Ch. 2 Section 1.

Theorem 2.1.10.

(i) $n^+ = 1 + n, \forall n \in \mathbb{N}$.

Proof:

Suppose that $L = \{n \in \mathbb{N} | n^+ = 1 + n\}$. Then we will prove that *L* is successor subset of \mathbb{N} .

(i) To prove $0 \in L$.

 $0^+ = 1 = 1 + 0$ (Def. of +)

 $\rightarrow 0 \in L$.

(ii) Let $k \in L$. To prove that $k^+ \in L$.

 $1 + k^{+} = (1 + k)^{+}$ (Def. of +) = $(k^{+})^{+}$ (Since $k \in L$)

 $\longrightarrow k^+ \in L.$

Thus, L is a successor subset of N. Therefore, by P_5 we get that $L = \mathbb{N}$.

(i)
$$n = 1 \cdot n, \forall n \in \mathbb{N}$$
.

Proof:

Suppose that $L = \{n \in \mathbb{N} | n = 1 \cdot n\}$, Then we will prove that *L* is successor subset of N.

(i) To prove $0 \in L$.

 $0 = 1 \cdot 0 \qquad (\text{ Def. of } \cdot)$

 $\rightarrow 0 \in L.$

(ii) Let $k \in L$. To prove that $k^+ \in L$.

 $1 \cdot k^+ = 1 + 1 \cdot k \qquad (\text{Def. of } \cdot)$

= 1 + k	(Since $k \in L$)
$=k^+$	(Properties of successor)
$\rightarrow k^+ \in L.$	

Thus, L is a successor subset of N. Therefore, by P_5 we get that $L = \mathbb{N}$.

(iii) $n + m = m + n, \forall n, m \in \mathbb{N}$.

(Commutative property of +)

Proof:

Suppose that $L_m = \{n \in \mathbb{N} | m + n = n + m\}, m \in \mathbb{N}$. Then we will prove that L_m is successor subset of \mathbb{N} .

(i) To prove $0 \in L_m$.

$$m + 0 = 0 = 0 + m$$

$$\rightarrow 0 \in L_m.$$
(ii) Let $k \in L_m$. To prove that $k^+ \in L_m$.

$$m + k^+ = (m + k)^+ \quad (Def. of +)$$

$$= (k + m)^+ \quad (Since \ k \in L_m)$$

$$= 1 + (k + m) \quad (Properties of successor)$$

$$= (1 + k) + m \quad (Asso. law of +)$$

$$= k^+ + m \quad (Properties of successor)$$

Thus, $k^+ \in L_m$; that is, L_m is a successor subset of N. Therefore, by \mathbf{P}_5 we get that $L_m = \mathbb{N}$.

(iv) (Distributive property of \cdot on + from right)

$$(n+m) \cdot c = n \cdot c + m \cdot c, \forall n, m, c \in \mathbb{N}.$$

Proof:

Suppose that $L_{mn} = \{c \in \mathbb{N} | (n+m) \cdot c = n \cdot c + m \cdot c\}, m, n \in \mathbb{N}$. Then we will prove that L_{mn} is successor subset of \mathbb{N} .

Dr. Bassam and Dr. Emad

(i) To prove $0 \in L_{mn}$. $(n+m) \cdot 0 = 0 = 0 + 0 = n \cdot 0 + m \cdot 0$ $\rightarrow 0 \in L_{mn}$ (Def. of L_{mn}) (ii) Let $c \in L_{mn}$. To prove that $c^+ \in L_{mn}$. $(n+m) \cdot c^+ = (n+m) + (n+m) \cdot c$ (Def. of +) $= (n+m) + (n \cdot c + m \cdot c)$ (Since $c \in L_{mn}$) $= (n+n \cdot c) + (m+m \cdot c)$ (Asso. law and comm. law of +) $= n \cdot c^+ + m \cdot c^+$ (Def. of \cdot) $\rightarrow c^+ \in L_{mn}$ (Def. of L_{mn})

(ix) (Cancellation Law for +). m + c = n + c, for some $c \in \mathbb{N} \Leftrightarrow m = n$. **Proof:**

(i) If m + c = n + c, for some $c \in \mathbb{N} \Longrightarrow m = n$.

Suppose that $L_{mn} = \{n \in \mathbb{N} | m + c = n + c \Longrightarrow m = n\}, m, n \in \mathbb{N}$. Then we will prove that L_{mn} is successor subset of \mathbb{N} . (a) To prove $0 \in L_{mn}$.

If $m + 0 = n + 0 \rightarrow n = m$ $\rightarrow 0 \in L_{mn}$ (Def. of L_m) (b) Let $c \in L_{mn}$. To prove that $c^+ \in L_{mn}$. Let $m + c^+ = n + c^+$ $(m + c)^+ = (n + c)^+$ (Def. of +) $\rightarrow m + c = n + c$ (By P₄) $\rightarrow m = n$ (Since $k \in L_{mn}$)

Thus, $k^+ \in L_{mn}$; that is, L_{mn} is a successor subset of N. Therefore, by \mathbf{P}_5 we get that $L_{mn} = \mathbb{N}$.

(ii) If m = n then m + c = n + c, for some $c \in \mathbb{N}$.

Theorem 2.1.14:

(vi) (Cancellation Law for \cdot). $m \cdot c = n \cdot c$, for some $c \neq 0 \in \mathbb{N} \implies m = n$. Proof: Suppose $m \cdot c = n \cdot c$, for some $c \neq 0 \in \mathbb{N}$.

If $m \neq n$, then by Trichotomy Theorem either m < n or n < m.

If m < n, then $\exists k \neq 0 \in \mathbb{N}$ such that n = m + k. (Def. of <)

 $n \cdot c = (m+k) \cdot c$

 $n \cdot c = m \cdot c + (k \cdot c)$ (Dist. Law of \cdot on + from right)

(Since $k \neq 0$ and $c \neq 0$)

(Def. of <)

But $k \cdot c \neq 0$

 $m \cdot c < n \cdot c$

Therefore, $m \cdot c = n \cdot c$ and $m \cdot c < n \cdot c$.

This is contradicted with Trichotomy Theorem. Therefore, m = n.

(vii)If $m \cdot n = 0$, then either m = 0 or $n = 0, \forall m, n \in \mathbb{N}$. (N has no zero divisor) **Proof:**

We will prove this statement by contra positive law. So the equivalent statement is

If $n \neq 0$ and $m \neq 0$, then $m \cdot n \neq 0$.Suppose that $m \cdot n = 0$. If $n \neq 0$, then we will prove that m = 0. $\exists k \in \mathbb{N}$ such that $n = k^+$ (Since $n \neq 0$) $0 = m \cdot n = m \cdot k^+ = m + m \cdot k$ (Def. of \cdot) $= m \cdot k + m$ (Comm. law of +)If $m \neq 0$, then $m \cdot k < 0$ (Def. of <)</td>

This is contradiction (C!) since $m \cdot k \in \mathbb{N}$ and no natural number less than 0.

Therefore, $m \cdot n \neq 0$.

Another proof.

We will prove the equivalent statement that: if $n \neq 0$ and $m \neq 0$, then $m \cdot n \neq 0$. Assume that $m \cdot n = 0$ $\rightarrow m \cdot n = m \cdot 0$ (Def. of \cdot) $\rightarrow n = 0$ (Cancellation law of \cdot) $\rightarrow \text{Contradiction since } m \neq 0$. $\rightarrow \therefore m \cdot n \neq 0$.

Theorem: $m + k < n + k \Rightarrow m < n$, for all $m, n, k \in \mathbb{N}$.

Proof:

 $\begin{array}{ll} m+k < n+k \rightarrow \exists l \neq 0 \in \mathbb{N} \text{ such that } n+k = (m+k)+l. \text{ (Def. of <)} \\ n+k = m+(k+l) & (Asso. law of +) \\ n+k = (m+l)+k & (Comm. law of +) \\ n+k = (m+l)+k & (Asso. law of +) \\ n = m+l & (Cancellation law of +) \\ m < n & (Since l \neq 0 \text{ and Def. of <)} \end{array}$