
Boundary Layer Meteorology

Chapter 5

Stability concepts

Unstable flows become or remain turbulent; stable flows 
become or remain laminar.

If the net effect of all the destabilizing factors exceeds the 
net effect of the stabilizing factors, then turbulence will 
occur.

In many cases, these factors can be interpreted in terms of 
TKE budget equations.

We can compare one destabilizing factor with one stabilizing 
factor, expressed as a dimensionless ratio, e. g. Reynolds 
number, Richardson number, Froude number, and Rayleigh 
number.

Static stability is not normally expressed non-dimensionally.



Static instability and convection

Static instability is a measure of the capability for buoyant 
convection.

“static” means “having no motion”

Static instability occurs when less dense air underlies more 
dense air.

The flow responds by supporting convective circulations 
(e.g. thermals) that allow the buoyant air to rise, thereby 
stabilizing the fluid.

Thermals need some triggers to get them started.

These are generally present in the atmosphere (e.g. hills, 
fields, trees, car parks, flow perturbations) and convection 
occurs. 

Penetrative convection
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The formation of plumes or thermals rising 
from a heated surface

Higher heating rate

In the turbulent convection regime, the flux of heat from heated
boundary is intermittent rather than steady and is accomplished 

by the formation of thermals

Local definitions of static instability

The traditional definition, that static instability is 
determined by the local lapse rate, is local in nature.

It frequently fails in mixed layers, because the rise of 
thermals from near the surface or their descent from cloud 
tops depends on their excess buoyancy and not on the 
ambient lapse rate.

In the middle 50% of the convective mixed layer, the lapse 
rate is nearly adiabatic, causing an incorrect classification of
stability on the basis of the local definition.

We must clearly distinguish between “adiabatic lapse rate”
and “neutral stability”.

Example



An adiabatic lapse rate (in the virtual potential temperature 
sense) may be statically stable, neutral or unstable, 
depending on convection and the buoyancy flux.

Neutral stability implies a very specific situation: adiabatic 
lapse rate and no convection.

The two phrases should not be used interchangeably and the 
phrase “neutral lapse rate” should be avoided altogether.

Conclusion: measurement of the local lapse rate alone is 
insufficient to determine the static (in)stability.

Either knowledge of the whole θv profile is needed, or 
measurement of the turbulent buoyancy flux must be made.

Non-local definitions of static stability

It is better to examine the stability of the whole layer:

Example:  if w'θv' is positive at the earth’s surface, or if 
displaced air parcels will rise from the ground or sink from 
cloud top as thermals travelling across a BL, then the whole 
BL is said to be unstable or convective.

If w'θv' is negative at the surface, or if displaced air parcels 
return to their starting points, then the BL is said to be stable.

If when integrated over the depth of the BL, the mechanical 
production term in the TKE equation is much larger than the 
buoyancy term, or if the buoyancy term is near zero, then the 
BL is said to be neutral.

In this case the BL is sometimes referred to as an Ekman BL.



During fair weather conditions over land, the BL touching 
the ground is rarely neutral.

Neutral conditions are frequently found in the residual layer 
aloft.

In overcast conditions with strong winds, but little little 
temperature difference between the air and the surface, the 
boundary layer is often close to neutral stability.

In the absence of knowledge of convection or buoyancy flux, 
an alternative determination of static stability is possible if 
the θv profile over the whole BL is known.

See figures
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Dynamic instability & Kelvin-Helmholtz 
Instability

The word “dynamic” refers to motion; hence dynamic 
instability depends in part on the winds.

Even if the air is statically stable, wind shears may be able to
generate turbulence dynamically.

The mechanism is called Kelvin-Helmholtz instability.





KH-instability in the atmosphere



The Richardson number

In a statically stable environment, the vertical component of 
turbulent motion acts against the restoring force of gravity 
⇒

Buoyancy tends to suppress turbulence, while the wind 
shear tends to generate turbulence mechanically.

The buoyancy production term of the TKE equation is 
negative, while the mechanical production term is positive:
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The Flux Richardson number

The negative term in term IV is dropped by convention.

If we assume horizontal homogeneity and neglect subsidence, 
the above equation reduces to the more common form of the 
flux Richardson number: 

Define the flux Richardson number, Rif :
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9 terms

dimensionless



For statically unstable flows, Rif is usually negative (because 
of the denominator). For neutral flows it is zero. For stable
flows it is positive.

Richardson proposed that Rif = +1 is a critical value, 
because the mechanical production rate balances the 
buoyant consumption of TKE.

At any value of Rf < +1, static stability is insufficiently 
strong to prevent the mechanical generation of turbulence.

For Rf < 0, the numerator even contributes to the generation
of turbulence.
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Therefore, Richardson expected that

• The flow is turbulent (dynamically unstable) when 
Rf < +1

• The flow becomes laminar (dynamically stable) 
when Rf > +1.

We recognize that statically unstable flow is, by 
definition, always dynamically unstable.



The gradient  Richardson number

A problem: we can calculate Rf only for turbulent flow 
because it contains factors involving turbulent correlations 
 ⇒ we can use it only to determine whether turbulent flow 
will become laminar, but not whether laminar flow will 
become turbulent.

How can we proceed?  
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This is the basis of K-theory, or eddy-diffusivity theory to be 
discussed later. For the moment we assume that it is possible.

Substitution gives the gradient Richardson number, Ri: 
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When only the Richardson number is referred to without 
specifying which one, usually the gradient Richardson 
number is meant.

Theoretical and laboratory research suggest that laminar 
flow becomes unstable to KH-wave formation and ONSET 
of turbulence when Ri is smaller than the critical 
Richardson number, Ric.

Another value, RiT, indicates the termination of turbulence. 



Richardson number criteria

The dynamic stability criteria can be stated as follows:

Laminar flow becomes turbulent when Ri < Ric.

Turbulent flow becomes laminar when Ri > RiT.

Although there is some debate on the correct values of Ric
and RiT, it appears that Ric = 0.21 to 0.25 and RiT = 1.0 work 
fairly well.

Thus, there appears to be a hysteresis effect because RiT is 
greater than Ric.

One hypothesis for apparent hysteresis is as follows:

Two conditions are needed for turbulence: instability, and 
some trigger mechanism.

Suppose that dynamic instability occurs whenever Ri < RiT.

Hysteresis effect

If one trigger mechanism is existing turbulence in or 
adjacent to the unstable fluid, then turbulence can continue 
as long as Ri < RiT because of the presence of both the 
instability and the trigger.

If KH waves are another trigger mechanism, then, in the 
absence of existing turbulence, one finds that Ri must fall 
well below RiT before KH waves can form.

Laboratory and theoretical have shown that the criterion for 
KH wave formation is Ri < Ric.

This leads to the apparent hysteresis, because the Ri of 
nonturbulent flow must be lowered to Ric before turbulence 
will start, but once turbulent, the turbulence can continue 
until Ri is raised above RiT.



The bulk  Richardson number

Theoretical work yielding Ric = 0.25 is based on local 
measurements of the wind shear and temperature gradient.

We rarely know the actual local gradients, but can 
approximate these using observations at a series of discrete 
height intervals, setting
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Define the bulk Richardson number, Rib: 
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This is the most frequently used form. 
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Unfortunately, the critical value of 0.25 applies only for 
local gradients, not for finite differences across thick 
layers.

In fact, the thicker the layer is, the more likely we are to 
average out large gradients that occur within small sub 
regions of the layer of interest.

The net result is:

1) we introduce uncertainty into our prediction of the 
occurrence of turbulence, and

2) we must use an artificially large (theoretically 
unjustified) value of the critical Richardson number 
that gives reasonable results using our smoothed 
gradients.

The thinner the layer, the closer the critical Richardson 
number will  likely be to 0.25.



Since data points in soundings are sometimes spaced far 
apart in the vertical, approximations such as shown in the 
graph and table in the next figure can be used to estimate 
the probability and intensity of turbulence (Lee et al., 1979).



Example of the evolution of Richardson number with height 
and time during one night. Regions with Ri < 1 are shaded 
and likely to be turbulent.
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The Obukhov length

The Obukhov length (L) is a scaling parameter that is useful 
in the surface layer.

To show how this parameter is related to the TKE equation, 
first recall that one definition of the surface layer is that 
region where turbulent fluxes vary by less than 10% of their 
magnitude with height.

By making the constant flux (with height) approximation, 
one can use surface values of heat and momentum flux to 
define turbulence scales and nondimensionalize the TKE 
equation. 



The Obukhov length

Start with the TKE equation:

Multiply the whole equation by −kz/u*
3 , assume all turbulent 

fluxes equal their respective surface values, and focus on just 
terms III, IV and VII:
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Term III is usually assigned the symbol, ζ, and is further 
defined as ζ ≡ z/L, where L is the Obukhov length.

is called the Obukhov length
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One physical interpretation of the Obukhov length is that 
it is proportional to the height above the surface at which 
buoyant factors first dominate over mechanical (shear) 
production of turbulence.

For convective situations, buoyant and shear production 
terms are approximately equal at z = −0.5L.



Typical range of variations of the Obukhov length in fair 
weather conditions over land.

The parameter ζ turns out to be very important for scaling 
and similarly arguments of the surface layer.

It is sometimes called a stability parameter, although its 
magnitude is not directly related to static or dynamic 
stability.

Only its sign relates to static stability: negative implies 
unstable, positive implies statically stable.

A better description of ζ is  “a surface-layer scaling 
parameter”. 



We can write an alternative form for ζ by employing the 
definition of w*:

The next figure shows the variation of TKE budget terms 
with ζ, as ζ varies between 0 (statically neutral) and −1
(slightly unstable).
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The decrease in importance of shear and increase of 
buoyancy as ζ decreases from 0 to −1 is particularly 
obvious.
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