
Chapter Three Cloud Microphysics

" ... fleecy piles dissolved in dew drops ... "42

As noted in the Introduction, cloud physics consists of two branches: cloud mi-
crophysics and cloud dynamics. While the topic of this book is the latter, it is
impossible to divorce a discussion of the dynamics from a knowledge of the
microphysics. Just as the discussions in Chapters 5-12 assume a certain level of
background knowledge of atmospheric dynamics, so do they assume some back-
ground in cloud microphysics. To provide this background, the present chapter
summarizes the aspects of cloud microphysics that are crucial to the discussions
of later chapters. First, we describe some of the basic microphysical processes
that are involved in the formation, growth, shrinkage, breakup, and fallout of
cloud and precipitation particles." In Sec. 3.1, we describe the microphysics of
warm clouds, where the temperature is everywhere above OQC. Section 3.2 ex-
tends the review of microphysical processes to cold clouds, in which the tempera-
ture drops below OQC and both ice and liquid particles may exist. After this review
ofthe individual microphysical processes that may occur in clouds, we consider in
Sees, 3.3-3.6 how these microphysical processes occur simultaneously in a real
cloud and how they may be linked to the cloud dynamics through a set of water-
continuity equations.

3.1 Microphysics of Warm Clouds

3.1.1 Nucleation of Drops

The particles in a cloud form by a process referred to as nucleation, in which
water molecules change from a less ordered to a more ordered state. For example,
vapor molecules in the air may come together by chance collisions to form a
liquid-phase drop. To see how this process takes place, consider the conditions
required for the formation of a drop of pure water from vapor. This case is called
homogeneous nucleation to distinguish it from the case of heterogeneous nuclea-
tion, which refers to the collection of molecules onto a foreign substance. If the

42 Goethe realizes that the clouds are composed of microscopic particles.
43 These microphysical processes are described in more detail in basic texts on cloud microphysics,

such as Fletcher (1966), Mason (1971), Pruppacher and Klett (1978), and Rogers and Yau (1989). The
physics of ice is presented comprehensively by Hobbs (1974).
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70 3 Cloud Microphysics

embryonic drop of pure water has radius R, then the net energy required to
accomplish its nucleation is

till = 41tR2av/ -i1tR3n,(.uv - .u/) (3.1)

The first term on the right is the work required to create a surface of vapor-liquid
interface around the drop. The factor O"vl is the work required to create a unit area
of the interface. It is called the surface energy or surface tension. The second term
on the right of (3.1) is the energy change associated with the vapor molecules
going into the liquid phase. It is expressed as the change in the Gibbs free energy
of the system. The Gibbs free energy of a single vapor molecule is I.t I" while that
of a liquid molecule is I.t/, and the factor ni is the number of water molecules per
unit volume in the drop. If the work required to create the surface exceeds the
change in Gibbs free energy (!i.E> 0), the embryonic drop formed by chance
aggregation of molecules has no chance of surviving and immediately evaporates.
If, on the other hand, the work required to create the surface is less than the
change in Gibbs free energy (!i.E < 0), then the drop survives and is said to have
been nucleated.

It can be shown" that

(3.2)

(3.3)

where ke is Boltzmann's constant, e is the vapor pressure, and e, is the saturation
vapor pressure over a plane surface of water. Substituting this expression into
(3.1), seeking the condition for which the work required to change the drop's
surface is exactly matched by the change in Gibbs free energy (!i.E = 0), and
rearranging terms, we obtain an expression for the critical radius R· at which this
equilibrium condition holds. This expression is

2av/
R = -------'--;-------;-

C n/kBTln( e/es )

and is referred to as Keloin's formula.v This radius is evidently crucially depen-
dent on the relative humidity (defined as el e, x 100%). Air is said to be saturated
whenever the relative humidity is 100% tele, = 1). However, it is clear from
(3.3) that it is impossible for a cloud droplet to form under saturated conditions
since R; ~ 00 as el e, ~ 1. Rather, the air must be supersaturated (e/e s > 1)
for R; to be positive. The greater the supersaturation [defined, in percent, as
[(e/es -1) x 100%], the smaller the size of the drop that must be exceeded by the
initial chance collection of molecules.

It should be noted that R; is also a function of temperature. Not only does T
appear in the denominator of (3.3) explicitly, but O"vl and e, are functions of T.
However, at atmospheric temperatures, the dependence of R; on temperature is
comparatively weak. In view of the primary dependence of R; on ambient humid-

44 See problem 2.19 of Wallace and Hobbs (1977).
45 Named after Lord Kelvin, who first derived it.



3.1 Microphysics of Warm Clouds 71

Figure 3.1 A spherical-cap embryo of liquid (L) in contact with its vapor (V) and a nucleating
surface (C). (From Fletcher, 1966. Reprinted with permission from Cambridge University Press.)

ity, it is not surprising that the rate of nucleation of drops exceeding the critical
size R; is a strong function of the degree of supersaturation. The rate at which the
vapor molecules collide to form aggregates of various sizes can be computed using
principles of statistical quantum mechanics applied to an ideal gas whose mole-
cules are in a state of random motion." This rate of formation of drops exceeding
the critical size is the nucleation rate. It is found to increase from undetectably
small values to extremely large values over a very narrow range of e /es- The value
of el e, at which this rise occurs is in the range of 4-5. Thus, the air must be
supersaturated by 300-400% for a drop of pure water to be nucleated homoge-
neously. Since supersaturation in the atmosphere seldom exceeds 1%, one con-
cludes that homogeneous nucleation of water drops plays no role in natural
clouds. However, the physics of the process are nonetheless relevant, as will
become evident below.

Heterogeneous nucleation is the process whereby cloud drops actually form.
The atmosphere is filled with small aerosol particles, and molecules of vapor may
collect onto the surface of aerosol particles as illustrated ideally in Fig. 3.1. If the
surface tension between the water and the nucleating surface is sufficiently low,
the nucleus is said to be wettable, and the water may form a spherical cap on the
surface of the particle. A particle onto which the molecules collect in this manner
is referred to as a cloud condensation nucleus (CCN).

If a CCN is insoluble in water, the physics governing the survival of an embry-
onic cloud droplet are the same as in the case of homogeneous nucleation. It can
be shown that Eq. (3.3) still applies, but R; has the more general interpretation in
that it refers to the critical radius of curvature of the embryonic drop. Since the
radius of curvature of the droplet forming on a particle is greater than what it
would be if the same number of molecules were to aggregate in the absence of the
particle (Fig. 3.1), the aggregation of the vapor molecules has a greater chance of
producing a drop exceeding the critical radius. If the aggregated water molecules
form a film of liquid completely surrounding a particle, then a complete droplet is
formed whose radius is larger than it would be in the absence of the nucleus.
Clearly, the larger such a nucleus is, the more likely is the survival of a drop

46 See Chapter 2 of Fletcher (1966).



72 3 Cloud Microphysics

formed by a film around it. For this reason, the larger the aerosol particle, the
more likely it is to be a site for drop formation in a natural cloud.

If the cloud condensation nucleus happens to be composed of a material that is
soluble in water, the efficacy of the nucleation process is further enhanced. Since
the saturation vapor pressure over the liquid solution is generally lower than that
over a surface of pure water, ele, is increased. According to (3.3), the critical
radius is then reduced, and nucleation is easier to achieve at the ambient vapor
pressure.

There are generally more than enough wettable aerosol particles in the air to
accommodate the formation of all cloud droplets. However, the physics of the
nucleation process just described indicate that the first droplets in a cloud will
tend to form around the largest and most soluble CCN. The sizes and composi-
tions of the aerosol particles in a sample of air thus have a profound effect on the
size distribution of particles nucleated in a cloud.

3.1.2 Condensation and Evaporation

Once formed, water drops may continue to grow as vapor diffuses toward them.
This process is called condensation. The reverse process, drops decreasing in size
as vapor diffuses away from them, is called evaporation. Particle growth by
condensation and evaporation may be represented quantitatively by assuming that
the flux of water vapor molecules through air is proportional to the gradient of the
concentration of vapor molecules.f In this case, the vapor density p; (defined as
the mass of vapor per unit volume of air) is governed by the diffusion equation

(3.4)

(3.5)

where DJ.1pv is the flux of water vapor by molecular diffusion and D; is the
diffusion coefficient (assumed constant) for water vapor in air. The concentration
of vapor around a spherical pure-water drop of radius R is assumed to be symmet-
ric about a point located at the center of the drop, and the diffusion is assumed to
be in a steady state. Under these assumptions, p; depends only on radial distance r
from the center of the drop, and (3.4) reduces to

2 1 0 ( 2 oPv)V pv(r) =2- r - = 0r or or
The vapor density at the surface is Pv(R). As r - 00, the vapor density approaches
the ambient or free-air value Pv(oo). The solution to (3.5) satisfying these boundary
conditions is

(3.6)

47 This assumption is called Fick's first law of diffusion.
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If the drop has mass m, the flux of molecules causes its mass to increase or
decrease at a rate given by

. 2 dPvlmdif = 4nR Dv - -
dr R

where DvdpvldrlR is the flux of vapor in the radial direction across a spherical
surface of radius R. Substitution of (3.6) into (3.7) yields

(3.8)

Since m ex: R3, there are two unknowns in (3.8), Pv(R) and either m or R.
Conditions in the environment (r = 00) are assumed to be known. To obtain a
solution for m or R, other relationships are needed. First, a heat-balance equation
is introduced. In the condensation of water vapor on a drop, latent heat is released
at a rate Lmdif' where L is the latent heat of vaporization. Assuming that heat is
conducted away from the drop as rapidly as it is being released, we have by
analogy to (3.8)

(3.9)

where K a is the thermal conductivity of air and T is temperature.
The equation of state for an ideal gas applied to water vapor under saturated

conditions over a plane surface of pure water is
es = PvsRvT (3.10)

where R; is the gas constant for a unit mass of water vapor, and e, and Pvs are the
saturation vapor pressure and density over a planar surface of water. Since es

depends only on temperature." it is evident from (3.10) that Pvs is a known func-
tion of T. If it is then assumed that the vapor density at the drop's surface is given
by the saturation vapor density, we may write

(3.11)

and (3.8), (3.9), and (3.11) can be solved numerically for mdif' T(R), and Pv(R).
These equations can, moreover, be combined analytically for the special case of a
drop growing or evaporating in a saturated environment (i.e., for the case in which
e(oo) = es[T(oo)]). In this special case, use is made of the Clausius-Clapeyron
equation."

1 des _ L

~ dT = R
vT

2

Combination of (3.10) and (3.12) yields

48 See pp. 72-73 of Wallace and Hobbs (1977).
49 See p. 95 of Wallace and Hobbs (1977).

(3.12)

(3.13)



(3.14)

74 3 Cloud Microphysics

Then (3.8), (3.9), (3.11), and (3.13) may be combined'? under saturated environ-
mental conditions to obtain

4nRS
mdif =

FI( +FD

where oS depends on the humidity of the environment, FK on the heat conductiv-
ity, and FD on the vapor diffusivity. More specifically, s is the ambient supersatu-
ration (expressed as a fraction):

(3.15)

The other factors are given by

(3.16)

(3.17)

and

RvT(oo)
FD == ---'---

Dves(oo)

From (3.14)-(3.17), it is evident that the diffusional growth rate of a drop depends
on the temperature and humidity of the environment and on the radius ofthe drop.

The relation (3.11) used in deriving (3.14) assumes that saturation at the drop's
surface may be approximated as if it obtained over a plane surface of water (i.e.,
that the growing drop were large enough for the curvature of the drop's surface to
have negligible influence upon the equilibrium vapor pressure). The drop has also
been assumed to be sufficiently dilute with respect to dissolved nuclei or other
impurities that the drop may be regarded as being composed of pure water. For
very small drops, however, curvature and solution effects must be included. If a
drop is growing on a water-soluble nucleus, Pv(R) becomes

( a b)Pv(R) = Pvs[T(R)] 1+ R - R3 (3.18)

(3.19)

where the term aiR represents the effect of drop curvature on the equilibrium
vapor pressure above the drop. The factor a is given by

A 2CTvia=---
PLRvT

where (Tvl is the surface tension of liquid-vapor interface and PL is the density of
liquid water. The term h/R3 represents the effect of salt dissolved in the drop on

50 See pp. 99-102 of Rogers and Yau (1989) for details of the derivation.
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the equilibrium vapor pressure above the drop. The factor b is given by

b = 3ivH msMw

4nPLM s

where ivH is the van't Hoff factor," m, and M, are the mass and molecular weight
of the dissolved salt, respectively, and M w is the molecular weight of water.

Replacing (3.11) with (3.18) leads, following steps similar to those leading to
(3.14), to the equation

(3.21)

(3.22)

which applies when the air is saturated. When the air is unsaturated, (3.8), (3.9),
and (3.18) must be solved numerically to obtain mdiffor the evaporation rate of the
drop.

When drops are falling relative to the surrounding air, the diffusion of vapor
and heat is altered. To account for this process, the right-hand sides of (3.8) and
(3.9) may be multiplied by a ventilation factor VF • In this case, (3.14) and (3.21),
the growth/evaporation rate under saturated conditions become

. 4nRVF'S
mdif = F. + F

K: D

and

. _ 4nRVF (_ a b)
md'f - S --+-

1 F. + F R R3
K: D

respectively.f

3.1.3 Fall Speeds of Drops

(3.23)

Growing cloud droplets are subject to downward gravitational force. This force
can lead to their fallout as precipitation particles. The gravitational force on a drop
is, however, largely offset by the frictional resistance of the air. As a particle is
accelerated downward by gravity, its motion is increasingly retarded by the grow-
ing frictional force. Its final speed is called the terminal fall speed V. For drops of
water in air, V is a function of the drop radius R. Generally V is negligible until the
drops reach a radius of about 0.1 mm. This is usually considered to be the thresh-
old size separating cloud droplets, which are suspended in the air indefinitely,
from falling precipitation drops. The smallest precipitation drops (taken by con-

51 This factor is equal to the number of ions into which each molecule of salt dissociates. See p. 162
of Wallace and Hobbs (1977).

52 See pp. 440-463 of Pruppacher and Klett (1978).
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Figure 3.3 Fall velocity of water drops
>500 J.Lm in radius. (From Beard, 1976.
Reprinted with permission from the
American Meteorological Society.)
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Figure 3.2 Fall velocity of water drops <500 J.Lm
in radius for various atmospheric 'conditions. (From
Beard and Pruppacher, 1969. Reprinted with
permission from the American Meteorological
Society.)
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vention-' to be those 0.1-0.25 mm in radius) are called drizzle. Drops >0.25 mm in
radius are called rain. Drizzle and raindrops have terminal fall speeds that in-
crease with increasing drop radius. We will represent this function as VCR). For
drops <500 /Lm in radius, V increases approximately linearly with increasing drop
radius (Fig. 3.2). For larger drops, VCR) increases at a lower rate (Fig. 3.3),
becoming a constant at a radius of about 3 mm. This asymptotic behavior is
associated with the fact that a drop becomes increasingly flattened, into the shape
of a horizontally oriented disc, at larger sizes (see Fig. 4.2).

3.1.4 Coalescence

3.1.4.1 Continuous Collection

Cloud drop growth by coalescence with other drops can be envisioned in terms
of a drop of mass m falling through a cloud of particles of mass m'. The water
contained in the particles of mass m' is assumed to be distributed uniformly
through the cloud with liquid water content pqm' (g m- 3) , where qm' is the cloud
water mixing ratio (mass of cloud water per mass of air). As it falls, the particle of
mass m is assumed to increase in mass continually at a rate given by the continu-
ous collection equation,

(3.24)

53 See the Glossary of Meteorology (Huschke, 1959).



3.1 Microphysics of Warm Clouds 77

where V represents the fall speed of the drops of masses m and m' (Figs. 3.2 and
3.3), p is the density of the air, ~c (m, m') is the collection efficiency, and Alit is the
effective cross-sectional area swept out by a particle of mass m. The absolute
value notation is used in (3.24) since it is only the relative motion of the particles
that matters for collectional growth. For the case of a large drop collecting smaller
drops, the absolute value symbol is redundant since the fall velocity of the larger
drop always exceeds that of the smaller drops. However, (3.24) may also be used
to calculate the increase of mass of a smaller drop coalescing with larger drops. If
the absolute value were not used in that case, negative growth would be calcu-
lated. Moreover, as will be seen below, (3.24) is applied also to cold clouds where
in some special cases (e.g., an ice particle collecting water drops) the fall velocity
of the larger particle may not be the greater of the two.

For the purpose of calculating collectional growth, water drops are usually
assumed to be spherical. In that case, the factor Alit in (3.24) is given by

Am = 1r(R+ R,)2 (3.25)

where Rand R' are the radii of drops of mass m and m', respectively. This area is
based on the sum of the drop radii since any drop centered within a distance R +
R' of the center of the drop of radius R can be intercepted by that drop.

The collection efficiency ~cCm, m') is the efficiency with which a drop inter-
cepts and unites with the drops it overtakes. It is the product of a collision
efficiency and a coalescence efficiency. The collision efficiency (Fig. 3.4) is deter-
mined primarily by the relative airflow around the falling drop. Smaller particles
may be carried out of the path of a larger particle (efficiency < 1), or small particles
not in the direct path of a large particle may collide with the large particle if they
are pulled into its wake (efficiency> 1). The coalescence efficiency expresses the
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Figure 3.4 Collision efficiency for collector drops of
radius R I with droplets of radius R2 • The dashed portions of
the curve represent regions of doubtful accuracy. (From
Wallace and Hobbs, 1977.)
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fact that a collision between two drops does not guarantee coalescence; the drops
may bounce off each other or remain united only temporarily. Under most condi-
tions, coalescence efficiency is high, especially if the droplets are electrically
charged or if an electric field is present. The electrical conditions are often met in
clouds, and little else is known about the coalescence efficiency. Hence, the most
common practice in theoretical or modeling studies is to assume a coalescence
efficiency of unity. The collection efficiency then reduces to the collision effi-
ciency.

A more general version of (3.24) may be written for the case in which a particle
of mass m is falling relative to a population of particles of varying size. For that
case, the generalized continuous collection equation is

lilco1 = LooAIltIV(m) - V(m')1 m' N(m')L)m, m')dm'

where N(m') dm' is the number of particles per unit volume of air in the size range
m' to m' + dm'.

3.1.4.2 Stochastic Collection

Cloud drop growth by coalescence is actually not a continuous process, as
assumed in (3.24), but rather proceeds in a discrete, stepwise, probabilistic man-
ner. In a time interval Llt, drops of a given initial size do not grow uniformly. Some
may undergo more than the average number of collisions and thus grow faster
than others. Consequently, a drop size distribution develops.

The probabilistic nature of collection may be accounted for by considering the
size distribution N(m,t), where N(m,t) dm is the number of particles per unit
volume of air in mass range m to m + dm at time t. The change in N(m,t) with
time is computed as follows. The rate at which the space within which a particle of
mass m' is located is swept out by a particle of mass m is given by the collection
kernel, defined as

(3.27)

The probability that a particular drop of mass m will collect a drop of mass m' in
time interval Llt is

P ;: N(m',t)dm' Kl1t (3.28)

where it is assumed that Llt is small enough that the probability of more than one
collection in this time is negligible. Making use of (3.27) and (3.28), we note that
the mean number of drops of mass m that will collect drops of mass m' at time
Llt is

PN(m,t)dm = K(m,m')N(m',t)N(m,t)dmdm' I1t

Rearranging this expression we obtain

PN(m,t) ~
----'- = K(m,m')N(m',t)N(m,t)dm'

I1t

(3.29)

(3.30)
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which expresses the rate at which the number of drops of mass m is reduced as a
result of coalescence with drops of mass m' per unit volume of air. It follows that
the rate of decrease of the number concentration of drops of mass m as a result of
their coalescence with drops of all other sizes is given by the integral

ll(m) =LooK(m,m')N(m',t)N(m,t)dm'

By reasoning similar to that given above we may express the rate of generation of
drops of mass m by coalescence of smaller drops as

I I"12(m) = 2"Jo K(m - m', m')N(m - m',t )N(m',t )dm' (3.32)

(3.33)

where the factor of 1/2 is included to avoid counting each collision twice. The net
rate of change in the number density of drops of mass m is obtained by subtracting
(3.32) from (3.31) and may be written as

(
dN(m ,t ) )

d = 12(m)-II(m)
t col

This result is referred to as the stochastic collection equation.
Computations may be made with (3.33) starting with some arbitrary initial drop

size distribution N(m,O). The result obtained by integrating (3.33) over time yields
the drop size distribution altered by the stochastic collection process. In addition
to the initial distribution, one must also assume reasonable values of the collection
efficiencies and fall velocities appearing in (3.31) and (3.32). For realistic condi-
tions, it is generally found that a large portion of the liquid water accumulates in
the tail of the distribution. An example of such a calculation is shown in Fig. 3.5.
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Figure 3.5 Example of the evolution of a drop size distribution as a result of stochastic collection.
gm is the mass distribution function; R is the drop radius. The two dashed lines show the radii (R; and
Rg ) corresponding to the means of the number and mass distributions, respectively. (From Berry and
Reinhardt, 1973. Reprinted with permission from the American Meteorological Society.)
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Figure 3.6 The probability PB(m) that a drop of
radius R breaks up per unit time. Based on empirical
formula of Srivastava (1971).

o 2 3 4

R(mm)

5

The drop size distribution at successive times is plotted as mass distribution gm ==
mN(m), rather than number distribution N(m), so that the area under each curve
is proportional to the total liquid water content in the distribution. The mass
distribution is plotted versus the radius of a drop of mass m on a logarithmic scale.
This plotting convention emphasizes the result that a large portion of the liquid
water becomes concentrated in the large drops as time progresses. The two peaks
in the mass distribution after 30 min correspond to the amount of water contained
in cloud droplets (radii -10-3 em) and raindrops (radii -10- 1 em). The two dashed
lines following the centers of the two peaks correspond to the means of the
number and mass concentrations. The mean of the number distribution follows the
cloud droplet peak. This result illustrates that the cloud droplets are far more
numerous than the raindrops but that the latter nonetheless contain a large part of
the liquid water after half an hour of stochastic collection. Stochastic collection
can thus quickly convert cloud water to rainwater.

3.1.5 Breakup of Drops

When raindrops achieve a certain size, they become unstable and break up into
smaller drops. Breakup has been studied in the laboratory, and empirical func-
tions based on the experimental data are used to describe breakup quantita-
tively.> One empirical function is the probability PB(m) that a drop of mass m
breaks up per unit time. It is nearly zero for drops less than about 3.5 mm and
increases exponentially with size for radii greater than this value (Fig. 3.6). The
function shown in the plot is

PB(m) = 2.94 x 10-7 exp(3.4R) (3.34)

where R is the radius in millimeters of a drop of mass m and PB(m) is in S-I. A
second empirical function is QB(m' .m), which is defined such that QB(m' .m) dm is
the number of drops of mass m to m + dm formed by the breakup of one drop of

54 The formulation of breakup presented in this subsection was developed by Srivastava (1971).
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mass m'. QB(m'.m) is approximately exponential. It is given by

QB(m', m) = O.IR,3 exp(-15.6R)

81

(3.35)

(3.37)

where the radii are in ern. The empirical functions PB(m) and QB(m',m) can be
used to determine the net effect of breakup on the drop size distribution N(m,t).
The net rate of production of drops of mass m by breakup implied by these
functions is

3.2 Microphysics of Cold Clouds

3.2.1 Homogeneous Nucleation of Ice Particles

Ice particles in clouds may be nucleated from either the liquid or vapor phase.
Homogeneous nucleation of ice from the liquid phase is analogous to nucleation of
drops from the vapor phase. An embryonic ice particle can be considered a
polyhedron of volume (Xi 411" R3/3 and surface area f3i 411" R2, where R is the radius of
a sphere that can just be contained within the polyhedron, and (Xi and f3i are both
greater than unity but approach unity as the polyhedron tends toward a spherical
shape. By reasoning analogous to that leading to (3.3), the expression for the
critical radius Rei of the inscribed sphere is

2{3,(1,/
R, = I I

Cl a i nikBTln( eS/eSi)

where (Til is the free energy of an ice-liquid interface, n, is the number of mole-
cules per unit volume of ice, and e« is the saturation vapor pressure with respect
to a plane surface of ice. The saturation vapor pressures of liquid and ice in the
denominator and the free energy in the numerator are all functions of temperature.
The critical radius is thus a function of temperature.

Theoretical and empirical results indicate that homogeneous nucleation of liq-
uid water occurs at temperatures lower than about -35 to -40°C, depending
somewhat on the size of the drops being subjected to the low temperature.P This
threshold lies within the range of temperatures in natural clouds, which may have
cloud-top temperatures below -80°C. It is therefore possible, in a natural cloud,
to have unfrozen liquid (i.e., supercooled) drops in the temperature range ofO°C
to about -40°C. However, wherever the temperature in the cloud is below about
-40°C, any liquid drops that happen to be present freeze spontaneously by homo-
geneous nucleation. This conclusion is consistent with the fact that at tempera-

55 Larger drops freeze homogeneously at slightly higher temperatures than smaller ones (Rogers
and Yau, 1989, p. 151).




