-mode (NTT Docomo) tried
to address this issue by creating new markup languages. And this, once again,
quickly exposed another problem: Having to present to m types of browsers now
meant having to produce m types of content. This was unacceptable.

The 3-tier systems of the Web were designed to produce one type of user inter-
face for one group of browsers. As long as the browser could understand HTML

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c16 CB752-B’Far-v3 May 4, 2005 20:22

782 ARCHITECTURE, DESIGN, AND TECHNOLOGY

Client (User Agent)

HTTP/XML

Presentation Server
(Data, Presentation, Presentation Logic)

HTTP, RMI/JNDI/IIOP, COM...

JDBC, ODBC...

Database
(Data Storage)

Application Server
(Business Logic)

Audio/Video Content Servers

MPEG-7, Voice XML...

XML API, Java API...

FIGURE 16.4. N-Tier Architecture (N = 4).

and JavaScript, the user interface was fairly easy to render. As the Web evolved, the
Web browsers also began to use a variety of plug-ins, such as Macromedia Flash,
that would prohibit use of content in a resource-starved mobile environment.

The first solution to this problem was to detect the type of the client and
to serve the appropriate content to the client. For the Web, this could be done
through querying the request for the browser type and serving the content type
that the browser could understand. This solution, however, does not address the
fact that there are different branches of content to be served for the different
devices and that the behavior of the application may need to be fundamentally
different depending on the condition of the mobile user. Presentation servers such
as the Apache’s Cocoon and IBM’s Wireless Transcoding Publisher solved this
problem by separating this concern into another tier. We will look more closely at
presentations servers in the next chapter.

The majority of mobile commercial solutions in the market today focus on
data-driven mobile solutions with N-tier architectures. A simple version of such
N-tier architecture (N = 4) may be seen in Figure 16.4. The “wireless Web” is a
problem that has been tackled by numerous vendors, each with its own version
of the presentation server, promising to “wireless-enable” the Web (an unsuitable
terminology because wireless connectivity and mobility are not the same thing as
we discussed earlier in this chapter). Presentation servers have allowed the N-tier
architecture to evolve further to address the diversification of devices. Neverthe-
less, N-tier architectures remain in the client–server family. The clients still cannot
communicate with each other directly. We will discuss two architectures in this

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c16 CB752-B’Far-v3 May 4, 2005 20:22

16.1 Introduction 783

text that are a fundamental departure from client–server architectures: peer-to-
peer architectures and mobile agent architectures.

16.1.5 Peer-to-Peer Architectures
N-tier client–server architectures, with all of their benefits, do not address several
dimensions of mobility. N-tier architectures, for example, require that the user be
connected to the network because the servers are somewhere else on the network.
If one client has the data that another client needs, there is no way for them to
discover each other and exchange the information. The great failure of centralized
and client–server models lies in their inability to recognize, let alone exploit, the
growing power and information resources at the edges of the network [Bolcer and
Oreizy 2000]. For example, in a client–server and centralized application model,
the server typically cannot initiate interactions with the client. Neither can clients
store and interchange information without going through the server.

Peer-to-peer (P2P) application architectures allow any participant of the net-
work to communicate with any and all of the other participants provided those
participants adhere to the rules of the network-based application architecture. In
P2P application architectures, all the participants, naturally referred to as peers,
are autonomous and equal participants. P2P architectures can operate between
two participants or among many participants.[PEQ1] It is important to note that,
in such an architecture, it is not a requirement that all nodes have the ability to
connect to each other (as seen in Figure 16.5). It is particularly important to note
that this is not a requirement in mobile environments, where the ability of a device
to connect to other device may depend on a variety of variables such as security,
device capabilities, and network services. Nevertheless, from the figure, the differ-
ence in the topology between P2P and client–server systems should be quite clear.
If every given node can reach many of the nodes, but not all of the nodes, we still
have a P2P architecture.

P2P application infrastructures satisfy the problems presented by the dimen-
sions of mobility much better than do client–server and centralized architectures.
P2P architectures do not require connectivity to a server or centralized host; there-
fore, if a network participant, or peer, needs a piece of information, there may be
a variety of other peers that can satisfy its need. Although connectivity to one
or more may not be available, the probability of finding a peer with the required
resources is much higher than for the client–server or centralized cases. Because
P2P architectures rely on the computing power available at the edge of the network
(closer to the place where the actual user of the system is) they can deal better
with specialization of content to the required user interface.

We have already looked at P2P in Chapter 9 where we discussed mobile agents.
Let us look at them next.

16.1.6 Mobile Agent Architectures
We dedicated Chapter 9 entirely to discussions that revolve around mobile agents,
but, if you are reading this chapter out of order or if you skipped Chapter 9, we
will give you a quick digest of mobile agents here.

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c16 CB752-B’Far-v3 May 4, 2005 20:22

784 ARCHITECTURE, DESIGN, AND TECHNOLOGY

FIGURE 16.5. Peer-to-Peer Architectures.

Mobile agent–based software systems are a drastic departure from centralized,
client–server, and N-tier systems. Mobile agents have the following properties:

1. They are programs that encapsulate data and code, which may be dispatched
from a client computer and transported to a remote server for execution [Chess
1993].

2. They execute asynchronously and autonomously [Yang et al. 2000].

The term mobile agent has no relation to the mobile user, the mobile device, or any
of the other aspects of mobility that we have discussed so far. Rather, mobile agents
are software components that can move from server to server in the network while
keeping the state of the application intact. Mobile agents manage their own life
cycles based on the logic programmed into them.

Because of their autonomy and their ability to move from one environment to an-
other, mobile agents seem particularly promising for building mobile applications.

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c16 CB752-B’Far-v3 May 4, 2005 20:22

16.2 Practical Concerns with Architectures 785

Imagine having an application environment that can load one application, perform
what needs to be done without having to communicate with other devices, and,
once finished, unload itself from the device and, if necessary, store data on some
other device such as a server. You have just imagined mobile agents. With the ex-
ception of real-time distributed computing, there is nothing that mobile agents can
do that the aforementioned architectures cannot do. However, mobile agents offer
some very significant advantages that happen to be aligned with the dimensions
of mobility.

Mobile agents are autonomous: They can manage their own life cycles. This
means that we do not have to store many applications on a device or manage
loading and unloading the applications manually. Therefore, usage of CPU and
memory resources are optimized and simplified. Also, because the management
of code and state is something that the application or the application framework
handles, mobile agents are much better at adapting to whatever user interface may
be needed on a device, at a given time, at a given place. For example, a mobile agent
application can load the interface code for a voice user interface or the text user
interface depending on the user’s preference or device support. Most importantly,
mobile agents do not have to access the network every time some computing task
must be done. They can be used as stand-alone applications for the most part. This
reduces latency in systems that are massively distributed such as mobile systems.

Nevertheless, mobile agents, as with any other computing system, have their
downfalls too. Mobile agents are much more complex than the previously men-
tioned application models. Also, the minimum resource requirement of mobile
agents can be slightly higher than that of clients of the client–server architecture.
Security is also a big concern in mobile agents.

If mobile agents (sometimes referred to as mobile code) seem a bit too compli-
cated to fathom, do not be weary. Mobile agents are not a very prevalent computing
paradigm today, although they promise to be much more prevalent in the future.

Throughout this text, client–server, P2P, and mobile agent architectures are the
three that we will consider for designing and implementing mobile applications.
These three are the most relevant to creating mobile applications using technology
that exists today. Now that we have looked at the prevalent software architectures
of today, let us look at a road map of the four sections of this book on how we will
look at designing and implementing mobile applications.

16.2 PRACTICAL CONCERNS WITH ARCHITECTURES

Vendor neutrality is one of the points that we have stressed throughout this text.
The argument may be made that vendor neutrality is not important. For example,
building applications that run only on the Microsoft platform is as valid as any other
approach. This may be true for disposable software for well-known domains: those
applications that have a short lifetime and are written for an environment where the
problem is very well known. The problem is that software engineers are typically
faced with the task of building systems where the problem is not very well known
(or where the requirements are hazy at best). Also, software applications typically

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c16 CB752-B’Far-v3 May 4, 2005 20:22

786 ARCHITECTURE, DESIGN, AND TECHNOLOGY

live much longer than their original authors have ever thought, particularly if
they hold any significant amount of business logic (because they can be hard to
understand and document) and writing vendor-neutral software is particularly
important in a young discipline such as mobile application development. Mobile
software vendors change, and along with their changes they create new platforms
and new tools; the worst thing you can do is to rely on a vendor whose customer
base may be very diverse (thereby being pulled in many directions) and has only
its own bottom line in mind.

The practice of building software architectures on vendor specifications must
stop. As a discipline, we must start relying on bodies such as W3C, ACM (Associ-
ation of Computer Machinery), IEEE, IETF, and other organizations to set forth
standards that serve the interest of the consumer and the industry as opposed
to individual vendors. As you may have noted, this was a practice that we tried
to adopt throughout this text. Vendor products should compete based on their
implementations and feature robustness as opposed to tying down customers and
the development community.

16.3 ARCHITECTURAL PATTERNS FOR MOBILE APPLICATIONS

Architectures are inherently evolutionary. Therefore, like fine wine, architectures
and architectural patterns that have been correctly recognized mature well. The
architecture of a given structure may be conceived by putting together two or more
such mature architectural patterns. Although mobile application development is
a very young discipline, there are some architectural patterns that have surfaced
as applicable. We have looked at some of these patterns within the context of
the relevant dimension of mobility in this text. Namely, we have looked at the
following:

1. Fusion and integration within multimodality: The applicability of this architec-
tural pattern was in fusing various modalities to create a multimodal user in-
terface. We looked at this in Chapter 8.

2. PAC and its variants: The applicability of this architectural pattern was in creating
separation of concernsamong the various aspects of user interface. We looked
at this in Chapters 5–8.

3. MVC and its variants: Like PAC, the applicability of this architectural pattern was
in separating the concerns of the user interface from the rest of the application.
We looked at this in Chapters 6–8.

Another crucial architectural pattern that is a must read for anyone dealing with
distributed computing (because most mobile computing is distributed) is Roy
Fielding’s REST [Fielding 2000]. We consider REST not only an architectural
pattern, but an architectural principle that may apply to a variety of distributed
systems that involve multiple pieces communicating with one another. We strongly
recommend reading the reference on this topic.

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c16 CB752-B’Far-v3 May 4, 2005 20:22

16.4 Summary 787

We did talk about use of voice, location information, and mobile agents. Mobile
computing has only recently begun to take advantage of these technologies to offer
new and useful features; consequently, we have not recognized any architectural
patterns within these areas as far as mobile development is concerned. These areas
are evolving rapidly. There is no doubt that such architectural patterns will emerge
within the near future.

16.4 SUMMARY

Software architecture is probably just as much of an art as it is a science. So, we
cannot “teach” the reader, nor can any other author(s) claim that they can “teach”
their readers, the art of creating good architectures. As in building physical ar-
chitectures for creating buildings and monuments, it requires years of practice,
design, testing, experienced failures, and experimentation to make an engineer a
good architect. However, even the best architects are often not aware of at least
some architectural patterns in software development. For this reason, software
architecture is also not an individual art, rather a team art, where the best archi-
tectures are created by exchange of ideas within the software community.

All we have done in this chapter is to introduce some already well-known ar-
chitectures and discuss a few architectural patterns previously discussed in this
text within the discipline of mobile application development. To become a good
software architect, you will need to experiment, exchange ideas with other engi-
neers, continually read on new findings by academics and practitioners, and seek
the weaknesses of whatever architectures you or your colleagues develop or find
(the antipatterns).

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c17 CB752-B’Far-v3 May 4, 2005 17:24

CHAPTER 17

Mobile Application
Development Hurdles

Whatever one man is capable of conceiving, other men will be able to achieve.
Jules Verne

17.1 INTRODUCTION

Much of the research done in software engineering is dedicated to solving practical
problems that come up when building software applications. Techniques such as
Extreme Programming and RUP are two such techniques and methodologies,
addressing some of the issues associated with the process of building software
applications.

The dimensions of mobility, as we have seen, add to the complexity of develop-
ing mobile applications. In this way, an entirely new set of hurdles and problems
are introduced. In this chapter, we will briefly look at a few of these problems.
Some of these problems will be addressable by the tools that we have introduced
previously in this text; others will not.

Some of the basic hurdles are caused by the fact that most developers either
have experience building call centers and other types of voice systems using the
telephony channel or they build PC applications with GUIs. So, we will start by
looking at hurdles associated with building a VUI for those developers who come
from a server-side or GUI-based development background.

17.2 VOICE USER INTERFACE HURDLES

The first question that will come to your mind will be related to the infrastruc-
ture. This will be a hurdle in real deployments. Whether to have your own voice

788

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c17 CB752-B’Far-v3 May 4, 2005 17:24

17.3 Hurdles with Multimodal Applications 789

infrastructure (telephony systems if you need to support telephony, voice recog-
nition servers, etc.) will largely depend on two factors: which is the financially
viable solution and which is the best decision for the core business.

First, let us assume that you have to own the development platform (which is
typically the case because frequent unit testing is either not possible or difficult
if you do not own the development environment). This means that you have a
voice recognition engine, speech-to-text engine, and/or speech-synthesis engine
on your environment (whether it was a free development license or whether you
had to pay for it). Unit testing is typically made possible by using the speakers on
your development platform (Linux, MS Windows, etc.) to emulate the telephony
channel.

VSPs (Voice Service Providers) offer infrastructures on which you can deploy
your voice application for testing and production. You can buy the software (e.g.,
Nuance or Speechworks) and the hardware (e.g., Dialogic) from the vendors and
create your own deployment environments. Pricing is typically the major factor
here, but keep in mind that it is not the only factor. VSPs are typically very restric-
tive on what you can do on their systems if they host the system and support the
system. You always have the most amount of control if you own both the hardware
and the software.

The flip side of the coin is that deploying on a VSP sometimes actually forces
the development team to follow better software engineering (specifically re-
lease engineering) practices and create a cleaner development and deployment
process.

17.3 HURDLES WITH MULTIMODAL APPLICATIONS

Some of the basic hurdles are caused by the fact that most devices, at present,
do not offer the hardware capabilities to have true simultaneous multimodality.
This form of multimodality tends to be the most useful form. Also, most devices
that connect to a network wirelessly today are not capable of offering two or more
separate connections with reliable QOS. Only recently have operating systems
such as Symbian OS and Palm OS 5.0 begun to provide the basic capabilities
for offering simultaneous multimodality on the handset such as multithreading.
However, such features are at the top of the list for the operating system and
device manufacturers as they add features to their products. Though multimodality
does not, in and of itself, give birth to killer applications, it has the ability to
make applications much more user friendly and thus improve their commercial
value.

The other problem with multimodality lies on the server side, where synchro-
nization of many different products, such as some of those introduced in this
text (speech recognition, transcoding publishers, etc.), creates latencies among
the different modalities. These problems can indeed be solved with today’s tech-
nologies, but not in an elegant manner. The solutions typically give rise to other
problems in integrating third-party systems or scaling the server-side software
properly.

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c17 CB752-B’Far-v3 May 4, 2005 17:24

790 MOBILE APPLICATION DEVELOPMENT HURDLES

17.4 PROBLEMS WITH BUILDING LOCATION-BASED APPLICATIONS

Integrating location information into an application may possibly be the most
exciting possibility for mobile applications. Location information offers a whole
new realm of applications. The biggest single problem with location information is
not in the technology, but in the use of it: privacy. Whereas knowing the location
of the mobile user can be very handy in offering very useful services, it can also
violate basic privacy rights of a user. So, the users are often faced with a choice
whether to “opt-in” or “opt-out”; participating in the program means signing a
form that basically gives up a great deal of privacy, but not signing results in a lack
of access to the desired services.

Currently, there are no technologies that allow for “opting-in” or “opting-out”
of sharing one’s location on a granular interactive basis. In other words, there is no
easy way for the user to specify when, where, and how his or her location should
be known and when, where, and how his or her location should not be known.

The second and third biggest problems with today’s location systems are price
and power use. Good GPS-based systems are still fairly expensive and if you
want to add GIS information to that to get value-added services such as finding
restaurants, etc. you are looking at subscription fees. Also, most location devices
are a considerable drain on the batteries, though this is an area of focus in the
location industry and should be addressed within the near future.

17.5 POWER USE

We trust that the clever reader of the book has noticed how we neglected address-
ing issues of power use. The problem seems to be that operating system vendors
and hardware manufacturers have largely dropped the ball on providing enough
software control for the third-party developers, through APIs or otherwise, to mon-
itor and control the power use on devices. This leaves the developers somewhat
helpless. For example, we cannot disable certain functionality in the application
based on the amount of power left. At the time of authoring this text, the devel-
opers can only affect power use by optimizing the operation of the application.
This remains a hurdle in writing better, smarter, and more user-friendly mobile
applications.

17.6 SUMMARY

Throughout this text, we have pointed out various hurdles in building commer-
cially successful mobile applications. There are many that we have not mentioned
here. It almost seems as if mentioning the hurdles will detract the enthused novice
readers from trying to build mobile applications. However, in the hurdles that
we have mentioned and the ones that we have not, you can also seek commer-
cial opportunity. There is no doubt in anyone’s mind that mobile applications will
someday be as commercially successful as foreseen during the late 1990s. However,
the slowdown in the commercial success has been largely due to these hurdles and

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c17 CB752-B’Far-v3 May 4, 2005 17:24

17.6 Summary 791

poor execution on the part of developers who have ignored the dimensions of mo-
bility and simply built PC applications that fit on mobile devices. The investors
and entrepreneurs are just as much to blame in their hasty approaches to create
“killer” applications while not understanding that every killer application (such
as spreadsheets and word processors) evolved through many years and came from
other applications (such as text editors and spell-checkers) whose commercial
success were doubted at first.

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c18 CB752-B’Far-v3 May 4, 2005 20:25

CHAPTER 18

Testing Mobile Applications

Common sense is the collection of prejudices acquired by age eighteen.
Albert Einstein

All sects are different, because they come from men; morality is everywhere the
same, because it comes from God!

Voltaire

18.1 INTRODUCTION

Proper testing and quality control of software has been said to be one of the most
neglected areas of software development. Whereas this streamlining of testing
and quality control can reduce the budget and the time frame for delivery of
projects, the quality of the delivered product is ultimately sacrificed. Although
lack of testing and quality control can be the cause of failure, or at least customer
dissatisfaction, of many software products, it has been tolerated in the world of
PC applications. This is mostly from the tolerance that the users have to buggy
software with stability and functionality issues. However, this tolerance does not
exist in the world of mobile application development. Mobile devices are always
looked upon, even if they are not, as embedded devices. To the users, there is no
difference between a way a PDA, a cell phone, and a VCR should operate: The
user interface must be simple and there is zero tolerance for problems relating to
security, stability, performance, and all of those other things that these same users
have built an immunity toward during the usage of PCs.

The best tool to meet these higher user expectations is to implement proper
quality control and testing procedures to eliminate problems before an application
ends up in the hands of the costumers. To do this, we first restate one of the major
axioms in this text: Mobile applications are a superset of their stationary counterparts.
Therefore, all the best techniques to be deployed in quality control and testing of

792

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c18 CB752-B’Far-v3 May 4, 2005 20:25

18.1 Introduction 793

stationary software applications are a subset of the best techniques to be deployed
in quality control and testing of mobile applications. Because a plethora of ma-
terials exist in the commercial and academic community regarding the testing of
stationary applications, we will leave it up to the reader to explore such sources. In
this text, our major concern is first to look at any additional measures that we must
take to ensure the quality of a mobile application and second to analyze the effect of
the dimensions of mobility in our testing procedures and techniques. Once again,
we use the dimensions of mobility as the starting point for the differences between
mobile applications and their stationary counterparts and build from there.

Perhaps the most important difference between testing mobile applications and
stationary applications is that testing for mobile applications begins prior to devel-
opment. Moreover, it lasts all the way through the development cycle. Let us see
why and how.

As we have seen, mobile applications may be deployed on a variety of devices,
connect to the network in a variety of ways, offer several different input and output
mechanisms, use the user’s location and movement patterns, and display funda-
mentally different behavior than their stationary counterparts. Because of these
factors, the quality of a mobile application largely depends on the infrastructure on
which it is deployed. Although there is an analogous infrastructure for stationary
applications if they operate in a network environment, this infrastructure typically
does not vary much from one stationary application to the next and is based on
stable and proven technologies that are more than a decade old. The same is not
true of the infrastructure on which mobile applications are built. Much of the tech-
nology used to build these infrastructures is based on very new technologies and
there is a considerable variation in the infrastructure used for development and
deployment from one mobile application to the next (differences in the carriers,
location-service providers, user interfaces required, etc.). Therefore, the first step
in putting together a successful mobile application is to test the infrastructure on
top of which the application is to be deployed.

18.1.1 Testing the Mobile Infrastructure
As we have recognized throughout this text, there are some core pieces of technol-
ogy that a mobile application may use to provide the necessary functionality to the
end user. In fact, in a way, most mobile applications involve some degree of integra-
tion with external applications. Although these external services and applications
are also involved in the development of many stationary software systems, the way
mobile applications use them typically differ from that of stationary applications.
This is because, as we have mentioned, mobile applications fundamentally differ
from their stationary counterparts by the dimensions of mobility. So, the services
and external applications that provide the unique infrastructure of the mobile ap-
plication are those that provide functionality related to the dimensions of mobility.
Namely, we are concerned with hardware and software infrastructure providing
the following:

1. location-based information about the mobile device,
2. wireless network connectivity,

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c18 CB752-B’Far-v3 May 4, 2005 20:25

794 TESTING MOBILE APPLICATIONS

3. voice recognition and speech synthesis,
4. multichannel connectivity to the network (base network that provides voice,

data, and video to the device),
5. synchronization of data between the mobile device and the network,
6. power consumption and available power on the device,
7. capabilities of the device (input and output mechanisms, memory, CPU, stor-

age, etc.),
8. QOS of network connectivity,
9. active transactions (push and similar functionality), and

10. data synchronization.

Because, typically, a mobile application does not use all of these pieces, and every
mobile application uses these pieces in a unique way, then our first task in the
development cycle is to perform proper testing on these infrastructure pieces to
assure that they can deliver sufficient functionality and meet the performance
requirements of our mobile application. The process of testing each one of these
infrastructure pieces must include, but is not limited to, the following:

1. We must assure that the infrastructure piece individually, and the required
infrastructure pieces together in concert, can deliver the proper functionality
required of an application. For example, we do not want to discover that the
wireless connectivity does not provide enough reliability to obtain location
information or that one or more of the devices slated to be used by the appli-
cation have problems supporting a VUI if the requirements of the project include
location-based information as well as accessing the system through a VUI.

2. While developing a mobile application, developers typically use emulators.
Emulators have two main benefits. First, deploying the application on the device
may be cumbersome and time consuming; emulators lessen the development
and quality control time by providing a starting point for unit testing as well as
quality control. Note that all different tests must eventually be performed on all
of the actual devices; however, emulators help us eliminate all those bugs that
we can catch without going through the sometimes long and arduous process
of deploying the application. Second, because many mobile devices operate
with less exception-handling capabilities than PCs, some software bugs can
lock up the device or even cause hardware problems. Though these problems
are typically undoable, this can be cumbersome and time consuming. Before we
start developing, we must map out any differences between the emulator of a
device and the actual device. These differences will provide a metric, primarily
for the developers, on how reliable the emulator is while development and unit
testing are done iteratively. These differences also provide a starting point for
unit testing the application on the actual device as well as a starting point, for
the quality control team members, to look for bugs. So, prior to development,
you must select your emulators and test (or obtain the information in some
other way) the emulators themselves to see how true they are to the devices
that they emulate. Of course, emulators are not just used for devices. They
are also used to emulate network conditions, location services, and the other

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c18 CB752-B’Far-v3 May 4, 2005 20:25

18.1 Introduction 795

external systems that are crucial to the dimensions of mobility. Apply the same
treatment to all emulators: Know what emulators you are going to use for which
piece of the infrastructure and how accurate the emulator is before you begin
developing.

3. We must assure that the scalability requirements of the mobile application can
be met. Remember that each user may have multiple devices and that features
such as cross-device sessions are desirable. The combination of such features,
the higher performance and reliability expectations on the part of the user,
and possible impedance points in an environment where there is a large set
of possible MMI points make scalability a larger issue than normal, especially
for those mobile applications that rely largely on a server-side infrastructure.
Although it is often not possible to have exact metrics and measurements on the
scalability and reliability robustness of an infrastructure, typically an acceptable
guesstimate can be made.

4. We must assure that the customer’s expectations of the usability limitations of
the application are going to be based on reality and not a guesstimate by the
customer or the development team. In other words, before you begin devel-
oping, create some user interface mock-ups that demonstrate the types of user
interface limitations that the user will face when using the application. For
example, if you are going to build an application that collects large pieces of
information from the users through a VUI and then displays some text through
a visual display, you might want to create a “Hello World”-like example that
demonstrates the sequence and types of inputs and outputs that the real users
will deal with. This will give the customer a sense of whether the user inter-
face is intuitive or whether the engineers have gone bonkers with offering too
many functionalities. There are many other added benefits from doing this. A
large portion of customers, as discussed in Chapter 15, have experience with
stationary applications but do not really understand the possibilities of a mo-
bile application. For this reason, it is important to properly demonstrate and
communicate a fair representation of features such as the user interface imple-
mentation to the users. Note that this is different from the typical user interface
mock-ups used during the first stages of user interface development. The goal
here is to test whether there is a gap in understanding of usability issues between
the development team and the users.

Once again, remember that the process of testing a mobile application begins
before its development does. Once we start developing, we want to develop the
application in a manner that does not hamper unit testing or white-box testing
efforts. The first step for this is to have well-thought-out coding standards.

18.1.2 Coding Standards
Coding standards have long been a major part of software development. Coding
standards give us myriad benefits, including better readability and reusability of
code as well as usage of automated tools to help us throughout the development

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c18 CB752-B’Far-v3 May 4, 2005 20:25

796 TESTING MOBILE APPLICATIONS

process. Once again, a comprehensive discussion of coding standards is outside of
the scope of this text. However, there are some considerations, when it comes to
coding standards, specific to mobile applications. Namely, there may be a variety
of syntaxes involved in the development of one mobile application as different
devices, or device families, may require different languages; some may offer J2ME
support whereas others are BREW devices, etc. Not only should we maintain
fairly strict coding standards per programming language but we should also try to
maintain a high degree of consistency across the different programming languages
and tools used in the project. Particularly, if we are using two tools, such as Java and
C++, that lend themselves to similar coding standards, it is important to keep those
coding standards as similar as possible. Whereas developers can be individually
religious on where they use a carriage return or a curly bracket, these personal
preferences must not hamper readability, reusability, and testing efforts. Because
it is typical for mobile applications to have many different devices and language
tools involved in their development, it is impractical to have a dedicated person
in the quality control group assigned to a given part of the application using a
specific language. The quality control team, as with all of the other teams in the
development process, is restricted by some budget, and quality assurance (QA)
engineers must often float among different modules, multiplexing a variety of
tasks. If we do not maintain good coding standards across the different parts of
the mobile application, we risk the chance of having very slow unit testing and
white-box testing phases.

Fortunately, UML, which is the central tool used for development in this text,
is an excellent tool to maintain consistency across different implementations. De-
tailed UML diagrams of implementation can assist in readability, maintainability,
reusability, unit testing, and white-box testing of code by serving as documentation
and clarification to the code.

In addition to coding standards that address cosmetic issues, we can also use
coding standards to specify a limited and generic set of coding techniques to be
used or to be avoided. For example, if we know that a programming language
on a given device family shows bad performance when doing string comparisons,
we may recommend that character-based comparison techniques be used for that
language and on that given device family. Therefore, when it comes to mobile
applications, coding standards can serve a bigger purpose in communicating ap-
propriate programming techniques for a given project.

18.1.3 Unit Testing
Unit testing involves testing the smallest possible unit of an application [Budrovich
2001]. To produce any reliable software application, we absolutely need to integrate
unit testing into the development process; however, the granularity of the units is a
topic of much argument in the development community. Whereas some developers
believe in testing the absolute smallest possible units such as data structures and
individual classes, other developers believe in testing functional units that may be
made of several smaller units. This is not to say that testing functional modules
and unit testing are the same thing. Module testing typically refers to testing
modules that have an encapsulated piece of functionality that makes sense from the

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c18 CB752-B’Far-v3 May 4, 2005 20:25

18.1 Introduction 797

end-user perspective. For example, we may want to test the module that obtains the
user’s personal profile information. In contrast, from the developer’s perspective,
we can recognize units that are aggregates of only a few other atomic units (units
that cannot be broken down into other meaningful units such as classes and data
structures) and have functionally significant importance. For example, testing a
class that defines a name called Name, has no methods, and has three different
strings representing first name, last name, and middle name is somewhat of a
waste of time. However, testing a class called Person that includes some behavior
and aggregates Name as well as other classes such as those encapsulating the
age, title, and other personal information about the person makes more sense. In
object-oriented environments, a good rule of thumb is to unit test all those classes
that have significant usage by the application (in our case, Name does not have
significant usage outside of a Person).

When it comes to mobile applications, we leave the choice of how unit testing
is actually done to the developer’s judgment, while noting that it is crucial that the
defined units are not too big (for otherwise unit testing begins to lose its value) and
not too small (in which case unit testing can begin to slow down the development
process unnecessarily).

Unit testing is probably the most neglected type of testing in typical software
development practice and is perhaps the most efficient way of catching and fixing
software bugs. Unit testing is typically done by the developer(s) of the module
being unit tested. For mobile applications, we can use a variety of tools for unit
testing:

1. For visual interfaces on mobile devices, there are fairly good emulators that
accompany the SDK for most devices.

2. Most voice recognition and speech-synthesis engines provide a development
version of the software that can be locally installed on the development platform
(Windows-Intel-based PCs, Unix machines, etc.) with the telephony channel
redirected to the microphone input.

3. GPS emulators can be used to provide emulation of location-based information.
4. We can use the typical unit testing tools used for stationary applications. These

tools are typically language specific. For example, JUnit is an open-source
project that allows unit testing of Java programs. There are similar tools for
C, C++, and other languages.

Once the developer is satisfied with the quality of code and the functionality of
a functionally meaningful chunk of program from the user’s perspective (we will
call this module for the lack of a better word), it is time to get the QA engineers
involved. The process typically begins with black-box testing.

18.1.4 Black-Box Testing
Black-box testing, sometimes also referred to as functional testing, is done when
the module is treated as a black box, we give it some input, and make sure that
it produces the right output. In other words, black-box testing assures that the
module meets the functional specifications.

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c18 CB752-B’Far-v3 May 4, 2005 20:25

798 TESTING MOBILE APPLICATIONS

Black-box testing of mobile applications must be done with real devices, on
the real network, and with the real infrastructure in place. No more usage of
emulators is allowed. To perform black-box testing, we need a test plan made up
of a road map for testing along with specific test cases that specify what is to be
tested. The results of these tests are then recorded for later analysis by the QA and
development teams. These test cases must be used for proper regressive testing as
more test cases are added at a later time.

For mobile applications, a particular emphasis must be put on testing the func-
tionality that directly demonstrates the relevance of dimensions of mobility: loca-
tion sensitivity, multichannel user interfaces, etc. Whereas tools can be used for
performing black-box tests for those parts of the mobile application that reside
on the server side, there are not many testing tools available that run on mobile
devices. This is partly because mobile devices are resource-starved and running
a testing environment is sometimes difficult if not impossible and partly because
mobile applications are fairly young and there are few well-known testing tech-
niques developed for them.

Black-box testing is an area where there is not much dispute over the techniques
or the importance of performing such tests. Black-box tests are typically the core
of testing done on any software system. Once we are done with black-box testing,
it is time to start white-box testing.

18.1.5 White-Box Testing
Once again, as its name implies, white-box testing includes performing a variety
of tests on the system while looking at the exposed internals of the software. The
purpose of white-box testing is to find hidden problems that may not be exposed by
black-box testing test cases, to find violations of coding standards, and to expose
other problems that only reveal themselves by looking at the execution of the
code. This is somewhat similar to “stepping through the code,” a technique that
many developers use to debug and unit test their programs. The major differences
here are that there are a variety of tools for white-box testing and that white-box
testing must be performed by the QA team and not the development team.

Once again, as in the case of unit testing, there is much argument over how
to do white-box testing, the granularity level at which white-box testing should
be done, and the involvement of the development team in the white-box testing
process. White-box testing can prove to be difficult and time consuming in the
case of mobile applications because of the complexity of the infrastructure and
the variation in the code base. The amount of white-box testing done and the
distribution of the tasks between the QA and development team depends on the
organizational strategy selected by the development team and is orthogonal to
development of mobile applications.

There is one place where white-box testing can prove to be invaluable in mobile
development and that is in the user interface development. This is the case if a
layered approach such as building a generic user interface is used. In this case,
if there is a bug in the generic user interface, it is more easily discovered with a
white-box test. Fixing such a problem will avoid further bug documentation and
reporting of the specialized user interfaces.

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c18 CB752-B’Far-v3 May 4, 2005 20:25

18.1 Introduction 799

18.1.6 Regression Testing
Regression testing is absolutely crucial to assure that new bugs are not intro-
duced into modules that have already been tested and approved. It is done by
rerunning all the tests regressively, as various modules are tested and integrated,
additional modules are added, and modules are changed. Once again, regression
tests must be done on the real environment and infrastructure as opposed to using
emulators. Whereas regression testing is typically highly automated for stationary
applications, this is tough to do with mobile applications because the computing
environment is very distributed, with mobile devices doing some of the computing
and the network the rest. Once again, automation of testing on mobile devices of-
ten proves to be very difficult because most of them are resource-starved, they run
a lot of embedded software, and manufacturers like to upgrade models frequently.

Regression tests must be done at least at the end of each integration cycle—
integration happens at the end of each incremental release as the various compo-
nents are gathered and integrated to make a cohesive application.

Black-box testing, white-box testing, and regression testing are all testing pro-
cedures that have proved effective for testing stationary applications. However,
each of these testing procedures are greatly affected by the nature of mobile appli-
cations and the users of mobile applications. Let us start looking at the additional
measures that we need to take for testing mobile applications in greater detail.

18.1.7 Problems Specific to Mobile Applications
The two biggest areas of difference in testing mobile applications and stationary
applications lie in usability testing and infrastructure testing. We have already
touched upon testing the mobile infrastructure and will look at the usability issues
later in this chapter. However, there are other issues too.

First, the device manufacturers, compared to the makers of PCs and servers,
have a much higher relevance to the development process. Because mobile de-
vices are typically more commoditized than their stationary counterparts, device
manufacturer’s rely on changing and improving the devices as a source of revenue
stream. This means that devices are changing frequently and the application must
constantly be tested on new platforms. Although the same is somewhat true for
PCs and servers, the frequency of change in the world of mobile devices is higher
by orders of magnitude, and, therefore, so is the effect on the testing process.
A widely deployed mobile application that can run on a set of devices requires
constant testing on the newest version of the device.

Second, unlike most of stationary networking technologies, which are based on
TCP/IP and are fairly open, wireless networks are based on a variety of proprietary
and standard protocols and are not nearly as open. This closed environment is
partly due to security issues and partly due to the carrier’s business models, which
typically rely on value-added services. These value-added services are implemented
on top of the basic network infrastructure; therefore, to monitor the applications,
the carriers keep access to their network and devices fairly closed. This puts us
in for another loop in the testing process: We must test the mobile application
on whatever networks it is to be deployed on and keep track of any changes
to these networks so that proper regression testing can be performed. There are

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c18 CB752-B’Far-v3 May 4, 2005 20:25

800 TESTING MOBILE APPLICATIONS

some problems here that might require special consideration during the black-box,
white-box, and regression testing stages of a given mobile application:

1. Some quality of service conditions are not repeatable on some networks. It is
important not only to perform the test on reasonably wide coverage areas but
also to perform the test several times, sometimes with random frequency and
sometimes depending on physical conditions such as the weather, to assure of
the proper testing results under as many testing conditions as possible.

2. Traffic conditions and patterns can be very difficult to replicate. There may
be underlying causes for patterns of usage and connectivity not well known
during the unit test, white-box test, black-box test, and stress-testing (testing
the application beyond the load that it is meant to take under normal operating
conditions) stages.

3. “Certifying” your application with the carrier is something that you might
want to consider. “Certification” is a term often used in the software industry to
indicate a superficial understanding of a product without thorough theoretical
knowledge of concepts that go into it! Vendors use it as a mechanism to produce
an outsourced workforce who sells their product as well as implementing it
because of a vested interest in the time spent in certification. Nevertheless,
certifying your application with the carrier may be something that is worthwhile
because 1. all the wireless carriers have an enormous amount of power as they
own the infrastructure and 2. certification typically includes thorough testing
of the mobile application on the carrier’s infrastructure. This testing is normally
helped through by the carrier (at some cost, which is typically minimal) and
this is somewhat invaluable as there are nuances to the carrier’s network about
which the carrier knows best.

Though not all mobile applications are wireless, many mobile applications are
indeed wireless. And, in the wireless world, the carriers are gods. There are not
many of them in any given geographic area; they deal in a market with high
barrier to entry and little threat of competition from small entities, and, therefore,
can impose their will on the manufacturers and users (within some given price
restriction).

Besides the economic power of device manufacturers and carriers, there are
indirect effects that they exert that must be taken into account in the testing
process. These include the following:

1. Device manufacturers often provide modular power sources (batteries, adapters,
etc.) that can be used interchangeably with a variety of devices. The power sup-
ply demands of the device must be taken into consideration during testing. For
example, some batteries provide a better sustained source of power and others
provide better bursts of power. A mobile application that runs on the mobile
device has a direct affect on the usage of power on the device. Therefore, the per-
formance, reliability, and stability of an application may depend on the power
supply provided with the device. For this reason, it is crucial that devices be
tested with the various possible power supplies and that the results be provided
to the end users directly (by informing them of things like how long a type of

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c18 CB752-B’Far-v3 May 4, 2005 20:25

18.2 Validating the Mobile Use Cases before Development 801

battery on a type of device will last while running a specific mobile application)
or indirectly (by recommending a set of power supply sources to be used or not
used with a particular device under specific performance needs).

2. Form factor is of great importance. Although the device manufacturers decide
the form factor, they occasionally just design devices with bad form factors or
sometimes have to compromise the form factor to appeal to a broad market of
users. Form factor is not something that the software development team can
affect, but usability testing aspects of the form factor are extremely important
as the form factor of a device may render the mobile application useless. For
example, if the way you scroll on a particular device is too cumbersome, then
either the device should not be supported (if there is as choice of many devices to
support the application) or scrolling should be eliminated from the application.
Remember one thing: It is better not to support a device than it is to support it
ineptly. The unhappy users make their feelings known to all users and after a
while your application will get a bad reputation.

Before either testing or development, there is the process of requirements gather-
ing. We looked at the overall software development process for mobile applications
closely in Chapter 15. But now, let us look at the requirements-gathering process
and its relationship with testing more closely.

18.2 VALIDATING THE MOBILE USE CASES BEFORE DEVELOPMENT

As you recall, we mentioned in Chapter 15 that one of the biggest differences
between the customers of mobile applications and customers of stationary ap-
plications is that, because of the lower amount of exposure, customers do not
understand what they can and cannot do or what they should or should not do
with mobile applications. (Some would say the same about stationary applica-
tions, but because PCs and applications that run on them have become so preva-
lent, customers certainly have a better idea of what stationary applications can do.)
In a sense, the testing process begins immediately after the requirements-gathering
process: The requirements should be carefully analyzed, the documentation of the
requirements, whether in use cases or some other form, must be tested by an objec-
tive third party who was not involved in the requirements-gathering process (QA
engineers), and this verification process must be repeated regressively throughout
the project as requirements come in.

The dimensions of mobility are those things that make mobile applications
inherently different from their stationary counterparts. So, let us see their effect
on testing procedures.

18.3 THE EFFECT OF THE DIMENSIONS OF MOBILITY ON
SOFTWARE TESTING

In this section, we will look at how the dimensions of mobility affect testing pro-
cedures. We have already discussed certain aspects such as limited power supply

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c18 CB752-B’Far-v3 May 4, 2005 20:25

802 TESTING MOBILE APPLICATIONS

and QOS. We will now touch upon those areas of the dimensions of mobility and
mobile condition of the user that we have yet to discuss or those that deserve
further discussion when it comes to testing.

18.3.1 Testing Mobile User Interfaces
We dedicated three chapters of this text to user interface concerns of mobile ap-
plications. This is because the multichannel, multimodal, and device-proliferated
nature of mobile applications complicate the development of mobile applications
by orders of magnitude. This complexity extends into the testing process. Whereas
functional testing and usability testing are the two areas of concern for stationary
applications, special considerations must be taken into account for multichannel
and multimodal applications. In addition to this, testing the usability of a mobile
application tends to be more complicated than its stationary counterpart.

18.3.2 Testing Multichannel User Interfaces
Most test plans for user interface testing of stationary applications include testing
one interface through one channel. Obviously, this is not the case for mobile
applications.

We touched upon various types of ways we can quantify measuring effectiveness
of GUIs, including techniques such as direct combination, in Chapter 6. It is
important to educate the QA engineers who are testing the mobile user interfaces
in such techniques so that they may devise the appropriate test plan for assuring
that such optimizations are taken into account.

The testing efforts for the different channels and modes of presenting an ap-
plication must not be disjointed. In other words, we should either have the same
people do the testing for the VUI as those who do the GUI testing or have them
work together closely. It is crucial to maintain consistency among the different
modes and channels of the user interface and the only way to maintain this is to
have a cohesive quality assurance effort that keeps the developers in check.

Quality assurance for stationary applications, particularly for Web applications
or desktop applications, are mature areas with specific target clients. Web ap-
plications are always rendered on a browser and, like desktop applications, are
displayed completely on a GUI (though sound can accompany the application).
There are practices that have been perfected for testing such applications. The QA
team should be retrained to forget about most of these practices because they as-
sume a certain set of input/output devices and a stationary user. Not only have
similar techniques not evolved, but such evolution may not happen for a long
time. This is because the mobile device industry is in a high state of flux and many
evolutionary steps are being taken, rapidly, in improving and changing mobile
devices. Whereas these techniques are evolving, it is important to first determine
the metrics for testing a mobile application before actually starting to perform the
tests. In other words, for a given mobile application user interface, we need to
determine the relevant tests and then design the test cases.

These principles must be applied to the different stages and types of testing
(black-box testing, white-box testing, etc.). The multimodal and multichannel

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c18 CB752-B’Far-v3 May 4, 2005 20:25

18.3 The Effect of the Dimensions of Mobility on Software Testing 803

nature of mobile applications present us with yet another layer of complexity in
usability, white-box, black-box, and regression testing.

18.3.3 Usability Testing
There are an enormous amount of usability-related issues with today’s mobile ap-
plications. Unfortunately, most of these issues exist because of bad design and in-
sufficient quality assurance. For example, Landay, Mathews, and Waterson [2002]
have outlined the following for the users of mobile devices that provide GUI access
to Web content:

1. difficulty with scrolling,
2. frequent errors because of connectivity problems,
3. confusing wording of the prompts to get the proper response from the user,
4. long download times, and
5. difficulty with the input mechanisms.

There are many more that have not been outlined here—and that is just for the
mobile devices that provide GUI access to Web content. When one adds VUIs
and all of the other possible complexities of mobile applications, the usability
issues grow exponentially. In this section, we will simply list as many different
aspects of usability that are unique to, or at least occur more in, mobile application
development as possible.

Perhaps the biggest of the usability issues surrounding mobile applications
involves the mobile condition of the user:

1. As verified by Jameson [Jameson 2002], the mobile user is not focused on the
task of computing. There are a variety of acoustic and visual distractions as well
as time pressure and the mere fact of physical mobility (walking, driving, riding,
etc.) that distract from the primary task of computing. This noise has several
effects. First, it is a variable that must be taken into account directly when
designing VUIs or multimodal user interfaces that use voice for recognition
and synthesis purposes. Second, it must be taken into account as a distraction
to even purely nonaural user interfaces. When testing mobile applications, the
user interface must be tested under real acoustic noise conditions.

2. Previous theory and experimental results suggest that certain features of the
user’s motor behavior (e.g., tapping especially hard on the touch-screen, or
tapping on the wrong icon) ought to occur more frequently under conditions
of cognitive load and/or time pressure [Lindmark 2000]. Such behavior must
be simulated when testing mobile applications.

3. Varying lighting conditions are another set of environmental variables that must
be taken into account when dealing with mobile applications that utilize visual
user interfaces. In such cases, proper testing should be done under all “real-life”
lighting conditions for all of the use cases.

4. User tolerance for errors is much lower when using mobile applications than
stationary applications. There is a variety of reasons involved here. The mo-
bile user does not have as much time and cognitive attention to use a mobile

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c18 CB752-B’Far-v3 May 4, 2005 20:25

804 TESTING MOBILE APPLICATIONS

application because of his or her mobile condition, but there is, once again,
some economic realities as well. Mobile devices are less expensive and mobile
applications are less costly than their stationary counterparts. The lower price
commands a lower customer loyalty: If it does not work, the user will get rid of
it and pick up a new device, subscribe to a new network, or use a different ap-
plication. Besides, as we have previously mentioned, mobile devices are treated
more like a VCR than a PC: The user expectations are completely different.
Crashes and long waits are absolutely unacceptable, however infrequently they
may be.

The first implementation and distribution of WAP applications is a prime example
of pure usability testing causing the initial failure in acceptance of a technology.
Although WAP itself provides a robust platform, the applications that were built
using WAP were HTML applications migrated to WML: the best way to guaran-
tee failure of a mobile application. Users were expected to use the cumbersome
keypads to enter significant amounts of data to navigate long trees. This is not to
say that they did not do it. SMS has succeeded despite the cumbersome data entry
mechanisms. However, transferring Web applications with complex work flows
and navigation trees to WML in the restricted user interface caused the failure of a
great number of mobile applications and ruined the reputation of WAP and nearly
all mobile applications altogether.

Many WAP applications were designed with little or no input from usability
testers. Do not be surprised if the entire user interface to a stationary application
must be rethought before implementing a mobile interface. Remember that mobile
applications are a superset of stationary applications, but this does not mean that
the user wants to get everything out of a mobile application that he or she wants
out of the equivalent stationary application.

18.4 STRESS TESTING AND SCALABILITY ISSUES

We noted earlier that the load on a mobile application can be very heavy. There
are simple reasons for this—such as the fact that the total number of end-user
mobile devices (PDAs, cell phones, GPS systems, etc.) in the world exceeds the
total number of desktops used by the users—and more complex reasons—such as
the fact that many active transaction solutions are implemented through polling
as opposed to true push solutions.

Though most stress test scenarios do not do the real stress scenarios justice, we
have to make our best attempt at simulating the stress conditions. For the server-
side portion of our mobile application, we can use tools that simulate connected
users. For the portion of the application that executes on the mobile device, we
are probably faced with some custom development. For example, if the mobile
platform allows a background process, we need to test our mobile application
as some other background process is consuming a great portion of the resources
on the device. It is also important to see how the application, on both servers
and the mobile device, reacts when the various parts of the system fail (the server

P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c18 CB752-B’Far-v3 May 4, 2005 20:25

18.5 Testing Location-Based Functionality 805

operating system crashes, the network connectivity goes down, the device hangs,
etc.). Once again, because of the higher expectations of the mobile user, we need
to make sure that the application recovers, in a very graceful manner, from any
failures and hangs.

18.5 TESTING LOCATION-BASED FUNCTIONALITY

If your mobile application uses location-sensitivity technology, then you need to
know the accuracy and margin of error for the application and communicate it,
accurately, to the user of the application. Remember that reliability is crucial in
a mobile application: Incorrect data will alienate the users quickly. When testing
location sensitive mobile applications, we must perform the following:

1. Test the application for every applied internationalized and localized version
of the application. In other words, unit, functional (black box and white box),
and regression testing must be done on the software for every localized and
internationalized operational permutation (languages, character sets, etc.).

2. Test the reliability of the infrastructure providing GIS and location-sensitivity
information as well as the coupling between the mobile application and this
infrastructure.

3. Test the reliability of the location information provided by the location-
sensitivity system and assure that the margins of error are acceptable by the
location-based logic in the application (white-box test) and by the end user
(black-box test and regressions).

This brings us to the end of our discussion on testing mobile applications. We
have not treated the testing process of mobile applications with the breadth that it
deserves in this text because of scope reasons. We recommend that the reader look
into additional sources, such as the references used here, for more information on
testing mobile applications. Keep in mind that the importance of testing increases
proportionally with the size and budget of the project.

P1: KOD

0521817331c19 CB752-B’Far-v3 May 4, 2005 20:28

CHAPTER 19

A Case Study

The people in your life are like pillars on your porch. Sometimes they hold you
up; sometimes they can lean on you. Sometimes it is just enough to know they are
standing by.

19.1 INTRODUCTION

Because of the depth of the design discussions in this text, we have had little
chance of discussing coherent examples of mobile applications as applied to the
various techniques introduced. The goal of this chapter will be to create a large
fictitious project, based on a real project, define requirements for it, and then build
the application using the techniques introduced. Obviously, we will not be able to
use all of the techniques that we have discussed; there are far too many in this text.
Nonetheless, we will aim at discussing as many as possible in reasonable detail.

The example we will be introducing will be in the field of automation. Namely,
we will be creating an application to help an electrical repair crew with a variety
of tasks in the field. We will start by working on the requirements, then create
an architecture that satisfies the requirements, follow it up with a detailed level
design, and work our way into implementation.

19.2 REQUIREMENTS DRIVING THE ARCHITECTURE

First, let us understand the basic needs of the customer for which we are building
an application. The reader should know that this example is based on the needs of
a real company, the Noor Electrical and Engineering Company, located in Costa
Mesa, California.

The customer is an electrical field-service company that provides electricians
for commercial, industrial, and residential customers. There are two types of jobs:

806

P1: KOD

0521817331c19 CB752-B’Far-v3 May 4, 2005 20:28

19.2 Requirements Driving the Architecture 807

short-term trouble-shooting and long-term on-site jobs. Trouble-shooting tasks
are initiated by a customer calling the company’s call center. The jobs are logged
into a system at the call center by a phone assistant. The phone assistant filters the
calls that are not relevant from those who are from existing or potential customers.
The foreperson is then given the qualified call and proceeds to enter the task into
a scheduling system.

Before getting the specific use cases from the customer, during an initial meeting,
the customer expresses that the following high-level functionalities are required:

1. To provide one integrated application and user interface to deliver all of the nec-
essary functionality (not several different applications that need to be accessed
individually).

2. To provide voice access to those tasks where the field technician’s hands are
occupied by doing some manual task.

3. To provide alerts to the field technicians for cancellation of jobs if they either
have not departed to go to the job site or are en route to the job site.

4. To provide real-time travel routes as tasks change throughout the day so as to
minimize the time spent in transport (en route from one location to another)
by the technicians.

5. To provide all of the functionality of the application on as many devices as
possible so that the company is not required to buy new hand-held devices (a
desirable feature, but not a requirement).

Typically, customers present the project manager with an entire slew of features
that they want when the project manager starts to identify the exact requirements
of the project. A good project manager manages to narrow down the feature set
into small slices that are separate releases. The incremental release approach often
works best for projects where the customers are not technical so that the customer
can be involved in the development process as much as possible. This lessens
the chance of miscommunication and misconceptions that lead to creation of
an application that is significantly different from that required by the customer.
(Although there are always some differences between what a software development
team interprets of the requirements and what the customer has in mind, the key
is to keep these differences to a minimum.) With this in mind, we will utilize use
cases to represent the exact features desired from phase 1 of this project. First,
here are the verbal descriptions of the use cases:

Use Case 1: Field technician retrieving the schedule for the day on the hand-held
device.

Use Case 2: Foreperson sending out an alert to the field technician closest to a
particular job site (typically, because of an event that took place unknown to
the field technician).

Use Case 3: Field technician retrieving where to go next (map, driving directions,
tasks to perform, etc.). There may be also cases where the schedule has changed
because of a cancellation.

P1: KOD

0521817331c19 CB752-B’Far-v3 May 4, 2005 20:28

808 A CASE STUDY

TABLE 19.1. Mobile Use Case Evaluation Matrix

Relevance Index Use Use Use Use Use Use Use Use

Table Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Aural User Interface 0.55 0.50 0.45 0.80 0.80 0.50 0.00 0.45

Location-Based

Functionality

0.00 1.00 0.80 0.20 1.00 0.10 0.25 0.00

Active Functionality 0.50 1.00 0.80 1.00 0.80 1.00 0.00 0.00

Wireless Access 1.00 1.00 1.00 1.00 1.00 1.00 1.0 1.00

Multichannel Access 0.20 0.50 0.50 0.90 0.80 0.50 0.00 0.22

Disconnected Usage 1.00 0.00 1.00 1.00 0.20 0.00 0.25 0.50

Use Case 4: Field technician logging the number of hours and the materials spent
at the job site.

Use Case 5: Field technician finding the closest materials depot for pickup of a
part not in the field unit truck.

Use Case 6: Call center assistant canceling an appointment and alerting the field
technician.

Use Case 7: Field technician requesting the schematics of a particular electrical
part (such as a power transformer) to view on the device.

Use Case 8: Field technician accessing an electrical knowledge base for a question
on an electrical part.

Now, let us see how we came up with our mobile use case evaluation matrix
(Table 19.1). There were eleven field technicians, one foreperson, and one call
center person. The actors in each use case were all queried about their use of the
application and what would be most useful. Table 19.2 shows the answers to a
couple of these use cases. These answers were then translated to the numbers seen
in Table 19.1.

Note that our example is very crude. There is an entire psychological aspect
of how the questions are designed so that the answers reflect the intent of the
questioned personnel as accurately as possible. The importance of these types of
questionnaires must also be stressed to the participants in the study (the customer).
Participants have a tendency to go through these questionnaires quickly and use
only a certain set of numbers (for example, use 0, 5, or 10 for all answers).

One of the things that the matrix does is to force us to come up with questions
that reveal possible usage of mobile functionality that had never occurred to the
customer. For example, the customer may think of an alert as only a text message;
however, an alert could also be an automated outbound phone call.

The customer expresses that every field technician currently has a mobile phone
with which they are willing to purchase one more device under $300 for every field
technician if that device satisfies all the needs of the application. The customer
has no server-side hardware infrastructure and wishes to host the software and
hardware off-site. After some research, looking at the need for local storage on the

P1: KOD

0521817331c19 CB752-B’Far-v3 May 4, 2005 20:28

TA
B

LE
1
9
.2

.
Q

u
e
st

io
nn

ai
re

C
re

at
e
d

fo
r

M
o
bi

le
U

se
C

as
e

E
va

lu
at

io
n

M
at

ri
x

Q
u

es
ti

on
A

ct
or

(s
)

A
n

sw
er

s
A

ve
ra

ge
Sc

or
e

O
n

a
sc

al
e

of
0

to
10

,h
ow

im
po

rt
an

t
w

ou
ld

it
be

to
be

ab
le

to
h

ea
r

yo
u

r
da

il
y

sc
h

ed
u

le
in

st
ea

d
of

ge
tt

in
g

a
pr

in
t-

ou
t

or
se

ei
n

g
it

on
th

e
sc

re
en

of
a

P
D

A
or

ph
on

e?

F
ie

ld
Te

ch
n

ic
ia

n
4

of
11

an
sw

er
ed

5
4

of
11

an
sw

er
ed

6
1

of
11

an
sw

er
ed

0
1

of
11

an
sw

er
ed

9
1

of
11

an
sw

er
ed

7

5.
45

(U
se

C
as

e
1—

A
u

ra
lU

se
r

In
te

rf
ac

e)

O
n

a
sc

al
e

of
0

to
10

,h
ow

im
po

rt
an

t
is

it
to

h
av

e
ac

ce
ss

to
yo

u
r

sc
h

ed
u

le
th

ro
u

gh
ou

t
th

e
da

y
ev

en
w

h
en

th
e

P
D

A
or

ce
ll

ph
on

e
h

as
n

o
co

n
n

ec
ti

on
?

F
ie

ld
Te

ch
n

ic
ia

n
11

of
11

an
sw

er
ed

10
10

(U
se

C
as

e
2—

D
is

co
n

n
ec

te
d

U
sa

ge
)

O
n

a
sc

al
e

of
0

to
10

,h
ow

im
po

rt
an

t
is

it
to

fi
n

d
a

te
ch

n
ic

ia
n

cl
os

e
to

th
e

jo
b

si
te

in
ca

se
of

a
va

ri
et

y
of

si
tu

at
io

n
s

(e
m

er
ge

n
cy

,n
o

on
e

on
th

at
si

te
,e

tc
.)

?

F
or

ep
er

so
n

1
of

1
an

sw
er

ed
10

10
(U

se
C

as
e

2—
L

oc
at

io
n

-B
as

ed
F

u
n

ct
io

n
al

it
y)

809

P1: KOD

0521817331c19 CB752-B’Far-v3 May 4, 2005 20:28

810 A CASE STUDY

device (being that some of the functionality has to be accessed in a disconnected
mode per use case evaluation matrix) and the availability of location informa-
tion, we select an unnamed device based on the Palm OS 5.0 that can run a
J2ME KVM, is light enough to carry as a cell phone, has cell phone capabilities,
and also has Bluetooth connectivity for short-range wireless networking. The de-
vice operates on a GPRS/TDMA network (a selection partly influenced by the
customer having a contract with a wireless provider whose network is based on
GPRS/TDMA).

Before we proceed any further, note that, even in a case where there is not much
in the way of infrastructure for a mobile application, there are existing boundaries
that impose some decisions. In this case, the customer already owned some cell
phones and had a contract with a wireless provider. Also note that many of the
technical decisions may be imposed by the financial restrictions at hand, whether
the total budget of the project or some restrictions that the customer imposes,
budgetary or otherwise, on subsections of the project.

Based on the information we have so far, the first thing we do is to create some
mobile use case diagrams based on the Wisdom extensions we introduced previ-
ously. It is very important to recognize that although our starting point was UML
1.4, we added many things to represent those properties of mobile applications
that UML 1.4 did not properly represent. So, the diagrams here are not really
compliant with UML 1.4. They are a superset of what UML 1.4 gives us.

First, we look at Figure 19.1, which shows us the basic actors communicating
with three of the basic use cases. If you do not remember what some of the symbols
that we introduced with our extensions mean, please refer back to the previous
chapters, particularly Chapter 6.

Based on the use cases and our evaluation of the relevance of the various di-
mensions of mobility, we now need to think about a basic architecture for the
application.

The budget of this project is very small; therefore, we will stay away from
any experimental technologies and go with the proved client–server architecture.
Essentially, we will design a system comprised of a Java application running on
the Palm OS 5.0 – based device with a PointBase (a commercial product that offers
databases for small devices) database that stores some local information. For the
aural access to the system (the VUI), we have both a client piece and a server
piece. In the case of the PDA, the voice is recorded on the device and sent to the
server through a GPRS connection. When a PDA is not available, the user’s will
be calling in and accessing the VUI through telephony.

When it comes to the user interface, we decided to take an open-source XForms
browser, modify it, and make it into the shell for the user interface of the PDA.
The actual XForms documents are cached on the PDA and stored centrally on the
server. Figure 19.2 shows the very high level components in action.

Note that we intend to design and implement the server-side application so that
there may be differing number of instances of each. Also, note that we may have
not represented all of the possible components such as routers, front-end load-
balancing servers (e.g., instances of Apache), or other supporting subsystems. We

P1: KOD

0521817331c19 CB752-B’Far-v3 May 4, 2005 20:28

19.2 Requirements Driving the Architecture 811

Retrieve

Field
Technician (Use Case 1)

(Use Case 2)

(Use Case 4)

Customer

Foreman

Call Center Assistant

Create
Schedules

Request
Appointment

log hours

Schedule
Alert

Schedule

and time

FIGURE 19.1. Mobile Use Cases for Use Cases 1, 2, and 4.

have shown the basic features of the system. Next, we look into the individual
systems.

As we have discussed in the previous chapters, the telephony system, the voice
recognition system, the database, and the GIS system are server-side compo-
nents that we buy. This may be a purchase through an application service provider
or the purchase of the actual software and the infrastructure necessary to operate
the software. In our instance, the operation is far too small to own and maintain the
hardware. Therefore, we choose a VSP who gives us machines running Linux with
Intel Dialogic equipment for the incoming calls. We then use Nuance software
hosted at the VSP’s site to do the recognition as well. We have an application ser-
vice provider provide both the machines and the database for our application. The
GIS system is provided by a Web service interface through yet another application

P1: KOD

0521817331c19 CB752-B’Far-v3 May 4, 2005 20:28

812 A CASE STUDY

Client
Application

GPS
System

1

1..*

1..*

*

*

*

*

*

**

1
Server
Application

Telephony
System

GIS System

DatabaseVoice
Recognition
Engine

HTTP

FIGURE 19.2. Case Study Deployment Diagram.

service provider. Now, let us discuss the detailed design and selection of specific
implementation tools and technologies.

19.3 THE DETAILED DESIGN

The bulk of the development effort will be in two parts: developing the client-side
application for the Palm OS 5.0 – based mobile device and developing the server-
side application. Let us start with the client side. We know that we have to store
some information on the client and that this information has to be queried in a
variety of ways when the device is disconnected. We also know that much of the
functionality of the application depends on the awareness of the location of the
mobile device, both by the PDA itself and the server. Based on this and the user
interface decisions that we mentioned in the last section, we come up with a basic
component diagram of Figure 19.3. Figure 19.4 shows the basic components on
the server.

The GPS unit comes with its own APIs; we have to write some code to make
that interface adapt with the functionality that our application needs. Namely, our
application needs to periodically send its location back to the server so that the
foreperson is always aware of, at least, the approximate location of any given field
technician.

Next, because we decided to first record the voice interactions, then send them
to the server, and get back an audio recording in response, we need an audio

P1: KOD

0521817331c19 CB752-B’Far-v3 May 4, 2005 20:28

G
P

S
 A

d
ap

te
r

A
u

d
io

 R
ec

o
rd

er

C
lie

n
t

A
p

p
lic

at
io

n
 D

ri
ve

r

D
at

aB
as

e
C

o
n

n
ec

to
r

C
o

m
m

u
n

ic
at

io
n

s
C

o
n

n
ec

to
rs

X
F

o
rm

s
In

te
rp

re
te

r

L
o

ca
ti

o
n

 N
o

ti
fi

er

1

1

FI
G

U
RE

19
.3

.
Ba

si
c

Co
m

po
ne

nt
s

of
th

e
Cl

ie
nt

fo
rt

he
Ca

se
St

ud
y.

813

P1: KOD

0521817331c19 CB752-B’Far-v3 May 4, 2005 20:28

814 A CASE STUDY

Call Center
CRM
Application

1 1

1

1
1

1

1

1

1 1

1

1

1 1

1 1

* *

Web Service Connector for GIS ASP

GIS Service
Provider

Business Logic Components Database Connector

Database
Instance

Cocoon

WML Components

Cocoon XForms Components Cocoon VXML Components

Custom UI for Foreperson Nuance VXML Browser

Telephony

Equipment

(Dialogic)

FIGURE 19.4. Basic Components of the Server for the Case Study.

recorder and player adapter that takes advantage of the capabilities offered on
the device and lets us programmatically control those features through the user
interface.

Next, we need to take care of the disconnected operation. Based on the amount
of persistent memory available on the device, the PointBase database lets us create
a basic schema and some queries to get our data out of the local database. We can
use this database to record user’s interactions when he or she cannot connect to
the network or, conversely, use some cached information without going back to
the server.

P1: KOD

0521817331c19 CB752-B’Far-v3 May 4, 2005 20:28

19.4 The Implementation 815

Note that we selected Apache’s Cocoon as part of the engine for the system. First,
we are going to build a set of core components that represent the base functionality
of the application: things like what a time sheet is, the interface to the inventory
database, when alerts should be sent out, etc. Certain parts of the application must
then be accessed through a user interface on the mobile device. These parts of the
application may be accessed through a telephone call that connects the user to a
VUI, a graphical interface provided by the PDA (thick-client application written in
J2ME that we already designed), or the WML browser on the existing cell phones.
We use Cocoon to transform the basic user interface written in XForms to these
various user interfaces.

19.4 THE IMPLEMENTATION

A discussion of the implementation of the entire application is beyond the scope of
this textbook. So, we will only take a couple of use cases and bring them all the way
to the final implementation. Let us start with the fourth use case, where the user
has to fill out his or her time sheet. We need to recognize the major interactions
between the user and the system so that we can design our XForms interactions
properly. This is the perfect place to bring in some more of the user interface –
based extensions offered by Wisdom extensions that focus on the interactions of
the user with the system. As you remember, XForms allows us to model the user
interactions with a user interface without specifying the details of a particular type
of user interface. Specifically, the dialogue/task diagrams of the Wisdom interaction
model will fit this best.

Figure 19.5 shows the dialogue model specifying the tasks for one of the use
cases. Note that the amount of detail could be much greater. For the case study,
we created such high-level diagrams for every use case. We use the term CRUD
prevalently to indicated Create, Read, Delete, and Update. Because the technician
does not have the right to create appointments, you can see that there is no task
for creating appointments. However, there are tasks for updating (logging the
appointment details after the appointment is completed).

We followed that up by creating some presentation diagrams like that shown in
Figure 19.6. These also fall under the interaction diagram category under Nunes’
Wisdom methodology.

Once again, you should note that Figure 19.6 could be much more complicated
to explain all of the details of the user interactions. Note, however, the great value
of Figures 19.5 and 19.6: We can practically design the basics of our XForms-
based interface on the basis of these two diagrams structurally and behaviorally.
Our tasks correspond, either in a one-to-one cardinality or a one-to-many cardi-
nality, to XForms document that represent the interaction of the user with the
system in a generic manner as discussed in Chapter 5. For example, Figure 19.7
shows a snippet from an XForms document that represents the interaction re-
quired for the on-site cancellation. Note that we are just showing two segments
of the XForms document. The developer may choose to modularize the XForms

P1: KOD

0521817331c19 CB752-B’Far-v3 May 4, 2005 20:28

Authentication &
Authorization

Daily Schedule CRUD

Retrieve Text Directions
To Next Destination

Retrieve Map to
Next Destination

<<seq info pass>>

Retrieve Next
Destination

On-site
Cancellation

Log Appointment
Details After Completion

1

1

11

1 1 1

1 1

FIGURE 19.5. Dialogue Model of the Basic Tasks for Use Case 1.

Log-in

Select
Task

<<navigate>>

Retrieve All
Destinations

Retrieve
Next

Destination

Log
Activities

After
Completion

On-site
Cancellation

<<navigate>> <<navigate>> <<navigate>> <<navigate>>

Retrieve
Directions

1

-<<contain>>*

Retrieve
Map

-<<contain>>*

1

* *

FIGURE 19.6. Presentation Diagram of Part of Use Case 1 for the Case Study.

816

P1: KOD

0521817331c19 CB752-B’Far-v3 May 4, 2005 20:28

19.4 The Implementation 817

...

<input ref="JobName" xml:lang="en" navIndex=1 accessKey="#">

<caption xlink:href="http://localhost/languagebundle.xml>

Please Say The Job Name.

</caption>

<hint navIndex="1" xml:lang="en">

The Job Name is the company name for commercial and

industrial projects. It is the home owner's first name

and then last name for residential projects.

</hint>

</input>

...

<!-- There is some code between these two segments that we

are not showing to keep the example readable. -->

...

<selectOne ref="domain:Cancellation">

<item navIndex="2" accessKey="1">

<caption>Cancel Job at Customer Request</caption>

<value>Cancel</value>

</item>

<item navIndex="3" accessKey="2">

<caption>Delay Job at Customer Request</caption>

<value>Delay</value>

</item>

<item navIndex="4" accessKey="2">

<caption>Customer Not Present</caption>

<value>Absent</value>

</item>

</selectOne>

...

FIGURE 19.7. Snippet from the XForms Document for the User Interface of Use Case 1.

documents to as granular as needed. There is no science to this; this is typical
of modularization in software. The canonical modularization is typically domain
dependent (if such a thing as a canonical modularization exists, which is debatable
in itself).

Once we have the XForms documents, we have a generic user interface that can
be specialized for the mobile device running the J2ME application, for a server-side
VUI, or for a WAP browser by specializing to WML. Obviously, we could easily
extend this system to support other types of user interfaces.

We use PAC-TG on the server side for the implementation of the various com-
ponents. We initially try to write an XForms interpreter with J2ME for the device
that has been selected. However, it becomes clear that doing everything at run time
makes the application very slow owing to the limitations of the device and J2ME
itself. So, we add a minor but notable tweak: We use our specialization framework
of Cocoon, write a component to generate an intermediate format that is easier

P1: KOD

0521817331c19 CB752-B’Far-v3 May 4, 2005 20:28

818 A CASE STUDY

to consume by a J2ME client, and then write the J2ME client to consume that
format instead of the XForms documents themselves. What is then published, by
Cocoon, for usage by J2ME on the client side is optimized for J2ME so that we do
not have to do a great amount of run-time parsing of XForms. In this manner, we
still have the benefit of using XForms to model the user interactions in a generic
way, specializing these interactions in a uniform manner to different types of user
interfaces.

19.5 SUMMARY

In this chapter, we tried to tie in a bit of every concept introduced in this book. Ob-
viously, we were not able to integrate everything we learned because real projects
do not require every tool in the shop. For example, because of the small size of this
project, we never considered mobile agents. Mobile agents are still a very young
technology; therefore, the development and deployment of a mobile application
with mobile agents involves at least some research. Although this may be justifi-
able, given the benefits mentioned in Chapter 9, in the larger projects, for smaller
projects with smaller budgets, it is not a good fit. We also left out the cycle of
mobile application development that we previously discussed and the integration
of quality control and testing.

Overall, you were able to see how we started with requirements, assessed those
requirements, started creating various UML diagrams, and then continued on
with writing actual code. If we were to implement the real project, we may end up
with twenty to thirty different diagrams, several XForms documents, and several
transformation components (in this case probably written using XSPs and XSLs
for Cocoon).

This brings us to the end of our text. It has been a long journey! At times, you
may have thought that we were jumping around frequently and introducing lots
of new ideas. This was unavoidable because of the multidimensional nature of
mobile application development in a complete manner. If you take away one thing
from this book, it should be that developing mobile applications is fundamentally
different from developing applications for the Web or for the PC desktop, or
from developing any other type of applications. Developers with experience in
distributed application development will have the least amount of difficulty getting
used to mobile development.

P1: KaF

0521817331ref CB752-B’Far-v3 May 4, 2005 18:15

References

[3GPP 2000] 3rd Generation Partnership Project: Technical Specification Group SA WG3; A
Guide to 3rd Generation Security, 3G TR 33.900, 3GPP TSG, 2000.

[ACSS 1998] W3C CSS 2 Aural Style Sheets Specification. 1999, available at http://www.
w3.org/TR/1998/REC-CSS2–19980512/aural.html.

[Afnan 2002] Mobile Code for Mobile Devices: Migration for Improved Application Perfor-
mance. O. Afnan, Carleton University, Ottawa, Canada, 2002.

[Agarwal, Starobinski, and Trachtenberg 2000] On the Scalability of Data Synchronization
Protocols for PDA’s and Mobile Devices. S. Agarwal, D. Starobinski, and A. Trachtenberg,
Boston University, 2000.

[Agre et al. 2001] A Layered Architecture for Location-Based Services in Wireless Ad Hoc
Networks. J. Agre, A. Akinyemi, L. Ji, R. Masuka, and P. Thakkar, IEEE Press, Novem-
ber 2001 available at http://www.flacp.fujitsulabs.com/∼rmasuoka/papers/200203-
LocationProtocol7.doc.

[Alatalo and Peraaho 2001] Designing Mobile-Aware Adaptive Hypermedia. T. Alatalo
and J. Peraaho, University of Oulu, Finland, OWLA project, 2001, available at
http://owla.oulu.fi.

[AMASE 1999] AMASE Bench Marking Report. L. Sacks, T. Michalareas, and W. S.
Lee, University College London, 1992, available at http://www.ee.ucl.ac.uk/∼pants/
projects/amase/.

[Amyot and Andradel 2001] Description of Wireless Intelligent Network Services with Use
Case Maps. D. Amyot and R. Andradel, University of Ottawa, 2001.

[Andersson 2002] Mobile Positioning—Where You Want to Be! C. Andersson, Wireless
Developer Network, 2002, available at http://www.wirelessdevnet.com/channels/lbs/
features/mobilepositioning.html.

[Apache 2000] Apache Software Foundation, available at http://www.apache.org.

[Apache XML 2002] Cocoon Web site at Apache Foundation, http://xml.apache.org/
cocoon.

[Apaydin 2002] Networked Humanoid Animation Driven by Human Voice Using Extensi-
ble 3D, H-ANIM, and Java Speech Open Standards. O. Apaydin, Thesis, United States

819

P1: KaF

0521817331ref CB752-B’Far-v3 May 4, 2005 18:15

820 References

Navy Post Graduate School, Monterey, CA, 2002, available at http://www.movesinstitute.
org/Theses/ApaydinThesis.pdf.

[Appleby et al. 2000] An Introduction to IBM WebSphere Everyplace Suite Version 1.1. J. R.
Rodriguez, R. Appleby, B. Bisgaard, H. Wang, A. McGory, A. Mryhij, A. Patton, and
M. Omarjee, IBM Corporation, International Technical Support Organization, Research
Triangle Park, N.C.

[Arbaugh 2003] Firewalls: An Outdated Defense. W. A. Arbaugh, IEEE Computer Magazine,
Vol. 36, No. 6, June 2003, 112–113.

[Asensio et al. 2001] UML Profiles for the Specification and Instrumentation of QOS Man-
agement Information in Distributed Object-Based Applications. J. I. Asensio, V. A. Villagra,
J. E. Lopez de Vergara, J. J. Berrocal, Technical University of Madrid, Spain, 2001.

[Aziz and Diffie 1993] Privacy and Authentication for Wireless Local Area Networks. A. Aziz
and W. Diffie, Sun Microsystems, 1993.

[Bahl 2002] An Overview of Cell Search in WCDMA. S. K. Bahl, University of Maryland, 2002.

[Balani 2002] Build Java Apps, Like an EPOC-based Phone, for the Symbian OS. N. Balani,
IBM Developer Works, available at http://developer.ibm.com.

[Bannon et al. 2002] Extraction of Axis OpenBT Bluetooth Stack. R. Bannon, A. Chin, F.
Kassam, and A. Roszko, University of Waterloo, CS 798 Software Architecture Course
Notes, 2002.

[Baragry and Reed 1998] “Why Is It So Hard to Define Software Architecture?” J. Baragry
and C. Reed, IEEE Conference Proceedings, Asia Pacific Software Engineering Conference,
IEEE, 1998.

[Bauer 2001] “UML Class Diagrams: Revisited in the Context of Agent-Based Sys-
tems.” B. Bauer in Proceedings of Agent-Oriented Software Engineering, Springer-Verlag,
Heidelberg, Germany, 2001, 101–118.

[Bauer, Odell, and Muller 2001] Agent UML: A Formalism for Specifying Multiagent In-
teraction Agent-Oriented Software Engineering. P. Ciancarini and M. Wooldridge, eds.,
Springer-Verlag, pp. 91–103, 2001.

[Baumeister, Koch, and Mandel 1999] Towards a UML Extension for Hypermedia Design.
H. Baumeister, N. Koch, and L. Mandel, Institut für Informatik Ludwig-Maximilians-
Universität München and Forschungsinstitut für Angewandte Software Technologie
(FAST e. V.), 1999.

[Beresford and Stajano 2003] Location Privacy in Pervasive Computing. A. R. Beresford and
F. Stajano, IEEE Pervasive Computing Magazine, Vol. 2, No. 1, March 2003, 46–55.

[Bergenti and Poggi 2001] LEAP: A FIPA Platform for Handheld and Mobile Devices. F. Bergenti
and A. Poggi, 2001, available at http://leap.crm-paris.com/public/docs/ATAL2001.pdf.

[Bernsen 2002] Multimodality in Language and Speech Systems—From Theory to Design
Support Tool. N. O. Bernsen, Kluwer Academic Publishers, 2002.

[Berre 2001] The Model-Driven Approach to Geographic Information System
Standardization—Lessons Learned, A. J. Berre, SINTEF, Oslo, Norway, Distributed
Information Systems, 2001, available at http://www.omg.org/news/meetings/workshops/
presentations/uml2001 presentations/08-3 Berre-Case Study GIS Final.pdf.

[B’Far 2000] “Next Generation of Internet: The 4th-Tier Is Born.” R. B’Far, IEEE Tools 2000
Conference Proceeding, IEEE, 2000.

P1: KaF

0521817331ref CB752-B’Far-v3 May 4, 2005 18:15

References 821

[Bisdikian 1999] “L2CAP—Logical Link Control.” C. Bisdikian in Bluetooth Developer’s
Conference Proceedings, 1999.

[Bluetooth] Bluetooth Specifications, available at http://www.bluetooth.org.

[Bolcer 2000] “Magi: An Architecture for Mobile and Disconnected Work Flow.” G. A.
Bolcer, Endeavor’s Technology, IEEE Internet Computing, May–June 2000.

[Bolcer and Oreizy 2000] Introducing Peer-to-Peer. G. Bolcer and P. Oreizy, White paper,
Endeavors Technology, 2000.

[Booch et al. 1999] UML for XML Schema Mapping Specification. G. Booch, M. Christerson,
M. Fuchs, and J. Koistinen. Rational Rose Corporation and CommerceOne Inc., 1999.

[Bozinovska and Gusev] Push Technology. N. Bozinovska and M. Gusev, Institute of Infor-
matics, Faculty of Natural Sciences and Mathematics, SS Cyril and Maethodius Univer-
sity, Macedonia.

[Brannan 2003] How to Build an XMLForm Wizard. H. Brannan, Apache Software Founda-
tion, 2002–2003.

[Bray and Brickley 2001] What Is RDF? T. Bray and D. Brickley, XML.com, available at
http://www.xml.com/pub/a/2001/01/24/rdf.html.

[Brecht et al. 2002] SRI’s Digital Earth Project. Y. Leclerc, M. Reddy, M. Eriksen, J. Brecht,
and D. Colleen, Stanford Research Institute, 2002.

[Broadbent and Marti 2002] “Location Aware Mobile Interactive Guides: Usability Issues.”
J. Broadbent and P. Marti, CB&J and University of Siena. Proceedings of the Fourth Inter-
national Conference on Hypermedia and Interactivity in Museums (ICHIM97), 1997.

[Brown and Singh 1996] M-UDP: UDP for Mobile Cellular Networks. K. Brown and S. Singh,
University of South Carolina, 1996.

[Brown et al. 1998] AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
W. H. Brown, R. C. Malveau, H. W. McCormick III, and T. J Mowbray, Wiley, 1998.

[Budrovich 2001] “Techniques for Preventing Wireless System Software Errors.”
V. Budrovich, Proceedings of Wireless One, SIGS 101 Conference, 2001.

[Bunt and Romary 2002] Towards Multimodal Content Representation. H. Bunt and L. Romary,
Computation Linguistics and AI, Tilsburg University, Netherlands, and University de
Nancy, France, 2002.

[Burnett, Prekop, and Rainsford 2001] Intimate Location Modeling for Context Aware Com-
puting. M. Burnett, P. Prekop, and C. Rainsford, Department of Defense, Fern Hill Park,
Australia, 2001.

[Buschke et al. 1998] How to Increase Security in Mobile Networks by Anomaly Detection. R.
Buschke, D. Kesdogan, and P. Reichl, Informatik 4, 1998.

[Buschmann et al. 1996] Pattern Oriented Software Architecture: A System of Patterns.
F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Wiley, 1996.

[Campbell 2001] Wireless and Mobile Networking Course Notes, E6951, Mobile IP. A. T.
Campbell, Columbia University, 2001.

[Candolin 2000] Security Issues for Wearable Computing and Bluetooth Technology. C.
Candolin, Helsinki University of Technology, 2000.

[Candolin 2002] Transaction Privacy in Wireless Networks. C. Candolin, Helsinki University
of Technology, 2002.

P1: KaF

0521817331ref CB752-B’Far-v3 May 4, 2005 18:15

822 References

[CC/PP P3P W3C 2001] CC/PP Implementer’s Guide: Privacy and Protocols. H. Ohto,
L. Suryanarayana, and J. Hjelm, W3C Working Draft, December 20, 2001.

[CC/PP W3C Specification] Composite Capability/Preferences Profiles (CC/PP): Structure and
Vocabularies, W3C Working Draft 15 March 2001, available at http://www.w3.org/TR/
2001/WD-CCPP-struct-vocab-20010315.

[CCML 2002] Voice Browser Call Control. R. J. Auburn, 2002, available at http://www.w3.
org/TR/ccxml/.

[Chess 1993] “Itinerant Agents for Mobile Computing.” D. Chess, B. Grosof, C. Harrison,
D. Levine, C. Parris, and G. Tsudik, Journal of Personal Communication, Vol. 2, No. 5,
October 1993, 139–151.

[Cheyer and Julia 1995] Multimodal Maps: An Agent-Based Approach. A. Cheyer and L. Julia,
SRI International, June 9, 1995.

[Claessens et al. 2003]. “Pioneering Advanced Mobile Privacy and Security.” J. Claessens,
A. Fuchsberger, C. Gunther, S. Holtmanns, G. Horn, K. Howker, R. J. Hulsebosch,
C. Mitchell, K. Paterson, B. Preneel, D. Schellekens, and M. Schuba, Security for Mobility,
IEEE Communications Series, Vol. 51, IEEE Press, 2003, 383–432.

[Clarkin 2003] “10 Tips for Mobile Security.” M. Clarkin, Communication News, January
2003, available at http://www.comnews.com/stories/articles/co/03wireless.html.

[Cocoon 2002] Introducing Cocoon 2.0. S. Mazzocchi, February 2002, available at
http://www.xml.com/pub/a/2002/02/13/cocoon2.html.

[Consolvo and Walker 2003] “Using the Experience Sampling Method to Evaluate Ubicomp
Applications.” S. Consolvo and M. Walker in IEEE Pervasive Computing, Vol. 2, No. 2,
April–June 2003. 24–30.

[Cook 2001] Software Engineering Concerns for Mobile Agent Systems. J. Cook, New Mexico
State University, 2001.

[Corradini and Cohen 2002] Multimodal Speech-Gesture Interface for Handfree Painting
on a Virtual Paper Using Partial Recurrent Neural Networks as Gesture Recognizer. A.
Corradini and P. R. Cohen, Oregon Graduate Institute for Science and Technology,
2002.

[Coutaz 2002] Software Architecture Modeling for User Interfaces. J. Coutaz, Laboratoire
CLIPS (IMAG), 2002.

[Coutaz et al. 2003] Towards Automatic Evaluation of Multimodal User Interfaces. J. Coutaz,
D. Salber, and S. Balbo, ISOLDE Publications, Knowledge Based Systems, Vol. 6, No. 4,
2003.

[Cranefield 2001] UML and the Semantic Web. S. Cranefield, Department of Information
Science, University of Otago, New Zealand, 2001.

[Cranefield et al. 1999] “UML as an Ontology Modeling Language.” S. Cranefield and
M. Purvis in Proceedings of the Workshop on Intelligent Information Integration, 16th Inter-
national Joint Conference on Artificial Intelligence 1999, ACM, 1999, 41–42.

[Crease, Gray, and Cargill 2001] Using Location Information in an Undergraduate Comput-
ing Science Laboratory Support System. M. Crease, P. Gray, and J. Cargill, University of
Glasgow, 2001.

[Dahl 2003] “The Role of Speech in Mutilmodal Applications.” D. Dahl in Speech Technology
Magazine, May/June 2003.

P1: KaF

0521817331ref CB752-B’Far-v3 May 4, 2005 18:15

References 823

[Davis and Prashar 2002] Latency Performance of SOAP Implementations. D. Davis and
M. Prashar, IEEE Cluster Computing and the GRID, IEEE, Compaq Corporation, and
Department of Computer Science at Rutgers University, 2002.

[DCM 2001] A Complete Solution for Remote Synchronization, Version 1.0. DCM Technolo-
gies LTD, August 6, 2001.

[Development tools for Mobile and Embedded Applications 2002] Microsoft Corporation,
2002, available at http://msdn.microsoft.com; C. Muench.

[Dewan 2002] Replication for Mobile Computing. P. Dewan, University of North Carolina,
2002.

[Dimitri 2002] Mobile Platforms for Mobile Agents. V. Dimitri, University of Brussels at Vrije,
2002.

[Dix et al. 1998] Human-Computer Interaction, A. J. Dix, J. E. Finlay, G. D. Abowd, and
R. Beale, Prentice Hall Europe, 1998.

[Djenidi et al. 2002] Dynamic Based Agent Reconfiguration of Multimedia Multimodal Archi-
tecture. H. Djenidi, A. Ramdane-Cherif, Pr. C. Tadj, and Pr. N. Levy, Electrical Engineer-
ing Department, Ecole de Technologie Superieure, 2002.

[Djuknic and Richton 2002] Geolocation and Assisted-GPS, G. M. Djuknic and R. E.
Richton., Bell Laboratories, Lucent Technologies, 2002.

[Domnitcheva 2002] Location Modeling: State of the Art Challenges. S. Domnitcheva, Dis-
tributed Systems Group, Swiss Federal Institute of Technology, 2002.

[Dru and Saada 2000] Location-Based Mobile Services: The Essentials. M.-A. Dru and S. Saada,
2000, available at http://atr.alcatel.de/hefte/01i 1/gb/pdf gb/14drugb.pdf.

[Dubinko 2002] Interactive Web Services with XForms, M. Dubinko, January 2002, available
at http://www.xml.com/pub/a/2001/09/26/xforms.html.

[ECMA TR-61 1992] User Interface Taxonomy Report. European Computer Manufacturer
Association, 1992.

[EMMA W3C 2003] EMMA: Extensible Multimodal Annotation Markup Language. R. Pier-
accini, W. Chou, D. A. Dahl, and D. Raggett, W3C Working Draft, August 11, 2003.

[Ericsson 2002] Wideband Code-Division Multiple-Access. Ericsson, 2002, available at
http://www.ericsson.com/technology/WCDMA.shtml.

[Eronen 2000] JINI–A Technology for Interconnecting Heterogeneous Devices. L. Eronen,
Department of Computer Science, University of Helsinki, available at http://www.cs.
helsinki.fi/u/campa/teaching/laur-final.pdf.

[EURESCOM P1104 2002] Multimodal Multilingual Information Services for Small Mobile
Terminals. L. Boves and E. den Os, eds., Project P1104, EURESCOM, 2002.

[FAA 1999] A Human Factors Process Survey of the Ground Delay Program—Enhancements.
Federal Aviation Administration and Crown Consulting, Document No. G004-001-002,
1999.

[Falk and Robbins 1997] An Explanation of the Architecture of the MMS Standard. H. Falk
and J. Robbins, 1997, available at http://www.sisconet.com/downloads/mmsarch.pdf.

[Fasbender et al. 1996] “Analysis of Security and Privacy in Mobile IP.” A. Fasbender, D.
Kesdogan, and O. Kubitz, Lehrstuhl fur Informatik 4, Proceedings of 4th International
Conference on Telecommunication Systems, Modeling and Analysis, 1996.

P1: KaF

0521817331ref CB752-B’Far-v3 May 4, 2005 18:15

824 References

[Fielding 2000] Architectural Styles and the Design of Network-Based Software Architectures.
Roy Thomas Fielding, Dissertation, University of California at Irvine, 2000.

[FIPA Arch 2001] FIPA Abstract Architecture Specification, 2001, available at http://www.fipa.
org/specs/fipa00001.

[Flach and Courvoisier 2001] “XML-based Multimedia Content Management for Wireless-
Oriented Applications.” G. Flach and T. Courvoisier in CG Topics Magazine, 2001, avail-
able at http://www.inigraphics.net/press/topics/2001/issue2/2 01010.pdf.

[Flippo et al. 2003] A Multimodal Framework: Rapid Development of Multiodal Systems.
F. Flippo, A. Krebs, and I. Marsic, Rutgers University, 2003, available at http://www.caip.
rutgers.edu/disciple/publications/icmi2003.pdf.

[Foley and Van Dam 1983] Fundamentals of Interactive Computer Graphics. J. D. Foley and
A. Van Dam, Addison-Wesley, 1983.

[Fowler and Scott 1999] UML Distilled, 2nd ed. M. Fowler and K. Scott, Addison-Wesley,
1999.

[Franklin and Zdonik 1998] Data in Your Face: Push Technologies in Perspective. M. Franklin
and S. Zdonick, ACM Publications, 1998.

[Fuggetta et al. 1998] “Understanding Code Mobility.” A. Fuggetta, G. P. Picco, and
G. Vigna, in IEEE Transactions on Software Engineering, Vol. 24, No. 5, 1998, 342–361.

[Fujino 2002] Patterns for Analogous Representation. T. Fujino, InArcadia, Ltd., Tokyo,
Japan, PLOP, 2002.

[Gamma et al. 1995] Design Patterns. E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Addison-Wesley, p. 4, 1995.

[Gamma et al. 1999] Design Patterns, Elements of Reusable Object-Oriented Software.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Addison-Wesley, 1999.

[Garber 2002] “Will 3G Really Be the Next Big Wireless Technology?” L. Garber in IEEE
Computer Magazine, Vol. 35, No. 1, January 2002, 26–32.

[Gervais and Muscutariu 2000] Towards an ADL for Designing Agent-Based Systems. M.-P.
Gervais and F. Muscutariu, LIP6 and University of Paris X, 2000.

[GML 3.0] Open GIS Geography Markup Language (GML) Implementation Specification.
S. Cox, P. Daisey, R. Lake, C. Portele, and A. Whiteside, January 2003.

[GML Specifications 2002] The OpenGIS Geography Markup Language (GML) Specifications,
2002, available at http://www.opengis.org/pressrm/summaries/20011127.TS.GML.pdf.

[Goβmann and Specht 2001] Location Models for Augmented Environments. J. Goβmann
and M. Specht, Hyperinteraction with Physical Spaces (HIPS) as supported by EU LTR
project in ESPRIT, 2001.

[Goose et al. 2002] “Toward Improving the Mobile Experience with Proxy Transcoding
and Virtual Composite Devices for a Scalable Bluetooth LAN Access Solution.” S. Goose,
G. Schneider, R. Tanikella, H. Mollenhauer, P. Menard, Y. Le Floc’h, and P. Pillan, in IEEE
Proceedings of the Third International Conference on Mobile Data Management (MDM.02),
IEEE Publications, 2002, 169–170.

[Gorin et al. 2002] “Automated Natural Spoken Dialogue.” A. L. Gorin, A. Abella, T.
Alonso, G. Riccardi, J. H. Wright, in IEEE Computer Magazine, Vol. 35, No. 4, April 2002,
51–56.

P1: KaF

0521817331ref CB752-B’Far-v3 May 4, 2005 18:15

References 825

[Graham 2002] “Using UML to Drive Java Can Alleviate Chaos.” B. Graham in EE Times,
Rose Real-Time Technical Marketing, Rational Software Ltd., Kanata, Ontario, April 1,
2002, available at http://www.33times.com/story/OEG20020329S0025.

[Grasshopper 2001] Grasshopper, The First Reference Implementation of the OMG MASIF.
S. Covaci, German National Research Center for Information Technology, Research In-
stitute for Open Communication Systems, Intelligent Mobile Agent Center for Compe-
tence, 2001, available at http://www.fokus.gmd.de/ima.

[Grassi et al. 2002] Performance Validation of Mobile Software Architectures. V. Grassi, V.
Cortellessa, and R. Mirandola, Rome University and L’Aquila University, Italy, 2002.

[Griss and Pour 2001] “Accelerating Development with Agent Components.” M. L. Griss
and G. Pour. IEEE Computer Magazine, Vol. 34, No. 5, May 2001.

[Griswold et al. 2001] Using Mobile Technology to Create Opportunistic Interactions on a
University. W. G. Griswold, R. Boyer, S. W. Brown, T. M. Truong, E. Bhasker, G. R. Jay,
and R. B. Shapiro, University of California at San Diego, 2001.

[Gronmo, Solheim, and Skogan 2002] “Experiences of UML-to-GML Encoding.”
R. Gronmo, I. Solheim, and D. Skogan, SINTEF Telecom and Informatics. 5th Agile Con-
ference on Geographic Information Science, April 2002.

[Hager 2002] Mobile Adhoc Network Security. C. T. Hager, Virginia Polytechnic Institute,
2002.

[Hansmann 2002] SyncML: Synchronizing Your Mobile Data. U. Hansmann, Prentice-Hall,
2002.

[Hardison 1998] “Spoken Word Identification by Native and Nonnative Speakers of English:
Effects of Training, Modality, Context and Phonetic Environment.” D. M. Hardison in
Proceedings of the 5th International Conference on Spoken Language Processing, Causal
Productions PTY Ltd., Sydney, Australia, 1998.

[Hashman and Knudsen 2001] The Application of JINI Technology to Enhance the Delivery
of Mobile Services. S. Hashman and S. Knudsen, PSINaptic, December 2001.

[Hausmann et al.] Towards Dynamic Meta Modeling of UML Extensions: An Extensible Se-
mantics for UML Sequence Diagrams. J. H. Hausmann, R. Heckel, and S. Sauer 2001,
available at http://www.upb.de/cs/ag-engels/Papers/2001/HausmannHCC01.pdf

[Hausmann, Heckel, and Sauer 2002] Dynamic Meta Modeling with Time: Specifying the
Semantics of Multimedia Sequence Diagrams. J. H. Hausmann, R. Heckel, and S. Sauer,
Department of Computer Science, University of Paderborn, Germany, 2002.

[Hauswirth and Jazayeri 1999] A Component and Communication Model for Push Systems.
M. Hauswirth and M. Jazayeri, Technical University of Vienna, Distributed Systems
Group, available at http://www.infosys.tuiwien.ac.at.

[Hennicker and Koch 2001] Modeling the User Interface of Web Applications with UML.
R. Hennicker and N. Koch, Institute of Computer Science at Ludwig-Maximilian-
University of Munich and F.A.S.T. Applied Software Technology GmbH, 2001.

[Henricksen et al. 2002] “Pervasive 2002.” K. Henricksen, J. Indulska, and A. Rakotonirainy,
in Modeling Context Information in Pervasive Computing Systems, Springer-Verlag, 2002,
pp. 167–180.

[Herzog et al. 2003] “MULTIPLATFORM Testbed: An Integration Platform for Multi-
modal Dialog Systems.” G. Herzog, H. Kirchmann, S. Mertn, A. Ndiaye, and P. Poller,

P1: KaF

0521817331ref CB752-B’Far-v3 May 4, 2005 18:15

826 References

German Research Center for Artificial Intelligence, HLT-NAACL 2003 Workshop: Soft-
ware Engineering and Architecture of Language Technology Systems, Pate 75–82, May–June
2003.

[Hickey W3C] Position Paper for W3C/WAP Workshop on the Multimodal Web. M. Hickey,
Hewlett-Packard, 2000.

[Hieda et al. 2003] “Design of SMIL Browser Functionality in Mobile Terminals.” S. Hieda,
Y. Saida, H. Chishima, N. Sato, and Y. Nakamoto, in Proceedings of the Sixth IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing, IEEE Publications,
2003, 143–145.

[Hightower and Borrielo 2001] “Location Systems for Ubiquitous Computing.” J. High-
tower and G. Borriello, IEEE Computer, Vol. 34, No. 8, August 2001, 57–66.

[Hightower et al. 2002] “The Location Stack: A Layered Model for Location in Ubiquitous
Computing.” J. Hightower, B. Brumitt, and G. Boriello, Proceedings of the Fourth IEEE
Workshop on Mobile Computing Systems and Applications (WMCSA), IEEE Computer
Society, 2002.

[Holland and Oppenheim 1999] “Direct Combination.” S. Holland and D. Oppenheim in
ACM CHI 99 Proceedings, ACM, 1999, 262–269.

[Holland, Morse, and Gedenryd 2002] “Direct Combination: A New User Interaction Prin-
ciple for Mobile and Ubiquitous HCI.” S. Holland, D. R. Morse, and H. Gedenryd in
Human Computer Interaction with Mobile Devices, 4th International Symposium, Mobile
HCI 2002 Proceedings, Springer-Verlag, 2002.

[Huang 2000] Communication Infrastructures and Protocols for Mobile Agents, F. Y.
Huang, December 2000, available at http://www.cs.queensu.ca/home/huang/cisc837/
cisc837paper.html.

[IEEE 2000] IEEE Standard 1471–2000. IEEE Standards Office, Piscataway, NJ, 2000, avail-
able at http://standards.ieee.org.

[IKV 2001] Grasshopper Basics and Concepts, Release 2.2, available at http://www.
grasshopper.de.

[Indal 2002] Development of Mobile Agents in J2ME or Similar Technologies. E. Indal, Hov-
edoppagave, Department of Mathematics and Information Technology at University of
Norway, 2002.

[Intel 2003] Mobile Systems and Security. Technologies for Safe, Anywhere/Anytime Com-
puting. White paper, Intel Corporation, 2003, available at http://whitepapers.zdnet.
co.uk/0,39025945,60063878p-39000516q,00.htm.

[Introduction to eVC++] Microsoft Corporation, 2002, available at http://msdn.microsoft.
com.

[Jacobsen and John 2000] Two Case Studies in Using Cognitive Walkthrough for Interface
Evaluation. N. E. Jacobsen and B. E. John, 2002, available at http://reports archive.
adm.cs.cmu.edu/anon/2000/cmv cs 132.pdf.

[Jacobson, Booch, and Raumbaugh 1999] The Unified Software Development Process.
I. Jacobson, G. Booch, and J. Raumbaugh, Addison-Wesley, 1999.

[Jameson 2002] “Usability Issues and Methods for Mobile Multimodal Systems.” A.
Jameson, German Research Center for Artificial Intelligence and International
University in Germany, Proceedings of the ISCA Tutorial and Research Workshop on Multi-
Modal Dialogue in Mobile Environments, SIG Media, 2002.

P1: KaF

0521817331ref CB752-B’Far-v3 May 4, 2005 18:15

References 827

[Jansen et al. 1999] Applying Mobile Agents to Intrusion Detection and Response. W. Jansen,
P. Mell, T. Karygiannis, and D. Marks, National Institute of Standards and Technology
(United States Government). 1999.

[Jensen 2002] Research Challenges in Location-Enabled M-Services. C. S. Jensen, Aalborg
University, Denmark, 2002, available at http://www.cs.auc.dk/∼csj.

[JSGF 2002] Java Speech Grammar Format Specifications. Sun Microsystems, available at
http://java.sun.com/products/java-media/speech/forDevelopers/JSGF/JSGF.html.

[JTAPI 1999] Java Telephony API documentation, Sun Microsystems, 1999, available at
http://java.sun.com/products/jtapi/index.html.

[Katz 1995] Adaptation and Mobility in Wireless Information Systems. R. H. Katz, University
of California Berkeley, 1995.

[Kleinrock 1996] Nomadicity: Anytime, Anywhere in a Disconnected World. L. Kleinrock,
J. C. Baltzer AG, Science Publishers, Mobile Networks and Applications, pp. 351–357,
1996.

[Knudsen 2002] Parsing XML in J2ME: XML in MIDP Environment. J. Knudsen, March 7,
2002, available at http://wireless.java.sun.com/midp/articles/parsingxml.

[Ko and Vaidya 1998] Location-Aided Routing (LAR) in Mobile Ad Hoc Networks. N. Ko and
Y.-B. Vaidya, IEEE Press, 1998.

[Korkea-aho and Tang 2001] Experiences of Expressing Location Information for Applications
in the Internet. M. Korkea-aho and H. Tang, Nokia Research Center, Finland, 2001.

[Kumar and Romary 2003] A Comprehensive Framework for Multimodal Meaning Represen-
tation. A. Kumar and L. Romary, Laboratoire Loria, B.P. 239, 2003.

[Kunins 2001] VoiceXML: Strategies and Techniques for Effective Voice Application Develop-
ment with VoiceXML 2.0. C. Sharma and J. Kunins, Wiley, 2001.

[Kutar, Nehaniv, and Britton 2001] NGT: Natural Specification of Temporal Properties of
Interactive Systems with Multiple Time Granularities. M. Kutar, C. Nehaniv, and C. Britton,
University of Hertfordshire, U.K., 2001.

[Landay, Mathews, and Waterson 2002] In the Lab and Out in the Wild: Remote Web Usability
Testing for Mobile Devices. S. Waterson, J. A. Landay, and T. Mathews, 2002.

[Lang 1997] Java Aglet Application Programming Interface (J-AAPI). D. Lang, IBM
Research group in Japan, 1997, available at http://www.trl.ibm.com/aglets/JAAPI-
whitepaper.html.

[Lanowitz 2002] “Testing Is a Mobile Application Imperative.” T. Lanowitz, Gartner Group
Note Number COM-14-1970, February 11, 2002, available at http://gartner2002hec.ca/
research/104400/104433/104433.html.

[Larson 2003] “Technology Trends: InkML and Speech.” J. Larson in Speech Technology
Magazine, October 2003.

[Lathi 1989] Modern Signal and Analog Communication Systems. B. P. Lathi, Holt, Rinehart,
and Winston, 1989.

[Laukkanen 2002] Java on Handheld Devices–Comparing J2ME CDC to Java 1.1. M.
Laukkanen, Department of Computer Science, University of Helsinki, available at
http://www.cs.helsinki.fi/u/campa/teaching/j2me/papars/cdc.pdf.

[Lawton 2001] “New Technologies Place Video in Your Hands.” G. Lawton in IEEE Com-
puter Magazine, Vol. 34, No. 4, April 2001, 14–17.

P1: KaF

0521817331ref CB752-B’Far-v3 May 4, 2005 18:15

828 References

[Lee 2000] Operation-Based Update Propagation in Mobile File Systems. Y.-W. Lee, The
Chinese University of Hong Kong, January 2000.

[Leeper 2001] “A Long-Term View of Short-Range Wireless.” D. G. Leeper in IEEE Computer
Magazine, Vol. 34, No. 6, June 2001, 39–44.

[Leonhardt and Magee 1997] Security Considerations for a Distributed Location Service.
U. Leonhardt and J. Magee, Imperial College, London, England, 1997.

[Leufven 2001] Synchronization in a Wireless World. U. Leufven, Royal Institute of Tech-
nology and Microsoft Mobile Internet Laboratories, June 2001.

[Liao et al. 2000] “Geogrid: A Geocasting Protocol for Mobile Ad Hoc Networks Based
on GRID.” W.-H. Liao, Y.-C. Tseng, K.-L. Lo, and J.-P. Sheu, Internet Technology, Vol. 1,
No. 2, 2000.

[Lieberman 2001] UML Activity Diagrams: Detailing User Interface Navigation. B. Lieber-
man, The Rational Edge, Rational Software, October 2001, available at http://www.
therationaledge.com/content/oct 01/t activityDiagrams bl.html.

[LIF Specifications 2000] Location Interoperability Forum Mobile Location Protocol TS 101
Specification. Version 3.0, June 2002.

[Lin and Stojmenovic 1999] “Gedir: Loop-Free Location Based Routing in Wireless Net-
works.” X. Lin and I. Stojmenovic, Proceedings of Conference on Parallel and Distributed
Computing and Systems, IEEE Press, November 3–6, 1999, 1023–1032.

[Lindmark 2000] Interpreting Symptoms of Cognitive Load and Time Pressure in Manual Input.
K. Lindmark, Master’s thesis, Department of Computer Science, Saarland University,
2000.

[Lodderstedt et al. 2002] SecureUML: A UML-Based Modeling Language for Model-Driven
Security? T. Lodderstedt, D. Basin, and J. Doser, University of Freiburg, Germany.

[Maes 2002] A VoiceXML Framework for Reusable Dialog Components, S. H. Maes, IBM T. J.
Watson Research Center, Yorktown Heights, N.Y., 2002.

[Malhotra 2002] Introduction to SMS. V. Malhotra, IBM Developer Works, 2002, available
at http://www.ibm.com/developerworks.

[Mandel, Koch, and Maier 1999] “Extending UML to Model Hypermedia and Distributed
Systems.” L. Mandel, N. Koch, and C. Maier, in Bayerische Forschungsstiftung, February
1999, available at http://projekte.fast.de/projekte/forsoft/intoohdm/index.html.

[Mantyla 2002] User Experience Research. M. Mantyla, Helsinki Institute for Information
Technology, 2002.

[Martin-Flatin 1999] Push vs. Pull in Web-Based Network Management. J.-P. Martin-Flatin,
Swiss Federal Institute of Technology, Lausanne, 1999.

[MASIF 1997] Mobile Agent System Interoperability Facilities Specification. GMD FOKUS,
IBM Corporation, with cooperation from Crystliz, Inc., General Magic, Inc., and the
Open group, 1997.

[MAUI 2000] Mobile Agent to User Interaction (MAUI). P. Mihailescu, C. Gamage, and E. A.
Kendall, Monash University, Australia, 2000.

[McClure, Scambray, and Kurtz 1999] Hacking Exposed: Network Security Secrets and Solu-
tions, McGraw-Hill Osborne Media, 1999.

[McLaughlin 2000] Java and XML. B. Mclaughlin, O’Reily & Associates, 2000.

P1: KaF

0521817331ref CB752-B’Far-v3 May 4, 2005 18:15

References 829

[Melnik and Decker 2000] A Layered Approach to Information Modeling and Interop-
erability on the Web. S. Melnik and S. Decker, Stanford University, available at
http://www-db.stanford.edu/∼melnik/pub/sw00/sw00.pdf.

[Meyers 1993] Why Are Human-Computer Interfaces Difficult to Design and Implement? B. A.
Meyers, Carnegie Mellon University, July 1993.

[Miga et al. 2002] Deriving Message Sequence Charts from Use Case Maps Scenario Spec-
ifications. A. Miga, D. Amyot, F. Bordeleau, D. Cameron, and M. Woodside, Carlton
University at Ottawa, Canada, 2002.

[Minh 1997] Multimodal User Interface Research (MUIR), Modal, Specification and Design.
C. Minh, Master’s Thesis, Department of Computer Science and Technology, Peking
University, June 20, 1997.

[Moczar and Aston 2002] Cocoon Developer’s Handbook. L. Moczar and J. Aston, Sams
Publishing, 2002.

[Mohseni 1996] Web Database Primer Plus. P. Mohseni, WAIT Group Press, 1996.

[Mummert 1996] Exploiting Weak Connectivity in a Distributed File System. Lily B. Mummert,
CMU-CS-96–195, December 1996.

[Munoz et al. 2003] “Context-Aware Mobile Communication in Hospitals.” M. A. Munoz,
M. Rodriguez, J. Favela, A. I. Marinez-Garcia, and V. Gonzalez, in IEEE Computer Mag-
azine, September 2003.

[Murphy 2000] Enabling the Rapid Development of Dependable Applications in the Mo-
bile Environment. A. L. Murphy, Washington University Server Institute of Technology,
2000.

[NCC 2002] Wireless—A New Challenge in Software Testing. National Computing
Centre, available at http://www.ncc.co.uk/ncc/myitadviser/archive/issue9/technology.
cfm.

[Nettech 1999] Beginner’s Guide to Implementing a Successful Wireless Solution. Nettech
Systems, Inc., 1999, available at http://www.nettechRF.com.

[Nielson 1994] Usability Engineering. J. Nielson, Morgan Kaufmann, 1994.

[Niklfeld, Finan, and Pucher 2001] Component-Based Multimodal Dialog Interfaces for Mo-
bile Knowledge Creation. G. Niklfeld, R. Finan, and M. Pucher, Telecommunication Re-
search Center, Vienna and Mobilkom, Austria, 2001.

[Nunes 2001] Object Modeling for User-Centered Development and User Interface Design:
The Wisdom Approach. D. N. J. Nunes, University of Maderia, Funchal, Portugal, April
2001.

[OASIS tML 2001] tML Guidelines for Mapping UML Notation to XML Schemas and Vice
Versa. OASIS Committee T1–Telecommunications working group T1M1 in conjunction
with Sprint Corp., available at http://www.oasis-open.org.

[Olsen 1992] User Interface Management Systems: Models and Algorithms. D. R. Olsen Jr.,
Morgan Kaufmann Publishers, San Mateo, Ca., 1992.

[Openwave 2002] WAP Push Technology Overview. Openwave Systems Inc., May 2002,
available at http://demo.openwave.com/pdf/wappush tech overview.pdf.

[Openwave 2002] WAP Push Technology Overview. Openwave Systems, Redwood City, CA,
available at http://www.openwave.com.

P1: KaF

0521817331ref CB752-B’Far-v3 May 4, 2005 18:15

830 References

[Orfali and Harkey 1997] Client/Server Programming with Java and CORBA. R. Orfali and
D. Harkey, John Wiley & Sons, 1997.

[Oshima, Karjoth, and Onon 1998] Aglet Specification 1.1 Draft. M. Oshima, G. Karjoth,
and K. Onon, IBM Research Group in Japan, 1998, available at http://www.trl.ibm.com/
aglets/spec11.html.

[Oviatt 2000] Designing Robust Multimodal Systems for Diverse Users and Environments.
S. Oviatt, Computer Science Department, Oregon Graduate Institute of Science and
Technology, 2000.

[Oviatt 2002] Taming Recognition Errors with a Multimodal Interface. S. Oviatt, National
Science Foundation, Special Extension for Creativity, 2002.

[Oviatt and Cohen 2000] Multimodal Interfaces That Process What Comes Naturally. S. Oviatt
and P. Cohen, Center for Human Communication, Department of Computer Science,
Oregon Graduate Institute of Science and Technology, 2000.

[Oviatt OHSU 2002] Multimodal Interfaces for Future Geographical Information Systems.
NRC Committee on Beyond Mapping: The Challenge of New Technologies in the Geo-
graphic Information Sciences, August 2002.

[Oviatt, Jacko, and Sears 2002] Handbook of Human-Computer Interaction—Multimodal
Interfaces. S. Oviatt, Center for Human-Computer Communication, Computer
Science Department of Oregon Graduate Institute of Science and Technology
2002.

[Owen 2002] When Data Sync Breaks. J. Owen, White Paper, XcelleNet, Inc., 2002.

[P809-GI 1999] Mobility in the Broadband Environment Based on IN Evolution. P809-GI
project of EUROSCOM, Network Architectures for Broadband Mobility, Vol. 1, Archi-
tecture for the Benchmark Services, 1999.

[Page 2000] Neuropsychology of Memory. A. Page, University of Western Australia, available
at http://www.psy.uwa.edu.au/user/andrew/.

[Paulson 2003] “New Techniques for Speeding Wireless Streaming Video.” L. D. Paulson
in IEEE Computer Magazine, Vol. 36, No. 5, May 2003, 21.

[Pinhanez et al. 2003] “Fostering a Symbiotic Handheld Environment.” C. Pinhanez, M.
Raghunath, and C. Narayanasuwami, in IEEE Computer Magazine, Vol. 36, No. 9, Septem-
ber 2003, 56–65.

[Pohl, Kobsa, and Kutter 1995] User Model Acquisition Heuristics Based on Dialogue Acts.
W. Pohl, A. Kobsa, and O. Kutter, Working Group Knowledge-Based Information Sys-
tems, University of Konstanz, 1995.

[Raggat and Wugofski 2000] Towards Convergence of WML, XHTML and Other W3C
Technologies. World Wide Web Consortium, available at http://www.w3.org/ 2000/09/
Papers/Wugofski.html.

[Rausch et al. 2001] Extensions of the Unified Modeling Language for Mobile Agents. C. Klein,
A. Rausch, M. Sihling, and Z. Wen, Siemens ICN, Munich, Germany, Institut fur Infor-
matic, Technische Universitat Munchen, Munich, Germany, 2001.

[Rausch, Sihling, and Wen 1998] Extensions of the UML around Language Concepts for
Mobility. A. Rausch, M. Sihling, and Z. Wen, 1998, available at http://www4.in.tum.de/
∼rausch/publications/2001/MobileUML.pdf.

P1: KaF

0521817331ref CB752-B’Far-v3 May 4, 2005 18:15

References 831

[Reiher et al. 1996] Peer-to-Peer Reconciliation Based Replication for Mobile Computers.
P. Reiher, J. Popek, M. Gunter, J. Salomone, and D. Ratner, University of California, Los
Angeles, 1996.

[RFC822] RFC 822, available at http://www.faqs.org/rfcs/rfc822.html.

[Rodriquez et al. 2000] An Introduction to IBM WebSphere Everyplace Suite Version 1.1. J.
Rodriguez, R. Appleby, B. Bisgaard, H. Wang, A. McGrory, A. Mryhig, A. Patton, and
M. Omarjee, IBM RedBooks, 2000.

[Rossler et al. 2001] Multimodal Interaction for Mobile Environment. H. Rossler, J. Sienel,
W. Wajda, J. Hoffmann, and M. Kostrzewa, Private Network Department, Alcatel SEL
AG Research and Innovation, Germany, 2001.

[RS232 2003] RS232 Quick Reference, available at http://www.rs485.com/rs485spec.
html.

[Ruuskanen 2000] JAVACARD. J.-P. Ruuskanen, Department of Computer Science, Uni-
versity of Helsinki, Finland, available at http://www.cs.helsinki.fi/u/campa/teaching/
ruuskanen-final.pdf.

[Sadoski 1997] Client–Server Software Architectures–An Overview. D. Sadoski, Carnegie Mel-
lon University, 1997, available at http://www.sei.cmu.edu/str/descriptions/clientserver
body.html.

[Saeyor et al. 2003] Multimodal Presentation Markup Language on Mobile Phones. S. Saeyor,
K. Uchiyama, and M. Ishizuka, 2003.

[Sandor and Reicher 2001] CUIML: A Language for Generating Multimodal Human-Computer
Interfaces. C. Sandor and T. Reicher, 2001, available at http://wwwbruegge.in.tum.de/
publications/includes/pub/sandor2001cuiml/sandor2001cuiml.pdf.

[Sauer and Engles 1999] OMMMA: An Object-Oriented Approach for Modeling Multimedia
Information Systems. S. Sauer and G. Engels, University of Paderborn, Germany Infor-
mation Systems Group, 1999.

[Schlieder et al. 2001] Location Modeling for Intentional Behavior in Spatial Partonomies. C.
Schlieder, T. Vogele, and A. Werner, Bremen University, 2001.

[Scott 2001] Service Discovery Protocol (SDP). M. Scott, 2001, available at http://www.dcs.
ed.ac.uk/home/slipc/protocols/sdp.html.

[Sears 1992] Layout Appropriateness: A Metric for Evaluating User Interface Widget Layout.
A. Sears, Human–Computer Interaction Laboratory & Computer Science Department,
University of Maryland, December 8, 1992.

[Selic and Raumbaugh 2003] Mapping SDL to UML. B. Selic and J. Raumbaugh,
Rational White Papers, May 8, 2003, available at http://www.rational.com/media/
whitepapers/sdl2umlv13.pdf.

[Sharma et al. 2003] “Speech-Gesture Driven Multimodal Interfaces for Crisis Manage-
ment.” R. Sharma, M. Yeasin, N. Krahnstoever, I. Raushert, G. Cai, I. Brewer, A. S.
MacEachren, and K. Sengupta, in Proceedings of IEEE Special Issue on Multimodal Human-
Computer Interface 2003, 2003.

[Shipman, Marshal, and Moran 1995] “Finding and Using Implicit Structure in Human-
Organized Spatial Layouts of Information.” F. M. Shipman III, C. C. Marshall, T. P. Moran,
CHI ‘95 Proceedings, ACM, 1995.

P1: KaF

0521817331ref CB752-B’Far-v3 May 4, 2005 18:15

832 References

[Singh et al. 1999] RAT: A Quick (And Dirty?) Push for Mobility Support. R. Singh, Y. C. Tay,
W. T. Teo, and S. W. Yeow, IEEE Publications, 1999.

[Sissonen 2002] Wireless Applications Evaluation and Development Process: Case-Paper
Industry Logistics. A. Sissonen, Lappeenranta University of Technology, February 1,
2002.

[SMIL 2.0] Synchronized Multimedia Integration Language, J. Ayars, D. Bulterman, A. Cohen,
K. Day, E. Hodge, P. Hoschka, E. Hyche, M. Jourdan, M. Kim, K. Kvbota, R. Lanphier,
T. Michel. D. Newman, J. Ossenbruggen, B. Saccocio, P. Schmitz, W. Tenkate, 20001,
available at http://www.w3.org/TR/2001/REC-smil20–20010807/smil20.html.

[Smith et. al. 1982] “Designing the Star User Interface.” D. C. S. Smith, C. Irby, R. Kimball,
B. Verplank, and E. Harlem, Byte, Vol. 7, No. 4, April 1982, pp. 242–282.

[Sparkman et al. 2001] Automated Derivation of Complex Agent Architectures from Anal-
ysis Specification. C. H. Sparkman, S. A. DeLoach, and A. L. Self, 2nd International
Workshop on Agent-Oriented Software Engineering (AOSE-2001), Montreal, Canada,
May 29, 2001.

[Spolsky 2001] User Interface Design For Programmers. J. Spolsky, 2001, available at
http://www.joelonsoftware.com.

[Spyrou, et al.] Wireless Computational Models: Mobile Agents to Rescue. C. G. Spyrou,
P. Pitoura, and E. Evirpidou.

[SSML 2002] 2002, available at http://www.w3.org/TR/speech-synthesis/

[Star and Estes 1990] Geographic Information Systems: An Introduction. J. Star and J. Estes,.
Prentice-Hall, Englewood Cliffs, NJ, 1990.

[Stemberger 2002] Is Buetooth WI-FI? S. Stemberger, IBM Developer Works, 2002, available
at http://www-106.ibm.com/developerworks/library/wi-net.html.

[Sun Micro J2ME Spec 2000] Introduction to Java 2 Micro Edition and KVM. Sun Microsys-
tems, May 19, 2000.

[Sylvain 2001] MPML 3.0 Specifications. D. Sylvain, Master’s Student, Internal Report,
Ishizuka Laboratory, June 15, 2001.

[SyncML Specification 1.1] SyncML Sync Protocol, Version 1.1. Available at http://www.
syncml.org/docs/syncml sync protocol v11 20020215.pdf.

[SyncML White Paper 2003] Building an Industry-Wide Mobile Data Synchronization Proto-
col. SyncML White Paper, 2003, available at http://www.syncml.org.

[Tanenbaum and van Renesse 1985] “Distributed Operating Systems.” A. S. Tanenbaum
and R. van Renesse, ACM Computing Surveys, December 1985, 419–470.

[Tomlin 1990] Geographic Information Systems and Cartographic Modeling. C. D. Tomlin,
Prentice Hall College Division, 1990.

[Trabelsi et al. 2002] Multimodal Integration of Voice and Ink for Pervasive Computing.
S. Trabelsi, S.-H. Cha, D. Desai, and C. Tappert, CSIS Pace University, 2002.

[Trantor 2002] kXML and kAWT. Andreas Bettsteller, http://www.trantor.de.

[Tseng et al. 2001] “Location Awareness in Ad Hoc Wireless Mobile Networks.” Y.-C. Tseng,
S.-L. Wu, W.-H. Liao, and C.-M. Chao, IEEE Computer Magazine, Vol. 34, No. 6, June
2001, 45–52.

P1: KaF

0521817331ref CB752-B’Far-v3 May 4, 2005 18:15

References 833

[Tuning 2000] How Do You Test an Interface How Do You Test an Interface You Can’t
See? Nuance Communications, 2000, available at http://hci.stanford.edu/cs377/nardi-
schiano/NLeD.talk.pdf.

[UMTS 2002] UMTS White Paper 1. 2002, available at http://www.umts-forum.org/servlet/
dycon/ztumts/umts/Live/en/umts/MultiMedia PDFs UMTSF-White-Paper-1.pdf.

[UTMS P1104 2002] Multimodal Multilingual Information Services for Small Mobile Termi-
nals. L. Boves and E. den Os, eds., Eurescom UTMS, 2002.

[Varshney 2003] “The Status and Future of 802.11-Based WLAN’s.” U. Varshney, IEEE
Computer Magazine, June 2003.

[Varshney and Jain 2001] Issues in Emerging 4G Wireless Networks. U. Varshney and R. Jain,
Georgia State University, 2001.

[Vaughan-Nichols 2002] “OFDM: Back to the Wireless Future.” S. J. Vaughan-Nichols in
IEEE Computer Magazine, December 2002.

[Vaughan-Nichols 2003] “Mobile IPv6 and the Future of Wireless Internet Access.” S. J.
Vaughan-Nichols in IEEE Computer Magazine, February 2003.

[Venners 1997] “The Architecture of Aglets.” B. Venners, Java World, April 1997, available
at http://www.javaworld.com/javaworld/jw-04–1997/jw-04-hood p.html.

[Vichr 2002] The ABC’s of 802.11. R. Vichr, IBM Developer Works, 2002, available at
http://www.ibm.com/developerworks.

[VXML 2002] Speech Synthesis Markup Language. D. C. Burnett, Nuance, M R. Walker,
Intel, and A. Hunt, SpeechWorks International, World Wide Web Consortium, 2002,
available at http://www.w3.org/TR/speech-synthesis/.

[W3C Schema—2] W3C XML Schema Part 2—Data Types, Revision 2, January of 2001,
available at http://www.w3.org/TR/xmlschema-2.

[W3C Semantic Web] Semantic Web documentation on World Wide Web Consortium Web
site, 2002, available at http://www.w3.org/2001/sw.

[W3C Speech Grammar 2002] W3C Speech Grammar Specifications. A. Hunt and S. Mc-
Glashan of W3C, 2002, available at http://www.w3.org/TR /2001/WD-speech-grammar-
20010103/.

[W3C XForms] W3C XForms Specifications Working Draft 18, January 2002, available at
http://www.w3.org/TR/2002/WD-xforms-20020118.

[W3C XML Pipeline] XML Pipeline Definition Language Version 1.0. N. Walsh and E. Maler,
Sun Microsystems, W3C Note, February 28, 2002.

[Wahlster 2003] SmarkKom: Symmetric Multimodality in an Adaptive and Reusable Dialogue
Shell. W. Wahlster, German Research Center for Artificial Intelligence (DFKI), 2003.

[Wahlster et al. 1998] SmartKom: Towards Multimodal Dialogues with Anthropomorphic In-
terface Agents. W. Wahlster, N. Riethinger, and A. Blocher, German Research Center for
Artificial Intelligence 1998.

[Waldo 2001] “Mobile Code, Distributed Computing, and Agents.” J. Waldo, in IEEE
Intelligent Systems, March/April 2001.

[WAP 2.0] Wireless Application Protocol WAP 2.0 Technical White Paper, WAP Forum, avail-
able at http://www.wapforum.org/what/WAPWhite Paper1.pdf.

P1: KaF

0521817331ref CB752-B’Far-v3 May 4, 2005 18:15

834 References

[WAP Architecture 2001] Wireless Application Protocol Architecture Specification WAP-
210-WAPArch-20010712, Wireless Application Protocol Forum, July 2001, available at
http://www1.wapforum.org/tech/documents/WAP-210-WAPArch-20010712-a.pdf.

[WAP MMS Encapsulation 2002] Wireless Application Protocol MMS Encapsulation Protocol.
Wireless Application Protocol Forum, Ltd. WAP-209-MMS Encapsulation-20020105-a,
Version 05-Jan-2002.

[WAP Professional 2000] WAP Professional 2000. C. Arehart, N. Chidambaram, S. Gu-
ruprasad, A. Homer, R. Howelll, S. Kasippilai, R. Machin, T. Myers, A. Nakhimovsky,
L. Passani, C. Pedley, R. Taylor, and M. Toschi. WROX Press Ltd., Acocks Green, UK,
2000.

[WAP UAPROF] Wireless Application Protocol WAP-248-UAPROF-2001 1020-a, Wireless
Application Protocol Forum, available at http://www.wapforum.org \ .

[Welch 2000] A Survey of Power Management Techniques in Mobile Computing Operating
Systems. G. F. Welch, University of North Carolina at Chapel Hill, 2000.

[WFMC and Fisher 2000] The Work Flow Handbook 2001, Work Flow Management Coali-
tion, October 2000.

[Yang et al. 2000] Mobile Agent on the SARA Digital Library. Y. Yang, O. F. Rana, D. W.
Walker, and C. Georgousopoulos, and R. Williams, 2000, available at http://cacr.library.
caltech.edu/archive/0000019/01/cacr.186.pdf.

[Yim et al. 2001] Architecture-Centric Object-Oriented Design Method for Multi-Agent Systems.
H. Yim, K. Cho, J. Kim, and S. Park, KAIST (Korea Advanced Institute of Science and
Technology), Korea, 2001.

[Yu et al. 2003] Scalable Portriat Video for Mobile Video Conferencing. J. Keman Yu, T. He,
Y. Lin, and S. Li, Microsoft Research Asia, 2003.

[Zhang 2001] Mobile Computing and Wireless Networks. Y. Zhang, 2001, available at
http://www.cs.utexas.edu/users/ygz/395T-01S.

[Zhang 2002] Provably-Secure Enhancements on 3GPP Authentication and Key Agreement
Protocol. M. Zhang, Verizon Laboratories, Waltham, MA, 2002.

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

Index

802.11. See IEEE 802.11
standard

A
Abstract Architecture

Specification defined,
FIPA 571

Abstract classes, UML 180
Abstract User Interface Markup

Language (AUIML) 367
accessKey attribute defined 292–293
ACL Specifications defined,

FIPA 573
Active transactions

asynchronous 20
and CLDC 47
defined 19
overview 18–22, 723–725
Pull mechanisms and 727, 728
and SMS 725
synchronous 20
WAP and 80

Activity diagrams, UML
defined 162
elements in 214, 215–220
events and signals 200
and GUI development 372–376
overview 213–222
UI validation, modeling 375
VUIs, representing 441

Actors
function of 165
human 379

inheritance of properties,
building 171

system 379
Add command defined, SyncML 666
Addresses, representing

information collecting 374
SAX parsing 108
WSDL 115
XML 106, 107, 120

ADVcharts, hypermedia
extensions for 509–510

Agencies defined 564
Agent Authority defined, MASIF 569
Agent Interaction Protocol

diagrams, UML
extensions for 575
mobile agent interactions,

modeling 586
overview 575

Agent Location defined, MASIF 569
Agent Management Specification

defined, FIPA 571–572
Agent Name defined, MASIF 569
Agent System defined, MASIF 569
Agent System Type defined,

MASIF 569
Agent technologies. See Mobile

Agent platforms
AgentUML (AUML) 574–577
Agent Wrapper Class code 598
Aglets, Java

architecture 591
code, sample 592–593

835

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

836 Index

Aglets, Java (cont.)
defined 589, 590–592
and MASIF 591
tools 592

Alert command defined, SyncML 667
alert element defined 293
Amplitude defined 401–402
Amplitude modulation defined 617
Analysis Model defined 377, 378,

379
AndroMDA Project url 159
Anomaly Detection Systems 746
Apache Cocoon. See Cocoon
APIs. See Application

Programming Interfaces
(APIs)

Applets defined, Java 589–590
Application Layer security

described 736
Application Programming

Interfaces (APIs)
high-level

and programming
languages 430

speech and call control
with 431–432

Java Speech 433–434
Nuance Speech Object 432
portability and 434
vendor-based 432–433
VUIs, building 429, 438–447

Applications. See Software
applications

Application Service Provider
Region defined 583

AppLoader, BREW 57
Architectures. See also individual

applications by name
client-server 777–779
defined 25, 774
designing 774
mainframe 775–777
mobile applications 25–26, 773–775,

786–787
multimodal 550
N-tier 779–783
patterns defined 26
practical considerations 785
properties and evaluation of 550–551

ArgoUML 101

ARM compiler, BREW 56
Assisted GPS (A-GPS) described 679
Asymmetric channels defined 251
Atomic command defined,

SyncML 667
Atomic interaction

defined 253, 254, 381, 443
representing with stereotypes 443

Atomic modality defined 504
Attributes defined, CC/PP 134
Attribute visibility, specifying 172
Augmenting processes defined,

XML Pipeline 124
AUML. See AgentUML (AUML)

B
Bandwidth

connectivity and 617
fraudulent use of 742
Push based technologies,

requirements 734
theft 745

Base64 Encoded Binary Data
data type defined, XML
Schema 121

Batteries, limited and mobile
computing 14–15

Becomes stereotype and object
relationships 184

Behavioral view, UML 184
Bidirectional text module

defined, XHTML 352
Billing information, collecting 320
Binary Run-time Environment

for Wireless (BREW)
applications, building/

deploying 57–63
AppLoader 57
architecture 61
ARM compiler 56
databases and 60
Device Configurator 56
Emulator 56
Grinder 57
and hardware 63
Image Authoring tool 56
Image Converter 56
MIF Editor 56
mobile agent capabilities of 566
and multimodality 531

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

Index 837

overview 55, 501
platform functionality 35, 37
Pure Voice converter 57
Resource Editor 57
SDK 55–57
security 746
sound functionality 60
and synchronization 662
telephony API (TAPI) 60
TestSig Generator and

AppSigner 57
and UIMS functionality 314
unit testing 58

Binding
SOAP 113
WSDL 115

Black box testing 797–798
Bluetooth

architecture 627–628
devices, states of 628
and LANs 629
overview 625–630
security in 742–743
specification 626
synchronization profile 662,

663, 671–672
Boolean data type defined, XML

Schema 121
Boundaries, modeling 380
BREW. See Binary Run-time

Environment for
Wireless (BREW)

Broadcasting defined, UML 201
BrowserUA defined, UAProf 141
button control defined 302

C
Call Control Extensible Markup

Language (CCXML)
documents, modeling 474, 475
overview 122, 467
SMIL and 495
state machines and CCXML

containers 468
syntax tags 469–473
and UML 468–475
user interfaces to 475
VXML applications,

controlling 474
Capabilities Entity defined 730

caption element defined 292–293
Cascading Style Sheets (CSS) 486–495
CC/PP. See Composite

Capabilities/Preferences
Profiles (CC/PP)

CCXML. See Call Control
Extensible Markup
Language (CCXML)

CDC. See Connected Device
Configuration (CDC)

CDMA. See Code Division
Multiple Access (CDMA)

CDPD. See Cellular Digital
Packet Data (CDPD)

Cellular Digital Packet Data
(CDPD) 633–634

Cellular wireless
communication
described 618–619

Channels
spatial properties of 251–252
temporal properties of 251

charset defined, CC/PP 135
charWidth defined, CC/PP 135
choices tag defined 297
class attribute defined 292
Class diagrams, UML

defined 49, 131, 162
forms and 285, 286
JSGF grammars 424
and JSR-179 707
and location information 690, 712
purpose of 171
Sync4J 671
and user interfaces 262
Wisdom extensions 379–380
and XML document structure 149

Classes
defining 172–179
vs. grammars 421–422
methods, defining 172
naming 171–172
service independent 645

Class ID and applications,
identifying 58

Classifiers defined, UML 161
CLDC. See Connected Limited

Device Configuration
(CLDC)

Client-agent-server overview 561

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

838 Index

Client-Profile defined, CC/PP 136, 137
Client-server and mobile agent

hybrids 560–561
Client-side image map module

defined, XHTML 352
Client-side validation 301
Cocoon

applications, building 90–96
architecture 84–85
content, transforming 91, 95
generators 86
installing and using 85
and multimodality 537–539
overview 83–84, 88, 536–537
pipelining system in 125
publishing framework 82
serializers 87
sitemap 87–88
transformers 86
and UIMS functionality 314

Codebase defined, MASIF 569
Code Division Multiple Access

(CDMA) 634–635
Code mobility, types of 558
Coding standards and testing 795–796
Collaboration diagrams, UML.

See also Interaction
diagrams, UML

artifacts 194–196
defined 162
iterations, modeling 197
for mapping service 200
messages, displaying 186
and mobile agent applications 583
and object relationships 185
overview 193–198
and synchronization 675

Collaborations 198–200,
564

Color defined, CC/PP 135
Commands

defined, SyncML 666
and interactions 257

Common Gateway Interfaces
(CGIs) 780–781

Communication Infrastructure
defined, MASIF 569

Communication satellites and
mobile communications 6

Component diagrams, UML
artifacts of 227
defined 49, 163
overview 222–226

Components
chaining of 780
defined 134, 161, 224
managing 280–283
merging defined 141
placement, specifying 285
rdf:ID attribute defined 141
rdf:type attribute defined 141
requirements of 225
specializing 279
and stereotypes 226

Composite Capabilities/
Preferences Profiles
(CC/PP)

attributes 134
charset 135
charWidth 135
Client-Profile 136, 137
client profiles 135, 136
color 135
components 134
data types, simple 136
deviceIdentifier 135
implementing 139
overview 133–137
pix-x 135
pix-y 135
private information,

delivering 139–140
profiles 133–134, 136
Proxy Profile 136, 138
RDF vocabulary 134
Request Profile 136
schema 135
security and P3P 139

Composite interaction defined 253,
254

Composite modality defined 504
Composite states 203,

211
Concurrent property string,

function of 179
Configuration diagrams, UML 507
Conflicts and data replication/

synchronization 656

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

Index 839

Connected Device
Configuration (CDC) 50–51

Connected Limited Device
Configuration (CLDC)

active transactions and 47
API overview 42–43
class file verification in 41
device capabilities, limited 46
features of 38–42
internationalization,

providing 41
I/O functionality, providing 41
location awareness 46
mobility, dimensions of 46–47
networking capabilities,

providing 41
platform proliferation and 47
profiles defined 41–42
QOS, network and 46
security sandbox 41
serialization 592

Connectivity
functionality and bandwidth

requirements 617
to networks 5
software applications,

stationary and 12
types of 615
wireless and QOS 620–622

Connector stereotype defined,
UML 372

Constraints defined, UML 181
Constructive processes defined,

XML Pipeline 124
Content

generating 111
multimodal 513
specializing 336
transforming 91, 95

Content Entity defined 730
Context-aware computing

defined 273, 282, 499
Contexts

domain independent 273
extrinsic defined 274
intrinsic defined 274
and location information 709–711
Mobile Agent platforms and 604
overview 270

specifying 274
structural defined 275
taxonomy

by domain 272–274
by structural positioning 275
by temporal positioning 276

and user interface
components 273

Continuous receivers defined 680
Control Entity defined 730
Control messages defined 255–256
Controls classes defined 380
Cooperative User Interfaces

Markup Language
(CUIML) 528–530

Coordinated Decoupling of
Modalities 550

Copy command defined,
SyncML 667

Copy stereotype and object
relationships 184

CPU, limited and mobile
computing 12–14

CSS. See Cascading Style Sheets
(CSS)

CUIML. See Cooperative User
Interfaces Markup
Language (CUIML)

D
Databases

BREW 60
and client-server architectures 778
N-tier architectures 779–783
and Windows CE 69–70

Data defined, XML, 145. See also
Replication;
Synchronization, of data

Datagloves as user interface 250
Data Link Layer security

described 737
Datastore defined, SyncML 665
Data types

Base64 Encoded Binary Data 121
Boolean 121
complex 121
defined, UML 161
defining in XML Schema 120
numeric 120

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

840 Index

Data types (cont.)
simple 121, 136
string 120
URI 121

Date data type defined, XML
Schema 120

Delete command defined,
SyncML 667

Deployment diagrams, UML
defined 163
electricians application 812
overview 226–228

Deployment View defined, UML 160
Deserialization defined, MASIF

569–571
Design Model defined 377
Design View defined, UML 160
Device capabilities 46, 79, 390
Device Configurator, BREW 56
deviceIdentifier defined, CC/PP 135
Device Info defined, SyncML 665
Device motion as user interface 250
Device storage, limited and

mobile computing 12–14
DFKI Multimodal Architecture

overview 549
Diagrams. See individual diagram

by name
Dialogue Management for

Multimodality, Sharma 547
Dialogue Model defined 377, 382
Dialogues

form based 265, 268
grammars and 411
mixed initiative

defined 266, 409
and sequence diagrams 268–270
in user interfaces 261–262

model defined 377, 382
natural language

defined 266, 408–409
sequence diagrams in 268–270

and state diagrams 445
types of 265, 408

Differential GPS (DGPS)
described 679

Digital Earth project 721
Direct Combination defined 396
Directed dialogue defined 408
Direct Manipulation defined 396

Discovery JINI service defined 52
Distribution, customized and

channel availability 248
Domain defined 272
Domain Model defined 377
DOM parsing, XML 106–108, 109
Driving directions application

multi-channel system
requirements 263

retrieving 265–266
use cases 263, 758

Dynamic diagrams defined,
UML 161

Dynamic meta-modeling defined 510

E
EDGE described 639–640
Edit module defined, XHTML 352
EEMA. See Extensible

Multimodal Annotation
Markup Language
(EMMA)

Electricians application
deployment diagram 812
design 812–815
implementation 815–818
mobile use cases 811
overview 806
presentation diagram 816
requirements 806–812
XForms document 817

Electromagnetic waves and
modulation 616

Element layer definition DTD
described 697

Embedded Visual Basic 64
Embedded Visual C++ 64, 66–69
Embedded Windows XP 64
Emergency Location Immediate

Service (ELI) described 697
Employee class, UML 181, 184
Emulator, BREW 56
Entities classes defined 381
Envelope defined, SOAP 113
EUROSCOM P809-GI project 643–645
Evaluation matrix

electricians application 808
J2ME client mobile use case 767, 768
location sensitivity

infrastructure 764

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

Index 841

mobile use cases 759, 760
user usage 760–763

Event-based UIMS defined 280–281,
285

Events
defined 200, 201
JINI service 53
and objects 201

Everyplace Suite, IBM 97
Exceptional Case defined, UML 164
Exception handling, full blown

defined 40
Exception stereotype defined,

UML 373
Exec command defined, SyncML 667
Experience Sampling Method

(ESM) and the user
experience 499, 500

Extensible Markup Language
(XML)

addresses, representing 106, 107, 120
applications, modeling 144
attributes and elements, using 294
content, transforming 109–111, 324
data defined 145
documents

representing 145
structure of 149

DOM and XSL templates 111
history of 105–106
instances in 145
and J2ME 47–48
mapping

meta-model level 146–153
namespaces 149, 150
to UML

constructs 147–148, 149, 150
meta data 145
meta-meta data 145
meta model 145
mobile applications 106, 118
model defined 145
overview 104
parsing

DOM 106–108, 109
SAX 108–109
WAP 109

vs. RDF 128–130
schema

data types, list of 119–121

defined 119
GML document, defining 689
namespaces 119
OpenGIS GML grid 150
overview 119–121
and UML 146–153
XForms 119

Speech Grammar
Specification, W3C 420

UML and 144–146
and user interfaces 121–122
Web services 111–112

Extensible Multimodal
Annotation Markup
Language (EMMA) 517–518

extension element defined 293
Extraction processes defined,

XML Pipeline 125

F
Feature-level fusion defined 546
FIPA. See Foundation for

Intelligent Physical
Agents (FIPA)

Fitt’s Law 391–392
Floating point arithmetic

defined 39
Focus, lack of and mobile

computing 23, 390
Foreign Agent defined 647
Form based dialogues 265, 268
Forms

and class diagrams 285, 286
controls 259, 305
module defined, XHTML 353
overview 259

Forward Link Trilateration
(FLT) and location
solutions 682

Foundation for Intelligent
Physical Agents
(FIPA) 571–572, 574

Frame-based fusion defined 546
Frame stereotype defined, UML 372
Frameworks

centralized, fully 31–32
hardware-specific 36–37
publishing 81–83

Frequency defined 402
Frequency modulation defined 617

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

842 Index

Fusion, levels of 546
Fusion and Integration with

multimodality
architecture described 786

G
Garbage collection defined 40
Generators, Cocoon 86
Geographical information

system (GIS)
architecture 685
interfaces, building 686–687
and location sensitivity 684–685
and mobile applications 686

Geographic Markup Language
(GML)

Coordinate Reference System 691
Feature 691
Geometry 691
overview 688–692
Temporal constructs 692
Temporal Reference System 692
Topology constructs 691
Unit Definitions 692
XLink values in 691
and XML 150, 689

Get command defined, SyncML 667
GIS. See Geographical

information system (GIS)
Global Positioning System

(GPS)
accessing programmatically 704–705
defined 10, 679
location solutions 679
satellites, system of 680
and triangulation 677

Global System for Mobile (GSM) 638,
745

GML. See Geographic Markup
Language (GML)

Golden Hammer Antipattern
defined 243, 741

GPRS described 638–639
GPS. See Global Positioning

System (GPS)
Grammars

vs. classes 421–422
defining 424
for directed dialogue 411
JSGF 413, 424

and mixed-initiative dialogue 411
modeling 270, 424
modularization 414, 418
overview 410–411, 425–426
recursive, building 419
representing

programmatically 412, 421–424,
425

rules 412–414, 415–418,
420

specifying 270
speech specification, W3C 270
UIMS defined 280, 285
and validation 301

Graphics, rendering 360
Graphic user interfaces (GUIs)

building
.NET Framework 366
palm applications 362
Symbian EPOC 362–365

and J2ME 366
mobile

direct combination,
application of 395–397

optimization of 389–393
overview 316–318

modeling 371–376, 442
specialization

distributed 339–340
to mobile application 339
to server 335–338
single channel 333–335
user interfaces 369–371

Grasshopper 599–602
Grinder, BREW 57
group element defined 309
GSM. See Global System for

Mobile (GSM)
Guarded property string,

function of 178

H
HardwarePlatform defined,

UAProf 140
Headers defined, UIML 368
Health element in user interfaces 234
Hexadecimal

EncodedBinaryData data
type defined, XML
Schema 121

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

Index 843

hint element defined 293
History states, UML 203, 212
Home Agent defined 647
Host conformance defined 540,

559
Host defined 564
HTML, history of 105, 121
HTTP 287, 342
Human factors,

defining 233–235, 237–241
Hypertext module defined,

XHTML 352

I
IBM Everyplace Suite 97
IBM Transcoding Publisher 337–338
IBM Wireless Transcoding

Publisher (WTP) 96, 97–99
IEEE 802.11 standard 630–631,

743–745
Image Authoring tool, BREW 56
Image Converter, BREW 56
Immediacy and mobile

computing 24
Implementation Model defined 378
Implementation View,

UML 160, 222–228
Information streams, types of 525
Infrared Data Associations

(IrDA) 631–632
Ink Markup Language (InkML) 528
InkML. See Ink Markup

Language (InkML)
Input channels defined
Input element, transforming 295
Input mechanisms, limited and

mobile devices 390
input tag defined 295–296
Input type and multimodality

503–504
Inspection processes defined,

XML Pipeline 124
Instance data, manipulating 312
Instance defined, XML 145
InstanceOf stereotype and object

relationships 184
Instantiate stereotype and object

relationships 184
Integrated circuit (IC) memory

cards defined 51

Integrated circuit (IC)
microprocessor cards
defined 51

Integrated Development
Environments (IDEs) 430

Interaction diagrams, UML. See
also Collaboration
diagrams, UML;
Sequence diagrams, UML

actions, specifying 185
artifacts 194–196
interactions, representing 263
messages in 185
and multimodality 512
overview 185–186

Interaction Model defined 377,
378, 379, 382

Interactions
active 727, 740
atomic 253, 254, 381,

443
commands and 257
composite defined 253, 254
cost of, formula 394
initiating 725–726
menus and 257–258
modeling

mobile agents 584
and sequence diagrams 185
user 185, 263–268

overview 255
representing

in UML 262–263
user interfaces 267

systems and users 253–254
taxonomy, meta-model 262
types 257, 606
and use case diagrams 262
VUIs, building 426–427,

442
Interaction Space stereotype

defined 380
Interaction Tool Kit component 332
Interactive Voice Response

(IVR) 412
Inter-channel synchronization

defined 247
Interface tags defined, UIML 368
Intrusion Detection Systems 746
Inversion of Control principle 281

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

844 Index

IrDA. See Infrared Data
Associations (IrDA)

isQuery property string defined 178
item element defined 296
itemset element defined 296–297, 298
IVR. See Interactive Voice

Response (IVR)

J
JADE. See Java Agent

Development
Framework (JADE)

Jar file defined 46
Java

aglets
architecture 591
code, sample 592–593
defined 589, 590–592
and MASIF 591
tools 592

applets defined 589–590
cards defined 51–52
midlets 40, 44, 589, 592
mobile agents and 587, 588
and multimodality 531
overview 37–55
parsers 109
peer-to-peer architecture

defined 54
platforms and programming 36

Java Agent Development
Framework (JADE) 594–599

Java cards defined 51–52
Java Community Process

defined 54
Java 2 Micro Edition (J2ME)

applications 44, 46
GUIs 366
LBS and 704, 705
location sensitivity and 46
and midlets 592
mobile agent capabilities of 567
overview 38
parsers 109
platform and code writing 34
and thick-client development 34
UIMS functionality and 314
and user interfaces 46
WAP and 73

and WBXML 126
XML and 47–48

Java Speech Grammar Format
(JSGF)

class diagrams 424
grammar rules in 413, 424
meta-model for 423
overview 412
recursion, types of 419
Speech Grammar

Specification, W3C 419–421
Java Telephony API (JTAPI)

application architecture 437
mobile package 437–438
overview 434–438

javax.speech.
commands defined 433
recognition 433
synthesis 433

javax.telephony. packages
defined

callcenter 436
callcontrol 436
capabilities 436
events 436
media 436
mobile 436
overview 436
phone 436–437
privatedata 436

JINI 52–53, 602–603
JINI Federation defined 53
J2ME. See Java 2 Micro Edition

(J2ME)
JNI, support for defined 40
Joining JINI service defined 53
JSGF. See Java Speech Grammar

Format (JSGF)
JSR-179 and location

information, accessing 704,
705–708

JTAPI. See Java Telephony API
(JTAPI)

JXTA overview 612–614

K
Keyboards as user interface 249
KVM functionality 39
kXML defined 109

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

Index 845

L
Language defined 404
Language of Temporal Ordering

Specification (LOTOS) 550
LANs and Bluetooth 629
Layout Appropriateness formula

392–393
Leaf property string defined 178
LEAP. See Lightweight

Extensible Agent
Platform (LEAP)

Leasing JINI service defined 53
LIF. See Location

Interoperability Forum
(LIF) described

Lightweight Extensible Agent
Platform (LEAP) 594–599

Link module defined, XHTML 352
Links

and object relationships 183–184,
185

stereotypes and 186
List module defined, XHTML 352
Localization defined 9
Location-based services (LBS)

and J2ME 704, 705
in mobile applications 702–704
MPP and 704

Location Interoperability Forum
(LIF) described 696–697

Locations
applications, developing 695,

698–700, 790
awareness

and CLDC 46
in WAP 79

changing 22
describing in UML 714
functionality testing 805
information

accessing and JSR-179 704,
705–708

class diagrams and 690, 712
and contexts 709–711
MANETs and 748
modeling 687–688
and privacy 720, 748,

790
security and 719–720, 743–745

and mobile computing 9–11
representing in UML 711–715
security and 719–720,

748
sensitivity

categories of 10
and centralized frameworks 31
defined 9
and GIS 684–685
infrastructure evaluation

matrix 764
and J2ME 46
Mobile Agent platforms and

604–605
WLANs and 683

services and mobility
data acquisition 677–684
overview 676–677
system architecture 700–702

solutions
cell identification 681
enhanced observed time

difference (E-TOD) 682
and GPS 679
time of arrival 681–682
wireless LAN based 683–684

Location Service Module (LSM)
described 702

Logic sheets defined, Cocoon 88
Long range wireless

communication
described 632–633

Lookup JINI service defined 52
LOTOS. See Language of

Temporal Ordering
Specification (LOTOS)

LSM. See Location Service
Module (LSM) described

M
Main Case defined, UML 164
MANETs. See Mobile ad hoc

networks (MANETs)
Many to many replication

defined 654
Map command defined, SyncML 667
MASIF. See Mobile Agent System

Interoperability Facility
(MASIF)

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

846 Index

Mechanisms
in active transactions 727, 728
input 390
persistence 655

MEGlets 338
Memory limitations, improving 66
Menus and interactions 257–258
Merging defined 141
Messages

atomic defined 253
composite defined 253
control defined 255–256
defined

SyncML 665
WSDL 115

displaying 186
UML

condition, specifying 197
forms of 197
in interaction diagrams 185
parenthesis in 197
sequence numbers 197
sequence of 186, 187,

197
Messaging

asynchronous
and IBM Everyplace Suite 97
MSMQ and 69
overview 99–100

systems, event-based 306
technologies, properties of 724

Meta data defined, XML 145
Meta Info defined, SyncML 665
Meta-information module

defined, XHTML 353
Meta-meta data defined, XML 145
Meta model defined 145, 423
Microcellular wireless

technology described 619
Microsoft

Messaging Queuing (MSMQ) 69
Mobile Internet Toolkit 64
platforms and programming 36
Smart Phone 72

Midlets, Java
defined 44, 589
downloading 40
and MIDP 592
treatment of 44

MIDP. See Mobile Information
Device Profile (MIDP)

MIF Editor, BREW 56
Mixed initiative dialogues

defined 266, 409
and sequence diagrams 268–270
in user interfaces 261–262, 265

M3L. See Multimodal Markup
Language

MLP. See Mobile Location
Protocol (MLP)

MMDA. See Multimedia
Multimodal Dialog
Architecture (MMDA)

MMIL. See Multimodal Interface
Language (MMIL)

MML. See Multimodal Markup
Language

MMS. See Multimedia Messaging
Services (MMS)

MobileAddress defined 437
Mobile ad hoc networks

(MANETs) 747, 748
Mobile Agent platforms

active behavior, implementing 734
agents

applications 587–588
architectures 783–785
and collaborations 564
defined 784
designing 563
features of 564
handling 559, 560
hybrids of 560–561
interactions, modeling 584
limitations 566–567
replication/synchronization

of 673–674
representing 560
security issues 567–568
separation of concerns 561–564
software techniques for 609–611
UML extensions for 574, 577–587
use case diagrams and 581, 582

basics of 558–560
and context 604
device adaptation and 608–609
limitations of 607–608
location sensitivity and 604–605

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

Index 847

overview 557–558, 564–566
as proxies 607
QOS and 606
and security 748
technologies, properties of 724

Mobile Agent System
Interoperability Facility
(MASIF)

Agent Authority 569
Agent Location 569
Agent Name 569
Agent System 569
Agent System Type 569
aglets and 591
codebase 569
communication infrastructure 569
deserialization defined 569–571
overview 568–571
security 569–571
serialization 569
stationary agents 569

Mobile Agent to User Interface
Project (MAUI) and user
interfaces 606

Mobile applications
architecture 25–26, 773–775,

786–787
data replication/

synchronization 653, 657–661,
662

developing 13, 755, 756–757,
768–772, 788

devices, persistence
mechanisms for 655

grammars 425–426
implementing 11
and infrastructure

integration 763–765
internationalization/

localization 720–721
location-based services (LBS),

utilizing 702–704
markup languages, taxonomy

of 356
and mobile agents 564–566
N-tier architectures 781–783
security 735–742
and SMIL 541–544
testing 792–795, 799–801, 802–804

transformation
techniques 322–325, 335

UML extensions for 385–389
use cases for 757–768, 770–771
user interfaces, developing 16,

236–241, 316, 318
voice recognition based VUIs,

designing 477
voice transcription for 406
and VXML 466–467
Web Services and 117–118
and XML 106

Mobile computing systems
defined 3, 6
dimensions of 8–22
history of 4–6
virtual machines and 36
vs. wireless communication 6–8

Mobile condition defined 7, 22–25
Mobile Development

Frameworks 29–31
Mobile Information Device

Profile (MIDP)
API overview 42–43
defined 42, 43–46
features of 38–42

Mobile IP
addressing schemes for 728
overview 646–649
and Push 731

Mobile Location Protocol (MLP)
696–697

MobileNetwork defined 437
Mobile Node defined 647
Mobile Positioning Protocol

(MPP) 693–695, 704
MobileProvider defined 438
MobileRadio defined 438
Mobile Subscriber ISDN number

(MSISDN) defined 728
MobileTerminal defined 438
Mobility, dimensions of

and CLDC 46–47
overview 8, 31, 316, 738–740,

755–756
testing and 801
WAP and 79–80
and Windows CE 70–71

Model defined 145, 161

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

848 Index

Modeling, 156–157. See also
individual topics and
applications by name

Model parser defined 48
Model-View-Controller (MVC)

architecture 786
limitations of 319–320
overview 318–320

Modulation techniques 616–618
Module testing 796
Monitors as user interface 249
MPML. See Multimodal

Presentation Markup
Language (MPML)

MSISDN. See Mobile Subscriber
ISDN number (MSISDN)
defined

MSMQ. See Microsoft Messaging
Queuing (MSMQ)

Multicasting defined, UML 201
Multi-channel systems

driving directions application 263
modeling in UML 506–511
overview 233, 247, 350, 497
testing 802–803

Multi-device synchronization 659
Multimedia defined 498
Multimedia Messaging Services

(MMS) 77–78, 360
Multimedia Multimodal Dialog

Architecture (MMDA) 546
Multimedia sequence diagrams,

UML 510–511
Multimodal Airline Travel

Information System
(MATIS) 333

Multimodal Dialogue Manager 546
Multimodal Integrator 544–546, 550
Multimodal Interface Language

(MMIL) 525–528
Multimodality

architectures 550
BREW and 531
and Cocoon 537–539
content and 513
defined 553
designing 789
dialogue management for,

Sharma 547

dimensions of 506
disambiguation, cross-modal 551
and extensibility 551
Fusion and Integration with

multimodality
architecture described 786

implementing 501–502, 530–533,
544

input type and 503–504
interaction diagrams and 512
and internationalization 552–553
Java and 531
and localization 552–553
LOTOS and 550
overview 498–500
and sequence diagrams 512
simultaneous, functionality 506
Symbian EPOC and 532
and synchronization 539–540
types of 502–505
usage, usability-centered 505–506
validation of 551
and WAP 532
Windows CE and 532

Multimodal Markup Language
M3L overview 515–516
MML overview 516–517

Multimodal Presentation
Markup Language
(MPML) 518–525

Multiplex receivers defined 680
MVC. See Model-View-

Controller (MVC)

N
Namespaces

mapping
UML 147–148, 149, 150
XML 149, 150

XML schema 119
Natural language dialogues

defined 266, 408–409
sequence diagrams in 268–270
in user interfaces 259–261

Navigation Markup Language
(NVML) 692–693

navIndex attribute defined 292
.NET Framework

GUIs, building 366

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

Index 849

mobile agent platforms for 603
parsers 109
and programming 36
Smart Device extensions for 64
Web services and 70

NetworkCharacteristics defined,
UAProf 141

Network Layer security
described 737

Network operator defined 583
Networks. See also Mobile ad

hoc networks (MANETs)
and CLDC 41, 46
connectivity to 5
transactions in 726
UML modeling 642–646
wireless

and active computing 725–728
overview 624
security 742, 745–747

NetworkSelection defined 438
Nodes

defined 113, 305, 647
UML

attributes and operations,
specifying 226

defined 162
modeling 226

Nodeset binding defined 305
Nomadic Application Support

Specification defined,
FIPA 572

N-tier architectures 779–781, 783
N-tier Client-server frameworks 32–37
Nuance Speech Object APIs 432
Numeric data type defined, XML

Schema 120
NVML. See Navigation Markup

Language (NVML)
Nyquist’s principle 6

O
Object Constraints Language

(OCL) 423–424
Object diagrams, UML 162, 182–183
Object Domain 101
Object Flows, illustrating UML 214
Object Modeling Technique

(OML) 158

Object module defined, XHTML 353
Object Names attribute defined,

UML 183
Object Operations attribute

defined, UML 183
Object Oriented Languages 157–158
Object Oriented Modeling of

Multimedia Applications
(OMMMA) 508–510, 511

Objects
constraints, representing 269
events and 201
relationships

Becomes stereotype and 184
collaboration diagrams and 185
Copy stereotype and 184
Instance of stereotype and 184
Instantiate stereotype and 184
and links 183–184, 185
stereotypes and 184, 185
transient stereotype and 184

states, changing 203
UML

attributes 183
creation/destruction of 186
defined 182–183
relationships between 185
states and transitions 212

in XML Schema 691
Object State attribute defined,

UML 183, 184
OFDM. See Orthogonal

Frequency Division
Multiplexing (OFDM)
described

OMMMA. See Object Oriented
Modeling of Multimedia
Applications (OMMMA)

One to many replication defined 654
One to one replication defined 654
Operations

defined, WSDL 115
formal syntax for 178
parameters, formal syntax for 178
property string, function of

Optical memory cards defined 52
Orthogonal Frequency Division

Multiplexing (OFDM)
described 635

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

850 Index

Output channels defined
output form control defined 300

P
PAC-Amodeus 332–333
Package names defined 413
Packaging processes defined,

XML Pipeline 125
PAC-TG. See Transformation of

Generic Presentation-
Abstraction-Control
(PAC-TG)

Page stereotype defined, UML 372
Palm platform and

synchronization 661
Palm Query Application (PQA),

writing 362–365
Paper, printed as user interface 250
Parsers

types of 48, 108–109
XML 106–109

Partitioned motion pattern
defined 711

Peer elements defined, UIML 368
Peer-to-peer architectures (P2P)

defined 54
and LEAP 595
for mobile computing 611–614
overview 557–558, 783

Personal information, obtaining 428,
440

Physical Layer security
described 737

Piconet described 626
Pitch defined 402
pix-x defined, CC/PP 135
pix-y defined, CC/PP 135
Platform for Privacy Preferences

(P3P)
and CC/PP security 139
overview 310

Platforms
proliferation

CLDC and 47
and mobile computing 17–18
in WAP 80

and thick-client development 34
Portability and vendor APIs 434
Portals, creating 495
Port defined, WSDL 115

Port type defined, WSDL 115
Power consumption, status

report 67
Power management

functionality 15, 47
Power supply

limited
and mobile computing 14–15, 390
WAP and 79

and security 739, 790
P2P. See Peer-to-peer

architectures (P2P)
P3P. See Platform for Privacy

Preferences (P3P)
PQA. See Palm Query

Application (PQA),
writing

Presence Agent defined 732
Presentation-Abstract-Control

(PAC)
architecture described 786
implementation, sample 321
overview 320–322
PAC-Amodeus 332–333
PAC-TG

applications 328–332
benefits 327
implementation techniques 333
limitations 327–328
overview 325–332

Presentation elements defined,
UIML 368

Presentation Layer security
described 737

Presentation logic, decoupling
layers of 248

Presentation Model defined 377, 382
Presentation module defined,

XHTML 353
Presentation stereotype defined,

UML 373
Principle of Subsumption

defined 396
Principles of Visibility and

n-fold Interaction
defined 396

Privacy
in active interactions 740
and location information 720, 748,

790

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

Index 851

Process View defined, UML 160
Profiles. See also Composite

Capabilities/Preferences
Profiles (CC/PP); Mobile
Information Device
Profile (MIDP); User
Agent Profile
Specification (UAProf)

Bluetooth 662, 663, 671–672
CLDC 41–42

Prompts
improving 482
overview 256, 479

Pronouns, using 479
Proximity based methods of

location sensing defined 10
Proximity based triangulation

defined 677
Proxy Profile defined, CC/PP 136, 138
Proxy Server defined, SIP 732
Pull mechanisms and active

transactions 727, 728
Pull parser defined 48
Pure Voice converter, BREW 57
Push Access Protocol (PAP)

defined 728, 729–730
Push based technologies

and bandwidth requirements 734
defined 723
functionality 725, 727, 728
and mobile IP 731
parser defined 48
and WAP 78–79, 728–731

PushCharacteristics defined,
UAProf 141

Push Initiator (PI) defined 728, 730
Push Proxy Gateway (PPG)

defined 728
Push-pull model of

communication 18
Put command defined, SyncML 667

Q
QOS. See Quality of service

(QOS)
Quality of service (QOS)

ITU-T X.641 and 622
Mobile Agent platforms and 606
and mobile computing 11–12
modeling in UML 622–624

network and CLDC 46
and security 739
tools 11
UTMS nd 621–622
and VUI 425
WAP and 79
and wireless connectivity 620–622

R
range form control defined 300–302
Rational Rose 101
rdf:ID attribute defined 141
rdf:type attribute defined 141
Redirect Server defined, SIP 732
ref attribute defined 297
References, weak defined 40
Registrar Server defined, SIP 732
Regression testing 799
Remote Object Proxy Engine

(ROPE) 70
repeat element defined 309
Replication

applications 653, 657–661,
662

conflicts in 656
defined 652, 654
mobile agents 673–674
taxonomy 654–656, 674–675

Request Logic Sheet, tags for 89
Request Profile defined, CC/PP 136
Request Viewer tool defined 337
Resource Description

Framework (RDF)
CC/PP vocabulary 134
overview 127–130
resources, identifying 127
schema 130–131
TestPhone device 128
and UML 131–132
vs. XML 128–130

Resource Editor, BREW 57
Resources

identifying
RDF 127
XML Pipeline 125

relationships, specifying 127
Responses 256
REST architecture 786
Results command defined,

SyncML 667

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

852 Index

Risk on Security Investment
(ROSI) defined 741

ROPE. See Remote Object Proxy
Engine (ROPE)

Rule grammars 412–414

S
Satellite based wireless

communication
described 618

SAX parsing, XML 108–109
Scalability issues and testing 804
Scalable Vector Graphics

(SVG) 361–362, 688
Scatternet, formation of 627
Scene analysis

and location sensing 10
triangulation 677

Schema. See individual
application by name

Scripting module defined,
XHTML 353

SDL. See Specification and
Description Language
(SDL) and
telecommunications

Search command defined,
SyncML 667

secret form control defined 296
Security. See also individual

programs by name
and device capabilities 739
framework, providing 40
IBM Everyplace Suite 97
location information 719–720,

743–745
MASIF 569–571
mobile applications 735–742
modeling, UML 750, 751
and power supply 739, 790
vs. privacy 749
QOS and 739
SIM cards and 740
SyncML 668
for user interfaces 739
in WAP 79, 737

selection attribute defined 297
selectMany tag defined 303
selectone form control

defined 296–298, 300, 301–303

selectUI attribute defined 297
Semantic fusion defined 546
Semantic Web defined 127
Sequence diagrams, UML. See

also Interaction
diagrams, UML

defined 49, 162
dialogues

form based 268
mixed initiative 268–270
natural language 268–270

driving directions, basic
interactions 264

elements in 188–191
messages, displaying 186
modeling

mobile agent interactions 185,
584

user interactions 263–268
VUI 442,

446
multimedia 510–511
and multimodality 512
OMMMA and 511
overview 186–192
SyncML, basic authentication

for 670
Sequential property string,

function of 178
Sequential receivers defined 680
Serialization

and Aglets 590
CLDC and 592
defined, MASIF 569

Serializer, Cocoon 87
Server-side image map module

defined, XHTML 353
Server-side validation defined 300
Service, quality of. See Quality

of service (QOS)
Service defined, WSDL 115
Service Layer definitions

described 697
Session Initiation Application

(SIA), function of 730
Session Initiation Protocol

(SIP) 731–733
Session Logic Sheet, tags for 89
Session Security Layer (SSL)

described 737

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

Index 853

SGML, history of 105
Short Messaging Service

(SMS) 649–651, 725
Short range transmission

described 619
Short range wireless described 625
Signals defined, UML 161
Signal to Noise Ration (SNR)

defined 401
SIM cards and security 740
Simple Object Access Protocol

(SOAP)
constructs, syntactical
overview 112–114
and ROPE 70

Simultaneous multimodality 506
Single Language with Virtual

Machine approach 103
Single node binding defined 305
Single operating system multiple

language approach 103
SLoP. See Spatial Location

Protocol (SLP, SLoP)
described

SLP. See Spatial Location
Protocol (SLP, SLoP)
described

Smart cards defined 51–52
Smart Device extensions for

.NET 64
SMS. See Short Messaging

Service (SMS)
Snoop tool defined 337
SOAP. See Simple Object Access

Protocol (SOAP)
Software applications, 234, 781.

See also individual
applications by name

architecture defined 25
development 14, 32
hardware and 35
stand-alone, building 34
stationary and connectivity 12

SoftwarePlatform defined,
UAProf 140

source attribute defined, UIML 368
Spatial Location Protocol (SLP,

SLoP) described 695–696
Speaker dependency and voice

transcription systems 404

Specification and Description
Language (SDL) and
telecommunications 643

Speech
meaning and context in 403
qualities of 401–405
synthesis, pure 485
synthesis by concantenation 484

Speech Grammar Specification,
W3C 419–421

Speech synthesis systems 400
SSML. See Synthetic Speech

Markup Language
(SSML)

Standard Location Immediate
Service (SLI) described 697

Standard Location Reporting
Service (SLRS) described 697

State chart diagrams, UML 162, 203
State diagrams, UML

defined 49
and dialogues 445
elements of 203–210
events and signals 200
and state machine UIMS 285
user interface component

states and 285
and XForms processing model 290

State machines
and CCXML containers 468
nested defined 211
purpose of 203
states of 203–211
and VUI 426

State machine UIMS. See User
Interface Management
System (UIMS), state
machine

Static diagrams defined, UML 161
Stationary agent defined, MASIF 569
Status Code defined, SyncML 666
Status command defined,

SyncML 667
Stereotypes and object

relationships 184, 185
Stress testing 804
String data type defined, XML

Schema 120
Structural view, UML 171–177,

184

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

854 Index

Structure module defined,
XHTML 353

Stylesheet module defined,
XHTML 353

Stylus as user interface 249
submit form control defined 303
Substates defined, UML 211
Subsystem defined, UML 161, 162
SVG. See Scalable Vector

Graphics (SVG)
switch element defined 310
Symbian EPOC

GUIs, building 362–365
and multimodality 532
overview 80–81
and synchronization 662

Symmetric channels defined 251, 503
Symmetric multimodality

defined 502
Sync command defined, SyncML 666
Synchronization

Bluetooth, profile 662, 663, 671–672
BREW and 662
of data

commands for 666–667
conflicts in 656
defined 652
in mobile applications 657–661,

662
taxonomy 654–656
UML modeling 674–675

inter-channel 247
and internationalization 552
multi-device 659
and multimodality 539–540
Palm platform and 661
Symbian EPOC and 662
and Windows CE 661

Synchronization Markup
Language (SyncML) 663–669

Synchronized Multimedia
Integration Language
(SMIL) 495, 540–544

Sync4J 669–671
SyncML. See Synchronization

Markup Language
(SyncML)

Synthetic Aperture Radar Atlas
(SARA) digital library 562

Synthetic Speech Markup
Language (SSML)

document example 486,
493

overview 126, 485–486
syntax 486–492

System Requirements View
defined, UML 160

Systems
active, building 733–734
defined, UML 161
designing 155–156, 245
interactions in 253–254

T
Table module defined, XHTML 353
Tagged values defined, UML 180
Tag libraries defined, Cocoon 88
Target module defined, XHTML 353
Tasks

changes in and mobile
computing 24

classes defined 379
TDMA. See Time Division

Multiple Access (TDMA)
described

Telephone as user interface 250
Telephony

API (TAPI), BREW 60
infrastructure, wired vs.

wireless 437–438
JTAPI 434–438
and VUI 431, 434

Temporal Representation
defined 539–540

TerraVision 721
Testing. See also individual test

by name
BREW 58
coding standards and 795–796
and the dimensions of

mobility 801
locations 805
mobile applications 792–795,

799–801, 802–804
multi-channel systems 802–803
overview 796–797
user interfaces 802–804

TestPhone device 128

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

Index 855

TestSig Generator and
AppSigner, BREW 57

text area form control defined 302
Text module defined, XHTML 352
Text-to-Speech systems 400, 484
Thick-Client Wireless

Client-Server defined 33–34
Thin-Client Wireless

Client-Server
defined 33
and MVC 319
publishing frameworks and 81
and WAP 72

3rd Generation Partnership
Project (3GPP) 636, 746

Thread grouping defined 40
Threat levels, determining 741
Time Division Multiple Access

(TDMA) described 634
Tokens 414, 420
Tools, hardware-specific 36–37
Touch screens as user interfaces 249,

503
Transactions, 53, 726. See also

Active transactions
Transcoding

defined 323, 324
techniques 336–338
vs. transformation 323

Transcoding Publisher, IBM 337–338
Transformation of Generic

Presentation-
Abstraction-Control
(PAC-TG)

applications 328–332
benefits 327
implementation techniques 333
limitations 327–328
overview 325–332

Transformations
content 91, 95
defined 323, 324
techniques, mobile

applications 322–325,
335

vs. transcoding 323
XForms 334
XSLT and 109–111, 334

Transformers 86, 91, 95

Transient stereotype and object
relationships 184

Transitions defined 277, 392
Transmission techniques 618–620
Transport Layer security

described 737
Triangulation defined 10, 677
Trickling reintegration defined 658
Triggered Location Reporting

Service (TLRS) described 697
Types defined, WSDL 115

U
UAN. See User Action Notations

(UAN)
UAProf. See User Agent Profile

Specification (UAProf)
UDP and active behavior 734
UIML. See User Interface

Markup Language
(UIML)

UIMS. See User Interface
Management System
(UIMS)

Unification-based fusion defined 546
Unified Modeling Language

(UML) 2.0,
improvements to 158

activities 203, 211
benefits of 160
building blocks of 161–163
call defined 201
and CCXML 468–475
compound transitions defined 212
consistency, maintaining 796
diagram defined 161
(See also individual diagram by

name)
event types 201
history of 158
interactions, representing 262–263
interfaces

and abstract classes 180
component reuse and 224
defined 161
function of 224
import defined 225
specifying 225

and J2ME applications 48–50

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

856 Index

Unified Modeling Language
(cont.)

locations, representing 711–715
mapping

and meta-tools 335
XML namespaces 147–148, 149,

150
methods

definition section,
simplifying 179

elements of 179
types 179

mobile agents, extensions
for 574, 577–587

mobile applications 385–389, 757
modeling

benefits of 156–157
data replication/

synchronization 674–675
exceptions 201
GUIs 371–372
interface components,

generic 283–286
interface domain 284–286
iterations 197
locations 712–715
mobile agent

interactions 185, 584, 586
motion 715
multi-channel

applications 506–511
multimodal applications 506–511
network services 642–646
nodes 226
overview 378
QOS 622–624
responsibilities 179
security 750, 751
software 156
synchronization of data 674–675
UI validation 375
user interactions 263–268
VUI 442–446, 447
wireless communications 640–646

multimodal applications,
describing 511–513

overview 155, 159–161
and RDF 131–132
roles 180

self-transition defined 212
Specification and Support

Web site url 158
state change, representing 201
state element, sections of 211
stereotypes 180–181
system views 160–161
time event defined 201
tools 100–102
transitions

and conflicts 212
internal defined 213
sources for 212–213

visibility identifiers in
VUIs 421–425, 438–447
Wisdom Model extensions 378–385
and XML 144–146

Unit testing. See Testing
Universal Description Discovery

and Integration (UDDI) 117
Universal Mobile

Telecommunications
Systems (UTMS) 621–622, 638

Update command defined,
SyncML 667

upload element defined 302–303
URIs

data types 121
request, parameters for 694
in SIP 733

Usability testing 803–804
Use case diagrams, UML

application 164–171, 756
defined 162, 163–164
Domain Models 377
elements in
essential defined 379
and interactions 262
mobile agents and 581, 582
Wisdom extensions 380, 715

Use case maps, UML described 640, 641
User Action Notations (UAN)

and multimodality 550
User Agent Client defined, SIP 732
User Agent Profile Specification

(UAProf)
BrowserUA defined 141
HardwarePlatform defined 140
namespaces in 141

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

Index 857

NetworkCharacteristics
defined 141

overview 140–143
PushCharacteristics defined 141
SoftwarePlatform defined 140
WAP Characteristics defined 141

User Agent Server defined, SIP 732
User input 480–483
User Interface Management

System (UIMS)
BREW and 314
and Cocoon 314
event-based defined 280–281, 285
grammar defined 280, 285
and J2ME 314
overview 280
state machine

defined 280
forms and 286
user interface life cycle,

representing 285
types of 280–281
and VUI 427

User Interface Markup Language
(UIML) 325, 366–371

User interfaces
binding and specialization 243–245
building 241–243, 265–266, 335,

500, 605–606
to CCXML 475
channels 245–253
components

and contexts 273
states 285

consistency in 479
datagloves as 250
developing

mobile applications 16, 236–241,
316, 318

multi-channel 233
overview 16, 231–241, 376
stationary PC based 235–236

device motion as 250
dialogues, types of 261–262, 265
elements

binding to instance data 303–305
composite, creating from

atomic 308
overview 245

element taxonomy 284
form based, representing 286
form controls 294–303
graphic (GUI) (See Graphic

user interfaces (GUIs))
health element in 234
interactions, representing 267
and J2ME 46
keyboards as 249
layering 243
life cycle, representing 285
managing 280–283
and mixed initiative dialogues

261–262
mobile, types of 318
monitors as 249
mortgage banking application

guidelines 240
multi-channel systems (See

Multi-channel systems)
multimodal (See

Multimodality)
natural language in 259–261
overview 276–279
paper, printed as 250
security for 739
specializing 279, 369–371
stylus as 249
support for 47
telephone as 250
testing 802–804
touch screens as 249, 503
transitions defined 277
translation of 404
varying 15–17
voice (VUI) (See Voice user

interfaces (VUIs))
WAP support for 80
workflow and 255
XForms 288, 291,

308–310
XML based technologies 121–122

Users
experience, critical factors

affecting 499
information gathering
role model defined 376–377
understanding 478

User view defined, UML 163–171

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

858 Index

UTMS. See Universal Mobile
Telecommunications
Systems (UTMS)

Utterance defined 403

V
Validation

client-side defined 301
control grammar and 301
for mobile use cases 801
and multimodal applications 551
server-side defined 300
UI, modeling 375

Variables, declaring 178
Video, delivering to mobile

devices 533–536
View defined, UML 161
Visual Basic and Windows CE 65–66
Visual XML Transformation Tool

defined 337
Voice browsers, overview 431, 447–448
Voice Extensible Markup

Language (VXML) 122
Voice Portlets 495–496
Voice recognition systems

accuracy, improving 481
clarity in 483
overview 407–410
purpose of 400

Voice transcription
for mobile applications 406
overview 405–407
purpose of 400

Voice User Interfaces (VUIs)
activity diagrams and 441
class extensions, meta-model

for 444
designing 477, 788–789
interactions, building 426–427,

442
languages for 429–431
modeling

implementation 445
with sequence diagrams 442, 446
UML 442–446, 447

nesting 414–419
overview 399–401
and QOS 425
tuning 483–484

UML
building and high-level

speech APIs 438–447
extensions, Lieberman’s 441
grammars, representing 421–425

User Interface Management
System (UIMS) 427

Wisdom Model architecture 439
VoiceXML (VXML)

construct mapping 464, 465
goals of 449–461
overview 431, 448–449
syntax tags 450–460
and UML 461–463

VUI. See Voice User Interfaces
(VUIs)

VXML. See Voice Extensible
Markup Language
(VXML)

W
WAP. See Wireless Application

Protocol (WAP)
WAP Binary Extensible Markup

Language (WBXML) 125–126
WapCharacteristics defined,

UAProf 141
WBXML. See WAP Binary

Extensible Markup
Language (WBXML)

WDP. See Wireless Datagram
Protocol (WDP)

Web-based Distributed
Authoring and
Versioning (WebDAV) 672–673

WebDAV. See Web-based
Distributed Authoring
and Versioning
(WebDAV)

Web Services
application servers and 781
connection, direct 117
and mobile applications 117–118
.NET Framework 70
proxy defined 117
Windows CE and 70
and XML 111–112

Web Services Description
Language (WSDL)

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

Index 859

addresses, representing 115
binding defined 115
messages 115
overview 114–117
and XForms 118

White box testing 798
Windows CE

and mobile GUIs, building 365
mobility, dimensions of 70–71
and multimodality 532
overview 64–70
parsers 109
and synchronization 661

Wireless Application Protocol
(WAP)

active transactions and 80
architecture 73–74, 140
deployment of 73, 393–395
device capabilities, limited 79
vs. HTTP 342
and J2ME 73
location awareness in 79
mobility, dimensions of 79–80
and multimodality 532
overview 72–73, 340–341,

351
platform proliferation in 80
power supply, limited and 79
proxies and gateways 75–77
Push 78–79, 728–731
QOS and 79
security 79, 737
Thin-Client Wireless

Client-Server 72
UI 74
user interfaces, support for 80
and WML 74
XML parsing in 109

Wireless communications
defined 6, 615–616
generations of 637–638
vs. mobile computing systems 6–8
modeling in UML 640–646
networking technologies

and active computing 725–728
overview 624
security 742, 745–747

Wireless Datagram Protocol
(WDP) 341

Wireless Markup Language
Scripting (WMLScript)

overview 342, 349–351
XForms and 351

Wireless Markup Language
(WML)

overview 122, 342, 343–349
tags, descriptions of 344–348
and WAP 74

Wireless Session Layer (WSP) 342
Wireless Telephony Application

Interface (WTAI) 342
Wireless Transaction Layer

(WTP) 342
Wireless Transcoding Publisher

(WTP) 96, 97–99
Wireless Transport Layer

Security (WTLS) 341–342
Wisdom Model architecture

mobile application
development and 756–757

overview 376–378
UML extensions 378–380, 385,

715
and VUI 439

WML. See Wireless Markup
Language (WML)

WMLScript. See Wireless
Markup Language
Scripting (WMLScript)

WSDL. See Web Services
Description Language
(WSDL)

WSP. See Wireless Session Layer
(WSP)

WTAI. See Wireless Telephony
Application Interface
(WTAI)

WTLS. See Wireless Transport
Layer Security (WTLS)

WTP. See IBM Wireless
Transcoding Publisher
(WTP); Wireless
Transaction Layer (WTP)

X
XForms

advantages 339
construct mapping 464, 465

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

860 Index

XForms (cont.)
events 305–306
as form based application 288
form controls 291, 305
forms, representing 259
instance data 288
instance events, processing 310–314
model 288
model events, processing 310–314
model item properties 313
navigational interaction

events 306–308
overview 122, 286–289
processing model 288,

289–291
schema 288
transformations 334
user interfaces 288, 291,

308–310
to VXML 462–464
WMLScript and 351
and WSDL 118
in XML schema 119
and XPath 290

xforms: events defined
activate 307
blur 307
delete 312
focus 307
formcontrolinitialize 311
help 307
hint 307
initializeDone 311
insert 312
modelConstruct 311
modelInitialize 311
next 306
previous 307
recalculate 312
refresh 312
reset 313
submit 313
UIinitialize 311
valueChanged 308
valueChanging 308

XHTML
defined 121, 343
functionality 351–355
Mobile Profile 355–360

modules
bi-directional text 352
client-side image map 352
edit 352
forms 353
hypertext 352
link 352
list 352
meta-information 353
object 353
presentation 353
scripting 353
server-side image map 353
structure 353
stylesheet 353
table 353
target 353
text 352

Voice Profile 476
XLink

expressions, using 292
and resource bundles 294
values in GML 691

XMI, purpose of 144
XML. See Extensible Markup

Language (XML)
XML Formatting Objects

(XSL-FO) defined 109
xml:lang attribute defined 291–292
XML Pipeline

constructive processes 124
extraction processes 125
inspection processes 124
overview 122–125
packaging processes 125
resources, identifying 125

XML Schema
Base64 Encoded Binary Data

data type 121
Boolean data type 121
data types

complex 121
defining in 120
simple 121

Date data type 120
Hexadecimal

EncodedBinaryData data
type 121

numeric data type 120

P1: IYP/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331ind CB752-B’Far-v3-ind May 5, 2005 18:2

Index 861

objects in 691
String data type 120
URI data type 121

XPath 109, 290
XSL-FO. See XML Formatting

Objects (XSL-FO)
defined

XSLT
HTML and 111
transformations and 334
and XML, transforming 109–111

XSL Trace tool defined 337
XSP 88–90
X + V 515

	0521817331
	Title
	Copyright

	Contents
	Foreword
	Acknowledgments

	SECTION 1: Introductions to the Main Topics
	CHAPTER 1 Introduction to Mobile Computing
	1.1 Introduction
	1.1.1 A Brief History of Mobile Computing
	1.1.2 Is Wireless Mobile or Is Mobile Wireless?

	1.2 Added Dimensions of Mobile Computing
	1.2.1 Location
	1.2.2 Quality of Service
	1.2.3 Limited Device Storage and CPU
	1.2.4 Limited Power Supply
	1.2.5 Varying User Interfaces
	1.2.6 Platform Proliferation
	1.2.7 Active Transactions

	1.3 Condition of the Mobile User
	1.3.1 Changing Location
	1.3.2 Lack of Focus
	1.3.3 Immediacy
	1.3.4 Abrupt Changes in Tasks
	1.3.5 Anywhere, Anytime

	1.4 Architecture of Mobile Software Applications
	1.5 Our Road Map

	CHAPTER 2 Introduction to Mobile Development Frameworks and Tools
	2.1 Introduction
	2.2 Fully Centralized Frameworks and Tools
	2.3 N-Tier Client–Server Frameworks and Tools
	2.3.1 Mobile Operating Systems and Virtual Machines
	2.3.2 Hardware-Specific Tools and Frameworks

	2.4 Java
	2.4.1 J2ME
	CLDC and MIDP
	Overview of the CLDC and MIDP Java APIs
	Hello MIDP
	Treatment of Dimensions of Mobility by CLDC and Profiles
	XML and J2ME
	Using UML to Model J2ME Applications

	2.4.2 CDC
	2.4.3 Java Card
	2.4.4 JINI
	2.4.5 Java-Based Peer-to-Peer Protocol
	2.4.6 Where Does Java Fit In?

	2.5 BREW
	2.5.1 BREW SDK Overview
	2.5.2 Building and Deploying a Simple BREW Application
	2.5.3 Hello BREW
	2.5.4 Where Will BREW and BREW-Like Technologies Fit?

	2.6 Windows CE
	2.6.1 Hello Visual Basic on Windows CE!
	2.6.2 eMbedded Visual C++ on Windows CE
	2.6.3 Databases on Windows CE
	2.6.4 Windows CE and Web Services
	2.6.5 Treatment of Dimensions of Mobility by Windows CE
	2.6.6 Microsoft Smart Phone

	2.7 WAP
	2.7.1 WAP Architecture
	2.7.2 WAP UI
	2.7.3 WAP Proxies and Gateways
	2.7.4 Multimedia Messaging Services
	2.7.5 WAP Push
	2.7.6 Security
	2.7.7 Treatment of Dimensions of Mobility by WAP

	2.8 Symbian EPOC
	2.9 Publishing Frameworks
	2.9.1 Cocoon
	Cocoon’s Architecture
	Installing and Using Cocoon
	Generators, Transformers, and Serializers
	The Cocoon Sitemap
	Introduction to XSP
	Hello Cocoon

	2.9.2 IBM Wireless Transcoding Publisher
	Overview of IBM Everyplace Suite
	Basic WTP

	2.10 Other Tools
	2.10.1 Asynchronous Messaging Systems
	2.10.2 UML Tools

	2.11 So What Now?: What Do We Do with These Tools?

	CHAPTER 3 XML: The Document and Metadata Format for Mobile Computing
	3.1 Introduction
	3.1.1 Brief History
	3.1.2 XML and Mobile Applications
	3.1.3 DOM Parsing
	3.1.4 SAX Parsing
	3.1.5 Transforming XML with XSLT

	3.2 XML Web Services
	3.2.1 SOAP
	3.2.2 WSDL
	3.2.3 Web Services and Mobile Applications

	3.3 Key XML Technologies for Mobile Computing
	3.3.1 XML Schema
	3.3.2 XML-Based User Interface Technologies for Mobile Applications
	3.3.3 CCXML
	3.3.4 XML Pipeline
	3.3.5 WBXML
	3.3.6 SSML
	3.3.7 RDF
	3.3.8 RDF Schema
	3.3.9 UML and RDF
	3.3.10 CC/PP
	Delivering Private Information with CC/PP

	3.3.11 User Agent Profile Specification

	3.4 XML and UML
	3.4.1 XML Schema and UML

	3.5 Putting XML to Work

	CHAPTER 4 Introduction to UML
	4.1 Introduction
	4.1.1 Why Was It Created?
	4.1.2 Understanding UML
	4.1.3 Building Blocks of UML

	4.2 The User View
	4.2.1 Use Case Diagrams
	4.2.2 Using Use Cases

	4.3 The Structural View
	4.3.1 Defining Classes
	Abstract Classes
	Roles
	Stereotypes

	4.3.2 Object Diagrams
	Why Use Object Diagrams?
	Relationships among Objects

	4.4 The Behavioral View
	4.4.1 Interaction Diagrams
	4.4.2 Sequence Diagrams
	4.4.3 Collaboration Diagrams
	Collaboration
	Events and Signals
	Calls, Time Passage, Events, Exceptions, and States
	State Machines and State Chart Diagrams
	Activity Diagrams

	4.5 Implementation View: Component Diagrams
	4.5.1 Applicable Stereotypes
	4.5.2 Deployment Diagrams

	4.6 Summary

	SECTION 2: Device-Independent and Multichannel User Interface Development Using UML
	CHAPTER 5 Generic User Interface Development
	5.1 Introduction
	5.2 User Interface Development
	5.2.1 Human Factors
	5.2.2 Usability, Human Factors, and Other Considerations for Developing Stationary PC-Based User Interfaces
	5.2.3 Additional Consideration for Mobile Applications

	5.3 Building Generic User Interfaces
	5.3.1 Binding and Specialization of Generic User Interfaces
	5.3.2 The Elements of the User Interface
	Channels
	Channel Types
	Interactions
	Interaction Elements
	Control Messages
	Prompts
	Responses
	Interaction Types
	Commands
	Menus
	Forms
	Natural Language
	Mixed Initiative
	Representing Interactions with UML
	Using Sequence Diagrams to Model User Interactions
	Natural Language Dialogues, Mixed-Initiative Dialogues, and Sequence Diagrams

	5.3.3 Context
	Taxonomy of Contexts by Domain
	Extrinsic and Intrinsic Contexts
	Taxonomy of Contexts by Structural Positioning
	Taxonomy of Contexts by Temporal Positioning

	5.3.4 User Interface Components
	Generic User Interface Components
	Specializing Generic Components

	5.3.5 Managing User Interface Components
	Conventional User Interface Management
	Managing Generic Components

	5.4 Using UML for Modeling Generic User Interface Components
	5.4.1 Modeling the Domain of Generic User Interface

	5.5 XForms
	5.5.1 What Is It?
	5.5.2 XForms Processing Model
	5.5.3 XForms User Interface
	XForm User Interfaces
	User Interface Form Controls
	Binding the User Interface Elements to Instance Data
	Hidden Form Controls

	5.5.4 Events in XForms
	Navigational Interaction Events
	Composite XForms User Interface Elements
	Processing Model Events and Instance Events

	5.6 Putting It All to Work

	CHAPTER 6 Developing Mobile GUIs
	6.1 Introduction
	6.1.1 Today’s State of the Art: PAC, MVC, and Others
	Model-View-Controller
	Presentation-Abstraction-Control
	Transformation-Based Techniques for Mobile Applications

	6.1.2 PAC-TG
	Intent
	Motivation
	Known Uses
	Related Patterns
	Business Domain
	Problem Forces
	Benefits
	Liabilities
	Examples
	PAC-Amodeus

	6.1.3 Single Channel Specialization of Generic User Interfaces to Graphical User Interfaces
	6.1.4 GUI Specialization on the Server
	Transcoding Techniques

	6.1.5 GUI Specialization on the Mobile Device
	6.1.6 Distributed GUI Specialization

	6.2 A DEEPER LOOK AT WAP, J2ME, BREW, AND MICROSOFT PLATFORMS FOR MOBILE GUIS
	6.2.1 Wireless Application Protocol
	WAP 1.x
	Basic WML 1.x
	WMLScript
	WAP 2.x
	XHTML
	XHTML Mobile Profile
	MMS
	Mobile SVG
	Building GUI Palm Applications
	Building GUI Symbian Applications
	Building Mobile GUIs with Microsoft Platforms

	6.2.1 J2ME GUIs
	User Interface Markup Language

	6.2.2 From Generic UIs to Specialized Graphical User Interfaces
	Modeling GUIs with UML

	6.2.3 Using UML Activity Diagrams for GUI Development
	The Wisdom Approach
	The Wisdom Model Architecture
	The Wisdom UML Extensions

	6.2.4 UML Extensions for Mobile Applications
	Optimization of Mobile GUIs
	Optimizing GUIs through “Path of Least Resistance”
	Finding the Path of Least Resistance for a WAP Application
	Application of Direct Combination to Mobile GUIs

	6.3 Summary

	CHAPTER 7 VUIs and Mobile Applications
	7.1 Introduction
	7.2 Qualities of Speech
	7.2.1 Amplitude
	7.2.2 Frequencies and Pitch
	7.2.3 Meaning and Context
	7.2.4 Utterance
	7.2.5 Language
	7.2.6 Speaker Dependence
	7.2.7 Internationalization, Languages, and Dialects
	7.2.8 Locale
	7.2.9 Other Qualities

	7.3 Voice Transcription
	7.4 Voice Recognition
	7.4.1 Grammars
	Representing Grammars Programmatically
	JSGF
	Naming
	Rules and Tokens
	Nesting
	W3C Speech Grammar Specification
	Representing VUI Grammars in UML
	Grammars for Mobile Applications

	7.4.2 Building VUI Interactions
	Languages for Building a VUI
	Speech and Call Control with High-Level APIs
	Vendor-Based APIs
	Java Speech APIs
	JTAPI
	JTAPI’s Mobile Package
	Using UML in Building VUIs with High-Level Speech APIs
	Voice Browsers
	VXML
	UML and VXML
	From XForms to VXML
	Using VXML for Mobile Applications
	CCML
	CCML and UML
	From a Generic User Interface to CCML
	XHTML Voice Profile

	7.4.3 Designing Voice Recognition–Based VUIs for Mobile Applications
	Design for Speaking, Not Writing
	Understanding the User
	Using Pronouns and Other Markers
	Consistency
	Confirming User Input
	Correcting User Input
	Clarity
	Persona
	Tuning a VUI

	7.5 Text-to-Speech Technologies: Converting Written Language to Spoken Language
	7.5.1 Speech Synthesis by Concatenation
	7.5.2 Pure Speech Synthesis
	7.5.3 Speech-Synthesis Languages and Tools
	SSML
	SSML Syntax
	Cascading Style Sheets for Aural Interfaces
	Interoperability with SMIL and CCML

	7.5.4 Voice Portlets

	7.6 Summary

	CHAPTER 8 Multichannel and Multimodal User Interfaces
	8.1 Introduction
	8.1.1 Multimodality, the User Experience, and Usage Context
	8.1.2 Multimodality, Multichannel Communication with the Network, and Network Infrastructures
	8.1.3 Types of Multimodality
	8.1.4 Usability-Centered Usage of Multimodality

	8.2 Modeling Multichannel and Multimodal Applications with UML
	8.2.1 Using Basic UML Diagrams to Describe Multimodal Applications

	8.3 Multimodal Content
	8.3.1 X + V
	8.3.2 M3L
	8.3.3 MML
	8.3.4 EMMA
	8.3.5 MPML
	8.3.6 MMIL
	8.3.7 InkML
	8.3.8 CUIML
	8.3.9 Delivering Multimodality through Use of Markup Languages
	8.3.10 Delivering Video to Mobile Devices
	8.3.11 Cocoon
	Cocoon and Multimodality

	8.3.12 The Synchronization Problem
	SMIL
	SMIL and Mobile Applications

	8.4 Software and System Architectures for Delivering Multimodality
	8.5 Internationalization and Localization
	8.6 The Evolving Definition of Multimodality

	SECTION 3: Additional Dimensions of Mobile Application Development
	CHAPTER 9 Mobile Agent and Peer-to-Peer Architectures for Mobile Applications
	9.1 Introduction
	9.1.1 Basics of Agent Technologies
	9.1.2 Hybrids of Mobile Agents and Client–Server
	9.1.3 Separation of Concerns in Mobile Agents

	9.2 Mobile Agents for Mobile Computing
	9.2.1 RoadBlocks in Pervasive Usage of Mobile Agents for Mobile Computing
	9.2.2 MASIF
	9.2.3 FIPA

	9.3 UML Extensions for Mobile Agents
	9.3.1 AUML
	AUML Agent Interaction Protocol Diagrams

	9.3.2 UML Extensions for Mobile Agents
	9.3.3 Mobile Agent UML Extensions for Mobile Applications

	9.4 Applications of Mobile Agents to Mobile Applications and Implementation Tools
	9.4.1 Java and Mobile Agents
	Applets, Aglets, and MIDlets
	Applets
	Aglets
	The Aglet Architecture
	Hello World Aglet
	The Aglet Tools
	J2ME and MIDlets
	JADE and LEAP
	Grasshopper
	JINI for Mobile Agents
	Mobile Agent Platforms for Microsoft’s .NET

	9.5 Solving Mobile Application Development Problems with Mobile Agents
	9.5.1 Mobile Agents and Context
	9.5.2 Mobile Agents and Location Sensitivity
	9.5.3 Using Agents to Build User Interfaces
	9.5.4 Mobile Agents and QOS
	9.5.5 Mobile Agents as Proxies
	9.5.6 Mobile Agents and Performance-Related Problems Associated with Mobile Computing
	9.5.7 Mobile Agents and Device Adaptation

	9.6 Techniques for Agent-Based Software
	9.7 Peer-to-Peer Applications for Mobile Computing
	9.7.1 The Basics
	9.7.2 JXTA

	9.8 What Lies Ahead

	CHAPTER 10 Wireless Connectivity and Mobile Applications
	10.1 Introduction
	10.1.1 Modulation Techniques
	10.1.2 Transmission Techniques

	10.2 Quality of Service
	10.2.1 Modeling QOS with UML

	10.3 Survey of Wireless Networking Technologies
	10.3.1 Short-Range Wireless
	10.3.2 Long-Range Wireless Communication
	10.3.3 Modeling Wireless Network Communications with UML

	10.4 Mobile IP
	10.5 SMS
	10.6 What Now?

	CHAPTER 11 Synchronization and Replication of Mobile Data
	11.1 Introduction
	11.2 Taxonomy of Replication and Synchronization
	11.3 Data Replication and Synchronization for Mobile Applications
	11.3.1 Scalability Issues Involved with Synchronization and Replication in Mobile Application Infrastructures
	11.3.2 Approaches to Solving the Mobile Synchronization and Replication Problem
	11.3.3 Synchronization on the Most Popular Mobile Platforms

	11.4 SyncML
	11.4.1 Sync4J
	11.4.2 Bluetooth Synchronization Profile

	11.5 WebDAV
	11.6 Mobile Agents, Replication, and Synchronization
	11.7 Using Uml To Represent Data Replication And Synchronization Schemes

	CHAPTER 12 Mobility and Location-Based Services
	12.1 Introduction
	12.2 Data Acquisition of Location Information
	12.2.1 GPS-Based Solutions
	GPS System of Satellites
	GPS Receivers

	12.2.2 Non-GPS Location Solutions
	Cell Identification Solutions
	Time-of-Arrival Solutions
	Enhanced Observed Time Difference
	Other Network-Based Techniques
	Wireless LAN-Based Solutions

	12.3 GIS
	12.3.1 The Internals of GIS Systems
	12.3.2 Using GIS for Mobile Applications
	12.3.3 Building Interfaces between Mobile Applications and GIS Systems

	12.4 Location Information Modeling
	12.4.1 GML
	12.4.2 NVML
	12.4.3 MPP
	12.4.4 SLP and SLoP
	12.4.5 Location Interoperability Forum

	12.5 Location-Based Services Applied
	12.5.1 System Architecture for Offering Location Services

	12.6 Utilizing Location-Based Services with Mobile Applications
	12.6.1 Accessing a GPS Device Programmatically
	12.6.2 Location-Based J2ME Application
	JSR-179

	12.6.3 Mobile Applications, Location, Context, and User Interfaces

	12.7 Representing Location with UML
	12.7.1 Using Class Diagrams to Represent Location Information
	12.7.2 Using UML for Modeling Relative and Absolute Geographical Locations
	12.7.3 Modeling Motion in UML

	12.8 Security and Privacy of Location Information
	12.9 Localization and Internationalization
	12.10 Latest Developments in Location-Based Efforts

	CHAPTER 13 Active Transactions
	13.1 Introduction
	13.2 Active Computing and Wireless Infrastructure
	13.2.1 WAP Push
	13.2.2 Mobile IP and Push
	13.2.3 Session Initiation Protocol

	13.3 Practical Considerations of Building Active Systems

	CHAPTER 14 Mobile Security
	14.1 Introduction
	14.1.1 Taxonomy of Mobile Security Problems

	14.2 Security in Wireless Networks
	14.2.1 Bluetooth Security
	14.2.2 802.11 Security
	14.2.3 Security in Long-Range Wireless Networking Technologies

	14.3 Security and Ad Hoc Networking Technologies
	14.4 Location Information, Security, and Privacy
	14.5 Security: The Unsolved Problem for Mobile Agents
	14.6 Distinguishing Privacy and Security
	14.7 Modeling Security with UML

	SECTION 4: Putting the Project Together
	CHAPTER 15 The Mobile Development Process
	15.1 Introduction
	15.2 Back to the Dimensions of Mobility
	15.3 Applying the Wisdom Methodology to Mobile Development
	15.4 UML-Based Development Cycle for Mobile Applications
	15.4.1 Mobile Use Cases
	15.4.2 Mobile Development Process

	15.5 Summary

	CHAPTER 16 Architecture, Design, and Technology Selection for Mobile Applications
	16.1 Introduction
	16.1.1 Mobile Computing Architectures
	16.1.2 Fully Centralized Application Architectures
	16.1.3 Client–Server Architectures
	16.1.4 N-Tier Architectures
	N-Tier Architectures and the World Wide Web
	N > 3 for Mobile Applications

	16.1.5 Peer-to-Peer Architectures
	16.1.6 Mobile Agent Architectures

	16.2 Practical Concerns with Architectures
	16.3 Architectural Patterns for Mobile Applications
	16.4 Summary

	CHAPTER 17 Mobile Application Development Hurdles
	17.1 Introduction
	17.2 Voice User Interface Hurdles
	17.3 Hurdles with Multimodal Applications
	17.4 Problems with Building Location-Based Applications
	17.5 Power Use
	17.6 Summary

	CHAPTER 18 Testing Mobile Applications
	18.1 Introduction
	18.1.1 Testing the Mobile Infrastructure
	18.1.2 Coding Standards
	18.1.3 Unit Testing
	18.1.4 Black-Box Testing
	18.1.5 White-Box Testing
	18.1.6 Regression Testing
	18.1.7 Problems Specific to Mobile Applications

	18.2 Validating the Mobile Use Cases before Development
	18.3 The Effect of the Dimensions of Mobility on Software Testing
	18.3.1 Testing Mobile User Interfaces
	18.3.2 Testing Multichannel User Interfaces
	18.3.3 Usability Testing

	18.4 Stress Testing and Scalability Issues
	18.5 Testing Location-Based Functionality

	CHAPTER 19 A Case Study
	19.1 Introduction
	19.2 Requirements Driving the Architecture
	19.3 The Detailed Design
	19.4 The Implementation
	19.5 Summary

	References
	Index

