Multimedia
Module No: CM0340

© A. D. Marshall 2002

Part 1

Introduction to Multimedia

About This Course

Aims of Module

To give students a broad grounding in issue surrounding multimedia, including
the role of and design of multimedia Systems which incorporate digital audio,
graphics and video, underlying concepts and representations of sound, pictures
and video, data compression and transmission, integration of media, multimedia
authoring, and delivery of multimedia.

Objectives of Module

Students should be able to:

e Understand the relevance and underlying infrastructure of the multimedia
systems.

e Understand core multimedia technologies and standards (Digital Audio,
Graphics, Video, VR, data transmission/compression)

e Be aware of factors involved in multimedia systems performance, integra-
tion and evaluation

Syllabus Outline

Topics in the module include the following:

1. Introduction: Multimedia applications and requirements (e.g., overview of
multimedia systems, video-on-demand, interactive television, video confer-
encing, hypermedia courseware, groupware, World Wide Web, and digital
libraries).

2. Audio/Video fundamentals including analog and digital representations,
human perception, and audio/video equipment, applications.

3. Audio and video compression including perceptual transform coders for
images/video (e.g., JPEG, MPEG, H.263, etc.), scalable coders (e.g., pyra-
mid coders), and perceptual audio encoders. Application and performance

2

4.

comparison of various coding algorithms including hardware/software trade-
offs. Image and video processing applications and algorithms.

Multimedia Programming Frameworks: Java for Quicktime, Java Media
Framework

Recommended Course Books

The following book is the core text for this module:

Multimedia Communications: Applications, Networks, Protocols and Stan-
dards, Fred Halsall, Addison Wesley, 2000 (ISBN 0-201-39818-4)

OR

Networked Multimedia Systems, Raghavan and Tripathi, Prentice Hall,
(ISBN 0-13-210642)

The following books are highly recommended reading:

Hypermedia and the Web: An Engineering Approach, D. Lowe and W.
Hall, J. Wiley and Sons, 1999 (ISBN 0-471-98312-8).

Multimedia Systems, J.F.K, Buford, ACM Press, 1994 (ISBN 0-201-53258-
1).

Understanding Networked Multimedia, Fluckiger, Prentice Hall, (ISBN
0-13-190992-4)

Design for Multimedia Learning, Boyle, Prentice Hall, (ISBN 0-13-242215-
8)

Distributed Multimedia:Technologies, Applications, and Opportunities in
the Digital Information Industry (1st Edition) P.W. Agnew and A.S.
Kellerman , Addison Wesley, 1996 (ISBN 0-201-76536-5)

Multimedia Communication, Sloane, McGraw Hill, (ISBN 0-077092228)

Virtual Reality Systems, J. Vince, Addison Wesley, 1995 (ISBN 0-201-
87687-6)

Encyclopedia of Graphics File Formats, Second Edition by James D. Mur-
ray and William vanRyper, O’Reilly & Associates, 1996 (ISBN: 1-56592-
161-5)

The following provide good reference material for parts of the module:
Multimedia Systems

Hyperwave:The Next Generation Web Solution, H. Maurer, Addison Wes-
ley, 1996 (ISBn 0-201-40346).

Digital Audio

e A programmer’s Guide to Sound, T. Kientzle, Addison Wesley, 1997
(ISBN 0-201-41972-6)

Audio on the Web — The official IUMA Guide, Patterson and Melcher,
Peachpit Press.

The Art of Digital Audio, Watkinson, Focal/Butterworth-Heinmann.

Synthesiser Basics, GPI Publications.

Signal Processing: Principles and Applications, Brook and Wynne, Hod-
der and Stoughton.

Digital Signal Processing, Oppenheim and Schafer, Prentice Hall.
Digital Imaging/Graphics/Video
e Digital video processing, A.M. Tekalp, Prentice Hall PTR, 1995.

e Intro. to Computer Pictures, hittp://ac.dal.ca:80/ dong/image.htm from
Allison Zhang at the School of Library and Information Studies, Dalhousie
University, Halifax, N.S., Canada

e hitp://www.cica.indiana.edu/graphics/image.formats.html contains a com-
prehensive list of various graphics/image file formats.

e Encyclopedia of Graphics File Formats, Second Edition by James D. Mur-
ray and William vanRyper, 1996, O'Reilly & Associates.

Data Compression

e The Data Compression Book, Mark Nelson,M&T Books, 1995.

Introduction to Data Compression, Khalid Sayood, Morgan Kaufmann,
1996.

e G.K. Wallace, The JPEG Still Picture Compression Standard

CCITT, Recommendation H.261

D. Le Gall, MPEG: A Video Compression Standard for Multimedia Ap-
plications

o K. Patel, et. al., Performance of a Software MPEG Video Decoder

e P. Cosman, et. al., Using Vector Quantization for Image Processing
Animation

e Animation on the Web, S. Wagstaff, Peachpit Press, 1999 (ISBN 0-201-
69687)

Multimedia Authoring

e Creating and Designing Multimedia with Director, P. Petrik and B. Dubrovsky,
Prentice Hall, 1997 (ISBN 0-13-528985-8)

User Interface Design Issues

e Human Computer Interaction, A. Dix et al, Printice Hall, 1998 (ISBN
0-13-239864)

e Designing the User Interface , B. Schneiderman, Addison Wesley, 1998
(ISBN 0-201-694497)

e Human Computer Interaction, Preece et al, Addison Wesley, 1994, 0-201-
62769-8)

Multimedia Databases

e Multimedia Database Management Systems, B Prbhakaran, Kluwer, 1997,
(ISBN 0-7923-9784-3).

Internet/WWW related Books
Teach Yourself Web Publishing with HTML 3.2 in 14 Days, Laura
Lemay, Sams.Net Publishing.

The Internet Unleashed, J. Ellsworth, B. Baron, et al., Sams.Net Pub-
lishing
WWW, Internet in General

The Internet Complete Reference(2nd Ed.), H. Hahn, McGraw-Hill

Webmaster in a Nutshell, S. Spainhour and V. Quercia, O’Reilly and
Associates Inc.

Every Student’s Guide to the World Wide Web, K. Pitter and R.
Minato, McGraw Hill

Every Student’s Guide to the World Wide Web (Macintosh Ver-
sion),K. Pitter and R. Minato, McGraw Hill

Internet — Theory and Practice
Demystifying TCP/IP, E. Taylor, Wordware Publishing Inc.
HTML BOOKS:

HTML Sourcebook, I.5. Graham, Wiley and Sons

HTML: The Definitive Guide, C. Musciano and B. Kennedy, O’Reilly
and Associates Inc.

CGI Scripts / Perl Programming BOOKS:

Teach Yourself CGI Programming with Perl 5 in a Week, FE.
Herrmann, Sams.Net

CGI Developer’s Guide, E.E. Kim, Sams.Net

CGI Programming on the World Wide Web, S. Gundavaram, O’Reilly
and Associates Inc.

Learning Perl, R.L. Schwartz, O’Reilly and Associates Inc.

Programming Perl, L. Wall, T. Christiansen and R.L. Schwartz, O’Reilly
and Associates Inc.

Perl 5 Desktop Reference, J. Vromans, O'Reilly and Associates Inc.
WWW Design Issues BOOKS:

Designing with Style Sheets, Tables, and Frames, M.E. Holzschlag,
Sams.Net

HTML Style Sheets Quick Reference, R. Falla, Que
10 Minute Guide to HTML Style Sheets, C. Zacker, Que

Teach Yourself Great Web Design in a Week, A. Vasquez-Peterson
and P. Chow, Sams.Net

Designing for the Web, Jennifer Niederst, O’'Reilly and Associates

GIF Animation Studio: Animating Your Web Site, R. Koman,
O’Reilly and Associates

A comprehensive guide to all Internet related books is available at
the Unofficial Internet Book List WWW site (URL: hitp://www.savetz.com/booklist/)

Chapter 1

Introduction

1.1 History of Multimedia Systems

Newspaper were perhaps the first mass communication medium to employ Mul-
timedia — they used mostly text, graphics, and images.

In 1895, Gugliemo Marconi sent his first wireless radio transmission at Pon-
tecchio, Italy. A few years later (in 1901) he detected radio waves beamed across
the Atlantic. Initially invented for telegraph, radio is now a major medium for
audio broadcasting.

Television was the new media for the 20th century. It brings the video and
has since changed the world of mass communications.

Some of the important events in relation to Multimedia in Computing in-
clude:

e 1945 - Bush wrote about Memex

e 1967 - Negroponte formed the Architecture Machine Group at MIT

e 1969 - Nelson & Van Dam hypertext editor at Brown

e Birth of The Internet

e 1971 - Email

e 1976 - Architecture Machine Group proposal to DARPA: Multiple Media
e 1980 - Lippman & Mohl: Aspen Movie Map

e 1983 - Backer: Electronic Book

e 1985 - Negroponte, Wiesner: opened MIT Media Lab

e 1989 - Tim Berners-Lee proposed the World Wide Web to CERN (Euro-
pean Council for Nuclear Research)

e 1990 - K. Hooper Woolsey, Apple Multimedia Lab, 100 people, educ.

7

CHAPTER 1. INTRODUCTION 8

1991 - Apple Multimedia Lab: Visual Almanac, Classroom MM Kiosk
e 1992 - the first M-bone audio multicast on the Net

e 1993 - U. Illinois National Center for Supercomputing Applications: NCSA
Mosaic

e 1994 - Jim Clark and Marc Andreesen: Netscape

e 1995 - JAVA for platform-independent application development. Duke is
the first applet.

e 1996 - Microsoft, Internet Explorer.

1.2 Multimedia/Hypermedia

1.2.1 What is Multimedia?

Multimedia can have a many definitions these include:

Multimedia means that computer information can be represented through
audio, video, and animation in addition to traditional media (i.e., text, graphics
drawings, images).

A good general definition is:

Multimedia is the field concerned with the computer-controlled integration
of text, graphics, drawings, still and moving images (Video), animation, audio,
and any other media where every type of information can be represented, stored,
transmitted and processed digitally.

A Multimedia Application is an Application which uses a collection of mul-
tiple media sources e.g. text, graphics, images, sound/audio, animation and/or
video.

Hypermedia can be considered as one of the multimedia applications.

1.2.2 What is HyperText and HyperMedia?

Hypertext is a text which contains links to other texts. The term was invented
by Ted Nelson around 1965.

Hypertext is therefore usually non-linear (as indicated below).

HyperMedia is not constrained to be text-based. It can include other media,
e.g., graphics, images, and especially the continuous media — sound and video.
Apparently, Ted Nelson was also the first to use this term.

The World Wide Web (WWW) is the best example of hypermedia applica-
tions.

1.3 Multimedia Systems

A Multimedia System is a system capable of processing multimedia data and
applications.

CHAPTER 1. INTRODUCTION 9

Normal Text

Figure 1.1: Illustration of Hypertext Links

A Multimedia System is characterised by the processing, storage, generation,
manipulation and rendition of Multimedia information.

1.3.1 Characteristics of a Multimedia System
A Multimedia system has four basic characteristics:

e Multimedia systems must be computer controlled.

e Multimedia systems are integrated.

e The information they handle must be represented digitally.

e The interface to the final presentation of media is usually interactive.

1.3.2 Challenges for Multimedia Systems

Supporting multimedia applications over a computer network renders the ap-
plication distributed. This will involve many special computing techniques —
discussed later.

Multimedia systems may have to render a variety of media at the same
instant — a distinction from normal applications. There is a temporal relation-
ship between many forms of media (e.g. Video and Audio. There 2 are forms
of problems here

e Sequencing within the media — playing frames in correct order/time frame
in video

CHAPTER 1. INTRODUCTION 10

HyperText

HyperText is Content table-
non-linear like views =
documents. By such as the
clicking on #2f one at the left
spots® in the are provided.
text The reader Navigation in

is immediately the document is

transported to by hot spots or
related material “gveryview” =

in the document. mechanisms.

Figure 1.2: Definition of Hypertext

e Synchronisation — inter-media scheduling (e.g. Video and Audio). Lip
synchronisation is clearly important for humans to watch playback of video
and audio and even animation and audio. Ever tried watching an out of
(lip) sync film for a long time?

The key issues multimedia systems need to deal with here are:

e How to represent and store temporal information.
e How to strictly maintain the temporal relationships on play back/retrieval

e What process are involved in the above.

Data has to represented digitally so many initial source of data needs to be
digitise — translated from analog source to digital representation. The will in-
volve scanning (graphics, still images), sampling (audio/video) although digital
cameras now exist for direct scene to digital capture of images and video.

The data is large several Mb easily for audio and video — therefore storage,
transfer (bandwidth) and processing overheads are high. Data compression
techniques very common.

1.3.3 Desirable Features for a Multimedia System

Given the above challenges the following feature a desirable (if not a prerequi-
site) for a Multimedia System:

Very High Processing Power — needed to deal with large data processing
and real time delivery of media. Special hardware commonplace.

CHAPTER 1. INTRODUCTION 11

Graphics

Figure 1.3: Definition of HyperMedia

Multimedia Capable File System — needed to deliver real-time media —
e.g. Video/Audio Streaming. Special Hardware/Software needed e.g
RAID technology.

Data Representations/File Formats that support multimedia — Data
representations/file formats should be easy to handle yet allow for com-
pression/decompression in real-time.

Efficient and High I/O — input and output to the file subsystem needs to
be efficient and fast. Needs to allow for real-time recording as well as
playback of data. e.g. Direct to Disk recording systems.

Special Operating System — to allow access to file system and process data
efficiently and quickly. Needs to support direct transfers to disk, real-time
scheduling, fast interrupt processing, I/O streaming etc.

Storage and Memory — large storage units (of the order of 50 -100 Gb or
more) and large memory (50 -100 Mb or more). Large Caches also required
and frequently of Level 2 and 3 hierarchy for efficient management.

Network Support — Client-server systems common as distributed systems
common.
Software Tools — user friendly tools needed to handle media, design and

develop applications, deliver media.

CHAPTER 1. INTRODUCTION 12

1.3.4 Components of a Multimedia System

Now let us consider the Components (Hardware and Software) required for a
multimedia system:

Capture devices — Video Camera, Video Recorder, Audio Microphone, Key-
boards, mice, graphics tablets, 3D input devices, tactile sensors, VR de-
vices. Digitising/Sampling Hardware

Storage Devices — Hard disks, CD-ROMs, Jaz/Zip drives, DVD, etc

Communication Networks — Ethernet, Token Ring, FDDI, ATM, Intranets,
Internets.

Computer Systems — Multimedia Desktop machines, Workstations, MPEG/VIDEO/DSP
Hardware

Display Devices — CD-quality speakers, HDTV ,SVGA, Hi-Res monitors, Colour
printers etc.

1.4 Applications
Examples of Multimedia Applications include:

e World Wide Web

e Hypermedia courseware

e Video conferencing

e Video-on-demand

e Interactive TV

e Groupware

e Home shopping

o Games

e Virtual reality

e Digital video editing and production systems

e Multimedia Database systems

CHAPTER 1. INTRODUCTION 13

1.5 Trends in Multimedia

Current big applications areas in Multimedia include:

World Wide Web — Hypermedia systems — embrace nearly all multimedia
technologies and application areas. Ever increasing popularity.

MBone — Multicast Backbone: Equivalent of conventional TV and Radio on
the Internet.

Enabling Technologies — developing at a rapid rate to support ever increas-
ing need for Multimedia. Carrier, Switching, Protocol, Application, Cod-
ing/Compression, Database, Processing, and System Integration Tech-
nologies at the forefront of this.

1.6 Further Reading/Exploration

Try some good sources for locating internet multimedia examples on the Internet
For example:

e WebMuseum, Paris — http://metalab.unc.edu/wm/

e Audio Net — http://www. audionet.com/

BBC Web Site — http://www.bbc.co.uk

Index of Multimedia Information —- http://viswiz.gmd.de/Multimedialnfo/
Sources

Part 11

Multimedia Authoring

14

Chapter 2

Multimedia
Authoring:Systems and
Applications

2.1 What is an Authoring System?

An Authoring System is a program which has pre-programmed elements for the
development of interactive multimedia software titles. Authoring systems vary
widely in orientation, capabilities, and learning curve. There is no such thing (at
this time) as a completely point-and-click automated authoring system; some
knowledge of heuristic thinking and algorithm design is necessary. Whether you
realize it or not, authoring is actually just a speeded-up form of programming;
you don’t need to know the intricacies of a programming language, or worse, an
API, but you do need to understand how programs work.

2.1.1 Why should you use an authoring system?

It generally takes about 1/8th the time to develop an interactive multimedia
project, such as a CBT (Computer Based Training) program, in an authoring
system as opposed to programming it in compiled code. This means 1/8 the cost
of programmer time and likely increased re-use of code (assuming that you pass
this project’s code to the next CBT project, and they use a similar or identical
authoring system). However, the content creation (graphics, text, video, audio,
animation, etc.) is not generally affected by the choice of an authoring system;
any production time gains here result from accelerated prototyping, not from
the choice of an authoring system over a compiled language.

15

CHAPTER 2. MULTIMEDIA AUTHORING:SYSTEMS AND APPLICATIONS16

2.2 Multimedia Authoring Paradigms

The authoring paradigm, or authoring metaphor, is the methodology by which
the authoring system accomplishes its task.
There are various paradigms, including:

Scripting Language — the Scripting paradigm is the authoring method clos-
est in form to traditional programming. The paradigm is that of a pro-
gramming language, which specifies (by filename) multimedia elements,
sequencing, hotspots, synchronization, etc. A powerful, object-oriented
scripting language is usually the centerpiece of such a system; in-program
editing of elements (still graphics, video, audio, etc.) tends to be mini-
mal or non-existent. Scripting languages do vary; check out how much the
language is object-based or object-oriented. The scripting paradigm tends
to be longer in development time (it takes longer to code an individual
interaction), but generally more powerful interactivity is possible. Since
most Scripting languages are interpreted, instead of compiled, the run-
time speed gains over other authoring methods are minimal. The media
handling can vary widely; check out your system with your contributing
package formats carefully.

The Apple’s HyperTalk for HyperCard, Assymetrix’s OpenScript for Tool-
Book and Lingo scripting language of Macromedia Director are examples
of a Multimedia scripting language.

Here is an example lingo script to jump to a frame
global gNavSprite

on exitFrame

go the frame

play sprite gNavSprite
end

Iconic/Flow Control — This tends to be the speediest (in development
time) authoring style; it is best suited for rapid prototyping and short-
development time projects. Many of these tools are also optimized for
developing Computer-Based Training (CBT). The core of the paradigm is
the Icon Palette, containing the possible functions/interactions of a pro-
gram, and the Flow Line, which shows the actual links between the icons.
These programs tend to be the slowest runtimes, because each interaction
carries with it all of its possible permutations; the higher end packages,
such as Authorware (Fig. 2.1)or IconAuthor, are extremely powerful and
suffer least from runtime speed problems.

Frame — The Frame paradigm is similar to the Iconic/Flow Control paradigm
in that it usually incorporates an icon palette; however, the links drawn
between icons are conceptual and do not always represent the actual flow

CHAPTER 2. MULTIMEDIA AUTHORING:SYSTEMS AND APPLICATIONS17

hwhd Demo File

I Lewvel 1
Made w'ith Macromedia k

u Intro

Macintozh color screen

Macintosh white screen

&

Macintosh color screen

Lewel 2

| =]

E 0On caolor screen
2] rtwet togo on color
%]

el

Fick a color, any colar | red

:};j E:SHD.W

Made With Macromedia="~————D0I 85|

Entry: Lewvel 1
Mavigation h link
7 ;\Ea:lhon_yuper ke Previous page
v %_7 %‘7 Mext page
Quit

Exit: Level 1

Figure 2.1: Macromedia Authorware Iconic/Flow Control Examples

CHAPTER 2. MULTIMEDIA AUTHORING:SYSTEMS AND APPLICATIONS18

of the program. This is a very fast development system, but requires a
good auto-debugging function, as it is visually un-debuggable. The best
of these have bundled compiled-language scripting, such as Quest (whose
scripting language is C) or Apple Media Kit.

Card/Scripting — The Card/Scripting paradigm provides a great deal of
power (via the incorporated scripting language) but suffers from the index-
card structure. It is excellently suited for Hypertext applications, and
supremely suited for navigation intensive (a la Cyan’s "MYST” game)
applications. Such programs are easily extensible via XCMDs and DLLs;
they are widely used for shareware applications. The best applications
allow all objects (including individual graphic elements) to be scripted;
many entertainment applications are prototyped in a card/scripting sys-
tem prior to compiled-language coding.

Cast/Score/Scripting — The Cast/Score/Scripting paradigm uses a music
score as its primary authoring metaphor; the synchronous elements are
shown in various horizontal tracks with simultaneity shown via the vertical
columns. The true power of this metaphor lies in the ability to script the
behavior of each of the cast members. The most popular member of this
paradigm is Director, which is used in the creation of many commercial
applications. These programs are best suited for animation-intensive or
synchronized media applications; they are easily extensible to handle other
functions (such as hypertext) via XOBJs, XCMDs, and DLLs.

Macromedia Director uses this method and examples can be found in

Figs 2.2— 2.4
=———————lingo_frameReady Score=——~————————0H
e Hlwl)s ElE_ @]| [l
Serip
3 — | wll e 4 L = =1 P | . e X
[2] « T » |7 start 701 8|
d. = [ETT . . . [. |
Me.. | 2]l 5 10 15 20 25 30 Hs 40 45 50 55] 65 |4
16 [061 Cast window -1 061 :Cast window L:

17 |O&Feet:Solid,nobad 06 :Rect: Solid, no border
18 |CéRect:Sold, bl O6:Rect: Solid, no border
19

o 49:5eript—1

2% |021Flash:Server[] O21:Flash: Server ||
24 |06 Rect:Solid,nobord [l O6 Rect: Solid, no border O6 Rect: Splid, no border —O 25 Data bit bop:vertic)

[T T 16T« mp 7

o | 00 S
R
=}

Figure 2.2: Macromedia Director Score Window

Hierarchical Object — The Hierarchical Object paradigm uses a object metaphor
(like OOP) which is visually represented by embedded objects and iconic
properties. Although the learning curve is non-trivial, the visual repre-
sentation of objects can make very complicated constructions possible.

CHAPTER 2. MULTIMEDIA AUTHORING:SYSTEMS AND APPLICATIONS19

Internal Cast

| 4 I » | IDIMo\rie handlers fNavigation

e .. vl)

|

F1 Goore M2 Soore 95 T1ask ¢ 44 Goore H5 Goore 96 Soore 7 Soore A5 POInt 43 :Scrip-t S0 :Scrip-t
|£ Ié'i =rd il
51 :Seript 52 :Script 53 Sprite 54 55 56 57 58 59 &0 -
1] [» |z
Figure 2.3: Macromedia Director Cast Window
[0 == Movie 5cript ZMovie handlers/Navigation "= 0 B

|-|- | 4 |] | [EI_IMovie handlersa"l"la\rig| | 2 Internal -
[close'w'indow i] |Ei:|‘.‘—_.—| |L‘: |O|::|

global gHawvigationStatus, glabelPropertylist, gHovSprite, ghoEntd o

== MIAH handlers @

-= Mowvie in a Hindow handling script

on openHindow
—— Set the window type of the MiaH for the Show Me mouvies.
if the windowType of the activedindow <@ 4 then
set the windowType off the actiuvellindow to 4
—= parse window nome-ey stripping of f the .dir extension
windowTitle = char 1 to Cthe number of chars in the mouvieMam
set the title of the activelindow to windowTitle
end if
end

4 i I

S

Figure 2.4: Macromedia Director Script Window

CHAPTER 2. MULTIMEDIA AUTHORING:SYSTEMS AND APPLICATIONS20

Hypermedia Linkage — The Hypermedia Linkage paradigm is similar to the
Frame paradigm in that it shows conceptual links between elements; how-
ever, it lacks the Frame paradigm’s visual linkage metaphor.

Tagging — The Tagging paradigm uses tags in text files (for instance, SGML/HTML,
SMIL (Synchronised Media Integration Language), VRML, 3DML and
WinHelp) to link pages, provide interactivity and integrate multimedia
elements.

2.3 Multimedia Programming vs Multimedia Au-
thoring

It should be noted that a distinction should be made between Programming and
Authoring.

Authoring involves the assembly and bringing togther of Multimedia with
possiby high level graphical interface design and some high level scripting.

Programming involves low level assembly and construction and control of
Multimedia and involves real languages like C and Java.

Later in this course will will study Java programming in Quicktime and the
Java Media Framework.

Quicktime may also be programmed in C.

2.4 Issues in Multimedia Applications Design

There are various issues in Multimedia authoring below we summarise issues
involved in Multimedia content and technical design.

2.4.1 Content Design

Content design deals with:
e What to say, what vehicle to use.

”In multimedia, there are five ways to format and deliver your message. You
can write it, illustrate it, wiggle it, hear it, and interact with it.”

2.1.1 Scripting (writing)
Rules for good writing:
1. Understand your audience and correctly address them.

2. Keep your writing as simple as possible. (e.g., write out the full message(s)
first, then shorten it.)

3. Make sure technologies used complement each other.

CHAPTER 2. MULTIMEDIA AUTHORING:SYSTEMS AND APPLICATIONS21

2.1.2 Graphics (illustrating)

e Make use of pictures to effectively deliver your messages.

)

e Create your own (draw, (color) scanner, PhotoCD, ...), or keep ”copy files’
of art works. — ”Cavemen did it first.”

Graphics Styles

e fonts
e colors

— pastels

— earth-colors
— metallic

— primary color

— neon color

2.1.3 Animation (wiggling)
1. Types of Animation

e Character Animation — humanise an object
e.g., a toothbrush, a car, a coke bottle, etc.
Factors in choosing a character

— Emotion — Is it happy, sad, funny, sloppy, ...7
— Movement — Is it fast, slow, bumpy, ...7
— Visual style — Is its color/texture consistent with the rest?
— Copyright — ”Don’t use Mickey before checking with Walt.”
— Adequacy — e.g., Does it provide various poses (can’t make a
broomstick sit!)
e Highlights and Sparkles
e.g., to pop a word in/out of the screen, to sparkle a logo
—> to draw attention

o Moving Text
e.g., put up one character at a time like a typewriter e.g., ”pulsing”
— the word grows/shrinks (or changes color) a few times
Note: Do not slowly move entire line of text, they are not readable.
Instead, for example, slide the bullets in and out.
e Video — live video or digitized video
+: more powerful than still images
+: often easier to obtain than graphics animation
-: takes a lot of disk space

-: sometimes needs special hardware

CHAPTER 2. MULTIMEDIA AUTHORING:SYSTEMS AND APPLICATIONS22

2. When to Animate

” A leaf doesn’t flutter if the wind doesn’t blow.” Only animate when it
has a specific purpose

e Enhance emotional impact
e.g., dove softly flapping its wings —> peace
e.g., air bag explosion + dummy movements —> car crash.
e Make a point
e.g., show insertion of a memory chip onto the motherboard (much
better than a diagram) e.g., Microsoft Golf (instructional)
e Improve information delivery

e.g., "pulsing” words (in and out of screen) adds emphasis

e Indicate passage of time
e.g., clock/hourglass —> program still running e.g., animated text —>
to prompt for interaction/response

e Provide a transition to next subsection

— Wipes — e.g., L-to-R, T-D, B-U, diagonal, iris round, center to
edge, etc.

— Dissolve — the current image distorts into an unrecognizable form
before the next clear image appears, e.g., boxy dissolve, cross
dissolve, etc.

— Fade — a metaphor for a complete change of scene

— Cut — immediate change to next image, e.g., for making story
points using close-up ** Cuts are easy to detect in ”video seg-
mentation”

2.1.4 Audio (hearing)

Types of Audio in Multimedia Applications:

1. Music — set the mood of the presentation, enhance the emotion, illustrate
points

2. Sound effects — to make specific points, e.g., squeaky doors, explosions,
wind, ...

3. Narration — most direct message, often effective

2.1.5 Interactivity (interacting)

e interactive multimedia systems!

e people remember 70% of what they interact with (according to late 1980s
study)

CHAPTER 2. MULTIMEDIA AUTHORING:SYSTEMS AND APPLICATIONS23

Types of Interactive Multimedia Applications:

1.

Menu driven programs/presentations

— often a hierarchical structure (main menu, sub-menus, ...)

Hypermedia

+: less structured, cross-links between subsections of the same subject —>
non-linear, quick access to information

+: easier for introducing more multimedia features, e.g., more interesting
”buttons”

-: could sometimes get lost in navigating the hypermedia

Simulations / Performance-dependent Simulations

—e.g., Games — SimCity, Flight Simulators

2.4.2 Technical Design

Technologicical factors may limit the ambition of your mutlimedia presentation:

e Technical parameters that affect the design and delivery of multimedia

applications

Video Mode Resolution Colors

CGA 320 x 200 4

MCGA 320 x 200 256

EGA 640 x 350 16

VGA 640 x 480 256

S-VGA 1,024 x 768 $>$= 256
S-VGA 1,280 x 1,024 $>%= 256

16-bit color --$>$ 65536 colors

24-bit color --$>$ 16.7 million colors

1.

Video Mode and Computer Platform
PC <—> Macintosh

7N

There are many ”portable”, ” cross-platform” software and ”run-time mod-
ules”, but many of them lose quality /performance during the translation.
Memory and Disk Space Requirement

Rapid progress in hardware alleviates the problem, but software is too
7greedy”, especially the multimedia ones.

CHAPTER 2. MULTIMEDIA AUTHORING:SYSTEMS AND APPLICATIONS24

3. Delivery

e Live Presentation
Short checking list for hardware/software requirements:
— type of graphics card
— video memory (1 MB, 2 MB, 4 MB, etc.)
— access time of hard disk (important for real-time video)
— type of sound card (support for General MIDI)
— audio-video software
e Delivery by diskette
-: Small in size, slow to install
e Delivery by CD-ROM
+: Large capacity
-: Access time of CD-ROM drives is longer than hard-disk drives
e Electronic Delivery (ftp, www, etc.)
— depends on baud rate, network connection, and monthly bill

2.4.3 Visual Design

Here we summarise factors that should be considers in the visual design of a
multimedia presentation:

1. Themes and Styles

— A multimedia presentation should have a consistent theme/style, it
should not be disjointed and cluttered with multiple themes.

— The choice of theme/style depends on the styles and emotions of your
audience.

Some Possible Themes:

e Cartoon theme
+: interesting / entertaining
-: must be consistent with the character’s personality

e Traditional theme — straightforward
+: simple, often informative
-: not as interesting

e High tech theme — contemporary computer art work (morphing, tex-
ture mapping, metal texture, explosions, ...)
+: attractive, easy to animate

e Technical theme — include blueprints, 3D models of the product, ...
e.g., start with a drawing, then transformed into a rendered image.
+: shows adequate technical information
+: gives impression of solid design and construction

CHAPTER 2. MULTIMEDIA AUTHORING:SYSTEMS AND APPLICATIONS25

Color Schemes and Art Styles

e Natural and floral
(outdoor scenes, e.g., mountains, lakes, ...) —> getting back to nature

e Qil paints, watercolours, colored pencils, pastels.

— these art styles can be combined with e.g., cartoon or high tech
themes

2. Pace and Running length

A few guidelines:

e Allow a block of text to be slowly read twice.
e Transition time should be an indication of real-time.
— dissolve — time delay, scene change
— cut — two views of same scene at same time, or abrupt scene
change
e Running length
— self running presentation: 2-3 minutes
— limited interaction: 5-6 minutes
— complete analytical, hands-on demo: < 15 minutes

— with questions, discussions: > 30 minutes

** build in breaks for long presentations

3. Basic Layout
(a) Title (b) Action area (c) Narration (d) Dialog (e) Interactive controls

e make sure that the information delivery path in the layout is smooth,
not irregular/jumpy

o use headlines/subtitles, additional shapes, buttons, fonts, backgrounds
and textures to enhance the visual appearance.

2.5 Storyboarding

The concept of storyboarding has been by animators and their like for many
years.

Storyboarding is used to help plan the general organisation or content of a
presentation by recording and organizing ideas on index cards, or placed on
board/wall. The storyboard evolves as the media are collected and organised:
new ideas and refinements to the presentation are

CHAPTER 2. MULTIMEDIA AUTHORING:SYSTEMS AND APPLICATIONS26

2.6 Overview of Multimedia Software Tools

2.6.1 Digital Audio

Macromedia Soundedit — Edits a variety of different format audio files,
apply a variety of effects (Fig 2.5)

File Edit ¥iew Insert Modify Control Xtras Window Help

[[©] [e[(o] W ™ JE T
- {1 ol Amplify...

([]o—[—m] [[l | dmpllgyss,

He——————— ;W

| 19:11 Delay...

| Echo..

Emphasize
Envelope...
Equalizer...
Fade In...
Fade Qut...
Flanger
Noise Gate...
Normalize...
Pitch Shift...
Reverb...
Smooth
Tempo...

16 Bits £ 44100 kHz 1 Preverh L] Y

Figure 2.5: Macromedia Soundedit Main and Control Windows and Effects
Menu

CoolEdit — Edits a variety of different format audio files
Many Public domain tools on the Web.
2.6.2 Music Sequencing and Notation
Cakewalk
e Supports General MIDI

e Provides several editing views (staff, piano roll, event list) and Virtual
Piano

e Can insert WAV files and Windows MCI commands (animation and video)
into tracks

Cubase
e A better software than Cakewalk Express
e Intuitive Interface to arrange and play Music (Figs 2.6 and 2.7)

e Wide Variety of editing tools including Audio (Figs 2.8 and 2.9

Allows printing of notation sheets

Logic Audio

CHAPTER 2. MULTIMEDIA AUTHORING:SYSTEMS AND APPLICATIONS27

Arrange - Demo.all, mars.mid

Mars from ..
Sequenced by | fny

Jack Hines, ..

Conrerted t.

Pizzicato

s

Fy

0

Py

0

& French Horn
a Flute

i $trings
s

Fy

0

Py

i

A

a

Clarinet/Pipe..

Baritones - ..

Trumpet fect.

Bassoons - .. Bassoons — Oboes

RN ENHE NPT J R N

Trombones Trombones

Drum Map
| Map 0]

Concert Snare |

]

DPHA TR

3

Figure 2.7: Cubase Transport Bar Window — Emulates a Tape Recorder In-
terface

Audio-E-D1- 8.1.1. 0- 12 1.3.3486

Figure 2.8: Cubase Audio Window

CHAPTER 2. MULTIMEDIA AUTHORING:SYSTEMS AND APPLICATIONS28

[0 ==-———Wave Editor :Bass MICtk 2:Bass MII=—"~————"HH
Do File Seqrrient 0: 0: 8:721 + [] 0

Resvrse
Silence
Fade In
Fade Out
Quieten
Invert
Normalize
Pitchshift
Timestretch
Fade Dialog

M:I: A

Figure 2.9: Cubase Audio Editing Window with Editing Functions

Score - Pizzicato- 1.1.1. 0- 72.1.1. I ———:018
Pizzicato [=|
193 194 195 196 :
I - 1 - I L]] L
5
French Horn
%a_l =] =] =]
F.A ~ IH
!J'l ||'|Q —=
He—a—]
flute. "2 ¢ S e
FEE» FEIE EEIE
z : 5
5
]
Fitrings
reE) o B
T I {{ﬂ =
F 1 10
w1 Ik
[4 3 4 E = = e [E F =
= = i - - S =
4 = 4 g7 | o | 3 3
5 2 |3 AN B I = =
= — I, =
e U
Clarinet/Pipe Organ
e 52
- 1 FJ o
r >~
s T
3
= Y|
P :
Fiaritones - Tubas
T I I S T T T o T -
_ﬂi ~
. = ||
— -
« lﬂ'fd b [Scale: 100% | AllVoices [=a]=—=|

Figure 2.10: Cubase Score Editing Window

CHAPTER 2. MULTIMEDIA AUTHORING:SYSTEMS AND APPLICATIONS29

e Cubase Competitor, similar functionality
Marc of the Unicorn Performer

e Cubase/Logic Audio Competitor, similar functionality

2.6.3 Image/Graphics Editing
Adobe Photoshop

Allows layers of images, graphics and text

Includes many graphics drawing and painting tools

Sophisticate lighting effects filter
e A good graphics, image processing and manipulation tool
Adobe Premiere

e Provides large number (up to 99) of video and audio tracks, superimposi-
tions and virtual clips

e Supports various transitions, filters and motions for clips
e A reasonable desktop video editing tool

Macromedia Freehand

e Graphics drawing editing package

Many other editors in public domain and commercially

2.6.4 Image/Graphics Editing
Many commercial packages available

e Adobe Premier

e Videoshop

e Avid Cinema

o SGI MovieMaker

2.6.5 Animation

Many packages available including;:

e Avid SoftImage

e Animated Gif building packages e.g. GifBuilder

CHAPTER 2. MULTIMEDIA AUTHORING:SYSTEMS AND APPLICATIONS30

2.6.6 Multimedia Authoring

— Tools for making a complete multimedia presentation where users usually have
a lot of interactive controls.
Macromedia Director

e Movie metaphor (the cast includes bitmapped sprites, scripts, music, sounds,
and palettes, etc.)

e Can accept almost any bitmapped file formats

e Lingo script language with own debugger allows more control including
external devices, e.g., VCRs and video disk players

e Ready for building more interactivities (buttons, etc.)

e Currently in version 7.0, this popular general market product follows the
cast /score/scripting paradigm, which makes it the tool of choice for ani-
mation content. Its roots as a cel- and sprite-animation program are un-
mistakable; and its inclusion of Lingo, its object-based scripting language,
has made it the animation-capable program to beat. The AfterBurner
compression Xtra creates Shockwave files, allowing Web playback.

Authorware
e Professional multimedia authoring tool

e Supports interactive applications with hyperlinks, drag-and-drop controls,
and integrated animation

e Compatibility between files produced from PC version and MAC version
Other authoring tools include:

e Microcosm : Multicosm, Ltd. ; DOS, Windows Microcosm is a Hyperme-
dia Linkage authoring system.

e Question Mark : Question Mark Computing Ltd ; DOS, Mac, Windows;
WWW (via Perception) Question Mark is optimized for Electronic As-
sessment production.

e Emblaze Creator : Geo International ; JavaScript, Mac, Windows95,
WWW.

Emblaze Creator 2.5 is a cast/score/scripting tool which is designed for
Web-based playback of interactive multimedia.

e Flash : Macromedia ; Mac, Windows95, NT, WWW (via Flash Player).

Flash 3.0 is a cast/score/scripting tool, which primarily uses vector graph-
ics (and can create vector graphics from imported bitmaps). It is opti-
mized for Web delivery, and is especially common for banner adds and
small interactive web deliverables.

CHAPTER 2. MULTIMEDIA AUTHORING:SYSTEMS AND APPLICATIONS31

e HyperCard : Apple Computer ; Mac, WWW (via LiveCard!).

HyperCard is a card/scripting authoring system currently in version 2.4.1.
It runs natively on both 68K and PowerMacintosh machines, and is widely
used because of its easy availability at a low price. Its largest drawback
is the lack of integrated color; current color implementation is via the
ColorTools XCMD set (included) or via third-party XCMDs.

e HyperGASP : Caliban Mindwear.

HyperGASP is a card/scripting authoring system currently in version 3.0;
the newest version no longer requires HyperCard. Supports export to
HTML for Web authoring.

e HyperStudio ; Roger Wagner Publishing ; Mac, Windows, WWW (via
HyperStudio plug-in).
HyperStudio is a card /scripting paradigm authoring system, optimized for
and focussed on the educational market.

e IconAuthor : Asymetrix ; Windows, NT, Solaris, UNIX, WWW (via Win-
dows).

IconAuthor follows the iconic/flow control paradigm. It is notable for its
SmartObject editor, which tags content files (still graphics, RTF text, etc.)
for interactivity. It has the option to either embed content files or leave
them external in specified directories. The biggest strength of this program
is its included data handling, which makes it unparalleled for CBT data
tracking. The latest version should also provide WWW porting of existing
content. Avoid its internal ”Move Object” path animation feature due to
jerky response — use a .FLC or .AVI instead

2.7 Further Information

See Chapter 12 Multimedia Presentation and Authoring pages 285-303, Multi-
media Systems, J.F.K, Buford, ACM Press, 1994 (ISBN 0-201-53258-1).
See also:

e Mutlimedia Frequently Asked Question
(URL http://www.tiac.net/users/jasiglar/MMASFAQ.HTML)

o http://hibp.ecse.rpi.edu/ connor/education/storyboard. html— StoryBoard-
ing URLs

e Director Web — http://www.mcli.dist.maricopa.edu/director/

Chapter 3

Multimedia
Programming:Scripting
(Lingo)

In the last chapter we covered many Multimedia Authoring paradigms. Some of
these basically involve only graphical programming. However, there is always a
limit to how much can be achieved this ways, and so we must resort to scripting
or hard programming.

We will examine two of these programming paradigms a little further in the
coming 2 chapters:

e Scripting — we will overview the Director Authoring systems and in par-
ticular it’s LINGO scripting language

o Tagging — we will overview SMIL an extension of XML for synchronised
media integration.

3.1 Director programming/Lingo Scripting

This section provides a very brief overview of Basic ideas of Director program-
ming based on the Cast/Score/Scripting paradigm.

This section is essentially a precise of Director’s own manual pages. You
should consult:

e Macromedia Director 7: Using Director Manual — In Library
e Macromedia Director 7: Lingo Dictionary Manual — In Library

e Macromedia Director: Application Help — Select Help from within the
Director application. This is very thorough resource of information.

32

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 33

o Macromedia Director Guided tours — see Help menu option.
e A variety of web sites contain director tutorials, hints and information:

— Director Web: http://www.mcli. dist.maricopa. edu/director/

— Macromedia Director Support Center:
http:/ /www.macromedia.com/support/director/

An excellent set of Basic Director tutorial may be found at:
hitp:/ /www.fbe.unsw. edu.av/subjects/BENV /1043 /tutorials. htm
The book Creating and Designing Multimedia with Director, P. Petrik

and B. Dubrovsky, Prentice Hall, 1997 (ISBN 0-13-528985-8) is also
worth investigating.

3.2 Director Basics

3.3 Overview and Definitions

The Basic commodity in Director is the Director Movie:

Director movies are interactive multimedia pieces that can include anima-
tion, sound, text, digital video, and many other types of media. A movie can be
as small and simple as an animated logo or as complex as an online chat room
or game.

You’re probably familiar with Director movies in the Shockwave movie for-
mat, which play in web browsers.

A movie may link to external media or be one of a series of movies that
refer to each other. Director’s interactivity lets the movie respond to events
and change in specified ways.

Director divides lengths of time into a series of frames, similar to the frames
in a celluloid movie.

When creating and editing movies, you typically work in the four key win-
dows that make up Director’s work area:

the Stage , the rectangular area where the movie plays(Fig. 3.1):

_D =——————— Stap=———————H8°

Figure 3.1: Macromedia Director Stage Window

the Score , where the movie is assembled(Fig. 3.2);

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 34

lingo_frameReady Score
e e [Jlwl]s Els 1506]| [N
Serip

Internal % wi[zos |w:[1z¢ |[A&] (% [coo]| i:[1%e | i[53 |
[o |

[E[] » |7 start 7 01 B
O = z [|
T | 1@ 15 20 sz Hs 40 45 50 55 én 65 |

b |

I

16 |01 Cast window -]~ O&1 Cast window

17 |06 Rect:Solid,nobad 06 :Rect: Solid, no border
12 |CeRect:Sold,mobordC O6:Rect: Solid, no border
19

42 :50ript—

23 |021Flash:Server[] O21:Flash: Server ||
24 |06 Rect:Salid,robord[] 6 Rect: Salid, no horder 06 Rect: Shlid, oo border —O £ 22 Dt bit loop - vettic] v

RN FIEI) D7

o |
R
=}

Figure 3.2: Macromedia Director Score Window

=———————————————— |nternal Cast
| 4 | » | IDIMovie handlers /Mavigation
— — i) o
- o‘]Tl a_ |:‘|

2l " T 4z 4 IV L5V P2

42 :Score @43 Mask edd Score 45 Score M6 :Score 47 :Score 43 Point 149 Script 50:Script
ST %oript 5% Gprite | o9 =5 3 =7 =5 =) 0 ||
Dz

Figure 3.3: Macromedia Director Cast Window

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 35

one or more Cast windows , where the movie’s media elements are assem-
bled (Fig. 3.3);

and

the Control Panel , which controls how the movie plays back(Fig. 3.4).

O==—————"lingo_frameReady Score=—"—~————— 0 H
T Jlols BEls JHLke)| [BENE]
i Serip
[E[] » |7 start 7 01 B
O =l B [|
Me. | 2]l 5 o is5 a0 o5 zn Hs an 15 50 55 &0l 55 [
16 |61 :Cast window {1 61 :Cast window L:

17 |06 Rect:Solid,nobad 06 :Rect: Solid, no border
12 |CeRect:Sold,mobordC O6:Rect: Solid, no border
19

42 :50ript—

23 |021Flash:Server[] O21:Flash: Server ||
24 |06 Rect:Salid,robord[] 6 Rect: Salid, no horder 06 Rect: Shlid, oo border —O £ 22 Dt bit loop - vettic] v

MEEN EIEYT OE

o | 0 S G
R
=}

Figure 3.4: Macromedia Director Control Panel

To create a new movie:

e Choose File > New > Movie.

3.4 The Score and the Stage

The Score coordinates the movie’s media, determining when images appear and
sounds play. Special channels control the movie’s tempo, sound, and color
palettes. The Score also assigns scripts (Lingo instructions) that specify what
the movie does when certain events occur in the movie (more on this shortly).

The Stage is the visible portion of a movie. Use the Stage to determine
where media appears. Working together, the Score’s settings and controls create
a dynamic, high-quality interactive piece that plays in a web page or as a stand-
alone application directly on the user’s local computer.

Mowie properties specify properties that affect the entire movie, such as how
colors are defined, the size and location of the Stage, the number of channels in
the Score, copyright information, and font mapping.

Use the Movie > Properties command to set these settings. These settings
apply only to the current movie, whereas the settings you choose from File
> Preferences apply to every movie. See manuals for exact properties and
parameters etc.—

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 36

3.5 Using The Score

The Score organizes and controls a movie’s content over time in channels. The
most important components of the Score are channels, frames, and the playback
head.

You can control the Score by zooming to reduce or magnify your view and by
displaying multiple Score windows. You can also control the Score’s appearance
using preference settings.

To display the Score:

e Choose Window > Score.

3.6 The playback head

The playback head moves through the Score to show what frame is currently
displayed on the Stage. The playback head moves to any frame you click in the
Score. (See Fig 3.6)

3.7 Channels

Channels are the rows in the Score that contain sprites for controlling media.
Sprite channels are numbered and contain the sprites that control all the visible
media in the movie. Special effects channels at the top of Score contain behaviors
as well as controls for the tempo, palettes, transitions, and sounds. The Score
displays channels in the order shown in Fig. 3.5.

The channel at the very top of the Score contains markers that identify
places in the Score, such as the beginning of a new scene. Markers are useful
for making quick jumps to certain locations in a movie.

The Score can include up to 1000 channels. Most movies contain a much
smaller number. To improve a movie’s performance in the authoring environ-
ment and during playback, you should not use many more channels than neces-
sary. Use Movie Properties to control the number of channels in the Score for
the current movie.

Use the button at the left of any channel to hide its contents on the Stage
or to disable the contents if they are not visible sprites. When you turn off
a special effects channel, the channel’s data has no effect on the movie. Turn
Score channels off when testing performance or working on complex overlapping
animations.

3.8 Frames

Frames are represented by the numbers listed horizontally in the sprite and
special effects channels. A frame is a single step in the movie, like the frames in
a traditional film. Setting the number of frames displayed per second sets the
movie’s playback speed;

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 37

Wl 4| »

TR
o 2

]Hémﬁer ""':

—

Channel onfoff

Marker channel

Tempo channel
Palette channel

Transition channel

Sound channels

Behavior channel

Sprite channels

Figure 3.5: Macromedia Director Channel Display

5 | s N Playback head
i {
o {
i {
i I

Frame numbers

Figure 3.6: Macromedia Director Frame Playback

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 38

3.9 Sprites

Sprites are objects that control when, where, and how media appears in a movie.
The media assigned to sprites are cast members.

Director organizes cast members in libraries called casts.

Creating a Director movie consists largely of defining where sprites appear
on the Stage, when they appear in the movie, how they behave, and what their
properties are. You work with sprites on the Stage and in the Score to change
where and how cast members appear in the movie.

3.10 Cast members

Cast members are the media that make up a movie. They can include bitmap
images, text, vector shapes, sounds, Flash movies, digital videos, and more.
You can create cast members directly in Director or import existing media.

3.11 Lingo

Lingo, Director’s scripting language, adds interactivity to a movie. Often Lingo
accomplishes the same tasks-such as moving sprites on the Stage or playing
sounds-that you can accomplish using Director’s interface.

Much of Lingo’s usefulness, however, is in the flexibility it brings to a movie.
Instead of playing a series of frames exactly as the Score dictates, Lingo can
control the movie in response to specific conditions and events.

For example, whether a sprite moves can depend on whether the user clicks
a specific button; when a sound plays can depend on how much of the sound
has already streamed from the Internet.

Behaviors are pre-existing sets of Lingo instructions. Attaching behaviors
to sprites and frames lets you add Lingo’s interactivity without writing Lingo
scripts yourself.

If you prefer writing scripts to using Director’s interface and behaviors, Lingo
provides an alternative way to implement common Director features; for ex-
ample, you can use Lingo to create animation, stream movies from the web,
perform navigation, format text, and respond to user actions with the keyboard
and mouse.

Writing Lingo also lets you do some things that the Score alone can’t do.
For example, Lingo’s lists let you create and manage data arrays, and Lingo
operators let you perform mathematical operations and combine strings of text.
You can also write your own behaviors that perform tasks beyond those possible
with the behaviors that you already have available.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 39

3.12 Markers

Markers identify fixed locations at a particular frame in a movie. Markers are
vital to navigation in movies. Using Lingo or draggable behaviors, you can
instantly move the playback head to any marker frame.

This is useful when jumping to new scenes from a menu or looping while
cast members download from the web. Markers are also useful while authoring
to advance quickly to the next scene.

Once you've marked a frame in the Score, you can use the marker name
in your behaviors or scripts to refer to exact frames. Marker names remain
constant no matter how you edit the Score. They are more reliable to use as
navigation references than frame numbers, which can change if you insert or
delete frames in the Score.

Use the Markers window to write comments associated with markers you set
in the Score and to move the playback head to a particular marker.

To create a marker:

e Click the markers channel to create a marker. A text insertion point
appears to the right of the marker.

e Type a short name for the marker.
To delete a marker:
e Drag the marker up or down and out of the markers channel.

To jump to markers while authoring:
There are a few ways to do this:

e Click the Next and Previous Marker buttons on the left side of the marker
channel.

e Press the 4 and 6 keys on the numeric keypad to cycle backward and
forward through markers.

e Choose the name of a marker from the Markers menu.

3.13 Editing Frames

You can select a range of frames in the Score and then copy, delete, or paste all
the contents of the selected frames. When you select frames, any sprite within
the range is selected, even if it extends beyond the range. You can add new
frames to a movie at any time.

To move or delete all the contents of a range of frames:

e Double-click and drag in the frame channel to select frames.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 40

Next/Previous

Marker buttons Markers channel Markers
1| h | 4 I W Part one W Part two
Part one I o
Parttwn b—ob75o7von-72-2 - 2 - -————"v+7-—-——"7-—+—"7"-——+"-—"-—+"—"————————
Iw 5 10 15 20 25 20 35 40 45
Fart four 0 o 0o
O = o—
[m} 3 o o e I o
=] 4 o
O 5 r {1 O {]

Markers menu

Figure 3.7: Macromedia Director Markers

e Choose Edit > Cut or Edit > Copy, or press Delete.

If you cut or delete the selected frames, Director removes the frames and
closes up the empty space.

e To paste copied frames, select any frame and choose Edit > Paste.

Note: To delete a single frame, choose Insert > Remove Frame.
To add new frames:

e Select a frame in the Score.
e Choose Insert > Frames.

e Enter the number of frames to insert.

The new frames appear to the right of the selected frame. If there are
sprites in the frames you select, they are tweened or extended.

3.14 Identifying Frames with Lingo
If you are writing scripts, use these Lingo terms to refer to frames in a movie:

e The function the frame refers to the current frame.

e The frame number or the frame marker label refers to a specific frame.
For example, frame 60 indicates frame 60.

e The keyword loop refers to the marker at the beginning of the current
segment. If the current frame has a marker, loop refers to the current
frame; if not, loop refers to the first marker before the current frame.

e The word next or previous refers to the next marker or the marker before
the current scene, respectively.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 41

e The term the frame followed by a minus or plus sign and the number of
frames before or after the current frame refers to a frame that’s a specific
number of frames before or after the current frame. For example, the
frame - 20 refers to the frame 20 frames before the current frame.

e The function marker () with the number of markers used as the parameter
refers to the marker that’s a specific number of markers before or after the
current frame. For example, marker (-1) gives the previous marker. If the
frame is marked, marker (0) gives the current frame; if not, marker (0)
gives the name of the previous marker.

e The word movie followed by the movie name refers to the beginning of
another movie. For example,

movie "Navigation"

refers to the beginning of the Navigation movie.

e The word frame plus a frame identifier, the word of, the word movie,
and the movie name refers to a specific frame in another movie; for exam-

ple,
frame 15 of movie "Navigation"

refers to frame 15 of the Navigation movie.

3.15 Lingo Scripting

Lingo, Director’s scripting language, adds interactivity to a movie. Use Lingo
to control a movie in response to specific conditions and events. For example,
Lingo can play a sound after a specified amount of the sound has streamed from
the Internet.

Use the Script window (Fig. 3.8) to write and edit scripts. (Window > Script
or Command-0O will display this window

For an a very good introduction to scripting, see the Lingo basics tutorial
movie and online help..

3.16 When does Lingo run?

When an event occurs, Director generates a message that describes the event.
For example, when the user types at the keyboard, a movie stops, a sprite starts,
or the playback head enters a frame, these actions are events and generate event
messages.

Handlers contain groups of Lingo statements that run when a specific event
occurs in a movie. Each handler begins with the word on followed by the message
that the handler is set to respond to. The last line of the handler is the word
end; you can repeat the handler’s name after end, but this is optional.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 42

[0 = Movie Script ZMovie handlers/Navigation =]

|+ | 4 |] | ﬁ!h’lwie handlers.-"Navig| |T Internal ¥
e 1) [R[Z[F] [Z]E] [O[F]

global gMawvigotionStatus, glabelPropertylist, gHowSprite, ghoEntd .

=4

== HI&H handlers

—-= Movie in a WHindow handling script

on openkindow
—— Set the window type of the MIAH for the Show Me mowvies.
if the windowType of the activeldindow <@ 4 then
set the windowType off the activelindow to 4
—— parse window nome-ey stripping of f the . dir extension
windowTitle = char 1 to (the number of chars in the mowieMam
set the title of the actiuvelindow to windowTitle
end if
end

4

e
S

Figure 3.8: Macromedia Director Script Window

For example, the mouseDown message indicates that the user clicked the
mouse button. A handler that started with the line on mouseDown contains
Lingo statements that run when the handler receives a mouseDown message.
Whether the handler receives the message depends on which objects the handler
is attached to in the movie.

Director contains handlers within scripts. Attach a set of handlers to an
object by attaching the handlers’ script to the object.

3.17 The Lingo language

Just like any scripting language, Lingo has certain elements that you use and
rules that you follow.
Lingo terms fall into seven categories:

e commands — terms that instruct a movie to do something while the movie
is playing. For example, go to sends the playback head to a specific frame,
marker, or another movie.

e properties — attributes that define an object. For examplecolorDepthpth
is a property of a bitmap cast member,

e functions — terms that return a value. For example, the date function
returns the current date set in the computer. The key function returns
the key that was pressed last. Parentheses occur at the end of a function,

e keywords — reserved words that have a special meaning. For example,
end indicates the end of a handler,

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 43

e events,

e constants — elements that don’t change. For example, the constants TAB,
EMPTY, and RETURN always have the same meaning, and

e operators — terms that calculate a new value from one or more values.
For example, the add operator (4) adds two or more values together to
produce a new value.

A Lingo statement is any valid instruction that Director can execute.

An expression is any part of a statement, meant to be taken as a whole, that
produces a value.

For example, 2 + 2 is an expression but is not a valid statement all by itself.

The line go to frame 23 is a statement — go to is the command, and
frame 23 is the expression that produces the value that the command requires
to execute the instruction.

Lingo supports a variety of data types:

e references to sprites and cast members,
e (Boolean) values: TRUE and FALSE ,

e strings,

e constants,

e integers, and

e floating-point numbers.

Scripts can use variables to store, update, and retrieve values as the movie
plays. Use the equals operator (=) or the set command to assign values to
variables or change the values of many properties.

Use if...then, case, and repeat loop structures to set up statements so
that they run when specific conditions exist.

For example, you can create an if. . .then structure that tests whether text
has finished downloading from the Internet and then attempts to format the
text if it has.

Director always executes Lingo statements in a handler starting with the
first statement and continuing in order until it reaches the final statement or a
statement that instructs Lingo to go somewhere else.

Some statements that send Lingo to somewhere other than the next state-
ment are repeat loops, ifthenelse structures, the exit command, the return
function, and handler names placed within scripts. The order in which state-
ments are executed affects the order in which you should place statements. For
example, if you write a statement that requires some calculated value, you need
to put the statement that calculates the value first. For instance, in the fol-
lowing example, the first statement adds two numbers, and the second assigns
them to a field cast member to be displayed on the Stage:

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 44

x=2+2
put x into member "The Answer"

3.18 Dot Syntax

Use dot syntax to express the properties or functions related to an object or to
specify a chunk within a text object. An dot syntax expression begins with the
name of the object, followed by a period (dot), and then the property, function,
or chunk that you want to specify.

For example, the loc sprite property indicates a sprite’s horizontal and ver-
tical position on the Stage. The expression sprite(15).1loc refers to the loc
property of sprite 15. As another example, the number cast member property
specifies a cast member’s number.

The expression member ("Hot Button") .number refers to the cast member
number of the Hot Button cast member. Expressing a function related to an
object follows the same pattern. For example, the pointInHyperLink text sprite
function reports whether a specific point is within a hyperlink in a text sprite.

In addition to the syntax demonstrated in the Lingo Dictionary, you can use
the dot syntax textSpriteObject.pointInHyperlink to express this function.

For chunks of text, include terms after the dot to refer to more specific items
within text. For example, the expression member ("News Items").paragraph(1)
refers to the first paragraph of the text cast member News Items.

The expression member ("News Items").paragraph(1).line(1) refers to
the first line in the first paragraph.

3.19 Parentheses

Functions that return values require parentheses. When you define functions in
handlers, you need to include parentheses in the calling statement.

Use parentheses after the keywords sprite or member to identify the object’s
identifier:

for example, member ("Jason Jones-Hughes")

. You can also use parentheses to override Lingo’s order of precedence or to
make your Lingo statements easier to read.

3.20 Character spaces

Words within expressions and statements are separated by spaces. Lingo ignores
extra spaces. In strings of characters surrounded by quotation marks, spaces
are treated as characters.

If you want spaces in a string, you must insert them explicitly.

Uppercase and lowercase letters Lingo is not case sensitive-you can use up-
percase and lowercase letters however you want. For example, the following
statements are equivalent:

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 45

member ("Cat").hilite = TRUE

Set the hilite of member "cat" to True
set the hilite of member "Cat" to True
SET THE HILITE OF MEMBER "CAT" TO TRUE
Set The Hilite Of Member "Cat" To True

However, it’s a good habit to follow script writing conventions, such as the
ones that are used in this book, to make it is easier to identify names of handlers,
variables, and cast members when reading Lingo code.

3.21 Comments

Comments in scripts are preceded by double hyphens (--). You can place a
comment on its own line or after any statement. Lingo ignores any text following
the double hyphen on the same line.

Comments can consist of anything you want, such as notes about a par-
ticular script or handler or notes about a statement whose purpose might not
be obvious. Comments make it easier for you or someone else to understand a
procedure after you've been away from it for a while. Use the Comment and
Uncomment buttons in the Script window to enter and remove comments easily.

3.22 Optional keywords and abbreviated com-
mands

You can abbreviate some Lingo statements. Abbreviated versions of a command
are easier to enter but may be less readable than the longer versions. The go
command is a good example. All the following statements are equivalent. The
last one takes the fewest number of keystrokes.

go to frame "This Marker"
go to "This Marker"
go "This Marker"

It is good practice to use the same abbreviations throughout a movie.

3.23 Literal Values

A literal value is any part of a statement or expression that is to be used exactly
as it is, rather than as a variable or a Lingo element.

Literal values that you encounter in Lingo are character strings, integers,
decimal numbers, cast member names, cast member numbers, symbols, and
constants.

Note: The value function can convert a string into a numerical value. The
string function can convert a numerical value into a string.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 46

Each type of literal value has its own rules.

Strings are characters that Lingo treats as characters instead of as vari-
ables. Strings must be enclosed in double quotation marks. For example, in the
statement

member ("Greeting").text = "Hello"

“Hello” and “Greeting” are both strings. “Hello” is the actual string being
put into a text cast member; “Greeting” is the actual name of the cast member.

Similarly, if you test a string, double quotation marks must surround each
string, as in the following example:

if "Hello Mr. Jones" contains "Hello" then soundHandler

Lingo treats spaces at the beginning or end of a string as a literal part of
the string. The following expression includes a space after the word to:

put "My thoughts amount to "

Director works with integers between -2,147,483,648 and +2,147,483,647.
(For numbers outside of this range, use floating-point numbers.) Enter integers
without using commas. Use a minus (-) sign for negative numbers. You can
convert a decimal number to an integer by using the integer() function. For
example, the statement

set theNumber = integer(3.9)

rounds off the decimal number 3.9 and converts it to the integer 4.

Some Lingo commands and functions require integers for their parameters.
See the entry for the specific Lingo element for more information.

A decimal number, is what Lingo refers to as a floating-point number. The
floatPrecision property controls the number of decimal places used to display
these numbers. (However, Director always uses the complete number in calcu-
lations.) See the floatPrecision for information about setting the number of
decimal places used for decimal numbers. You can also use exponential nota-
tion with decimal numbers: for example, -1.1234e-100 or 123.4e+9. You can
convert an integer or string to a decimal number by using the float() function.
For example, the statement

set theNumber = float(3)

stores the value 3.0 in the variable.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 47

3.24 Identifying cast members and casts

Lingo refers to a cast member by using the term member followed by a cast
member name or number in parentheses. If more than one cast member has the
same name, Director uses the lowest numbered cast member in the lowest num-
bered cast. (Cast member names are strings and follow the same syntax rules as
other strings.) An alternative syntax is the term member without parentheses,
followed by the cast member name or number.

For example, the following all refer to cast member 50, which has the name
Jason_Jones-Hughes:

member ("Jason_Jones-Hughes")
member (50)

member "Jason_Jones-Hughes"
member 50

Use an optional second parameter to specify the cast member’s cast. If more
than one cast contains a cast member with the same name, you must also specify
the cast. If you identify a cast member by its cast member number, you must
also specify the cast. To specify a cast when using member without parentheses,
include the term of castLib followed by the cast’s name or number.

When the cast member’s name is unique in the movie, the cast’s name
isn’t required, but you can include it for clarity. For example, the following
statements refer to cast member 50, which is named Jason_Jones-Hughes, in
castLib 4, which is named Wales_Player:

member (50, 4)

member 50 of castLib 4

member ("Jason_Jones-Hughes", 4)

member "Jason_Jones-Hughes" of castLib 4

member (50, "Wales_Player")

member 50 of castLib "Wales_Player"

member ("Jason_Jones-Hughes", "Wales_Player")

member "Jason_Jones-Hughes" of castLib "Wales_Player"

If more than one cast member has the same name and you use the name
in a script without specifying the cast or cast member number, Lingo uses the
first (lowest numbered) cast member in the lowest numbered cast that has the
specified name.

A symbol is a string or other value that begins with the pound sign (#).
Symbols are user-defined constants. Comparisons using symbols can usually
be performed very quickly, providing more efficient code. For example, the
statement

userLevel = #novice

runs more quickly than the statement

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 48

userLevel = "novice"

Symbols can’t contain spaces or punctuation. Convert a string to a symbol
by using the symbol() function. Convert a symbol back to a string by using the
string() function.

A constant is a named value whose content never changes. For example,
TRUE, VOID, and EMPTY are constants because their values are always the
same. The constants BACKSPACE, ENTER, QUOTE, RETURN, SPACE,
and TAB refer to keyboard characters. For example, to test whether the user
is pressing the Enter key, use the following statement:

if the key = ENTER then beep

3.25 Lingo operators

Operators are elements that tell Lingo how to combine, compare, or modify the
values of an expression. They include:

e Arithmetic operators (such as +, -, /, and *)

e Comparison operators (for example, +, >, and >=), which compare two
arguments

e Logical operators (not, and, or), which combine simple conditions into
compound ones

e String operators (& and &&), which join strings of characters

3.26 Lingo Lists

In Lingo, Lists provide an efficient way to track and update an array of data
such as a series of names or the values assigned to a set of variables.

Lists are basically a set of elements separated by commas. Lingo encloses the
set of values in square brackets. A simple example of a list is a list of numbers
such as [1, 4, 2].

Lingo can create, retrieve, add to, reorder, sort, or substitute a list’s contents.
Director offers two types of lists:

Linear lists — In which each element is a single value. For example, this list
is a simple set of numbers:

[100, 150, 300, 350]

Property lists — In which each element contains two values separated by
a colon. The first value is a property. The second value is the walue
associated with that property.

For example, this list could be a sprite’s Stage coordinates, with a value
for each one:

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 49

[#left:100, #top:150, #right:300, #bottom:350]

Lingo has many functions that operate on lists. You can display lists (put),
find list lengths (count ()), find largest and smallest elements in the list (max (),
min()), add and delete items in a list (append, add,), copy (duplicate()),
and sort lists. See the Lingo dictionary for complete details..

3.27 Types of Scripts
Director uses four types of scripts.

Behaviors — Behaviors are attached to sprites or frames in the Score. Be-
haviors assigned to sprites are sprite behaviors. Behaviors assigned to a
frame’s behavior channel are frame behaviors. Director includes a set of
behaviors that are already written. Using Lingo, you can create additional
behaviors for your specific needs. Behaviors are script cast members that
appear in a Cast window. The Cast window thumbnail for each behavior
contains a behavior icon in the lower-right corner.

AW

Figure 3.9: Behavior Icon

All behaviors appear in the Sprite Inspector’s Behavior pop-up menu.
(Other types of scripts don’t appear in the Behavior pop-up menu.) Attach
behaviors to sprites or frames in two ways:

e Drag a behavior from a cast to a sprite or frame in the Score or on
the Stage.

e Select the sprites or frames that you’re attaching the behavior to and
then choose the behavior from the Behavior pop-up menu.

You can attach the same behavior to more than one location in the Score.
When you edit a behavior, the edited version is applied everywhere the
behavior is attached in the Score.

Movie scripts Movie scripts are available to the entire movie, regardless of
which frame the movie is in or which sprites the user is interacting with.
When a movie plays in a window or as a linked movie, a movie script is
available only to its own movie. In addition to responding to events such
as key presses and mouse clicks, movie scripts can control what happens
when a movie starts, stops, or pauses. Handlers in a movie script can be
called from other scripts in the movie as the movie plays. Movie scripts are
cast members that appear in a Cast window. A movie script icon appears
in the lower-right corner of the movie script’s Cast window thumbnail.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 50

Figure 3.10: Movie script icon

Parent scripts Parent scripts are special scripts that contain Lingo used to
create child objects. Parent scripts are cast members that appear in a
Cast window. A parent script icon appears in the lower-right corner of
the Cast window thumbnail:

Figure 3.11: Parent script icon

Scripts attached to cast members Scripts attached to cast members are
attached directly to a cast member, independent of the Score. Whenever
the cast member is assigned to a sprite, the cast member’s script is avail-
able. Unlike movie scripts, parent scripts, and behaviors, cast member
scripts don’t appear in the Cast window. Open scripts attached to cast
members by clicking Script in the cast member’s Cast Member Properties
dialog box or by selecting a cast member in the Cast window and then
clicking the Script button. You can also open a cast member script from
the Script window.

Figure 3.12: Script button

If Show Cast Member Script Icons is selected in the Cast Window Pref-
erences dialog box, cast members that have a script attached display a
small Script icon in the lower-left corner of their thumbnails in the Cast
window.

3.28 Messages and Events

To run the appropriate set of Lingo statements at the right time, Director must
determine what is occurring in the movie and which Lingo to run in response
to specific events.

Director sends messages to indicate when specific events occur in a movie,
such as when sprites are clicked, keyboard keys are pressed, a movie starts, the
playback head enters or exits a frame, or a script returns a certain result.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 51

Handlers contain instructions that run when a specific message is received.
The handler’s name begins with the word on followed by the message name.
When an object receives a message that corresponds to a handler attached to
the object, Director runs the Lingo statements within the handler. For example,
a handler named on enterFrame that is attached to a frame runs when the
playback head enters the frame.

Most common events that occur in a movie have built-in message names.
See the following categories in the Lingo Dictionary for the built-in messages
that describe events:

e Keyboard and mouse events.
e Frame events.

e Browser and Internet events.
e Sprite events.

e Movie in a window events.

e Movie events.

e Synchronizing media events.
e Idle events.

e Timeout events.

e Authoring behavior events.

You can also define your own messages and corresponding handler names. A
custom message can call another script, another handler, or the statement’s own
handler. When the called handler stops executing, the handler that called it
resumes. Director can send a custom message from any location. The message
is first available to handlers in the script from which the message was sent. If
no handler is found, the message is available to movie scripts. If more than one
movie script contains a handler for the message, the handler in the movie script
that has the lowest cast member number is executed. A custom handler name
must:

Start with a letter

e Include alphanumeric characters only (no special characters or punctua-
tion)

Consist of one word or multiple words connected by an underscore-no
spaces are allowed

Not be the same as the name of a predefined Lingo element

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 52

Using Lingo keywords for handler names can create confusion. Although it
is possible to explicitly replace or extend the functionality of a Lingo element
by using it as a handler name, this should be done only in certain advanced
situations. When you have multiple handlers with similar functions, it is useful
to give them names that have similar beginnings so they appear together in an
alphabetical listing, such as the listing displayed by the Find Handler option in
the Edit menu.

Director follows a definite order when sending messages about events that
occur during the course of a movie. When the movie first starts, events occur
in the following order:

e prepareMovie.

e beginSprite. This event occurs when the playback head enters a sprite
span.

e prepareFrame. Immediately after the prepareFrame event, Director plays
sounds, draws sprites, and performs any transitions or palette effects. This
event occurs before the enterFrame event. An on prepareFrame handler
is a good location for Lingo that you want to run before the frame draws.

e startMovie. This event occurs in the first frame that plays.

When Director plays a frame, events occur in this order:

e beginSprite. This event occurs only if new sprites begin in the frame.
e stepFrame.

e prepareFrame. Immediately after the prepareFrame event, Director plays
sounds, draws sprites, and performs any transitions or palette effects. This
event occurs before the enterframe event.

e enterFrame. After enterFrame and before exitFrame, Director handles
any time delays required by the tempo setting, idle events, and keyboard
and mouse events.

o exitFrame.

e endSprite. This event occurs only if the playback head exits a sprites in
the frame.

When a movie stops, events occur in this order:
e endSprite. This event occurs only if sprites currently exist in the movie.
e stopMovie.

A movie can contain more than one handler for the same message. Director
manages this situation by sending the message to objects in a definite order.
The general order in which messages are sent to objects is as follows:

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 53

e Messages are sent first to behaviors attached to a sprite involved in the
event. If a sprite has more than one behavior attached to it, behaviors
respond to the message in the order in which they were attached to the
sprite.

e Messages are sent next to a script attached to the cast member assigned
to the sprite.

e Messages are then sent to behaviors attached to the current frame.

e Messages are sent last to movie scripts.

When a message reaches a script that contains a handler corresponding to
the message, Director executes the handler’s instructions.

After a handler intercepts a message, the message doesn’t automatically pass
on to the remaining locations. (You can use the pass command to override this
default rule and pass the message to other objects.) If no matching handler
is found after the message passes to all possible locations, Director ignores the
message.

The exact order of objects to which Director sends a message depends on
the message. See the message’s Lingo Dictionary entry for details about the
sequence of objects to which Director sends specific messages.

You can place handlers in any type of script. However, the following are
some useful guidelines for many common situations:

e To set up a handler that affects a specific sprite or runs in response to an
action on a specific sprite:

Put the handler in a behavior attached to the sprite.

e To set up a handler that should be available any time that the movie is in
that frame:
Put the handler in a frame script attached to the frame.

For example, to have a handler respond to a mouse click while the play-
back head is in a frame, regardless of where the click occurs, place an on
mouseDown or on mouseUp handler in the frame script rather than a sprite
script.

e To set up a handler that runs in response to an event that affects a cast
member, regardless of which sprites use the cast member:
Put the handler in a cast member script.

e To set up a handler that runs in response to messages about events any-
where in the movie:
Put the handler in a movie script.

A script can contain multiple handlers. It’s a good idea to group related
handlers in a single place, though, for easier maintenance.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 54

3.29 Director Example 1: Simple Animation

This example does not employ any scripting. It illustrates how easy it is to create
a basic animation where a cast member (a ball graphic) is placed at different
locations in the scene. We also introduce some features of Director that we
have not yet met (these should be fairly straightforward to understand). Note:
there are still many features of Director we will have not touched.

The following steps achieve a simple bouncing ball animation along a path:

1. Let us begin by creating a new movie and setting the Stage size:

o Start a New movie: File > New > Movie (Shortcut = Command+N)

e Choose Modify > Movie > Properties. In stage size, choose 640 x
480.

2. Now let us create a ball, using a the vector shape tool:

e Choose Window > Vector Shape (Shortcut = Command+Shift+V)
e Click the filled ellipse button.

e Draw an ellipse (circle) about the size of the Vector Shape Window
- don’t worry about being exact, we will be changing the size of it
later.

e Click on the Gradient fill button. This fills the ellipse with the default
colours, which happen to be a light grey to red (unless someone has
changed it on your computer).

e To change the colours, click the colour box on the left side of the
Gradient colour control and choose a sky blue from the colour menu.
You will notice the Fill colour chip changes too. Change the colour
on the right side of the Gradient Colours to a dark blue.

e Change the Gradient type pull-down menu at the top of your window
from Linear to Radial.

e Change the Stroke Colour to white - notice how the outline of the
ellipse disappears.

3. Now let us change a few other properties of this ellipse - for us to compare
these changes, we will make a copy of this cast member.

e (Close the Vector Shape window.

e In the Cast Window, select the ellipse. Choose Edit > Duplicate
(Shortcut = Command+D). A copy of the cast member is produced
in the next available cast slot. Double click the new cast, which opens
it in the Vector Shape Tool.

e Change the Cycles to 3 and the Spread to 200. Click the Previous
Cast button and compare the 2 ellipses. Experiment with different
cycles and spreads to get an idea of what they mean.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 55

.5 Yector Shape 1

Mame of cast
_
i I s [| IE[member
IT & ILlﬂear "I —l——— Gradient type
{1:*} w pull down
menu
1)]
=)
E Filled ellipse huttan
1pt |
ol il = Gradient fill button

»
i Gradient calour cantrol

. ?f e SO COIOUE CHIE

(L < Fill colour chip

@ e Background colour chip

Figure 3.13: Macromedia Vector Shape Window

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 56

Name the latest ellipse to ’bouncing ball’ - this can either be done at
in the Vector Shape window or the Cast Member Window.

4. Now we are going to animate the ball.

Drag 'bouncing ball’ from the cast member window to the stage.
You could drag and drop it straight into the score, which would
automatically centre it on the stage.

You will notice the sprite (the object that appears in the score) is
extended over 20 frames. This is a default setting that we can change.
Drag the right end of the sprite to frame 40.

Click anywhere in the middle of the sprite to select it. We are now
going to resize the ellipse. Click on the top of the stage window to
make it active. Press Shift and while still holding down, click on a
corner handle of the spite and drag it in to make it smaller. Hold-
ing down Shift lets us resize the object in proportion to its original
dimensions. Resize the sprite to approximately the size shown in
diagram 2, and move it to the left side of the stage.

Click on frame 40 in channel 1 (the end of the sprite), hold down
Option and shift and drag the ellipse to the right end of the stage.
(Holding down shift restricts the movement to 90 degrees). With
Option selected You will notice a line being drawn on the stage - this
is the animation path. Rewind and play the movie to see what you
made.

To curve the path, we are going to insert keyframes within the sprite.
Click on frame 10 of the sprite and choose Insert > Keyframe (Short-
cut = Command+Option+K) Create keyframes at frame 20 and 30.

You will notice at each keyframe, a circle appears on the path shown
on the stage. Click on the keyframe 10 circle and drag it up. Do
the same with keyframe 30, producing a path similar to that shown
below. Rewind and play the movie.

5. Save the movie as examplel.dir.

Further Animation
1. Shrinking the ball

e (Optional) Click on keyframe 40 in the score and drag it to frame 60,
notice how all the keyframes spread out proportionally.

e (Optional) Click on the keyframes in the score and adjust the path if you
feel like it.

e While moving the keyframes, resize the balls so they slowly get smaller.
Notice while you resize the balls, the path changes and you will need to
edit the path again.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 57

@ 1 [Intemal] Vactor Shape
[Spaite 1: 545,246 613.314) Copy, 10052 _

&

Figure 3.14: Curving the Ball’s Path

Rewind and play the movie.

e Save your movie as example2.dir.

2. Animating sprite colour

Working still with ezamplel.dir.

Click on the keyframes in the score, and change the Foreground colour
chip to different colours.

Changing the foreground colour (refer to Fig 3.15) is like putting a coloured
film over your object. The resulting colour is a mixture of the object’s
original colour and the ’film’. For this reason, light colours work better
than dark colours for this effect..

Blend Transparency Sprite End F rame

Ink effect Sprite Start Frame

ﬁ tut1 Score

Sprite 1: Wectar Sh...
e 1:bouncing ball
L5 Intermal
el

i - wafee || 8] 5 (o000
vl - Hfee | =] 2 000y
Vi

Faoreground colour Skewy Angle

Figure 3.15: Macromedia Director Score Property Selection

e Rewind and play the movie.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 58

e Save as ezample3.dir.
3. Animating sprite transparency — Making the Ball Disappear

e Open examplel.dir

e Click on the keyframes in the score, and change the Blend Transparency
(refer to Fig 3.15) to 100, 75, 50, 25, 0 for the consecutive keyframes.

e Rewind and play the movie.

e Save as example.dir.
4. Animating sprite shape — Deforming The Ball

e Open example2.dir

Click on the keyframes in the score, and change the Skew Angle (refer to
Fig 3.15) to 0, 20, 40, 60 and 80 for the consecutive keyframes.

Rewind and play the movie

e Save as ezampled.dir.

3.30 Director Example 2:Importing media
To import multimedia data there are two basic ways:

e Choose File > Import ...

e Drag and drop source media into a cast member location.

The first method is useful for importing batches of data (e.g. Several image
sequences. The latter is clearly very intuitive.
Ezample: Simple Image import and Manipulation

e Drag an image into a spare cast member.

e Drag this cast member to the Score

Manipulate as for a vector item above.
e Examples:

— ex_dave_roll. dir.

sets up some keyframes and alters the rotation of the image

— ex_dave_sq.dir.

alters the skew angle

Ezample: Falling Over Movie, ex_dave_mouie.dir

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 59

e Several Gif images depicting sequence exist on disk.
e Choose File > Import

e Select items you wish to import by double-clicking or pressing the Add
button (Fig. 3.16).

Import Files into "Internal™
3 Fall % = 1Gb
2 T10.gif & Eject |
A R ——
ke
{c] TS.gif
¥ Té.gif
el T7.gif
¥ T8.qgif =z
_'ﬂ gl Options... I
Show:; [.A.II Files L]
T1.gif
Add All
Remove
[Standard Impuort i]
[Show Preview Help I

Figure 3.16: Macromedia Director Import Window

e Click on the Import Button
e Several new cast members should be added
e Set looping on and play

4. Example: Pinching Movie Movie, ex_dave_pinch.dir
To obtain other graphical effects external packages such as photoshop may
be used.

e Photoshop has been used to set a pinch effect of varying degree for an
image.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 60

O Internal Cast=————————"HH
ADEE | [=[e] |

/ E’ z
5

4

Lo}
1]

S

Figure 3.17: Falling Cast Members

e Import images as above

e We now need to reverse the image set to obtain a smooth back and forth
animation:

— Select the sprite sequence in the score by clicking anywhere in the
middle of the sprite sequence- press Command+C (Copy), then click
on the frame just after the sprite sequence and press Command+V
(Paste).

— Click on this second sprite sequence and choose Modify > Reverse
Sequence.

— Select the 2 sprites by pressing Shift and clicking on both. Choose
Modify > Join Sprites.

e Rewind and play the movie.

3.31 Director Example 3:Simple Lingo Scripting

Here we illustrate the basic mechanism of scripting in Director by developing
and extending a very basic example: Making a button beep and attaching a
message to a button

Making the a button beep

e Open a new movie.

e Turn the looping on in the control panel.

e Open the tool palette.

e Click the push button icon.

e Draw a button on the stage, and type in button (a very original name).

e Press Ctrl+click the button in the cast window and choose cast member
script.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 61

| [=

-
Gr,

Field]

Button |

Rl EOEEEE

]

Figure 3.18: Macromedia Director Tool Palette

[0 =————"scriptof Cast Member |="—"——=HH
|+ | 1 | } | ﬁl | | 1 Internal e
(mouze 3 [@[=[F] [L]E] [OFE

on mouselp &
beep 1

end
X
i DIz

Figure 3.19: Macromedia Director Script of Cast Member Window

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 62

e Director writes the first and last line for us, add a beep command so the
script look like this:

on mouseUp
beep
end

e Close the window.
e Rewind and play the movie.

e Click the button a few times.
To pop up a message box on button press (and still beep)

e Reopen the cast member script.

e Change the text so it now reads.

on mouseUp

beep

alert "Button Pressed"
end

e Close the window.

e Play the movie and click the button.

3.32 Director Example 4:Controlling Navigation
with Lingo
We begin we a preassembled Director movie:

e Open lingo_ex.3.1.dir

e Play the movie and to see it does.
We are first going to create a loop the frame script:

e The scripting window appears. Change the text so it now reads.

on exitFrame
go the frame
end

This frame script tells Director to keep playing the same frame.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 63

e Pressing down Alt, drag the frame script to frame 24.

Now We will create some markers
As we have mentioned in above Director allows you to mark certain frames
in your movie so they can be identified by buttons and links.

e Click in the marking channel in frame 1, as soon as you click a marker
is created with text naming it as New Marker. Type in scenel over this
text.

e Create markers at frame 10 and 20, naming them scene2 and scene3
respectively. You can delete a marker by clicking the triangle and dragging
it below the marker channel.

e Create a cast member script for the next button which reads:

on mouseUp
go to next
end

The go to next command tells Director to go to the next consecutive
marker in the score.

e Create a cast member script for the back button which reads:

on mouseUp
go to previous
end

The go to previous command tells Director to go to the previous marker
in the score.

e Right click on the next button cast member, go to cast member properties,
then check the Highlight when Clicked option. Do the same for the back
button.

e Play the movie, click on the buttons and see how they work.

e Save the movie.

Now We will create some sprite scripts:
Sometimes a button will behave one way in one part of the movie and another
way in a different part of the movie. That’s when we use sprite scripts.

e Click on frame 10 of channel 6 (the next button) this sprite and choose
Modify > Split Sprite. Do the same at frame 20.

e Select the first sprite sequence in channel 6 and select new behaviour from
the behaviour pull-down in the score.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 64

e A script window will pop up. Type go to "scene2" in the command area.
This command tells Director to send the movie to marker "scene2".

Using the Behaviour Inspector (Fig. 3.20):
Another way to write a sprite script - using the Behaviour Inspector.

e elect the second sprite sequence in channel 6.

e Open the Behaviour Inspector window - click the diamond shaped icon
next to the behaviour pull-down menu.

Behavior Inspector =—==[HI1 B

O
+ _.| Behawiors = —

|4 GotoFrame...

3 [to Marker...
Sound B G toPMovie...
Frarne [2
E b Go to Met Page.

ik Cursar M Exit
Mew dction... 1 fiez]
[|

rljl |S|:-r'ite: Channel[&] Frames[1 ta 24]

Figure 3.20: Macromedia Director Behaviour Inspector Window

e Expand the behaviour inspector window, so you can see events and actions.
Click on the little triangle pointing to the right, when the window expands
the triangle will point down.

e (lick the + icon at the top left of the window and select new behaviour
from the pull-down.

e Give the behaviour a name, I called mine next2.

e Under Events click the + icon and choose mouseUp from the menu.

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 65

Under Actions click the + icon and choose Navigation > Go to marker
then find scene3 on the list (Fig. 3.20)

You may realise that we now have 2 scripts attached to a single object - a
cast member script as well as a sprite script. Sprite scripts take priority over
cast member scripts so in our case the cast member script will be ignored.

Using Lingo play/ play do to record actions:

Sometimes you may want only part an image to be linked instead of the
whole object. That’s when we use invisible buttons. Invisible buttons aren’t
magical objects, they are just shape cast members with an invisible border.

Click on frame 1 of channel 8.
Open the Tool palette window.
Click on the no line button.

Click on the rectangle button and draw a rectangle on the stage around
the 1 button.

Attach a sprite script to this shape with the command play ”scenel”.
Extend the sprite sequence so it covers frame 1 to 24.

Drag the invisible shape from the cast to the score and place it over the 2
button.

Attach a sprite script to this sprite with the command play ”scene2”.
Extend the sprite sequence so it covers frame 1 to 24.

Repeat the steps placing the sprite over the 3 button and adding the
command play ”scene3”.

We used a different command for the above scripts. The play command is
similar to the go to command but with play,

Director records every time a play is initiated,
keeping track of the users’ path through the movie.

You can move back on along this path by using the play done command.

Select the sprite sequence in channel 5.
Attach a sprite script reading
on mouseUp

play done
end

CHAPTER 3. MULTIMEDIA PROGRAMMING:SCRIPTING (LINGO) 66

e Rewind, play the movie, click all the 1, 2, 3 buttons in various orders,
click the back button also and observe the

e Save your movie.

You can see the completed example in lingo_ex3.2.dir

Chapter 4

Multimedia
Programming:Tagging
(SMIL)

In the last chapter we looked at scripting programming paradigms for multime-
dia.
In this chapter we will study Tagging

e We will overview SMIL an extension of XML for synchronised media in-
tegration.

4.1 What it is SMIL?

Synchronized Multimedia Integration Language (SMIL) is to synchronized mul-
timedia what HTML is to hyperlinked text. Pronounced smile, SMIL is a simple,
vendor-neutral markup language designed to let Web builders of all skill levels
schedule audio, video, text, and graphics files across a timeline without having
to master development tools or complex programming languages.

Whilst the SMIL language is a powerful tool for creating synchronized mul-
timedia presentations on the web over low bandwidth connections. It is mainly
meant to work with linear presentations where several types of media can be
synchronized to one timeline. It does not work well with non-linear presenta-
tions and its ability to skip around in the timeline is buggy at best. However,
for slideshow style mixed media presentations it the best the web has to offer.

For instance, with just a text editor and a few lines of HTML-like tags, SMIL
lets Web builders specify such actions as

e play audio file A five seconds after video file B starts and then show image
file C.

67

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 68

SMIL marks a significant step toward making it easy to create low-bandwidth,
TV-like content on the Web. It offers a new level of control over synchronized
multimedia by allowing individual components of a presentation to be chore-
ographed across a timeline in relation to each other. It also lets you control the
layout, appearance, and exit time of each file.

What makes SMIL different from other multimedia presentation tools is that
instead of forcing each component into a single video file, the text-based SMIL
file merely references each file by its URL. Since the media files exist outside of
the SMIL file, they retain their individual file sizes; there’s no file-size bloat to
slow download times.

SMIL’s text-based format also makes multimedia presentations easy to edit.
If you want to change when an audio component within a complex presentation
begins, you can just edit the SMIL file. You don’t have to rebuild the entire
presentation from scratch.

As an application of XML, SMIL supports hyperlinks, which makes it the
first Web-specific multimedia language to offer true interactivity.

4.1.1 SMIL support

The W3C recommended SMIL in June 1998, but that doesn’t mean it will be
universally supported across the Web. Quicktime 4.0 supports SMIL (1999)

All emerging standards have opponents, and SMIL is no exception.

No Web browser currently supports SMIL, and Microsoft and Netscape
have no plans to support the standard anytime soon. In fact, even though Mi-
crosoft helped develop the SMIL 1.0 specification, Microsoft now says SMIL is
not mature enough to support, claiming it overlaps with several other technolo-
gies, such as Dynamic HTML and the Document Object Model. (Microsoft’s
streaming media player NetShow does not support SMIL either).

Probably the real reason Microsoft stopped SMILing was the fact that Mi-
crosoft, along with Macromedia and Compaq, submitted (March 1998) its own
synchronized multimedia proposal to the W3C, called HTML+TIME (Timed
Interactive Multimedia Extensions for HTML). This proposal claims to address
SMIL’s limitations:

e SMIL is a data interchange format for media authoring tools and players

e SMIL does not include a means to apply the ideas to HTML and Web
browsers.

However, SMIL does have an active following on the Web. RealNetworks’
RealPlayer, the most common streaming media player on the Web with 85
percent of the market, supports SMIL in its G2 player.

Major media companies such as CNN Interactive, Fox News, the History
Channel, and dozens of others have already begun to offer SMIL-based content
via its RealPlayer G2.

Many other SMIL-compliant players, authoring tools, and servers are also
becoming available.

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 69

4.2 Running SMIL Applications

For this course there are basically three ways to run SMIL applications (two use
the a Java Applet) so there are basically two SMIL supported mediums:

Quicktime — supported since Quicktime Version 4.0.
RealPlayer G2 — integrated SMIL support
‘Web Browser — use the SOJA SMIL applet viewer with html wrapper

Applet Viewer — use the SOJA SMIL applet viewer with html wrapper

You will need to use both as RealPlayer and SOJA support different media
(see below and Section 4.4.3).

Using Quicktime

Load the SMIL file into a Quicktime plug-in (confgure Browser helper app or
mime type) or the Quicktime movie player.

Using RealPlayer G2

The RealPlayer G2 is installed on the applications HD in the RealPlayer folder.
Real player supports lots of file format and can use plugins. The main
supported formats are:

e Real formats: RealText, RealAudio, etc...
e Images: GIF, JPEG
e Audio: AU, WAV, MIDI, etc...

To run SMIL files

Real Player uses streaming to render presentations.

The player works better when calling a SMIL file given by a Real Server,
rather than from an HTTP one.

You can also open a local SMIL file or drag a SMIL file onto the RealPlayer
G2 Application

4.2.1 Using the SOJA applet

SOJA stands for SMIL Output in Java Applet. It was written by HELIO in
1998.

HELIO is a French association based in Melun, France. The player is free
and can be downloaded from

www. helio.org.

SOJA is an applet that render SMIL in a web page or in a separate window.
It supports the following formats:

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 70

e Images: GIF, JPEG
e Audio: AU and AUZ (AU zipped) — SUN Audio files

e Text: plain text

SOJA does not use streaming. HELIO chose to store media before rendering
them. You have to wait until each of them has properly been loaded but the
presentation will never be stopped.

Running SOJA

To run SMIL through an applet you have to

e call the applet from an HTML file:

<APPLET CODE="org.helio.soja.SojaApplet.class"
ARCHIVE="soja.jar" CODEBASE="../"
WIDTH="600" HEIGHT="300">
<PARAM NAME="source" VALUE="cardiff_eg.smil">
<PARAM NAME="bgcolor" VALUE="#000066">
</APPLET>

e the SOJA (soja.jar) archive is located in the SMIL folder on the Mac-
intoshes.

e You may need to alter the CODEBASE attribute for your own applications

e The PARAM NAME="source" VALUE="MY_SMILFILE.smil" is how the file is
called.

There are plenty of HTML SMIL /applet wrapper example files in the SMIL
demos folder.

RUNNING APPLETS

This should be easy to do

e Run the html file through a java enabled browser
e Use Apple Applet Runner
— uses MAC OS Runtime Java (Java 1.2)

— less fat for SMIL applications (we do really need Web connection for
our examples)

— Efficient JAVA and MAC OS run.

— Located in Apple Extras:Mac OS Runtime For Java folder
— TO RUN: Drag files on to application, OR

— TO RUN: Open file from within application

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 71

4.2.2 another SMILE viewer:GRINS

This viewer is NOT available for this course but you may wish to investigate it.
GRINS stands for Graphical Interface for SMIL. It can be found at
www. cwi.nl.

4.3 Let us begin to SMIL — SMIL Authoring

The notes here are essentially summaries of the SMIL Specification and tutorials
available at the WWW3 consortium web site:

e http://WDVL.com/Authoring/Languages/XML/SMIL/Intro/smil.html
e http://www.w3.org/TR/REC-smil (see handout)

A SMIL document is a special kind of XML 1.0 document:

Extensible Markup Language (XML) is a human-readable, machine-understandable,
general syntax for describing hierarchical data, applicable to a wide range of
applications (databases, e-commerce, Java, web development, searching, etc.).
XML is an ISO compliant subset of SGML (Standard Generalized Markup Lan-
guage). XML is extensible because it is a metalanguage, which enables someone
to write a Document Type Definition (DTD) like HTML 4.0 and define the rules
of the language so the document can be interpreted by the document receiver.
The purpose of XML is to provide an easy to use subset of SGML that al-
lows for custom tags to be processed. Custom tags will enable the definition,
transmission and interpretation of data structures between organizations.

Further information on XML may be found at:

e [Euxtensible Markup Language (XML) 1.0, T. Bray, J. Paoli, C.M. Sperberg-
McQueen Available at http://www.w3.org/TR/REC-xml/

4.4 SMIL Syntax Overview

SMIL files are usually named with .smi or .smil extensions

4.4.1 Basic Layout
The basic Layout of a SMIL Documents is as follows:

<smil>
<head>
<meta name="copyright" content="Your Name" />
<layout>
<!-- layout tags -->
</layout>
</head>

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 72

<body>

<!-- media and synchronization tags -->
</body>
</smil>

A source begins with <smil> and ends with </smil>.
Note that SMIL, like XML but unlike HTML, is case sensitive

<smil>
[...]

</smil>

SMIL documents have two parts: head and body. Each of them must have
<smil> as a parent.

<smil>
<head>
[...]
</head>
<body>
[...]
</body>
</smil>

Some tags, such as meta can have a slash at their end:

[...]
<head>
<meta name="copyright" content="Your Name" />
</head>
[...]

This is because SMIL is XML-based.
Some tags are written:

e <tag> ... </tag>

e <tag />

4.4.2 SMIL Layout

Everything concerning layout (including window settings) is stored between the
<layout> and the </layout> tags in the header as shown in the above section.
A variety of Layout Tags define the presentation layout:

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 73

<smil>
<head>
<layout>
<!-- layout tags -->
</layout>

Window settings

You can set width and height for the window in which your presentation will be
rendered with <root-layout>.

The following source will create a window with a 300x200 pixels dimension
and also sets the background to be white.

<layout>

<root-layout width="300" height="200"
background-color="white" />

</layout>

4.4.3 Positioning Media

It is really easy to position media with SMIL.
You can position media in 2 ways:

Absolute Positioning — Media are located with offsets from the origin —
the upper left corner of the window.

Relative Positioning — Media are located relative to the window’s dimen-
sions.

We define position with a <region> tag

The Region tag

To insert a media within our presentation we use the <region> tag. we must
specify the region (the place) where it will be displayed. Let’s say we want to
insert the Cardiff icon (533x250 pixels) at 30 pixels from the left border and
at 25 pixels from the top border.

We must also assign an id that identifies the region.

The header becomes:

<smil>
<head>
<layout>
<root-layout width="600" height="300"
background-color="white" />

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 74

<region id="cardiff_icon" left="30" top="25"
width="5633" height="250" />
</layout>
</head>

The ing tag

To insert the Cardiff icon in the region called ”cardiff_icon”, we use the
tag as shown in the source below.
Note that the region attribute is a pointer to the <region> tag.

<smil>
<head>
<layout>
<root-layout width="600" height="300"
background-color="white" />
<region id="cardiff_icon" left="30" top="25"
width="533" height="250" />
</layout>
</head>
<body>
<img src="cardiff.gif" alt="The Cardiff icon"
region="cardiff_icon" />
</body>
</smil>

This produces the following output:

[J=————orgheliosojaSojaApplet

Applet Loaded

Figure 4.1: Simple Cardiff Image Placement in SMIL

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 75

Relative Position Example

if you wish to display the Cardiff icon at 10% from the left border and at 5%
from the top border, modify the previous source and replace the left and top
attributes.

<smil>
<head>
<layout>
<root-layout width="600" height="600"
background-color="white" />
<region id="cardiff_icon" left="10%" top="5%"
width="533" height="250" />
</layout>
</head>
<body>
<img src="cardiff.gif" alt="The Cardiff icon"
region="cardiff_icon" />
</body>
</smil>

Overlaying Regions

We have just seen how to position a media along x and y axes (left and top).
What if two regions overlap?

e Which one should be displayed on top ?
The following code points out the problem:

<smil>
<head>
<layout>
<root-layout width="300" height="200" background-color="white" />
<region id="region_1" left="50" top="50" width="150" height="125" />
<region id="region_2" left="25" top="25" width="100" height="100" />
</layout>
</head>
<body>
<par>
<text src="textl.txt" region="region_1" />
<text src="text2.txt" region="region_2" />
</par>
</body>
</smil>

To ensure that one region is over the other, add z-index attribute to
<region>.
When two region overlay:

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 76

e the one with the greater z-index is on top.

e If both regions have the same z-index, the first rendered one is below the
other.

In the following code, we add z-index to region_1 and region_2:

<smil>
<head>
<layout>
<root-layout width="300" height="200" background-color="white" />
<region id="region_1" left="50" top="50" width="150"
height="125" z-index="2"/>
<region id="region_2" left="25" top="25" width="100"
height="100" z-index="1"/>
</layout>
</head>
<body>
<par>
<text src="textl.txt" region="region_1" />
<text src="text2.txt" region="region_2" />
</par>
</body>
</smil>

Support for Other Media

We have used images and text media in previous presentations but other media
can be introduced within SMIL.

Given the non-standard support for SMIL media support depends on the
player implementation. The table below sum-up what can be seen and the
corresponding tag:

Media SMIL Tag | RealPlayer G2 | GRINS | Soja
GIF img OK OK OK
JPEG img OK OK OK
Wav audio OK OK -
.au Audio audio OK OK OK
.auz Audio Zipped audio - - OK
MP3 audio OK - -
Plain text text OK OK OK
Real text textstream OK - -
Real movie video OK - -
AVI video OK OK -
MPEG video OK OK -
MOV video OK - -

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 7

4.5 fitting media to regions

You can set the fit attribute of the <region> tag to force media to be resized
etc.
The following values are valid for fit:

e fill — make media grow and fill the area.

e meet — make media grow (without any distortion) until it meets the
region frontier.

e slice — media grows (without distortion) and fill entirely its region.
e scroll — if media is bigger than its region area gets scrolled.

e hidden — don’t show media
Obviously you set the value like this:
<region id="region_1"
fit="fill" />
4.5.1 Synchronisation

There are two basic ways in which we may want to play media:

e play several media one after the other,

e how to play several media in parallel.
In order to do this we need to add synchronisation:

e we will need to add time parameter to media elements,

Adding a duration of time to media — dur

To add a duration of time to a media element simply specify a dur attribute
parameter in an appropriate media tag:

<body>
<img src="cardiff.gif" alt="The Cardiff icon"
region="cardiff_icon" dur="6s" />
</body>

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 78

Delaying Media — the begin tag

To specify a delay i.e when to begin set the begin attribute parameter in an
appropriate media tag:

If you add begin="2s" in the cardiff image tag, you will see that the Cardiff
icon will appear 2 seconds after the document began and will remain during 6
other seconds. Have a look at the source:

<img src="cardiff.gif" alt="The Cardiff icon"
region="cardiff_icon" dur="6s" begin="2s" />
</body>

Sequencing Media — the seq tag

Now that we have some basic control over individual media let’s see how we
play them together.
The <seq> tag is used to define a sequence of media.

e The media are executed one after each other:

<img src="imgl.gif"
region="regl" dur="6s" />
<img src="img2.gif"
region="reg2" dur="4s" begin="1s" />

So the setting 1s makes the img2.gif icon appear 1 second after imgl.gif.

Parallel Media — the par tag

We use the <par> to play media at the same time:

<par>
<img src="cardiff.gif" alt="The cardiff icon"
region="cardiff_icon" dur="6s" />
<audio src="music.au" alt="Some Music"
dur="6s" />
</par>

This will display an image and play some music along with it.

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 79

Synchronisation Example 1: Planets Soundtrack

The following SMIL code plays on long soundtrack along with as series of images.
Essentially:

e The audio file and

e image sequences are played in parallel

e The Images are run in sequence with no break (begin = 0s)

The files are stored on the MACINTOSHES in the Multimedia Lab (in the
SMIL folder) as follows:

e planets.html — call smil source (below) with the SOJA applet. This
demo uses zipped (SUN) audio files (.auz) which are not supported by
RealPlayer.

e planets.smil — smil source (listed below),

<smil>
<head>
<layout>

<root-layout height="400" width="600" background-color="#000000" title="Dreaming out Loud"/>

<region id="satfam" width="564" height="400" top="0" left="0" background-color="#000000" z-index="2" />
<region id="jupfam" width="349" height="400" top="0" left="251" background-color="#000000" z-index="2" />
<region id="redsun" width="400" height="400" top="0" left="100" background-color="#000000" z-index="2" />
<region id="ngc3918" width="484" height="400" top="0" left="58" background-color="#000000" z-index="2" />
<region id="lagoonl" width="394" height="396" top="2" left="103" background-color="#000000" z-index="2" />
<region id="lagoon2" width="436" height="308" top="46" left="82" background-color="#000000" z-index="2" />
<region id="m33" width="371" height="400" top="0" left="114" background-color="#000000" z-index="2" />
<region id="orion" width="371" height="400" top="0" left="114" background-color="#000000" z-index="2" />
<region id="hubble5" width="455" height="400" top="0" left="72" background-color="#000000" z-index="2" />
<region id="pillars" width="409" height="400" top="0" left="0" background-color="#000000" z-index="2" />
<region id="blank" width="191" height="400" top="0" left="409" background-color="#ffffff" z-index="2" />
<region id="music" width="100" height="25" top="30" left="453" background-color="#ffffff" z-index="3" />
<region id="dreamland" width="150" height="25" top="55" left="453" background-color="#ffffff" z-index="3"/
<region id="byl" width="100" height="25" top="80" left="453" background-color="#ffffff" z-index="3" />
<region id="don" width="100" height="25" top="105" left="453" background-color="#ffffff" z-index="3" />
<region id="images" width="100" height="25" top="140" left="453" background-color="#ffffff" z-index="3" />
<region id="nasa" width="100" height="25" top="165" left="453" background-color="#ffffff" z-index="3" />
<region id="smil" width="100" height="25" top="200" left="453" background-color="#ffffff" z-index="3" />
<region id="by2" width="100" height="25" top="225" left="453" background-color="#ffffff" z-index="3" />
<region id="me" width="100" height="25" top="250" left="453" background-color="#ffffff" z-index="3" />
<region id="jose" width="100" height="25" top="250" left="453" background-color="#ffffff" z-index="3" />
<region id="title" width="125" height="25" top="40" left="237" background-color="#ffffff" z-index="2" />
</layout>

</head>

<body>

<par>

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 80

<audio src="media/dreamworldb.auz" dur="61.90s" begin="3.00s" system-bitrate="14000" />
<seq>

<par>

<text src="media/music.txt" region="music" begin="3.00s" end="50.00s" />
<text src="media/dreamland.txt" region="dreamland" begin="4.00s" end="50.00s" />
<text src="media/by.txt" region="byl" begin="7.00s" end="50.00s" />

<text src="media/don.txt" region="don" begin="8.00s" end="50.00s" />

<text src="media/images.txt" region="images" begin="14.00s" end="50.00s" />
<text src="media/nasa.txt" region="nasa" begin="15.00s" end="50.00s" />

<text src="media/smil.txt" region="smil" begin="18.00s" end="50.00s" />
<text src="media/by.txt" region="by2" begin="19.00s" end="50.00s" />
<text src="media/me.txt" region="me" begin="20.00s" dur="3.00s" />
<text src="media/jose.txt" region="jose" begin="23.00s" end="50.00s" />
</par>
<text src="media/title.txt" region="title" begin="3.00s" end="25.00s" />
</seq>
</par>
</body>
</smil>

Synchronisation Example 2: Slides "N’ Sound

Dr John Rosbottom of Plymouth Univ has come up with a novel way of giving
lectures.
This has

e one long sequence of
e parallel pairs of images and audio files

Try out the online version:

http://www.dis.port.ac.uk/ johnr/lal2/start.htm

You may examine the files on the Macintoshes in the Multimedia lab (in
SMIL folder)

e slides n_sound.smil — smil source (listed below), play with RealPlayer
G2. NOTE: This demo uses real audio files which are not supported by
SOJA:

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 81

<smil>
<head>
<layout>
<root-layout height="400" width="600" background-color="#000000" title="Slides and Sound"/>
</layout>
</head>
<body>

<seq>
<par>
<audio src="audio/leconlec.rm" dur="24s" title="slide 1"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="24s" clip-end="51s" dur="27s" title="slide 2"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="51s" clip-end="67s" dur="16s" title="slide 3"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="67s" clip-end="116s" dur="49s" title="slide 4"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="116s" clip-end="186s" dur="70s" title="slide 5"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="186s" clip-end="290s" dur="104s" title="slide 6"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="290s" clip-end="357s" dur="67s" title="The Second Reason"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="357s" clip-end="373s" dur="16s" title="The Second Reason"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="373s" clip-end="466s" dur="93s" title="The Second Reason"/>

</par>

<par>

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 82

<audio src="audio/leconlec.rm" clip-begin="466s" clip-end="497s" dur="31s" title="The Second Reason"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="497s" clip-end="518s" dur="21s" title="The Second Reason"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="518s" clip-end="536s" dur="18s" title="The Second Reason"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="536s" clip-end="553s" dur="17s" title="The Second Reason"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="553s" clip-end="562s" dur="9s" title="The Second Reason"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="562s" clip-end="568s" dur="6s" title="The Second Reason"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="568s" clip-end="578s" dur="10s" title="The Second Reason"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="578s" clip-end="610s" dur="32s" title="The Second Reason"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="610s" clip-end="634s" dur="24s" title="The Second Reason"/>

</par>

<par>
<audio src="audio/leconlec.rm" clip-begin="634s" clip-end="673s" dur="39s" title="Slide 19"/>

</par>

<img src="slides/img006.GIF" fill="freeze" title="And finally..."
author="Abbas Mavani (dis80047@port.ac.uk)"
copyright="Everything is so copyright protected (c)1999"/>

<!-- kept this in to remind me that you can have single things
<audio src="audio/AbbasTest.rm" dur="50.5s"/>
-=>

</seq>

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 83

</body>
</smil>

4.5.2 SMIL Events

Smiles supports event based synchronisation:

begin events

When a media begins, it sends a begin event. If another media waits for this
event, it catches it. To make a media wait to an event, one of its synchronisation
attributes (begin or end) should be written as follows:

<!-- if you want tag to start when
another tag begins -->
<tag begin="id(specifiedId) (begin)" />

<I-- if you want tag to start 3s after
another tag begins -->
<tag begin="id(specifiedId) (3s)" />

<I-- if you want tag to start when
another tag ends -->
<tag begin="id(specifiedId) (end)" />

For example:

<body>
<par>

<img src="cardiff.gif" region="cardiff"
id="cf" begin="4s" />

<img src="next.gif" region="next"
begin="id(cf) (2s)" />

</par>
</body>

will make the next.gif image begin 2s after cardiff.gif begins.

The switch Tag

The syntax for the switch tag is:

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 84

<switch>
<!-- childl testAttributesl -->
<!-- child2 testAttributes2 -->
<!-- child3 testAttributes3 -->
</switch>

The rule is:

e The first of the <switch> tag children whose test attributes are all evalu-
ated to TRUE is executed.

e A tag with no test attributes is evaluated to TRUE.

e See SMIL reference for list of valid test attributes
For example you may wish to provide presentations in english or welsh:

<body>
<switch>

<!-- English only -->

<par system-language="en">

< audio src ="english.au" />

</par>

<!-- Welsh only -->

<par system-language="cy">

<audio src ="cymraeg.au" />

</par>

somewhere in code you will (or it will be set) set the system-language

4.6 SMIL ON

Please refer to online sources and the SMIL reference handout for further SMIL
features.
Some good online SMIL resources include:

o hitp://www.w3.org/Audio Video/ — Synchronized Multimedia

o hitp://www.real.com/devzone/library/creating/ — Content Creation and
Programmer’s Guide

o http://www.cwi.nl/SMIL/ — The CWI SMIL Page
o http://indy.cs.concordia.ca/smil/ — SMIL Web Pages

CHAPTER 4. MULTIMEDIA PROGRAMMING:TAGGING (SMIL) 85
o http://www.ruleweb.com/dhtml/smil.html — Jeff Rule’s Dynamic HTML
and SMIL Site
e http://dejavu.cs.vu.nl/ symm/validator/ — SMIL syntax validator

o http://www.w3.org/TR/REC-smil/ — Synchronized Multimedia Integra-
tion Language

o http://www.builder.com/Authoring/Standards/ss01.html— CNET Builder.com
- Web Authoring - Emerging Web standards - Synchronized Multimedia
Integration Language (SMIL): multimedia made easy

o http://www.helio.org/products/smil/tutorial/ — SMIL Tutorial

o http://smuw.internet.com/smil/news/ — Just SMIL: News

Part 111

Multimedia Technology

86

Chapter 5

Multimedia Systems
Technology

5.1 Discrete v continuous media

Multimedia systems deal with the generation, manipulation, storage, presenta-
tion, and communication of information in digital form.

The data may be in a variety of formats: text, graphics, images, audio,
video.

A majority of this data is large and the different media may need synchro-
nisation — the data may have temporal relationships as an integral property.

Some media is time independent or static or discrete media: normal data,
text, single images, graphics are examples.

Video, animation and audio are examples of continuous media.

5.2 Analog and Digital Signals

We will discuss the mechanism and issues involved in transforming signals from
analog-digital in Chapter 6. Here we will introduce some basic definitions before
overviewing the technology required to perform such tasks.

The world we sense is full of analog signal, electrical sensors such as transduc-
ers, thermocouples, microphones convert the medium they sense into electrical
signals. These are usually continuous and still analog. These analog signals
must be converted or digitised into discrete digital signals that computer can
readily deal with.

Special hardware devices called Analog-to-Digital converters perform this
task.

For playback Digital-to-Analog must perform a converse operation.

Note that Text, Graphics and some images are generated directly by com-
puter and do not require digitising: they are generated directly in binary format.

87

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 88

Handwritten text would have to digitised either by electronic pen sensing of
scanning of paper based form.

5.3 Input Devices and Storage

Let us now consider each media in turn and summarise how it may be input into
a Multimedia system. We also briefly analyse the basic storage requirements
for each type of data. We do not yet consider any effect of compression on the
files. Note that storage requirements a large for many forms of media.

5.3.1 Text and Static Data

The sources of this media are the keyboard, floppies, disks and tapes. Text files
are usually stored and input character by character. Files may contain raw text
or formatted text e.g HTML, Rich Text Format (RTF) or a program language
source (C, Pascal, etc..

Even though to data medium does not include any temporal constraints there
may be an natural implied sequence e.g. HTML format sequence, Sequence of
C program statements.

The basic storage of text is 1 byte per character (text or format character).
For other forms of data e.g. Spreadsheet files some formats may store format
as text (with formatting) others may use binary encoding.

Even the the storage requirements of this data is never high when data is
stored on disk small files may take larger disk storage requirements due to block
and sector sizes of disk partitions.

5.3.2 Graphics

Graphics are usually constructed by the composition of primitive objects such
as lines, polygons, circles, curves and arcs. Graphics are usually generated
by a graphics editor program (e.g. Freehand) or automatically by a program
(e.g. Postscript usually generated this way). Graphics are usually editable or
revisable (unlike Images).

Graphics input devices include: keyboard (for text and cursor control),
mouse, trackball or graphics tablet.

Graphics files may adhere to a graphics standard (OpenGL, PHIGS, GKS)
Text may need to stored also. Graphics files usually store the primitive assembly
and do not take up a very high overhead.

5.3.3 Images

Images are still pictures which (uncompressed) are represented as a bitmap (a
grid of pixels).

Images may be generated by programs similar to graphics or animation pro-
grams. But images may be scanned for photographs or pictures using a digital

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 89

scanner or from a digital camera. Some Video cameras allow for still image
capture also. Analog sources will require digitising.
Images may be stored at 1 bit per pixel (Black and White), 8 Bits per pixel
(Grey Scale, Colour Map) or 24 Bits per pixel (True Colour) (See Chapter 6).
Thus a 512x512 Grey scale image takes up 1/4 Mb, a 512x512 24 bit image
takes 3/4 Mb with no compression. This overhead soon increases with image
size so compression is commonly applied (See Chapter 7)

5.3.4 Audio

Audio signals are continuous analog signals. They are first captured by a micro-
phones and then digitised and store — usually compressed as CD quality audio
requires 16-bit sampling at 44.1 KHz (There are other audio sampling rates —
Chapter 6). So 1 Minute of Mono CD quality audio requires 6044100 %2 Bytes
which is approximately 5 Mb.

5.3.5 Video

Analog Video is usually captured by a video camera and then digitised. There
are a variety of video (analog and digital) formats (Chapter 6)

Raw video can be regarded as being a series of single images. There are
typically 25, 30 or 50 frames per second. Therefore a 512x512 size monochrome
video images take 25%0.25 = 6.25Mb for a minute to store uncompressed. Digital
video clearly needs to be compressed.

5.4 Output Devices

The output devices for a basic multimedia system include

e A High Resolution Colour Monitor
e CD Quality Audio Output
e Colour Printer

e Video Output to save Multimedia presentations to (Analog) Video Tape,
CD-ROM DVD.

e Audio Recorder (DAT, DVD, CD-ROM, (Analog) Cassette)

e Storage Medium (Hard Disk, Removable Drives, CD-ROM) — see next
section.

5.5 Storage Media

Let us first recap the major problems that affect storage media:

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 90

Large volume of date

Real time delivery

Data format

Storage Medium

Retrieval mechanisms

First two factors are the real issues that storage media have to deal and we
have discussed these factors already. Due to the volume of data the Data format
will include compression (see Chapters 6 and 7).

The type of storage medium and underlying retrieval mechanism will affect
how the media is stored and delivered. Ultimately any system will have to
deliver high performance I/O. We discuss this issue next before going on to
discuss actual Multimedia storage devices.

5.5.1 High performance I/O

There are four factors that influence I/O performance:

Data — Data is high volume, maybe continuous and may require contiguous
storage. Direct relationship between size of data and how long it takes to
handle. Compression and also distributed storage (See RAID technology
(Section 5.5.3 below).

Data Storage — The strategy for data storage depends of the storage hard-
ware and the nature of the data. The following storage parameters affect
how data is stored:

e Storage Capacity

e Read and Write Operations of hardware
e Unit of transfer of Read and Write

e Physical organisation of storage units

e Read/Write heads, Cylinders per disk, Tracks per cylinder, Sectors
per Track

e Read time

e Seek time

Data Transfer — Depend how data generated and written to disk, and in
what sequence it needs to retrieved. Writing/Generation of Multimedia
data is usually sequential e.g. streaming digital audio/video direct to disk.
Individual data (e.g. audio/video file) usually streamed.

RAID architecture can be employed to accomplish high I/O rates by ex-
ploiting parallel disk access (Section 5.5.3)

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 91

Operating System Support — Scheduling of processes when I/0 is initi-
ated. Time critical operations can adopt special procedures. Direct disk
transfer operations free up CPU/Operating system space.

5.5.2 Basic Storage

Basic storage units have problems dealing with large multimedia data

e Single Hard Drives — SCSI/IDE Drives. So called AV (Audio-Visual)
drives, which avoid thermal recalibration between read /writes, are suitable
for desktop multimedia. New drives are fast enough for direct to disk
audio and video capture. But not adequate for commercial/professional
Multimedia. Employed in RAID architectures (Section 5.5.3)

e Removable Media — Jaz/Zip Drives, CD-ROM, DVD. Conventional (dy-
ing out?) floppies not adequate due 1.4 Mb capacity. Other media usually
ok for backup but usually suffer from worse performance than single hard
drives.

5.5.3 RAID — Redundant Array of Inexpensive Disks

This concept of RAID has been developed to fulfill the needs of current mul-
timedia and other data hungry application programs, and which require fault
tolerance to be built into the storage device. Further, techniques of parallel
processing are also suitable to exploiting the benefits of such an arrangement of
hard disks.

Raid technology offers some significant advantages as a storage medium:

e Affordable alternative to mass storage
e High throughput and reliability

The cost per megabyte of a disk has been constantly dropping, with smaller
drives playing a larger role in this improvement. Although larger disks can store
more data, it is generally more power effective to use small diameter disks (as
less power consumption is needed to spin the smaller disks). Also, as smaller
drives have fewer cylinders, seek distances are correspondingly lower. Following
this general trend, a new candidate for mass storage has appeared on the market,
based on the same technology as magnetic disks, but with a new organisation.
These are arrays of small and inexpensive disks placed together, based on the
idea that disk throughput can be increased by having many disk drives with
many heads operating in parallel. The distribution of data over multiple disks
automatically forces access to several disks at one time improving throughput.
Disk arrays are therefore obtained by placing small disks together to obtain the
performance of more expensive high end disks.

The key components of a RAID System are:

e Set of disk drives, disk arrays, viewed by user as one or more logical drives.

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 92

e Data may be distributed across drives
e Redundancy added in order to allow for disk failure

Disk arrays can be used to store large amounts of data, have high I/O rates
and take less power per megabyte (when compared to high end disks) due to
their size, but they have very poor reliability?!.

What do you think is the reason of this low reliability?

As more devices are added, reliability deteriorates (N devices generally have
% the reliability of a single device).

Files stored on arrays may be striped across multiple spindles. Since a high
capacity is available due to the availability of more disks, it is possible to create
redundancy within the system, so that if a disk fails the contents of a file may
be reconstructed from the redundant information. This off course leads to a
penalty in capacity (when storing redundant information) and in bandwidth (to
update the disk). Four main techniques are available to overcome the lack of
reliability of arrays:

e Mirroring or shadowing of the contents of disk, which can be a capacity
kill approach to the problem. Each disk within the array is mirrored and a
write operation performs a write on two disks - resulting in a 100% capacity
overhead. Reads to disks may however be optimised. This solution is
aimed at high bandwidth, high availability environments.

e Horizontal Hamming Codes: A special means to reconstruct information
using an error correction encoding technique. This may be an overkill, as
it is complex to compute over a number of disks.

e Parity and Reed-Soloman Codes: Also an error correction coding mecha-
nism. Parity may be computed in a number of ways, either horizontally
across disks or through the use of an interleaved parity block. Parity in-
formation also has to be stored on disk, leading to a 33% capacity cost
for parity. Use of wider arrays reduces the capacity cost, but leads to a
decrease

in the expected availability and increased reconstruction times. This ap-
proach is generally aimed at high bandwidth scientific applications (such
as image processing).

o Fuailure Prediction: There is no capacity overhead in this technique, though
it is controversial in nature, as its use cannot be justified if all errors or
failures can be forecast correctly.

IReliability here is defined in terms of availability of a disk, and corruption of data during
transfer from the disk to CPU.

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 93

| Disk 3
Host 71_Controller| f
Processor } ——
Host ‘ ‘
Adaptor | Disk =
: Controlleri
? —
Array 3 3
Controller : :
7 . l—
I .| Disk ‘
’ : Controller—/_‘\ :
Manages the control 3 >
logic and parity :

. <

. N~
.| Disk :
Controller—/_L\ }

i

Figure 5.1: A disk array link to the host processor

Each disk within the array needs to have its own I/O controller, but inter-
action with a host computer may be mediated through an array controller as
shown in figure 5.1.

It may also be possible to combine the disks together to produce a collection
of devices, where each vertical array is now the unit of data redundancy. Such
an arrangement is called an orthogonal RAID and shown in figure 5.2; other
arrangements of disks are also possible.

Figure 5.3 identifies disk performance for a number of machines and operat-
ing systems. The Convex supercomputer seems to provide the best performance
in terms of throughput (or megabytes transferred per second) based on a 32KB
read operation due to the use of a RAID disk. The figure also illustrates transfer
rate dependencies between hardware and the particular operating system being
used.

There are now 8 levels of RAID technology, with each level providing a
greater amount of resilience then the lower levels:

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY

String
Controller

—| String
Controller

LT,
e

\f_(.
|H.-' ;

J,

i

String
Array Controller
Contraoller

00 G0
0 (o B0 3

String
Controller

T
e
.

— Siring
Controller

String
Controller

(T TH Al
(L0 (L oh G

g VLG O

1ata Recovery Group: unit of data redundancy

—= (1 B0 B

Redundam Support Components: fans, power supplies, controller, cables

Figure 5.2: Orthogonal RAID

Convex C240,
Convex(0S10
SS 10, Solaris 2

4.2

IPI-2, RAID

AXP/1000, OSF1 2.0 5400 RPM SCSI-11 disk
RS/6000, AIX
HP 730, HE/UX 9

300D AIN/ESA

Sparc1+,Sun0dS
4.1

DS5000 Ultrix

B 0.7 IBM Channel, IBM 3390 Disk
0.6

DS5000, Sprite

Machine and Dperating System

0.0 1.0 20 3.0 4.0 5.0

Megabytes per Second

32 KB reads
SS 10 disk spins 5400 RPM; 4 IP| disks on Convex

Figure 5.3: Comparison of disk performance

94

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 95

Level 0: Disk Striping — distributing data across multiple drives. Level 0
is an independent array without parity redundancy that accesses data
across all drives in the array in a block format. To accomplish this, the
first data block is read/written from/to the first disk in the array, the
second block from/to the second disk, and so on. RAID 0 only addresses
improved data throughput, disk capacity and disk performance. In RAID
0 data is striped across the various drives present. Although striping can
improve performance on request rates, it does not provide fault tolerance.
If a single disk fails, the entire system fails. This would therefore be
equivalent to storing the complete set of data on a single drive, though
with a lower access rate.

Level 1: Disk Mirroring — Level 1 focusses on fault tolerancing and involves
a second duplicate write to a mirror

disk each time a write request is made. The write is performed automat-
ically and is transparent to the user, application and system. The mirror
disk contains an exact replica of the data on the actual disk. Data is re-
coverable if a drive fails and may be recoverable if both drives fail. The
biggest disadvantage is that only half of the disk capacity is available for
storage. Also, capacity can only be expanded in pairs of drives.

Of the RAID levels, level 1 provides the highest data availability since
two complete copies of all information are maintained. In addition, read
performance may be enhanced if the array controller allows simultaneous
reads from both members of a mirrored pair. During writes, there will be
a minor performance penalty when compared to writing to a single disk.
Higher availability will be achieved if both disks in a mirror pair are on
separate 1/O busses.

Level 2: Bit Interleaving and HEC Parity — Level 2 stripes data to a
group of disks using a bite stripe. A Hamming code symbol for each
data stripe is stored on the check disk. This code can correct as well as
detect data errors and permits data recovery without complete duplication
of data. This RAID level is also sometimes referred to as Level 041.
It combines the benefits of both striping and Level 1 - with both high
availability and high performance. It can be tuned for either a request
rate intensive or transfer rate intensive environment. Level 2 arrays sector-
stripe data across groups of drives, with some drives being dedicated to
storing Error Checking and Correction (ECC) information within each
sector. However, since most disk drives today embed ECC information
within each sector as standard, Level 2 offers no significant advantages
over Level 3 architecture. At the present time there are no manufacturers
of Level 2 arrays.

Level 3: Bit Interleaving with XOR Parity — Level 3 is a striped paral-
lel array where data is distributed by bit or byte. One drive in the array
provides data protection by storing a parity check byte for each data stripe.

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 96

RAID 0 Simultaneous reads RAID | Simultaneous reads| RAID 2

) on every drive
on every drive
() mem TS,

write
spans
—_ —_ —_ all

drives

Data
O Duplication on
- = .
Simultaneous % read

Writes on

1 all drives

|
every drive | |
| |
O
| | Simultancous reads
|
i

on every drive

ol ||ro— | o=

Read and
Write

Span
All

I
drives :

L !
|
i Parallel L !
[. Access [~ Simultaneous reads L= @ —_
o ;
- on every drive
Parity
Parity Each drive now also
Every handles parity
Write must update indicated by the filled circle

a dedicated parity drive

RAID 3 RAID 4 RAID 5

Figure 5.4: RAID levels

Level 3 has the advantage over lower RAID levels in that the ratio of
check disk capacity to data disk capacity decreases as the number of data
drives increases. It has parallel data paths and therefore offers high trans-
fer rate performance for applications that transfer large files. Array ca-
pacity can be expanded in single drive or group increments. With Level
3, data chunks are much smaller than the average I/O size and the disk
spindles are synchronised to enhance throughput in transfer rate inten-
sive environments. Level 3 is well suited for CAD/CAM or imaging type
applications.

Level 4: Block Interleaving with XOR Parity — In Level 4 parity is in-
terleaved at the sector or transfer level. As with Level 3, a single drive is
used to store redundant data using a parity check byte for each data stripe.

Level 4 offers high read performance and good write performance. Level 4
is a general solution, especially where the ratio of reads to writes is high.
This makes Level 4 a good choice for small block transfers, which are
typical for transaction processing applications. Write performance is low
because the parity drive has to be written for each data write. Thus the
parity drive becomes a performance bottleneck when multiple parity write
I/Os are required. In this instance, Level 5 is a better solution because
parity information is spiralled across all available disk drives. Level 4 sys-
tems are almost never implemented mainly because it offers no significant
advantages over Level 5.

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 97

Level 5: Block Interleaving with Parity Distribution — Level 5 combines
the throughput of block interleaved data

striping of Level 0 with the parity reconstruction mechanism of Level 3
without requiring an extra parity drive. In Level 5, both parity and data
are striped across a set of disks. Data chunks are much larger than the
average /0O size. Disks are able to satisfy requests independently which
provides high read performance in a request-rate intensive environment.
Since parity information is used, a Level 5 stripe can withstand a single
disk failure without losing data or access to data.

Level 5’s strength lies in handling large numbers of small files. It allows
improved I/O transfer performance because the parity drive bottleneck
of Level 4 is eliminated. While Level 5 is more cost effective because a
separate parity drive is not used, write performance suffers. In graphic
art and imaging applications, the weakness of Level 5 versus Level 3 is the
write penalty from the striped parity information. In Level 3 there is no
write penalty. Level 5 is usually seen in applications with large numbers
of small read/write calls. Level 5 offers higher capacity utilisation when
the array has less than 7 drives. With a full array, utilisation is about
equal between Level 3 and 5.

Level 6: Fault Tolerant System — additional error recovery. This is an im-
provement of Level 5. Disks are considered to be in a matrix formation
and parity is generated for each row and column of the matrix. Multidi-
mensional parity is then computed and distributed among the disks in the
matrix.

Level 6 became a common feature in many systems but the advent of Level
7 has led to the abandonment of Level 6 in many cases.

Level 7: Heterogeneous System — Fast access across whole system. Level
7 allows each individual drive to access data as fast as possible by incor-
porating a few crucial features:

e Each I/O drive is connected to high speed data bus which posses a
central cache store capable of supporting multiple host I/O paths.

e A real time process-oriented OS is embedded into the disk array archi-
tecture — frees up drives, allowing independent drive head operation.
Substantial improvement.

e All parity checking and check /microprocessor/bus/cache control logic
embedded in this OS.

e OS designed to support multiple host interfaces — other RAID levels
support only one.

e Additional ability to reconstruct data in the event of dependent drive
failure increased due to separate cache/device control, and secondary,
tertiary and beyond parity calculation — up to four simultaneous disk
failures supported.

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 98

e Dynamic Mapping used. In conventional storage a block of data,
once created, is written to fixed memory location. All operations
then rewrite data back to this location. In Dynamic Memory this
constraint is freed and new write locations logged and mapped. This
frees additional disk accesses and the potential for a bottleneck.

These First 6 RAID levels are illustrated in Figure 5.4, where each circle
represents a single disk drive, and arrows represent data flows.

5.5.4 Optical Storage

Optical storage has been the most popular storage medium in the multimedia
context due its compact size, high density recording, easy handling and low cost
per MB.

CD is the most common and we discuss this below. Laser disc and recently
DVD are also popular.

5.5.5 CD Storage

There a now various formats of CD:

In the beginning, there was CD-DA (Compact Disc-Digital Audio), or stan-
dard music CDs. CD-DA moved onto CD-ROM when people realized that you
could store a whole bunch of computer data on a 12cm optical disk (650mb).
CD-ROM drives are simply another kind of digital storage media for computers,
albeit read-only. They are peripherals just like hard disks and floppy drives. (In-
cidentally, the convention is that when referring to magnetic media, it is spelled
disc. Optical media like CDs, LaserDisc, and all the other formats I'm about
to explain are spelled disc.)

CD-I (Compact Disc-Interactive) came next. This is a consumer electronics
format that uses the optical disk in combination with a computer to provide
a home entertainment system that delivers music, graphics, text, animation,
and video in the living room. Unlike a CD-ROM drive, a CD-I player is a
standalone system that requires no external computer. It plugs directly into a
TV and stereo system and comes with a remote control to allow the user to
interact with software programs sold on disks. It looks and feels much like a CD
player except that you get images as well as music out of it and you can actively
control what happens. In fact, it is a CD-DA player and all of your standard
music CDs will play on a CD-I player; there is just no video in that case.

Next came CD-ROM/XA (eXtended Architecture). Now we go back to
computer peripherals - a CD-ROM drive but with some of the compressed audio
capabilities found in a CD-I player (called ADPCM). This allows interleaving of
audio and other data so that an XA drive can play audio and display pictures
(or other things) simultaneously. There is special hardware in an XA drive
controller to handle the audio playback. This format came from a desire to
inject some of the features of CD-I back into the professional market.

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 99

Now, along comes the idea from Kodak for Photo CD - digital pictures on
compact disk. They teamed up with Philips to develop the standard for Photo
CD disks. At this point, a new problem enters the picture, if you'll pardon
the expression. All of the disk formats mentioned so far are read-only; there
is no way for anyone but the producer of one of these disks to store his/her
own content on the disk - that is, to write to it. But there already existed a
technology called WORM (Write Once Read Many). This is an optical disk that
can be written to, but exactly once. You can burn data on it, but once burned
the data can not be erased, although it can then be used like a CD-ROM disk
and read forever. (Depending on your definition of forever, of course.)

CD-ROM, CD-ROM/XA, and CD-I disks are normally mastered, as opposed
to burned. That means that one master copy is made and then hundreds, or
thousands, or millions (if you’re lucky enough to need that many) of replicates
are pressed from the master. This process is much cheaper than burning for
quantities above a few dozen or so. Generally, disk pressing plants can handle
all of these formats as the underlying technology is the same; the only difference
is in the data and disk format.

The reason that WORM technology was critical for Photo CD is obvious -
the content of these disks is not determined by the manufacturer or publisher.
For Photo CD, each disk will be different - a roll or few rolls of film per disk
from a customer.

Kodak and Philips wanted Photo CD disks to be playable on both computer
peripherals for desktop publishing uses AND on a consumer device for home
viewing. For the former, CD-ROM/XA was chosen as a carrier and for the
latter CD-I, which was already designed as a consumer electronics device, and
dedicated Photo CD players. This desire for a hybrid disk, or one with multi-
platform compatibility, led to the development of the CD-I Bridge disk format.
A Bridge disk is one that is readable on both a CD-I player and a CD-ROM /XA
drive.

This Bridge format is the reason there is so much confusion about CD-ROM
drives for Photo CD. A drive that supports Photo CD must be a CD-ROM /XA
drive that is also Bridge-compatible. (The technical description of Bridge disks
calls for supporting certain kinds of sectors identified by form and mode bits,
which is what you usually hear instead of the Bridge disk label.) That almost
completes the picture, except for the concept of sessions.

Although a WORM disk can only be written to once, it is not necessary to
write, or burn, the entire disk all at once. You can burn the disk initially with,
say, a few hundred megabytes of data, and then go back later and burn some
more data onto it. Of course, each burn must be to a virgin part of the disk;
once a spot on the disk is burned, it can not be re-burned. Each burn operation
is referred to as a session, and a drive or disk that supports this multiple burning
operation is called multisession.

Originally, all WORMs were single session only. That is, you could not go
back and add data to a WORM disk once it was burned, even if it was not full.
For Photo CD, they wanted the consumer to be able to add more pictures to
an existing disk as additional rolls of film were processed. So the extension of

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 100

WORM technology to multisession was developed and adopted for the Bridge
disk format. This required hardware changes to CD-ROM /XA drives and that
is why there are a fair number of single session XA drives on the market and
multisession ones appearing more and more.

A single session drive can read a multisession disk, but it can only read
the contents of the first session that was burned. Incidentally, all Philips CD-
I players are multisession, although all current CD-I disks have only a single
session on them.

The capacity of a CD-ROM is 620-700 Mbs depending on CD material,
Drives that read and write the CD-ROMS. 650 Mb (74 Mins) is a typical write
once CD-ROM size.

CD Standards

There are several CD standard for different types of media:

Red Book — Digital Audio: Most Music CDs.

Yellow Book — CD-ROM: Model 1 — computer data, Model 2 — compress
audio/video data.

Green Book — CD-I
Orange Book — write once CDs

Blue Book — LaserDisc

5.5.6 DVD

DVD, which stands for Digital Video Disc, Digital Versatile Disc, or nothing,
depending on whom you ask, is the next generation of optical disc storage
technology.

DVD has become a major new medium for a whole host of multimedia
system:

It’s essentially a bigger, faster CD that can hold video as well as audio and
computer data. DVD aims to encompass home entertainment, computers, and
business information with a single digital format, eventually replacing audio
CD, videotape, laserdisc, CD-ROM, and perhaps even video game cartridges.
DVD has widespread support from all major electronics companies, all major
computer hardware companies, and most major movie and music studios, which
is unprecedented and says much for its chances of success (or, pessimistically,
the likelihood of it being forced down our throats).

It’s important to understand the difference between DVD-Video and DVD-
ROM. DVD-Video (often simply called DVD) holds video programs and is
played in a DVD player hooked up to a TV. DVD-ROM holds computer data
and is read by a DVD-ROM drive hooked up to a computer. The difference
is similar to that between Audio CD and CD-ROM. DVD-ROM also includes

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 101

future variations that are recordable one time (DVD-R) or many times (DVD-
RAM). Most people expect DVD-ROM to be initially much more successful than
DVD-Video. Most new computers with DVD-ROM drives will also be able to
play DVD-Videos.

There’s also a DVD-Audio format. The technical specifications for DVD-
Audio are not yet determined.

What are the features of DVD-Video?
The main features of DVD include:

e Over 2 hours of high-quality digital video (over 8 on a double-sided, dual-
layer disc).

e Support for widescreen movies on standard or widescreen TVs (4:3 and
16:9 aspect ratios).

e Up to 8 tracks of digital audio (for multiple languages), each with as many
as 8 channels.

e Up to 32 subtitle/karaoke tracks.

e Automatic seamless branching of video (for multiple story lines or ratings
on one disc).

e Up to 9 camera angles (different viewpoints can be selected during play-
back).

e Menus and simple interactive features (for games, quizzes, etc.).

e Multilingual identifying text for title name, album name, song name, cast,
crew, etc.

e Instant rewind and fast forward, including search to title, chapter, track,
and timecode.

e Durability (no wear from playing, only from physical damage).
e Not susceptible to magnetic fields. Resistant to heat.

e Compact size (easy to handle and store, players can be portable, replica-
tion is cheaper).

Note: Most discs do not contain all features (multiple audio/subtitle tracks,
seamless branching, parental control, etc.). Some discs may not allow searching
or skipping.

Most players support a standard set of features:

e Language choice (for automatic selection of video scenes, audio tracks,
subtitle tracks, and menus) which must be supported by additional content
on the disc. Some players include additional features:

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 102

e Special effects playback: freeze, step, slow, fast, and scan (no reverse play
or reverse step).

e Parental lock (for denying playback of discs or scenes with objectionable
material) which again must be supported by additional content on the
disc. Some players include additional features

e Programmability (playback of selected sections in a desired sequence).
e Random play and repeat play.

e Digital audio output (PCM stereo and Dolby-Digital).

e Compatibility with audio CDs.

e Component (YUV or RGB) output for highest-quality picture.

e Compatibility with Video CDs.

e Six-channel analog output from internal audio decoder.

e Compatibility with laserdiscs and CDVs.

e Reverse single frame stepping.

e RF output (for TVs with no direct video input).

e Multilingual on-screen display.

Quality of DVD-Video

DVD has the capability to produce near-studio-quality video and better-than-
CD-quality audio. DVD is vastly superior to videotape and generally better
than laserdisc. However, quality depends on many production factors. Until
compression experience and technology improves we will occasionally see DVDs
that are inferior to laserdiscs. Also, since large amounts of video have already
been encoded for Video CD using MPEG-1, a few low-budget DVDs will use
that format (which is no better than VHS) instead of higher-quality MPEG-2
(See Chapters 6 and 7)

DVD video is compressed from digital studio master tapes to MPEG-2 for-
mat. This is a lossy compression (see Chapter 7) which removes redundant
information (such as sections of the picture that don’t change) and information
that’s not readily perceptible by the human eye. The resulting video, especially
when it is complex or changing quickly, may sometimes contain artifacts such
as blockiness, fuzziness, and video noise depending on the processing quality
and amount of compression (Chapter 7). At average rates of 3.5 Mbps (million
bits/second), artifacts may be occasionally noticeable. Higher data rates result
in higher quality, with almost no perceptible difference from the original master
at rates above 6 Mbps. As MPEG compression technology improves, better
quality is being achieved at lower rates.

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 103

Some DVD demos have visible artifacts such as color banding, blurriness,
shimmering, missing detail, and even effects such as a face which floats behind
the rest of the moving picture. This is sometimes caused by poor MPEG en-
coding, but is just as often caused by a poorly adjusted TV or by sloppy digital
noise reduction prior to encoding. The Free Willy and Twister excerpts on the
Panasonic demo disc are good examples of this. In any case, bad demos are not
an indication that DVD quality is bad, since other demos show no artifacts or
other problems. Bad demos are simply an indication of how bad DVD can be if
not properly processed and correctly reproduced. Early demos were shown on
prototype players based on prerelease hardware and firmware. Many demo discs
were rushed through the encoding process in order to be distributed as quickly
as possible. Contrary to popular opinion, and as stupid as it may seem, these
demos are not carefully tweaked to show DVD at its best. Also, most sales-
people are incapable of properly adjusting a television set. Most TVs have the
sharpness set too high for the clarity of DVD. This exaggerates high-frequency
video and causes distortion, just as the treble control set too high for a CD
causes it to sound harsh. DVD video has exceptional color fidelity, so muddy or
washed-out colors are almost always a problem in the display, not in the DVD
player or disc.

DVD audio quality is excellent. One of DVD’s audio formats is LPCM (linear
pulse code modulation) with sampling sizes and rates higher than audio CD.
Alternately, audio for most movies is stored as discrete multi-channel surround
sound using Dolby Digital or MPEG-2 audio compression similar to the surround
sound formats used in theaters. As with video, audio quality depends on how
well the encoding was done. Most audio on DVD will be in Dolby Digital format,
which is close to CD quality.

The final assessment of DVD quality is in the hands of consumers. Most
initial reports consistently rate it better than laserdisc. No one can guarantee
the quality of DVD, just as no one should dismiss it based on demos or hearsay.
In the end it’s a matter of individual perception.

What are the disadvantages of DVD?

Despite several positive attributes mentioned above there are some potential
disadvantages of DVD:

e It will take years for movies and software to become widely available.
e It can’t record (yet).
e It has built-in copy protection and regional lockout.

e It uses digital compression. Poorly compressed audio or video may be
blocky, fuzzy, harsh,

e or vague.

e The audio downmix process for stereo/Dolby Surround can reduce dy-
namic range.

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 104

e It doesn’t fully support HDTV.
e Some DVD players and drives may not be able to read CD-Rs.
e First-generation DVD players and drives can’t read DVD-RAM discs.

e Current players can’t play in reverse at normal speed.

Compatibility of DVD

DVD is compatible with most other optical media storage (but there is a dis-
tinction between DVD and DVD-ROM below:

e CD audio (CD-DA) — All DVD players and drives will read audio CDs
(Red Book). This is not actually required by the DVD spec, but so far
all manufacturers have stated that their DVD hardware will read CDs.
On the other hand, you can’t play a DVD in a CD player. (The pits are
smaller, the tracks are closer together, the data layer is a different distance
from the surface, the modulation is different, the error correction coding
is new, etc.)

e CD-ROM is compatible with DVD-ROM — All DVD-ROM drives will
read CD-ROMs (Yellow Book). However, DVD-ROMs are not readable
by CD-ROM drives.

e CD-R maybe compatible with DVD-ROM — The problem is that CD-
Rs (Orange Book Part II) are invisible to DVD laser wavelength because
the dye used in CD-Rs doesn’t reflect the beam. This problem is be-
ing addressed in many ways. Sony has developed a twin-laser pickup
in which one laser is used for reading DVDs and the other for reading
CDs and CD-Rs. Samsung has also announced dual-laser using a holo-
graphic annular masked lens. These solutions provide complete backwards
compatibility with millions of CD-R discs. Philips has also stated that its
DVD-ROM drives will read CD-Rs. In addition, new CD-R Type II blanks
that will work with CD-ROM and DVD are supposedly in development.
In the meantime, some first-generation DVD-ROM drives and many first-
generation DVD-Video players will not read CD-R media.

e Is CD-RW is compatible with DVD — CD-Rewritable (Orange Book
Part IIT) discs can not be read by existing CD-ROM drives and CD play-
ers. CD-RW has a lower reflectivity difference, requiring automatic-gain-
control (AGQC) circuitry. The new MultiRead standard addresses this and
some DVD manufacturers have already suggested they will support it.
Supposedly the optical circuitry of DVD-ROM drives and DVD players
is good enough to read CD-RW. CD-RW does not have the invisibility
problem of CD-R .

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 105

e Video CD maybe compatible with DVD — It’s not required by the DVD
spec, but it’s trivial to support the White Book standard since any MPEG-
2 decoder can also decode MPEG-1 from a Video CD. Panasonic, RCA,
Samsung, and Sony models play Video CDs. Japanese Pioneer models
play Video CDs but American models don’t. Toshiba players don’t play
Video CDs

VCD resolution is 352x288 for PAL and 352x240 for NTSC. The way
most DVD players and Video CD players deal with the difference is to
chop off the extra lines or add blank lines. When playing PAL VCDs,
the Panasonic and RCA NTSC players apparently cut the entire 48 lines
(17bottom and none off the top. The Sony looks better. [Does anyone
know if it cuts 24 lines off the top and the bottom, or if it scales the full
picture to fit?]

Most DVD-ROM computers will be able to play Video CDs (with the
right software), since its already possible with current-model CD-ROM
computers.

Note: Many Asian VCDs achieve two soundtracks by putting one language
on the left channel and another on the right. They will be mixed together
into babel on a stereo system unless you adjust the balance to get only
one channel.

e Photo CD is NOT compatible with DVD — DVD players could support
Photo CD with a few extra chips and a license from Kodak. No one has
announced such a player. Most DVD-ROM drives will read Photo CDs (if
they read CD-Rs) since it’s trivial to support the XA and Orange Book
multisession standards. The more important question is, “Does the OS or
application support Photo CD”

e CD-I NOT compatible with DVD — Most DVD players will not play
CD-I (Green Book) discs. However, Philips has announced that it will
make a DVD player that supports CD-I. Some people expect Philips to
create a DVD-I format in attempt to breathe a little more life into CD-I
(and recover a bit more of the billion or so dollars they’ve invested in it).

e Enhanced CD is compatible with DVD — DVD players will play music
from Enhanced Music CDs (Blue Book, CD Plus, CD Extra), and DVD-
ROM drives will play music and read data from Enhanced CDs. Older
ECD formats such as mixed mode and track zero (pregap, hidden track)
should also be compatible, but there may be a problem with DVD-ROM
drivers skipping track zero (as has been the case with some new CD-ROM
drivers).

e Laserdisc is NOT compatible with DVD — Standard DVD players will not
play laserdiscs, and you can’t play a DVD disc on any standard laserdisc
player. (Laserdisc uses analog video, DVD uses digital video; they are
very different formats.)

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 106

However, Pioneer and Samsung have announced combo players that will
play laserdiscs and DVDs (and also CDVs and audio CDs). Denon is
rumored to have an LD/DVD player in the works also.

Sizes and capacities of DVD

There are many variations on the DVD theme. There are two physical sizes:
12 cm (4.7 inches) and 8 cm (3.1 inches), both 1.2 mm thick. These are the
same form factors as CD. A DVD disc can be single-sided or double-sided. Each
side can have one or two layers of data. The amount of video a disc can hold
depends on how much audio accompanies it and how heavily the video and
audio are compressed. The oft-quoted figure of 133 minutes is apocryphal: a
DVD with only one audio track easily holds over 160 minutes, and a single layer
can actually hold up to 9 hours of video and audio if it’s compressed to VHS
quality.

At a rough average rate of 4.7 Mbps (3.5 Mbps for video, 1.2 Mbps for three
5.1-channel soundtracks), a single-layer DVD holds around 135 minutes. A two-
hour movie with three soundtracks can average 5.2 Mbps. A dual-layer disc can
hold a two-hour movie at an average of 9.5 Mbps (very close to the 10.08 Mbps
limit).

Capacities of DVD:

For reference, a CD-ROM holds about 650 MB (megabytes), which is 0.64
GB (gigabytes) or 0.68 G bytes (billion bytes). In the list below, SS/DS
means single-/double-sided, SL/DL means single-/dual-layer, GB means giga-
bytes (230), G means billions of bytes (10%).

DVD-5 (12cm, SS/SL): 4.38 GB (4.7 G) of data, over 2 hours of video
DVD-9(12cm, SS/DL): 7.95 GB (8.5 G), about 4 hours
DVD-10 (12cm, DS/SL): 8.75 GB (9.4 G), about 4.5 hours
DVD-18 (12cm, DS/DL): 15.90 GB (17 G), over 8 hours
DVD-1? (8cm, SS/SL): 1.36 (1.4 G), about half an hour
DVD-2? (8cm, SS/DL): 2.48 GB (2.7 G), about 1.3 hours
DVD-37 (8cm, DS/SL): 2.72 GB (2.9 G), about 1.4 hours
DVD-47? (8cm, DS/DL): 4.95 GB (5.3 G), about 2.5 hours
DVD-R (12cm, SS/SL): 3.68 GB (3.95 G)

DVD-R (12cm, DS/SL): 7.38 GB (7.9 G)

DVD-R (8cm, SS/SL): 1.15 GB (1.23 @)

DVD-R (8cm, DS/SL): 2.29 GB (2.46 G)

DVD-RAM (12cm, SS/SL): 2.40 GB (2.58 G)

DVD-RAM (12cm, DS/SL): 4.80 GB (5.16 G)

~N WS NN

Note: It takes about two gigabytes to store one hour of average video
(Chapter 6).
The increase in capacity from CD-ROM is due to:

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 107

Ch: f
large pits,
wide tracks

LWL
zmall pits,
tight tracks

Figure 5.5: DVD vs CD-ROM Pit Length

e smaller pit length (~2.08x) (Fig.(5.5),
o tighter tracks (~2.16x),

e slightly larger data area (~1.02x),

e slightly larger data area (~1.02x),

e discs single or double sided

e another data layer added to each side creating a potential for four layers
of data per disc (Fig. 5.6)

e more efficient channel bit modulation (~1.06x),

e more efficient error correction (~1.32x),

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 108

Feflactive |aywar

Semiraflective
layrer

Figure 5.6: DVD layers

e less sector overhead (1.06x). Total increase for a single layer is about
7 times a standard CD-ROM. There’s a slightly different explanation at
http://www.mpeg.org/ MPEG/DVD/General/Gain.html

The capacity of a dual-layer disc is slightly less than double that of a single-
layer disc. The laser has to read through the outer layer to the inner layer (a
distance of 20 to 70 microns). To reduce inter-layer crosstalk, the minimum
pit length of both layers is increased from .4 um to .44 um. In addition, the
reference scanning velocity is slightly faster — 3.84 m/s, as opposed to 3.49
m/s for single layer discs. Bigger pits, spaced farther apart, are easier to read
correctly and are less susceptible to jitter. Bigger pits and fewer of them mean
reduced capacity per layer.

DVD video details

We will look at the details of video and audio in general in Chapter 6 and
compression (MPEG formats) in Chapter 7. These concepts are mentioned
below and will be explained in further detail in these later chapters.

DVD-Video is an application of DVD-ROM. DVD-Video is also an applica-
tion of MPEG-2. This means the DVD format defines subsets of these standards
to be applied in practice as DVD-Video. DVD-ROM can contain any desired
digital information, but DVD-Video is limited to certain data types designed
for television reproduction.

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 109

A disc has one track (stream) of MPEG-2 constant bit rate (CBR) or variable
bit rate (VBR) compressed digital video. A limited version of MPEG-2 Main
Profile at Main Level (MPQ@QML) is used. MPEG-1 CBR and VBR video is
also allowed. 525/60 (NTSC, 29.97 interlaced frames/sec) and 625/50 (PAL, 25
interlaced frames/sec) video systems are supported. Coded frame rates of 24 fps
progressive or interlaced from film, 25 fps interlaced from PAL video, and 29.97
fps interlaced from NTSC video are supported. In the case of 24 fps source,
the encoder embeds MPEG-2 repeat_first_field flags into the video stream to
make the decoder either perform 3-2 pulldown for 60 (59.94) Hz displays or
2-2 pulldown (with 4displays. In other words, the player doesn’t really know
what the encoded rate is, it simply follows the MPEG-2 encoder’s instructions
to arrive at the predetermined display rate of 25 fps or 29.97 fps. (No current
players convert from PAL to NTSC or NTSC to PAL.) See the Chapter 7 for
more information on MPEG-2 video.

Picture dimensions are max 720x480 (29.97 frames/sec) or 720x576 (25
frames/sec). Pictures are subsampled from 4:2:2 ITU-R 601 down to 4:2:0,
allocating an average of 12 bits/pixel. (Color depth is still 24 bits, since color
samples are shared across 4 pixels.) The uncompressed source is 124.416 Mbps
for video source (720x480x12x30 or 720x576x12x25), or either 99.533 or 119.439
Mbps for film source (720x480x12x24 or 720x576x12x24). Using the traditional
(and rather subjective) television measurement of lines of horizontal resolution
DVD can have 540 lines on a standard TV (720/(4/3)) and 405 on a widescreen
TV (720/(16/9)). In practice, most DVD players provide about 500 lines be-
cause of filtering. VHS has about 230 (172 w/s) lines and laserdisc has about
425 (318 w/s).

Different players use different numbers of bits for the video digital-to-analog
converter. (Sony and Toshiba use 10 bits, Pioneer and Panasonic use 9 bits.)
This has nothing to do with the MPEG decoding process. It provides more
headroom and more analog signal levels which supposedly give a better picture.

Maximum video bitrate is 9.8 Mbps. The average bitrate is 3.5 but depends
entirely on the length, quality, amount of audio, etc. This is a 36:1 reduction
from uncompressed 124 Mbps (or a 28:1 reduction from 100 Mbps film source).
Raw channel data is read off the disc at a constant 26.16 Mbps. After 8/16
demodulation it’s down to 13.08 Mbps. After error correction the user data
stream goes into the track buffer at a constant 11.08 Mbps. The track buffer
feeds system stream data out at a variable rate of up to 10.08 Mbps. After
system overhead, the maximum rate of combined elementary streams (audio +
video + subpicture) is 10.08. MPEG-1 video rate is limited to 1.856 Mbps with
a typical rate of 1.15 Mbps.

Still frames (encoded as MPEG-2 I-frames) are supported and can be dis-
played for a specific amount of time or indefinitely. These are generally used for
menus. Still frames can be accompanied by audio.

A disc also can have up to 32 subpicture streams that overlay the video for
subtitles, captions for the hard of hearing, captions for children, karaoke, menus,
simple animation, etc. These are full-screen, run-length-encoded bitmaps lim-
ited to four pixel types. For each group of subpictures, four colors are selected

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 110

from a palette of 16 (from the YCrCb gamut), and four contrast values are se-
lected out of 16 levels from transparent to opaque. Subpicture display command
sequences can be used to create effects such as scroll, move, color/highlight, and
fade. The maximum subpicture data rate is 3.36 Mbps, with a maximum size
per frame of 53220 bytes.

Video can be stored on a DVD in 4:3 format (standard TV shape) or 16:9
(widescreen). The 16:9 format is anamorphic, meaning the picture is squeezed
horizontally to fit a 4:3 rectangle then unsqueezed during playback. DVD players
can output video in four different ways:

o full frame (4:3 video for 4:3 display)
e letterbox (16:9 video for 4:3 display)
e pan and scan (16:9 video for 4:3 display)

e widescreen (16:9 video for 16:9 display)

Video stored in 4:3 format is not changed by the player. It will appear
normally on a standard 4:3 display. Widescreen systems will either enlarge it or
add black bars to the sides. 4:3 video may have been formatted in various ways
before being transferred to DVD. For example, it may have been letterboxed to
hold video with a wider shape. Or it may have been panned and scanned from
film composed for a wider theatrical presentation. All formatting done to the
video prior to it being stored on the disc is transparent to the player. It merely
reproduces the signal in standard form.

For automatic letterbox mode, the player creates black bars at the top and
the bottom of the picture (60 lines each for NT'SC, 72 for PAL). This leaves 3/4
of the height remaining, creating a shorter but wider rectangle. In order to fit
this shorter rectangle, the picture is squeezed vertically using a letterbox filter
that combines every 4 lines into 3. This compensates for the original horizontal
squeezing, resulting in the movie being shown in its full width. The vertical
resolution is reduced from 480 lines to 360.

For automatic pan and scan mode, the video is unsqueezed to 16:9 and a
portion of the image is shown at full height on a 4:3 screen by following a ‘center
of interest’ offset that’s encoded in the video stream according to the preferences
of the people who transferred the film to video. The pan and scan window is
75% of the full width, which reduces the horizontal pixels from 720 to 540. The
pan and scan window can only travel laterally. This does not duplicate a true
pan and scan process in which the window can also travel up and down and
zoom in and out. Therefore, most DVD producers choose to put a separate pan
and scan version on the disc in addition to the widescreen version.

For widescreen mode, the anamorphic video is stretched back out by widescreen
equipment to its original width. If anamorphic video is shown on a standard 4:3
display, people will look like they have been on a crash diet. Widescreen mode
is complicated because most movies today are shot with a soft matte. (The cin-
ematographer has two sets of frame marks in her viewfinder, one for 1.33 (4:3)

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 111

and one for 1.85, so she can allow for both formats). A few movies are even
wider, such as the 2.35 ratio of Panavision. Since most movies are wider than
1.78 (16:9), one of at least 4 methods must be used during transfer to make it
fit the 1.78 rectangle: 1) add additional thin black bars to the top and bottom;
2) include a small amount of extra picture at the top and bottom from the
soft matte area; 3) crop the sides; 4) pan and scan with a 1.78 window. With
the first two methods, the difference between 1.85 and 1.78 is so small that the
letterbox bars or extra picture are hidden in the overscan area of most televi-
sions. Nevertheless, and especially with 2.35 movies, many DVD producers put
16:9 source on one side (or layer) of the disc and 4:3 source on the other. This
way the full-frame version of the film can be used for a horizontal and vertical
pan and scan, and zoom process with no letterbox bars and no reduction in
resolution.

Anamorphosis causes no problems with line doublers, which simply double
the lines before they are stretched out by the widescreen display.

For anamorphic video, the pixels are fatter. Different pixel aspect ratios
(none of them square) are used for each aspect ratio and resolution. 720-pixel
and 704-pixel sizes have the same aspect ratio because the first includes overscan.
Note that conventional values of 1.0950 and 0.9157 are for height/width (and
are tweaked to match scanning rates). The table below uses less-confusing
width/height values (y/x * h/w).

720x480 720x576

704x480 704x486 352x480 352x576
4:3 0.909 1.091 1.818 2.182
16:9 1.212 1.455 2.424 2.909

Playback of widescreen material can be restricted. Programs can be marked
for the following display modes:

e 4:3 full frame

e 4:3 LB (for automatically setting letterbox expand mode on widescreen
TV)

e 16:9 LB only (player not allowed to pan and scan on 4:3 TV)
e 16:9 PS only (player not allowed to letterbox on 4:3 TV)

e 16:9 LB or PS (viewer can select pan and scan or letterbox on 4:3 TV)

DVD audio

The DVD-Audio format is not yet specified. The International Steering Com-
mittee announced it expects to have a final draft specification by December
1997. This means DVD-Audio products may show up around 1999.

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 112

The following details are for audio tracks on DVD-Video. Some DVD man-
ufacturers such as Pioneer are developing audio-only players using the DVD-
Video format.

A disc can have up to 8 audio tracks (streams). Each track can be in one of
three formats:

e Dolby Digital (formerly AC-3): 1 to 5.1 channels
e MPEG-2 audio: 1 to 5.1 or 7.1 channels

e PCM: 1 to 8 channels.

Two additional optional formats are supported: DTS and SDDS. Both re-
quire external decoders.

The .1 refers to a low-frequency effects (LFE) channel that connects to a
subwoofer. This channel carries an emphasized bass audio signal.

All five audio formats support karaoke mode, which has two channels for
stereo (L and R) plus an optional guide melody channel (M) and two optional
vocal channels (V1 and V2).

Discs containing 525/60 (NTSC) video must use PCM or Dolby Digital on at
least one track. Discs containing 625/50 (PAL/SECAM) video must use PCM or
MPEG audio on at least one track. Additional tracks may be in any format. The
DVD Forum has clarified that only stereo MPEG audio is mandatory for 625/50
discs, while multichannel MPEG-2 audio is recommended. Since multichannel
MPEG-2 decoders are not yet available, most 625/50 discs include Dolby Digital
audio.

For stereo output (analog or digital), all NTSC players and all PAL players
(so far) have a built-in Dolby Digital decoder which downmixes from 5.1 channels
(if present on the disc) to Dolby Surround stereo (i.e., 5 channels are matrixed
into 2 channels to be decoded to 4 by an external Dolby Pro Logic processor).
Both Dolby Digital and MPEG-2 support 2-channel Dolby Surround as the
source in cases where the disc producer can’t or doesn’t want to remix the
original onto discrete channels. This means that a DVD labelled as having Dolby
Digital sound may only use the L/R channels for surround or plain stereo. Even
movies with old monophonic soundtracks may use Dolby Digital — but only 1
or 2 channels.

The downmix process does not include the LFE channel and may compress
the dynamic range in order to improve dialog audibility and keep the sound from
becoming muddy on average home audio systems. This can result in reduced
sound quality on high-end audio systems. Some players have the option to turn
off the dynamic range compression. The downmix is auditioned when the disc
is prepared, and if the result is not acceptable the audio may be tweaked or a
separate L/R Dolby Surround track may be added. Experience has shown that
minor tweaking is sometimes required to make the dialog more audible within
the limited dynamic range of a home stereo system, but that a separate track
is not usually necessary. If surround audio is important to you, you will hear
significantly better results from multichannel discs if you have a Dolby Digital
system.

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 113

Linear PCM is uncompressed (lossless) digital audio, the same format used
on CDs. It can be sampled at 48 or 96 kHz with 16, 20, or 24 bits/sample.
(Audio CD is limited to 44.1 kHz at 16 bits.) There can be from 1 to 8 channels.
The maximum bitrate is 6.144 Mbps, which limits sample rates and bit sizes
with 5 or more channels. It’s generally felt that the 96 dB dynamic range of 16
bits or even the 120 dB range of 20 bits combined with a frequency response
of up to 22,000 Hz from 48 kHz sampling is adequate for high-fidelity sound
reproduction. However, additional bits and higher sampling rates are useful in
studio work, noise shaping, advanced digital processing, and three-dimensional
sound field reproduction. DVD players are required to support all the variations
of LPCM, but some of them may subsample 96 kHz down to 48 kHz, and some
may not use all 20 or 24 bits. The signal provided on the digital output for
external digital-to-analog converters may be limited to less than 96 kHz or less
than 24 bits.

Dolby Digital is multi-channel digital audio, compressed using AC-3 coding
technology from original PCM with a sample rate of 48 kHz at 16 bits. The bi-
trate is 64 kbps to 448 kbps, with 384 being the normal rate for 5.1 channels and
192 being the normal rate for stereo (with or without surround encoding). The
channel combinations are (front/surround): 1/0, 141/0 (dual mono), 2/0, 3/0,
2/1, 3/1, 2/2, and 3/2. The LFE channel is optional with all 8 combinations.

MPEG audio is multi-channel digital audio, compressed from original PCM
format with sample rate of 48 kHz at 16 bits. Both MPEG-1 and MPEG-
2 formats are supported. The variable bitrate is 32 kbps to 912 kbps, with
384 being the normal average rate. MPEG-1 is limited to 384 kbps. Channel
combinations are (front/surround): 1/0, 2/0, 2/1, 2/2, 3/0, 3/1, 3/2, and 5/2.
The LFE channel is optional with all combinations. The 7.1 channel format
adds left-center and right-center channels, but will probably be rare for home
use. MPEG-2 surround channels are in an extension stream matrixed onto the
MPEG-1 stereo channels, which makes MPEG-2 audio backwards compatible
with MPEG-1 hardware (an MPEG-1 system will only see the two stereo chan-
nels.)

DTS is an optional multi-channel (5.1) digital audio format, compressed
from PCM at 48 kHz. The data rate is from 64 kbps to 1536 kbps. Channel
combinations are (front/surround): 1/0, 2/0, 3/0, 2/1, 2/2, 3/2. The LFE
channel is optional with all 6 combinations.

SDDS is an optional multi-channel (5.1 or 7.1) digital audio format, com-
pressed from PCM at 48 kHz. The data rate can go up to 1280 kbps.

A DVD-5 with only one surround stereo audio stream (at 192 kbps) can hold
over 55 hours of audio. A DVD-18 can hold over 200 hours.

Interactive DVD features

DVD-Video players (and software DVD-Video navigators) support a command
set that provides rudimentary interactivity. The main feature is menus, which
are present on almost all discs to allow content selection and feature control.
Each menu has a still-frame graphic and up to 36 highlightable, rectangular

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 114

buttons (only 12 if widescreen, letterbox, and pan and scan modes are used).
Remote control units have four arrow keys for selecting onscreen buttons, plus
numeric keys, select key, menu key, and return key. Additional remote functions
may include freeze, step, slow, fast, scan, next, previous, audio select, subtitle
select, camera angle select, play mode select, search to program, search to part
of title (chapter), search to time, and search to camera angle. Any of these
features can be disabled by the producer of the disc.

Additional features of the command set include simple math (add, subtract,
multiply, divide, modulo, random), bitwise and, bitwise or, bitwise xor, plus
comparisons (equal, greater than, etc.), and register loading, moving, and swap-
ping. There are 24 system registers for information such as language code, audio
and subpicture settings, and parental level. There are 16 general registers for
command use. A countdown timer is also provided. Commands can branch or
jump to other commands. Commands can also control player settings, jump to
different parts of the disc, and control presentation of audio, video, subpicture,
camera angles, etc.

DVD-V content is broken into titles (movies or albums), and parts of titles
(chapters or songs). Titles are made up of cells linked together by one or more
program chains (PGC). A PGC can be defined as sequential play, random play
(may repeat), or shuffle play (random order but no repeats). Individual cells
may be used by more than one PGC, which is how parental management and
seamless branching are accomplished: different PGCs define different sequences
through mostly the same material.

Additional material for camera angles and seamless branching is interleaved
together in small chunks. The player jumps from chunk to chunk, skipping over
unused angles or branches, to stitch together the seamless video. Since angles
are stored separately, they have no direct effect on the bitrate but they do
affect the playing time. Adding 1 camera angle for a program roughly doubles
the amount of space it requires (and cuts the playing time in half).

5.5.7 DVD and computers

SO far we have focussed on the media representation and standard DVD play-
ers. DVD and DVD-ROM in particular is beginning to have a huge impact on
computers.

For a computer to employ DVD it must have the following features:

In addition to a DVD-ROM drive, you must have extra hardware to decode
MPEG-2 video and Dolby Digital/ MPEG-2/PCM audio. The computer oper-
ating system or playback system must support regional codes and be licensed to
decrypt copy-protected movies. You may also need software that can read the
MicroUDF format used to store DVD data files and interpret the DVD control
codes. It’s estimated that 10-30% of new computers with DVD-ROM drives will
include decoder hardware, and that most of the remaining DVD-ROM comput-
ers will include movie playback software.

Some DVD-Videos and many DVD-ROMs will use video encoded using
MPEG-1 instead of MPEG-2. Many existing computers have MPEG-1 hardware

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 115

built in or are able to decode MPEG-1 with software.

CompCore Multimedia and Mediamatics make software to play DVD-Video
movies (SoftDVD, DVD Express). Both require at least a 233 MHz Pentium
MMX with AGP and an IDE/SCSI DVD-ROM drive with bus mastering DMA
support to achieve about 20 frame/sec film rates (or better than 300 MHz for
30 frame/sec video), and can decrypt copy-protected movies. Oak’s software
requires hardware support. The software navigators support most DVD-Video
features (menus, subpictures, etc.) and can emulate a DVD-Video remote con-
trol.

CompCore, Mediamatics, and Oak Technology have defined standards to
allow certain MPEG decoding tasks to be performed by hardware on a video
card and the remainder by software. Video graphics controllers with this feature
are being called DVD MPEG-2 accelerated. (The Mediamatics standard is called
MVCCA.)

If you have at least a 433 MHz Alpha workstation you’ll be able to play
DVD movies at full 30 fps in software.

DVD-ROM Drives:

Most DVD-ROM drives have a seek time of 150-200 ms, access time of
200-250 ms, and data transfer rate of 1.3 MB/s (11.08 * 10/8/220) with burst
transfer rates of up to 12 MB/s or higher. The data transfer rate from DVD-
ROM discs is roughly equivalent to a 9x CD-ROM drive. DVD spin rate is
about 3 times faster than CD, so when reading CD-ROMs, some DVD-ROM
drives transfer data at 3x speed while others are faster. 2x and 3x DVD-ROM
drives are already in the works. Hitachi is shipping samples of a 2x DVD-ROM
drive which also reads CDs at 20x.

Connectivity is similar to that of CD-ROM drives: EIDE (ATAPI), SCSI-
2, etc. All DVD-ROM drives have audio connections for playing audio CDs.
No DVD-ROM drives have been announced with DVD audio or video outputs
(which would require internal audio/video decoding hardware).

DVD-ROMs use a MicroUDF /ISO 9660 bridge file system. The OSTA UDF
file system will eventually replace the ISO 9660 system of CD-ROMs, but the
bridge format provides backwards compatibility until operating systems support
UDF.

Recordable DVD-ROM: DVD-R and DVD-RAM:

There are two recordable versions of DVD-ROM: DVD-R (record once) and
DVD-RAM (erase and record many times), with capacities of 3.95 and 2.58 G
bytes. Both specifications have been published. DVD-R and DVD-RAM are
not currently usable for home video recording.

DVD-R uses organic dye polymer technology like CD-R and is compatible
with almost all DVD drives. The technology will improve to support 4.7 G
bytes in 1 to 2 years, which is crucial for desktop DVD-ROM and DVD-Video
production.

Further Information

Further information on DVD can be obtained from:

CHAPTER 5. MULTIMEDIA SYSTEMS TECHNOLOGY 116

http://www.dvddigital.com/
In fact this section is heavily based on the FAQs section at
http://www.dvddigital.com/facts

Part 1V

Multimedia Data

117

Chapter 6

Multimedia Data
Representations

In this chapter we focus on the underlying representations of common forms of
media Audio, Graphics and Video. In the next chapter we focus on compression
techniques as we shortly understand why these data can be large in storage size
(even when compressed).

The topics we consider here are specifically:

e Digital Audio

Sampling/Digitisation

Compression (Details of Compression algorithms Next Chapter)

Graphics/Image Formats

Digital Video (Basics of Video end of this chapter but more on Didgiatl
Video in next Chapter as it so closely entwined with Compression)

6.1 Basics of Digital Audio
6.1.1 Application of Digital Audio — Selected Examples

Music Production

e Hard Disk Recording
Sound Synthesis

Samplers

Effects Processing

Video — Audio Important Element: Music and Effects

118

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 119

Web — Many uses on Web

e Spice up Web Pages
e Listen to Cds
e Listen to Web Radio

Many More Uses — try and think of some?

6.1.2 Digitization of Sound
Let us first analyse what a sound actually is:
e Sound is a continuous wave that travels through the air

e The wave is made up of pressure differences. Sound is detected by mea-
suring the pressure level at a location.

e Sound waves have normal wave properties (reflection, refraction, diffrac-
tion, etc.).

A variety of sound sources:
Source — Generates Sound

e Air Pressure changes
e FElectrical — Loud Speaker

o Acoustic — Direct Pressure Variations

The destination receives (sensed the sound wave pressure changes) and has
to deal with accordingly:

Destination — Receives Sound

e Flectrical — Microphone produces electric signal

e Fars — Responds to pressure hear sound
Sound is required input into a computer: it needs to sampled or digitised:

e Microphones, video cameras produce analog signals (continuous-valued
voltages) as illustrated in Fig 6.1

/_\ P time

v

Figure 6.1: Continuous Analog Waveform

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 120

e To get audio or video into a computer, we have to digitize it (convert
it into a stream of numbers) Need to convert Analog-to-Digital —
Specialised Hardware

e So, we have to understand discrete sampling (both time and voltage)

e Sampling — divide the horizontal axis (the time dimension) into discrete
pieces. Uniform sampling is ubiquitous.

o Quantization — divide the vertical axis (signal strength) into pieces. Some-
times, a non-linear function is applied.

— 8 bit quantization divides the vertical axis into 256 levels. 16 bit
gives you 65536 levels.

B0 B0
T To
60 M 60
z 50 ﬁ\ H &] 50
£ ,ff]U g™
£ & 30
Y .
10 lJ 10
(1 T R ST S S o
o -] 18 24 32 o 8 16 24 32
pasition pixel pumber
(] 80+
7o ?Oi
B0 &0
g 50 | | E 50
E‘ 40 | = 40
& 30 | & 30
i ' il
1 | 10
3 | | ‘] | | I 0 ‘ |
1] a 16 23 iz o a8 16 24 32
pixel mumier pixel numbser

Figure 6.2: Sampling a Waveform at different discrete frequencies affects the
perceived waveform

6.1.3 Digitizing Audio

That is the basic idea of digitizing a sound unfortunately things are (practically
speaking) not so simple.

e Questions for producing digital audio (Analog-to-Digital Conversion):

1. How often do you need to sample the signal?
2. How good is the signal?

3. How is audio data formatted?

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 121

6.1.4 Computer Manipulation of Sound

Once Digitised processing the digital sound is essentially straightforward al-
though it depends on the processing you wish to do (e.g. volume is easier to
code than accuarte reverb)

Essentially they all operate on the 1-D array of digitised samples, typical
examples include:

e Volume
e Cross-Fading

e Looping

Echo/Reverb/Delay

Filtering

e Signal Analysis
Soundedit Demos
e Volume

e Cross-Fading

e Looping

Echo/Reverb/Delay

Filtering

6.1.5 Sample Rates and Bit Size

How do we store each sample value (Quantisation)?
8 Bit Value (0-255)

16 Bit Value (Integer) (0-65535)

How many Samples to take?
11.025 KHz — Speech (Telephone 8KHz)

22.05 KHz — Low Grade Audio
(WWW Audio, AM Radio)

44.1 KHz — CD Quality

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 122

Figure 6.3: A Sine Wave

AWAWA
VALVARY

Figure 6.4: Sampling at 1 time per cycle

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 123

6.1.6 Nyquist’s Sampling Theorem

e Suppose we are sampling a sine wave (Fig 6.3. How often do we need to
sample it to figure out its frequency?

e If we sample at 1 time per cycle, we can think it’s a constant (Fig 6.4)

e If we sample at 1.5 times per cycle, we can think it’s a lower frequency
sine wave (Fig. 6.6)

. A » »

Figure 6.5: Sampling at 1.5 times per cycle

e Now if we sample at twice the sample frequency, i.e Nyquist Rate, we
start to make some progress. An alternative way of viewing thr waveform
(re)genereation is to think of straight lines joining up the peaks of the
samples. In this case (at these sample points) we see we get a sawtooth
wave that begins to start crudely approximating a sine wave

Figure 6.6: Sampling at the Nyquist Rate (Twice the Frequency)

e Nyquist rate — For lossless digitization, the sampling rate should be at
least twice the maximum frequency responses. Indeed many times more
the better.

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 124

VARVARY

Figure 6.7: Sampling at many times per cycle

6.1.7 Implications of Sample Rate and Bit Size
Affects Quality of Audio

e Ears do not respond to sound in a linear fashion

e Decibel (dB) a logarithmic measurement of sound

e 16-Bit has a signal-to-noise ratio of 98 dB — virtually inaudible

8-bit has a signal-to-noise ratio of 50 dB
e Therefore, 8-bit is roughly 8 times as noisy
— 6 dB increment is twice as loud

Signal to Noise Ratio (SNR)

e In any analog system, some of the voltage is what you want to measure
(signal), and some of it is random fluctuations (noise).

Ratio of the power of the two is called the signal to noise ratio (SNR).
SNR is a measure of the quality of the signal.

SNR is usually measured in decibels (dB).

2
SNR = 10log ‘zinet = 20log Yrianet

noise noise

Typically 8 bits or 16 bits.

Each bit adds about 6 dB of resolution, so 16 bits => 96 dB.

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS

File Type 44.1 KHz | 22.05 KHz | 11.025 KHz
16 Bit Stereo | 10.1 Mb 5.05 Mb 2.52 Mb
16 Bit Mono | 5.05 Mb 2.52 Mb 1.26 Mb
8 Bit Mono | 2.52 Mb 1.26 Mb 630 Kb

Memory Required for 1 Minute of Digital Audio

125

e Samples are typically stored as raw numbers (linear format), or as loga-

rithms (u-law (or A-law in Europe)).

— Logarithmic representation approximates perceptual uniformity.

Affects Size of Data

There is therfore is a trade off between Audio Quality vs. Data Rate

Some typical applications of sample bit size and sample rate are listed below:

Quality Sample Rate | Bits per | Mono/ Data Rate Frequency
(KHz) Sample | Stereo | (Uncompressed) Band
Telephone 8 8 Mono 8 KBytes/sec 200-3,400 Hz
AM Radio 11.025 8 Mono | 11.0 KBytes/sec
FM Radio 22.050 16 Stereo | 88.2 KBytes/sec
CD 441 16 Stereo | 176.4 KBytes/sec | 20-20,000 Hz
DAT 48 16 Stereo | 192.0 KBytes/sec | 20-20,000 Hz

e Telephone uses u-law encoding, others use linear. So the dynamic range

of digital telephone signals is effectively 13 bits rather than 8 bits.

e CD quality stereo sound —> 10.6 MB / min.

Practical Implications of Nyquist Sampling Theory

e Must (low pass) filter signal before sampling:

Input
Signal

{Analosy

Filtered
Signal

{Analosy

Sampled
Zignal

- ital
Low Pass Filter AT Converter Digiay

Figure 6.8: Practical Implication of Nyquist;Must Low Pass Filter Signal before

Sampling

e Otherwise strange artifacts from high frequency signals appear and are

audible.

We’ll finish off with a question: Why are CD Sample Rates 44.1 KHz?
The answer should be obvious if you have paid attention to the above notes
(Answer in Lecture).

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 126

6.1.8 Typical Audio Formats

e Popular audio file formats include .au (Unix workstations), .aiff (MAC,
SGI), .wav (PC, DEC workstations)

e A simple and widely used audio compression method is Adaptive Delta
Pulse Code Modulation (ADPCM). Based on past samples, it predicts the
next sample and encodes the difference between the actual value and the
predicted value.

6.1.9 Delivering Audio over a Network
e Trade off between desired fidelity and file size
e Bandwidth Considerations for Web and other media.

e Compress Files:

— Could affect live transmission on Web

Streaming Audio
e Buffered Data:

— Trick get data to destination before it’s needed
— Temporarily store in memory (Buffer)

— Server keeps feeding the buffer

— Client Application reads buffer

e Needs Reliable Connection, moderately fast too.

e Specialised client, Steaming Audio Protocol (PNM for real audio).

6.2 Synthetic Sounds

e FM (Frequency Modulation) Synthesis — used in low-end Sound Blaster
cards, OPL-4 chip, Yamaha DX Synthesiser range popular in Early 1980’s.

e Wavetable synthesis — wavetable generated from sound waves of real in-
struments

e Modern Synthesiser use a mixture of sample and synthesis.

6.3 Introduction to MIDI (Musical Instrument
Digital Interface)

Definition of MIDI: a protocol that enables computer, synthesizers, key-
boards, and other musical device to communicate with each other.

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 127

6.3.1 Components of a MIDI System
Synthesizer:
e It is a sound generator (various pitch, loudness, tone colour).

e A good (musician’s) synthesizer often has a microprocessor, keyboard,
control panels, memory, etc.

Sequencer:

e It can be a stand-alone unit or a software program for a personal computer.
(It used to be a storage server for MIDI data. Nowadays it is more a
software music editor on the computer.

e [t has one or more MIDI INs and MIDI OUTs.

Track:

e Track in sequencer is used to organize the recordings.

e Tracks can be turned on or off on recording or playing back.
Channel:

e MIDI channels are used to separate information in a MIDI system.
e There are 16 MIDI channels in one cable.

e Channel numbers are coded into each MIDI message.

Timbre:

e The quality of the sound, e.g., flute sound, cello sound, etc.

e Multitimbral — capable of playing many different sounds at the same time
(e.g., piano, brass, drums, etc.)

Pitch:

e musical note that the instrument plays

Voice:

e Voice is the portion of the synthesizer that produces sound.
e Synthesizers can have many (12, 20, 24, 36, etc.) voices.

e Each voice works independently and simultaneously to produce sounds of
different timbre and pitch.

Patch:

e the control settings that define a particular timbre.

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 128

6.3.2 Hardware Aspects of MIDI

MIDI connectors:
— three 5-pin ports found on the back of every MIDI unit

e MIDI IN: the connector via which the device receives all MIDI data.

e MIDI OUT: the connector through which the device transmits all the
MIDI data it generates itself.

e MIDI THROUGH: the connector by which the device echoes the data
receives from MIDI IN.

Note: It is only the MIDI IN data that is echoed by MIDI through. All the
data generated by device itself is sent through MIDI OUT.
Figure 6.9 illustrates a typical setup where:

THRU IN our IN our
Master Kevboard MIDN Tnterface! Sowrnd Card

IN THRU
MIDI Modele A
IN THRU
MIDI Modele B

Figure 6.9: A Typical MIDI Sequencer Setup

elx.

e MIDI OUT of synthesizer is connected to MIDI IN of sequencer.

e MIDI OUT of sequencer is connected to MIDI IN of synthesizer and
through to each of the additional sound modules.

e During recording, the keyboard-equipped synthesizer is used to send MIDI
message to the sequencer, which records them.

e During play back: messages are send out from the sequencer to the sound
modules and the synthesizer which will play back the music.

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS

6.3.3 MIDI Messages

MIDI messages are used by MIDI devices to communicate with each other.
Structure of MIDI messages:

e MIDI message includes a status byte and up to two data bytes.

e Status byte

— The most significant bit of status byte is set to 1.

129

— The 4 low-order bits identify which channel it belongs to (four bits

produce 16 possible channels).

— The 3 remaining bits identify the message.

e The most significant bit of data byte is set to 0.

Classification of MIDI messages:

————— voice messages

---- channel messages --—---

MIDI messages ———-|

A. Channel messages:

————— mode messages

—---- common messages
system messages —--——|---- real-time messages

---- exclusive messages

— messages that are transmitted on individual channels rather that globally
to all devices in the MIDI network.
A.1. Channel voice messages:

e Instruct the receiving instrument to assign particular sounds to its voice

e Turn notes on and off

e Alter the sound of the currently active note or notes

Voice Message

Note off

Note on

Polyphonic Key Pressure
Control Change

Program Change

Channel Pressure

Pitch Bend

Status Byte

8x
9x
Ax
Bx
Cx
Dx
Ex

Data Bytel
Key number
Key number
Key number
Controller number
Program number
Pressure value
MSB

Data Byte2

Note Off velocity
Note on velocity
Amount of pressure
Controller value
None

None

LSB

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 130

Notes: ‘x’ in status byte hex value stands for a channel number.

Example: a Note On message is followed by two bytes, one to identify the
note, and on to specify the velocity.

To play note number 80 with maximum velocity on channel 13, the MIDI
device would send these three hexadecimal byte values: 9C 50 7F

A.2. Channel mode messages: — Channel mode messages are a special case
of the Control Change message (Bx or 1011nnnn). The difference between a
Control message and a Channel Mode message, which share the same status
byte value, is in the first data byte. Data byte values 121 through 127 have
been reserved in the Control Change message for the channel mode messages.

e Channel mode messages determine how an instrument will process MIDI
voice messages.

1st Data Byte Description Meaning of 2nd Data Byte

79 Reset all controllers None; set to O

TA Local control 0 = off; 127 = on
7B A1l notes off None; set to O

7C Omni mode off None; set to O

7D Omni mode on None; set to O

TE Mono mode on (Poly mode off) *ok

TF Poly mode on (Mono mode off) None; set to O

** if value = 0 then the number of channels used is determined by the
receiver; all other values set a specific number of channels, beginning with the
current basic channel.

B. System Messages:

e System messages carry information that is not channel specific, such as
timing signal for synchronization, positioning information in pre-recorded
MIDI sequences, and detailed setup information for the destination device.

B.1. System real-time messages:

e messages related to synchronization

System Real-Time Message Status Byte
Timing Clock F8
Start Sequence FA
Continue Sequence FB
Stop Sequence FC
Active Sensing FE
System Reset FF

B.2. System common messages:

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 131

e contain the following unrelated messages

System Common Message Status Byte Number of Data Bytes
MIDI Timing Code F1 1

Song Position Pointer F2 2

Song Select F3 1

Tune Request F6 None

B.3. System exclusive message:

e (a) Messages related to things that cannot be standardized, (b) addition
to the original MIDI specification.

e It is just a stream of bytes, all with their high bits set to 0, bracketed by
a pair of system exclusive start and end messages (FO and F7).

6.3.4 General MIDI

e MIDI + Instrument Patch Map + Percussion Key Map —> a piece of MIDI
music sounds the same anywhere it is played

— Instrument patch map is a standard program list consisting of 128
patch types.
— Percussion map specifies 47 percussion sounds.

— Key-based percussion is always transmitted on MIDI channel 10.
e Requirements for General MIDI Compatibility:

— Support all 16 channels.

— Each channel can play a different instrument/program (multitim-
bral).

Each channel can play many voices (polyphony).

— Minimum of 24 fully dynamically allocated voices.

Additional MIDI Specifications
General MIDI Instrument Patch Map

Prog No. Instrument Prog No. Instrument
(1-8 PIANO) (9-16 CHROM PERCUSSION)
1 Acoustic Grand 9 Celesta
2 Bright Acoustic 10 Glockenspiel
3 Electric Grand 11 Music Box
4 Honky-Tonk 12 Vibraphone
5 Electric Piano 1 13 Marimba

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 132

~N O3

17
18
19
20
21
22
23
24

33
34
35
36
37
38
39
40

49
50
51
52
53
54
55
56

65
66
67
68
69
70
71
72

81
82

(17-24

(33-40

(49-56

(65-72

(81-88

Electric Piano 2
Harpsichord
Clav

ORGAN)

Drawbar Organ
Percussive Organ
Rock Organ
Church Organ
Reed Organ
Accoridan
Harmonica

Tango Accordian

BASS)
Acoustic Bass

Electric Bass(finger)

Electric Bass(pick)
Fretless Bass

Slap Bass 1

Slap Bass 2

Synth Bass 1

Synth Bass 2

ENSEMBLE)
String Ensemble 1
String Ensemble 2
SynthStrings 1
SynthStrings 2
Choir Aahs
Voice Oohs
Synth Voice
Orchestra Hit

REED)

Soprano Sax
Alto Sax
Tenor Sax
Baritone Sax
Oboe

English Horn
Bassoon
Clarinet

SYNTH LEAD)
Lead 1 (square)
Lead 2 (sawtooth)

14
15
16

25
26
27
28
29
30
31
32

41
42
43
44
45
46
47
48

57
58
59
60
61
62
63
64

73
74
75
76
7
78
79
80

89
90

Xylophone
Tubular Bells
Dulcimer

(25-32 GUITAR)

Acoustic Guitar(nylon)
Acoustic Guitar(steel)
Electric Guitar(jazz)
Electric Guitar(clean)
Electric Guitar (muted)
Overdriven Guitar
Distortion Guitar
Guitar Harmonics

(41-48 STRINGS)
Violin
Viola
Cello
Contrabass
Tremolo Strings
Pizzicato Strings
Orchestral Strings
Timpani

(57-64 BRASS)
Trumpet
Trombone
Tuba
Muted Trumpet
French Horn
Brass Section
SynthBrass 1
SynthBrass 2

(73-80 PIPE)
Piccolo
Flute
Recorder
Pan Flute
Blown Bottle
Skakuhachi
Whistle
Ocarina

(89-96 SYNTH PAD)
Pad 1 (new age)
Pad 2 (warm)

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS

83
84
85
86
87
88

Lead 3 (calliope)
Lead 4 (chiff)
Lead 5 (charang)
Lead 6 (voice)
Lead 7 (fifths)
Lead 8 (bass+lead)

(97-104 SYNTH EFFECTS)

97 FX 1 (rain)

98 FX 2 (soundtrack)

99 FX 3 (crystal)

100 FX 4 (atmosphere)

101 FX 5 (brightness)

102 FX 6 (goblins)

103 FX 7 (echoes)

104 FX 8 (sci-fi)
(113-120 PERCUSSIVE)

113 Tinkle Bell

114 Agogo

115 Steel Drums

116 Woodblock

117 Taiko Drum

118 Melodic Tom

119 Synth Drum

120 Reverse Cymbal

91
92
93
94
95
96

105
106
107
108
109
110
111
112

121
122
123
124
125
126
127
128

General MIDI Percussion Key Map

MIDI Key

35
36
37
38
39
40
41
42
43
44
45
46
47
48

Drum Sound

Acoustic Bass Drum
Bass Drum 1
Side Stick
Acoustic Snare
Hand Clap
Electric Snare
Low Floor Tom
Closed Hi-Hat
High Floor Tom
Pedal Hi-Hat
Low Tom

Open Hi-Hat
Low-Mid Tom
Hi-Mid Tom

MIDI Key

59
60
61
62
63
64
65
66
67
68
69
70
71
72

Pad 3 (polysynth)
Pad 4 (choir)
Pad 5 (bowed)
Pad 6 (metallic)
Pad 7 (halo)

Pad 8 (sweep)

(105-112 ETHNIC)

Sitar

Banjo
Shamisen
Koto

Kalimba
Bagpipe
Fiddle
Shanai

(121-128 SOUND EFFECTS)

Guitar Fret Noise
Breath Noise
Seashore

Bird Tweet
Telephone Ring
Helicopter
Applause

Gunshot

Drum Sound

Ride Cymbal 2
Hi Bongo

Low Bongo
Mute Hi Conga
Open Hi Conga
Low Conga
High Timbale
Low Timbale
High Agogo
Low Agogo
Cabasa
Maracas

Short Whistle
Long Whistle

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 134

49
50
51
52
53
54
55
56
57
58

6.3.5

Crash Cymbal 1 73
High Tom 74
Ride Cymbal 1 75
Chinese Cymbal 76
Ride Bell 7
Tambourine 78
Splash Cymbal 79
Cowbell 80
Crash Cymbal 2 81
Vibraslap

Digital Audio and MIDI

Short Guiro
Long Guiro
Claves

Hi Wood Block
Low Wood Block
Mute Cuica
Open Cuica
Mute Triangle
Open Triangle

There are many application os DIgital Audio and Midi being used together:

e Modern Recording Studio — Hard Disk Recording and MIDI

— Analog Sounds (Live Vocals, Guitar, Sax etc) — DISK
— Keyboards, Drums, Samples, Loops Effects — MIDI

e Sound Generators: use a mix of

e Samplers — Digitise (Sample) Sound then

— Synthesis

— Samples

— Playback
— Loop (beats)

— Simulate Musical Instruments

6.3.6 Digital Audio, Synthesis, Midi and Compression —

MPEG 4 Structured Audio

e We have seen the need for compression already in Digital Audio — Large
Data Files

e Basic Ideas of compression (see next Chapter) used as integral part of
audio format — MP3, real audio etc.

e Mpeg-4 audio — actually combines compression synthesis and midi to
have a massive impact on compression.

e Midi, Synthesis encode what note to play and how to play it with a small
number of parameters — Much greater reduction than simply having some
encoded bits of audio.

e Responsibility to create audio delegated to generation side.

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 135

6.3.7 MPEG-4 Structured Audio
MPEG-4 covers the the whole range of digital audio:

e from very low bit rate speech

to full bandwidth high quality audio

built in anti-piracy measures

Structured Audio

Structured Audio Tools
MPEG-4 comprises of 6 Structured Audio tools are:

SAOL , the Structured Audio Orchestra Language

SASL , the Structured Audio Score Language

SASBF ., the Structured Audio Sample Bank Format

a set of MIDI semantics which describes how to control SAOL with MIDI
a scheduler , which describes how to take the above parts and create sound

the AudioBIFS part of BIFS, which lets you make audio soundtracks in
MPEG-4 using a variety of tools and effects-processing techniques

Very briefly each of the above tools have a specific function

SAOL (Structured Audio Orchestra Language)

SAOQOL is pronounced like the English word ”sail” and is the central part of
the Structured Audio toolset. It is a new software-synthesis language; it was
specifically designed it for use in MPEG-4. You can think of SAOL as a language
for describing synthesizers; a program, or instrument, in SAOL corresponds to
the circuits on the inside of a particular hardware synthesizer.

SAOL is not based on any particular method of synthesis. It is general
and flexible enough that any known method of synthesis can be described in
SAOL. Examples of FM synthesis, physical-modeling synthesis, sampling syn-
thesis, granular synthesis, subtractive synthesis, FOF synthesis, and hybrids of
all of these in SAOL.

There’s a page on using MIDI to control SAOL available at

http://sound.media.mit.edu/mpeg4-old/

SASL (Structured Audio Score Language)

SASL is a very simple language that was created for MPEG-4 to control
the synthesizers specified by SAOL instruments. A SASL program, or score,
contains instructions that tell SAOL what notes to play, how loud to play them,
what tempo to play them at, how long they last, and how to control them (vary
them while they’re playing).

SASL is like MIDI in some ways, but doesn’t suffer from MIDI’s restrictions
on temporal resolution or bandwidth. It also has a more sophisticated controller

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 136

structure than MIDI; since in SAOL, you can write controllers to do anything,
you need to be able to flexibly control them in SASL.

SASL is simpler (or more ”lightweight”) than many other score protocols. It
doesn’t have any facilities for looping, sections, repeats, expression evaluation,
or some other things. Most SASL scores will be created by automatic tools, and
S0 it’s easy to make those tools map from the intent of the composer (”repeat
this block”) to the particular arrangement of events that implement the intent.

SASBF (Structured Audio Sample Bank Format)

SASBF (pronounces ”sazz-biff’!!!) is a format for efficiently transmitting
banks of sound samples to be used in wavetable, or sampling, synthesis. The
format is being re-examined right now in hopes of making it at least partly
compatible with the MIDI Downloaded Sounds (DLS) format.

The most active participants in this activity are E-Mu Systems and the MIDI
Manufacturers Association (MMA).

MIDI Semantics

As well as controlling synthesis with SASL scripts, it can be controlled with
MIDI files and scores in MPEG-4. MIDI is today’s most commonly used rep-
resentation for music score data, and many sophisticated authoring tools (such
as sequencers) work with MIDI.

The MIDI syntax is external to the MPEG-4 Structured Audio standard,;
only references to the MIDI Manufacturers Association’s definition in the stan-
dard. But in order to make the MIDI controls work right in the MPEG context,
some semantics (what the instructions "mean”) have been redefined in MPEG-4.
The new semantics are carefully defined as part of the MPEG-4 specification.

Scheduler

The scheduler is the "guts” of the Structured Audio definition. It’s a set
of carefully defined and somewhat complicated instructions that specify how
SAOQOL is used to create sound when it is driven by MIDI or SASL. It’s in the
style of "when this instruction arrives, you have to remember this, then execute
this program, then do this other thing”.

This component of Structured Audio is crucial but very dull unless you're a
developer who wants to implement a SAOL system.

AudioBIFS

BIFS is the MPEG-4 Binary Format for Scene Description. It’s the compo-
nent of MPEG-4 Systems which is used to describe how the different ”objects” in
a structured media scene fit together. To explain this a little more: in MPEG-4,
the video clips, sounds, animations, and other pieces each have special formats
to describe them. But to have something to show, we need to put the pieces
together — the background goes in the back, this video clip attaches to the side
of this "virtual TV” object, the sound should sound like it’s coming from the
speaker over there. BIFS lets you describe how to put the pieces together.

AudioBIFS is a major piece of MPEG-4 that has designed for specifying
the mixing and post-production of audio scenes as they’re played back. Using
AudioBIFS, we can specify how the voice-track is mixed with the background
music, and that it fades out after 10 seconds and this other music comes in and
has a nice reverb on it.

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 137

BIFS is generally based on the Virtual Reality Modeling Language (VRML)
(See Later in Course), but has extended capabilities for streaming and mixing
audio and video data into a virtual-reality scene. The AudioBIFS functions are
very advanced compared to VRML’s sound model, which is rather simple, and
are being tentatively considered for use in a future version of VRML.

In MPEG-4, AudioBIFS allows you to describe a sound as the combination
of a number of sound objects. These sound objects may be coded using different
coders (for example, CELP-coded voice and synthetic background music), and
combined together in many ways. We can mix sounds together, or apply special
filters and other processing functions written in SAOL.

Like the rest of BIFS, AudioBIFS is based on a scene graph. However, unlike
in visual BIF'S, the nodes in the AudioBIFS scene graph don’t represent a bunch
of objects which are presented to the user. Each AudioBIFS sound subgraph
represents one sound object which is created by mixing and processing the
elementary sound streams on which it is based.

For example, Fig 6.10 audio subgraph which shows how a simple sound is
created from three elementary sound streams:

AudioMix
-
AudioMix X
e B AundioFX
AudioFX AudioFX AudicDeliv
:)
| .iudinﬁnurccl | ApdioSource | | ApdioSource |

FPiano >
Bass & >
Focal i@ >

Figure 6.10: AudioBIFS Subgraph

Each of the rectangles show a node in the audio scene subgraph. Each node
has a certain function, like mixing some sounds together, or delaying a sound,
or doing some effects-processing. The arrows along the bottom represent the
three elementary sound streams which make up the sound object. Each sound
stream can be coded a different way. For example, we might code the piano
sound with the Structured Audio decoder, the bass sound with the MPEG-4
Parametric HILN coder, and the vocal track with the MPEG-4 CELP coder.

These three sound streams are just like a ” multitrack” recording of the final
music sound object. The sound of each instrument is represented separately,
then the scene graph mixes them all together. The processing in the audio
subgraph is like a ”"data-flow” diagram. The sounds flow from the streams at

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 138

the bottom, up through the nodes, and turn into a single sound at the top.
This single, final sound can be put into an audiovisual scene: it can be given
a 3-D spatial location, moved around, and so on.
There’s a page on AudioBIFS available at
hitp://www.risc.rockwell.com/349/343/MPEG4/

6.3.8 Further Reading/Information for Digital Audio and
Midi
Some good texts on these areas include:

e A programmer’s Guide to Sound, T. Kientzle, Addison Wesley, 1997
(ISBN 0-201-41972-6)

e Audio on the Web — The official IUMA Guide, Patterson and Melcher,
Peachpit Press.

e The Art of Digital Audio, Watkinson, Focal /Butterworth-Heinmann.
e Synthesiser Basics, GPI Publications.

e Signal Processing: Principles and Applications, Brook and Wynne, Hod-
der and Stoughton.

e Digital Signal Processing, Oppenheim and Schafer, Prentice Hall.

e E. D. Scheirer, ”Structured audio and effects processing in the MPEG-4
multimedia standard”, ACM Multimedia Systems, in press.

e B. L. Vercoe, W. G. Gardner, E. D. Scheirer, ”Structured Audio: Creation,
transmission, and rendering of parametric sound representations”, Proc.
IEEE, in press.

Try some good sources for locating Digital Audio/internet sound/music ma-
terials at

e Digital Audio on the Web —
http://www.interactive-media.com/presentations/AUDWEB2/ Audio file
formats,

e Audio File Formats — http://esewww.essex.ac.uk/ djmrobd/filetypes.html

o http://www.harmony-central.com/MIDI/— Harmony Central: MIDI Tools
and Resources. Excellent resource. Full documentation of the MIDI spec-
ification, guides to making a MIDI interface, links to development tools,
keyboard specific resources and more.

o http://www.midifarm.com/ — MIDI Farm. Hub for MIDI on the Web.
Includes their own HTML newsletter.

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 139

o hitp://nuinfo.nwu.edu/musicschool/links/projects/midi/expmidiindex. html
— Exploring Midi: excellnt information resource on Midi and Audio.

o http://www.midiweb.com/ — MIDIWeb. Resources for the MIDI commu-
nity.

e http://midiworld.com — MIDIWorld

o http://www.student.wau.nl/ olivier/midi/index.htm — Best of MIDI, ded-
icated to the definitions and standards of MIDI and of course, MIDI files.

o http://www.cabelov.com/midi/midi.shtml — Charles Belov’s MIDI Tips.

o http://www2.iicm.edu/Cpub— Gunter Nagler’s MIDI Utilities. MIDI con-
verters with C++ source code, executable for PC (MSDOS and Win-
dows95) midi format conversion, error check, file repairs, etc.

o hitp://www.eeb.ele.tue.nl/midi/intro.html — Introduction to MIDI.

o hitp://www.aitech.ac.jp./ ckelly/mmuig.html — Macintosh MIDI User’s
Internet Guide;

e hitp://www.cs.ruu.nl/pub/MIDI/ — MIDI Archive,documentation, synth
patches, MIDI programmes and utilities, information on MIDI and much
more.

o http://www.serve.com/papisi/— MIDI Connection, links and mailing lists
concerning sounds and information files for synths and samplers.

o http://www.quicknet.se/home/q-112005/dan.htm — MIDI Music Web Site.
Files, glossary, explanation of MIDI, tools, shareware, MPEG 3 informa-
tion and much more.

o hitp://www.borg.com/ jglatt/ — MIDI Technical Fanatic’s Brainwashing
Center. Tutorials about MIDI and audio, technical/programming info,
files, software, etc.

o http://www.cabelov.com/midi/miditipw.shtml — MIDI Tips for Webmeis-
ters: explains the realities of embedding MIDI files in a web page.

o http://www.midizone.com — MIDI Zone: Home of MidiSeek, a midi search
engine. Also includes lot of Information and midi files.

o hitp://user.chollian.net/ moolly/midi00.htm — Moolly’s MIDI Page: Ex-
plains what MIDI is, techniques, connecting MIDI to a PC, and more.

MPEG 4 Pages:

o http://sound.media.mit.edu/mpeg4/audio/ — Main MPEG 4 Audio Page
o http://sound.media.mit.edu/ eds/mpegq/ — MPEG 4 Home Page

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 140

o hitp://sound.media.mit.edu/mpegj-old/ — MPEG FAQ’s
o http://sound.media.mit.edu/mpeg4 /links.html — MPEG 4 Useful Links
o http://153.96.172.2/amm/techinf/mpeg4/scalable.html — MPEG 4 Page

6.4 Graphic/Image File Formats

This section introduces some of the most common graphics and image file for-
mats. Some of them are restricted to particular hardware/operating system
platforms, others are cross-platform independent formats. While not all for-
mats are cross-platform, there are conversion applications that will recognize
and translate formats from other systems.

The document (http://www.cica.indiana. edu/graphics/image.formats.html)
by CICA at Indiana Univ. provides a fairly comprehensive listing of various
formats.

Most image formats incorporate some variation of a compression technique
due to the large storage size of image files. Compression techniques can be
classified into either lossless or lossy. We will study various video and audio
compression techniques in the Next Chapter.

6.4.1 Graphic/Image Data Structures

A digital image consists of many picture elements, termed pixels. The number
of pixels that compose a monitor image determine the quality of the image
(resolution). Higher resolution always yields better quality.

A bit-map representation stores the graphic/image data in the same manner
that the computer monitor contents are stored in video memory.

Monochrome/Bit-Map Images

An example 1 bit monochrome image is illustrated in Fig. 6.11 where:
e Each pixel is stored as a single bit (0 or 1)
e A 640 x 480 monochrome image requires 37.5 KB of storage.

e Dithering is often used for displaying monochrome images
Gray-scale Images
An example gray-scale image is illustrated in Fig. 6.12 where:

e Each pixel is usually stored as a byte (value between 0 to 255)

e A 640 x 480 greyscale image requires over 300 KB of storage.

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 141

Figure 6.11: Sample Monochrome Bit-Map Image

Figure 6.12: Example of a Gray-scale Bit-map Image

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 142

Figure 6.13: Example of 8-Bit Colour Image

8-bit Colour Images
An example 8-bit colour image is illustrated in Fig. 6.13 where:
e One byte for each pixel
e Supports 256 out of the millions s possible, acceptable colour quality
e Requires Colour Look-Up Tables (LUTSs)
e A 640 x 480 8-bit colour image requires 307.2 KB of storage (the same as
8-bit greyscale)

24-bit Colour Images

An example 24-bit colour image is illustrated in Fig. 6.14 where:

Figure 6.14: Example of 24-Bit Colour Image

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 143

Each pixel is represented by three bytes (e.g., RGB)

Supports 256 x 256 x 256 possible combined colours (16,777,216)

A 640 x 480 24-bit colour image would require 921.6 KB of storage
e Most 24-bit images are 32-bit images, the extra byte of data for each pixel
is used to store an alpha value representing special effect information
6.4.2 Standard System Independent Formats

The following brief format descriptions are the most commonly used formats.
Follow some of the document links for more descriptions.

GIF (GIF87a, GIF89a)

e Graphics Interchange Format (GIF) devised by the UNISYS Corp. and
Compuserve, initially for transmitting graphical images over phone lines
via modems

e Uses the Lempel-Ziv Welch algorithm (a form of Huffman Coding), mod-
ified slightly for image scan line packets (line grouping of pixels)

e Limited to only 8-bit (256) colour images, suitable for images with few
distinctive colours (e.g., graphics drawing)

e Supports interlacing

JPEG

e A standard for photographic image compression created by the Joint Pho-
tographics Experts Group

e Takes advantage of limitations in the human vision system to achieve high
rates of compression

e Lossy compression which allows user to set the desired level of qual-
ity /compression

e Detailed discussions in next chapter on compression.

TIFF

e Tagged Image File Format (TIFF), stores many different types of images
(e.g., monochrome, greyscale, 8-bit & 24-bit RGB, etc.) —> tagged

e Developed by the Aldus Corp. in the 1980’s and later supported by the
Microsoft

e TIFF is a lossless format (when not utilizing the new JPEG tag which
allows for JPEG compression)

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 144

e It does not provide any major advantages over JPEG and is not as user-
controllable it appears to be declining in popularity
Graphics Animation Files

e FLC — main animation or moving picture file format, originally created
by Animation Pro

e FLI — similar to FLC

o GL — better quality moving pictures, usually large file sizes

Postscript /Encapsulated Postscript

e A typesetting language which includes text as well as vector/structured
graphics and bit-mapped images

e Used in several popular graphics programs (Illustrator, FreeHand)

e Does not provide compression, files are often large

6.4.3 System Dependent Formats
Many graphical/imaging applications create their own file format particular to
the systems they are executed upon. The following are a few popular system
dependent formats:
Microsoft Windows: BMP

e A system standard graphics file format for Microsoft Windows

e Used in PC Paintbrush and other programs

e [t is capable of storing 24-bit bitmap images

Macintosh: PAINT and PICT

e PAINT was originally used in MacPaint program, initially only for 1-bit
monochrome images.

e PICT format is used in MacDraw (a vector based drawing program) for
storing structured graphics
X-windows: XBM
e Primary graphics format for the X Window system
e Supports 24-bit colour bitmap
e Many public domain graphic editors, e.g., zv

e Used in X Windows for storing icons, pixmaps, backdrops, etc.

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 145

6.4.4 Further Reading/Information

Intro. to Computer Pictures, http://ac.dal.ca:80/ dong/image.htm from Allison
Zhang at the School of Library and Information Studies, Dalhousie University,
Halifax, N.S., Canada

http://www.cica.indiana. edu/graphics /image.formats.html contains a com-
prehensive list of various graphics/image file formats.

An complete reference text on the topic is the Encyclopedia of Graphics File
Formats, Second Edition by James D. Murray and William vanRyper, 1996,
O’Reilly & Associates.

6.5 Colour in Image and Video

6.5.1 Basics of Colour
Light and Spectra

e Visible light is an electromagnetic wave in the 400nm - 700 nm range.

e Most light we see is not one wavelength, it’s a combination of many wave-
lengths (Fig. 6.15).

Amplitude E(R)

-

400 nm Wavelength (A) 700 nm

Figure 6.15: Light Wavelengths

e The profile above is called a spectra.

The Human Retina
e The eye is basically just a camera

e Each neuron is either a rod or a cone. Rods are not sensitive to colour.

Cones and Perception

e Cones come in 3 types: red, green and blue. Each responds differently
to various frequencies of light. The following figure shows the spectral-
response functions of the cones and the luminous-efficiency function of the
human eye (Fig. 6.16.

e The profile above is called a spectra.

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 146

~ R
=, Luminaosity

Sensitivity
rT1T 11717177171

400 500 600 700
Wavelength

Figure 6.16: Cones and Luminous-efficiency Function of the Human Eye

e The colour signal to the brain comes from the response of the 3 cones to
the spectra being observed (Fig 6.17). That is, the signal consists of 3

numbers:
R= /E()\)SR(A)d)\
G = / B Se(V)dA
B /E(/\)SB()\)d)\
2
jah]

Figure 6.17: Spectra Response

where FE is the light and S are the sensitivity functions.

e A colour can be specified as the sum of three colours. So colours form a 3
dimensional vector space.

e The following figure shows the amounts of three primaries needed to match
all the wavelengths of the visible spectrum (Fig. refspectrum).

e The negative value indicates that some colours cannot be exactly produced

by adding up the primaries.

6.5.2 CIE Chromaticity Diagram

Does a set of primaries exist that span the space with only positive coefficients?

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 147

| \ g

400 500 600 700

Figure 6.18: Wavelengths of the Visible Spectrum

e Yes, but no pure colours.

o In 1931, the CIE defined three standard primaries (X, Y, Z) . The Y
primary was intentionally chosen to be identical to the luminous-efficiency
function of human eyes.

|
400 500 600 700

Figure 6.19: Reproducing Visible Colour

e Figure 6.19 shows the amounts of X, Y, Z needed to exactly reproduce
any visible colour via the formulae:

e All visible colours are in a horseshoe shaped cone in the X-Y-Z space.
Consider the plane X+Y+Z=1 and project it onto the X-Y plane, we get
the CIE chromaticity diagram as shown in Fig. 6.20.

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 148

¥ 520 540

510

1

500

Figure 6.20: CIE Chromaticity Diagram

e The edges represent the pure colours (sine waves at the appropriate fre-
quency)

e White (a blackbody radiating at 6447 kelvin) is at the dot

e When added, any two colours (points on the CIE diagram) produce a
point on the line between them.

L*a*b (Lab) Colour Model
e A refined CIE model, named CIE L*a*b in 1976

e Luminance: L. Chrominance: a — ranges from green to red, b — ranges
from blue to yellow (Fig, 6.21)

e Used by Photoshop

CRT Displays

e CRT displays have three phosphors (RGB) which produce a combination
of wavelengths when excited with electrons (Fig. 6.22).

e The gamut of colours is all colours that can be reproduced using the three
primaries

e The gamut of an colour monitor is smaller than the CIE (LAB) colour

gamut on the CIE diagram.

6.5.3 Colour Image and Video Representations

e A black and white image is a 2-D array of integers.

e A colour image is a 2-D array of (R,G,B) integer triplets. These triplets
encode how much the corresponding phosphor should be excited in devices
such as a monitor.

e Example is shown in Fig 6.23.

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS

Lab model

Figure 6.21: Lab Colour Model

electron
beam

electron
gun

-

phosphaors

N

deflectors

Figure 6.22: RGB Colour Display

149

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 150

Figure 6.23: Display of a Colour Cube

Beside the RGB representation, YIQ and YUV are the two commonly used
in video.
YIQ Colour Space

e YIQ is used in colour TV broadcasting, it is downward compatible with
B/W TV.

e Y (luminance) is the CIE Y primary.
Y = 0.299R + 0.587G + 0.114B

e the other two vectors:
= 0.596R - 0.275G - 0.321B @Q = 0.212R - 0.528G + 0.311B

e The YIQ transform:

Y 0.299 0.587 0.114 R
I | =1]059% -0.275 -0.321 G
Q 0.212 -0.528 —0.311 B

e [is red-orange axis, Q is roughly orthogonal to I.

e Eye is most sensitive to Y, next to I, next to Q. In NTSC, 4 MHz is
allocated to Y, 1.5 MHz to I, 0.6 MHz to Q.

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 151

Figure 6.24: Example YIQ Decomposition

An Example YIQ Decomposition is shown in Fig. 6.24.

CCIR 601 (YUV)

Established in 1982 to build digital video standard

Video is represented by a sequence of fields (odd and even lines). Two
fields make a frame.

Works in PAL (50 fields/sec) or NTSC (60 fields/sec)

Uses the Y, Cr, Cb colour space (also called YUV) Y = 0.299R + 0.587G
+0114BCr=R-YCb=B-Y

The YCrCb (YUV) Transform:

Y 0.299 0587 0.114 R
U|l=1]-0169 —-0.331 0.500 G
V 0.500 —0.419 —0.081 B

CCIR 601 also defines other image parameters, e.g. for NTSC, Luminance
(Y) image size = 720 x 243 at 60 fields per second Chrominance image
size = 360 x 243 at 60 fields per second

An example YCrCb Decomposition is shown in Fig. 6.25

The CMY Colour Model

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 152

Figure 6.25: YCrCb Decomposition of a colour image

e Cyan, Magenta, and Yellow (CMY) are complementary colours of RGB
(Fig. 6.26). They can be used as Subtractive Primaries.

e CMY model is mostly used in printing devices where the colour pigments
on the paper absorb certain colours (e.g., no red light reflected from cyan
ink).

Blue Cyan Red

Magenta 3 - Green

e - - =) Green SEE RS s

. .
£ £
Red / Cyan / Blue

Black (0,0,0) White (1, 1,1) White (0, 0,0) Black (1, 1,1)

Magenta

The RGB Cube The CMY Cube

Figure 6.26: The RGB and CMY Cubes

Conversion between RGB and CMY: - e.g., convert White from (1, 1,
1) in RGB to (0, 0, 0) in CMY.

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 153

C 1 R
Ml=|1]|-|¢
Y 1 B |
[R 1 C
Gl=|1]|-|M
B 1 Y |

e Sometimes, an alternative CMYK model (K stands for Black) is used in
colour printing (e.g., to produce darker black than simply mixing CMY).
where

K = min(C,M,Y),
C = C-K,
M = M-K,
Y = Y-K.

6.5.4 Summary of Colour
e Colour images are encoded as triplets of values.
e Three common systems of encoding in video are RGB, YIQ, and YCrCb.

e Besides the hardware-oriented colour models (i.e., RGB, CMY, YIQ, YUV),
HSB (Hue, Saturation, and Brightness, e.g., used in Photoshop) and HLS
(Hue, Lightness, and Saturation) are also commonly used.

e YIQ uses properties of the human eye to prioritize information. Y is the
black and white (luminance) image, I and Q are the colour (chrominance)
images. YUV uses similar idea.

e CCIR 601 is a standard for digital video that specifies image size, and
decimates the chrominance images (for 4:2:2 video).

6.6 Basics of Video

6.6.1 Types of Colour Video Signals
e Component video — each primary is sent as a separate video signal.
— The primaries can either be RGB or a luminance-chrominance trans-
formation of them (e.g., YIQ, YUV).

— Best colour reproduction

— Requires more bandwidth and good synchronization of the three com-
ponents

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 154

e Composite video — colour (chrominance) and luminance signals are
mixed into a single carrier wave. Some interference between the two sig-
nals is inevitable.

e S-Video (Separated video, e.g., in S-VHS) — a compromise between com-
ponent analog video and the composite video. It uses two lines, one for
luminance and another for composite chrominance signal.

6.6.2 Analog Video

The following figures (Fig. 6.27 and 6.28) are from A.M. Tekalp, Digital video
processing, Prentice Hall PTR, 1995.

A

Figure 6.27: Raster Scanning

Herizontal

Synch 106 synch pulse

Black _ 75

i) 3 = Haorizontal retrace
White - 12,8 . Active line time . 3

53.5 10

Figure 6.28: NTSC Signal

NTSC Video

e 525 scan lines per frame, 30 frames per second (or be exact, 29.97 fps,
33.37 msec/frame)

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 155

e Aspect ratio 4:3
o Interlaced, each frame is divided into 2 fields, 262.5 lines/field

e 20 lines reserved for control information at the beginning of each field
(Fig. 6.29)

— So a maximum of 485 lines of visible data
— Laserdisc and S-VHS have actual resolution of 420 lines
— Ordinary TV — 320 lines

e FEach line takes 63.5 microseconds to scan. Horizontal retrace takes 10
microseconds (with 5 microseconds horizontal synch pulse embedded), so
the active line time is 53.5 microseconds.

Sync data Image Data

Figure 6.29: Digital Video Rasters

e Colour representation:

— NTSC uses YIQ colour model.

— composite = Y + I cos(Fsc t) + Q sin(Fsc t), where Fsc is the
frequency of colour subcarrier

— Eye is most sensitive to Y, next to I, next to Q. In NTSC, 4 MHz is
allocated to Y, 1.5 MHz to I, 0.6 MHz to Q.

PAL Video

e (25 scan lines per frame, 25 frames per second (40 msec/frame)
e Aspect ratio 4:3

e Interlaced, each frame is divided into 2 fields, 312.5 lines/field
e Colour representation:

— PAL uses YUV (YCbCr) colour model
— composite = Y + 0.492 x U sin(Fsc t) + 0.877 x V cos(Fsc t)

— In component analog video, U and V signals are lowpass filtered to
about half the bandwidth of Y.

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 156

6.6.3 Digital Video

e Advantages:

— Direct random access —> good for nonlinear video editing
— No problem for repeated recording

— No need for blanking and sync pulse

e Almost all digital video uses component video

6.6.4 Chroma Subsampling

e How to decimate for chrominance (Fig. 6.30)7

-~

S

=Y
5y
N
N

[<][=<]
L2 M
—— E=lE

AN EaR
£ll=] [22] [2]#]

| ;] | Cs Cg
c | cl
B Lo | [o | Ca
B len | [e |

Figure 6.30: Chroma Subsampling

e 4:2:2 —> Horizontally subsampled colour signals by a factor of 2. Each
pixel is two bytes, e.g., (Cb0, Y0)(Cr0, Y1)(Cb2, Y2)(Cr2, Y3)(Cb4, Y4)

e 4:1:1 —> Horizontally subsampled by a factor of 4

e 4:2:0 —> Subsampled in both the horizontal and vertical axes by a factor
of 2 between pixels as shown in the Fig. 6.30.

e 4:1:1 and 4:2:0 are mostly used in JPEG and MPEG (see Chapter 4).

CCIR Standards for Digital Video
(CCIR — Consultative Committee for International Radio)

CCIR 601 CCIR 601 CIF QCIF
525/60 625/50
NTSC PAL/SECAM NTSC
Luminance resolution 720 x 485 720 x 576 352 x 240 176 x 120

Chrominance resolut. 360 x 485 360 x 576 176 x 120 88 x 60

CHAPTER 6. MULTIMEDIA DATA REPRESENTATIONS 157
Colour Subsampling 4:2:2 4:2:2

Fields/sec 60 50 30 30
Interlacing Yes Yes No No

e CCIR 601 uses interlaced scan, so each field only has half as much vertical
resolution (e.g., 243 lines in NTSC). The CCIR 601 (NTSC) data rate is
165 Mbps.

e CIF (Common Intermediate Format) is introduced to as an acceptable
temporary standard. It delivers about the VHS quality. CIF uses pro-
gressive (non-interlaced) scan.

ATSC Digital Television Standard

(ATSC — Advanced Television Systems Committee) The ATSC Digital Tele-
vision Standard was recommended to be adopted as the Advanced TV broad-
casting standard by the FCC Advisory Committee on Advanced Television Ser-
vice on November 28, 1995. It covers the standard for HDTV (High Definition
TV).

Video Format

The video scanning formats supported by the ATSC Digital Television Stan-
dard are shown in the following table.

Vertical Lines | Horizontal Pixels | Aspect Ratio | Picture Rate
1080 920 16:9 601 30P 24P
720 1280 16:9 60P 30P 24P
480 704 16:9 and 4:3 601 60P 30P 24P
480 640 4:3 601 60P 30P 24P

e The aspect ratio for HDTV is 16:9 as opposed to 4:3 in NTSC, PAL, and
SECAM. (A 33% increase in horizontal dimension.)

e In the picture rate column, the "I" means interlaced scan, and
the "P" means progressive (non-interlaced) scan.

e Both NTSC rates and integer rates are supported (i.e., 60.00, 59.94, 30.00,
29.97, 24.00, and 23.98).

6.6.5

A good text on this area is:

Digital video processing, A.M. Tekalp, Prentice Hall PTR, 1995.

Interesting Web sites include:

http://www.atsc.org/— Homepage of the Advanced Television Systems Com-
mittee (ATSC)

http://www. HDTV.net — HDTV Web Page.

http:/ /www.prz.tu-berlin.de/ joe/mheg/mheg-mon/index.htm — MHEG Home
Page

Further Reading/Information

Chapter 7

Compression I: Basic
Compression Algorithms

Video and Audio files are very large beasts. Unless we develop and maintain very
high bandwidth networks (Gigabytes per second or more) we have to compress
to data.

Relying on higher bandwidths is not a good option — M25 Syndrome: Traffic
needs ever increases and will adapt to swamp current limit whatever this is.

As we will compression becomes part of the representation or coding scheme
which have become popular audio, image and video formats.

We will first study basic compression algorithms and then go on to study
some actual coding formats for Images (JPEG), Audio and Video (MPEG etc.)
in following Chapters.

7.1 Classifying Compression Algorithms

We can classify compression by the why it employs redundancy or by the method
it compresses the data.

7.1.1 What is Compression?
Compression basically employs redundancy in the data:
e Temporal — in 1D data, 1D signals, Audio etc.
e Spatial — correlation between neighbouring pixels or data items

e Spectral — correlation between colour or luminescence components. This
uses the frequency domain to exploit relationships between frequency of
change in data.

e psycho-visual — exploit perceptual properties of the human visual system.

158

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS159

Compression can be categorised in two broad ways:

Lossless Compression — where data is compressed and can be reconstituted
(uncompressed) without loss of detail or information. These are referred
to as bit-preserving or reversible compression systems also.

Lossy Compression — where the aim is to obtain the best possible fidelity
for a given bit-rate or minimizing the bit-rate to achieve a given fidelity
measure. Video and audio compression techniques are most suited to this
form of compression.

If an image is compressed it clearly needs to uncompressed (decoded) before
it can viewed/listened to. Some processing of data may be possible in encoded
form however.

Lossless compression frequently involves some form of entropy encoding and
are based in information theoretic techniques (Fig. 7.1)

Lossy compression use source encoding techniques that may involve trans-
form encoding, differential encoding or vector quantisation (Fig. 7.1).

Coding Techniques
Entropy Encoding Seurce Coding
Fepefitive P Transfo Differenfial Vectar
Sequence i Coding, Coding, Quantiztion
/\ DPCM
Zem Fun Pattern S hannon FFT DCT
Length Length Substitution Fano o
Suppresion Encoding |
Huffia, #DPCM
Coding

Figure 7.1: Classification of Coding Techniques

We now address common coding methods of each type in turn:

7.2 Lossless Compression Algorithms (Repeti-
tive Sequence Suppression)

These methods are fairly straight forward to understand and implement. Their
simplicity is their downfall in terms of attaining the best compression ratios.
However, the methods have their applications, as mentioned below:

7.2.1 Simple Repetition Suppression

If in a sequence a series on n successive tokens appears we can replace these
with a token and a count number of occurrences. We usually need to have a
special flag to denote when the repeated token appears

For Example

89400000000000000000000000000000000

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS160

we can replace with

894£32

where f is the flag for zero.

Compression savings depend on the content of the data.
Applications of this simple compression technique include:

e Suppression of zero’s in a file (Zero Length Suppression)

— Silence in audio data, Pauses in conversation etc.

— Bitmaps

Blanks in text or program source files

Backgrounds in images

e other regular image or data tokens

7.2.2 Run-length Encoding

This encoding method is frequently applied to images (or pixels in a scan line).
It is a small compression component used in JPEG compression (Section 8).

In this instance, sequences of image elements X1, Xs, ..., X,, are mapped to
pairs (c1,11), (ca,l2), ..., (cn, 1) where ¢; represent image intensity or colour and
I; the length of the ith run of pixels (Not dissimilar to zero length suppression
above).

For example:

Original Sequence:

111122233333311112222

can be encoded as:

(1,4),(02,3),(3,6),(1,4),(2,4)

The savings are dependent on the data. In the worst case (Random Noise)
encoding is more heavy than original file: 2*integer rather 1* integer if data is
represented as integers.

7.3 Lossless Compression Algorithms (Pattern
Substitution)

This is a simple form of statistical encoding.

Here we substitute a frequently repeating pattern(s) with a code. The code
is shorter than than pattern giving us compression.

A simple Pattern Substitution scheme could employ predefined code (for
example replace all occurrences of ‘The’ with the code '&’).

More typically tokens are assigned to according to frequency of occurrence
of patterns:

e Count occurrence of tokens

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS161

e Sort in Descending order

e Assign some symbols to highest count tokens

A predefined symbol table may used i.e. assign code i to token i.

However, it is more usual to dynamically assign codes to tokens. The entropy
encoding schemes below basically attempt to decide the optimum assignment of
codes to achieve the best compression.

7.4 Lossless Compression Algorithms (Entropy
Encoding)

Lossless compression frequently involves some form of entropy encoding and
are based in information theoretic techniques, Shannon is father of information
theory and we briefly summarise information theory below before looking at
specific entropy encoding methods.

7.4.1 Basics of Information Theory
According to Shannon, the entropy of an information source S is defined as:
H(S) =n=3, pilog, -
where p; is the probability that symbol S; in S will occur.

e log, l indicates the amount of information contained in S;, i.e., the num-
ber of bits needed to code S;.

e For example, in an image with uniform distribution of gray-level intensity,
i.e. p; = 1/256, then the number of bits needed to code each gray level is
8 bits. The entropy of this image is 8.

e Q: How about an image in which half of the pixels are white (I = 220)
and half are black (I = 10)?

7.4.2 The Shannon-Fano Algorithm

This is a basic information theoretic algorithm. A simple example will be used
to illustrate the algorithm:

Encoding for the Shannon-Fano Algorithm:

e A top-down approach

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS162

1. Sort symbols according to their frequencies/probabilities, e.g., ABCDE.
2. Recursively divide into two parts, each with approx. same number of
counts.

Symbol Count log(1/p) Code Subtotal (# of bits)
A 15 1.38 00 30
B 7 2.48 01 14
C 6 2.70 10 12
D 6 2.70 110 18
E 5 2.96 111 15

TOTAL (# of bits): 89

7.4.3 Huffman Coding

Huffman coding is based on the frequency of occurrence of a data item (pixel
in images). The principle is to use a lower number of bits to encode the data
that occurs more frequently. Codes are stored in a Code Book which may be
constructed for each image or a set of images. In all cases the code book plus
encoded data must be transmitted to enable decoding.

The Huffman algorithm is now briefly summarised:

e A bottom-up approach

1. Initialization: Put all nodes in an OPEN list, keep it sorted at all times
(e.g., ABCDE).

2. Repeat until the OPEN list has only one node left:

(a) From OPEN pick two nodes having the lowest frequencies/probabilities,
create a parent node of them.

(b) Assign the sum of the children’s frequencies/probabilities to the parent
node and insert it into OPEN.

(¢) Assign code 0, 1 to the two branches of the tree, and delete the children
from OPEN.

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS163

P4(39)

B(7) Cig) DI E(5)
Symbol Count log(1l/p) Code Subtotal (# of bits)
A 15 1.38 0 15
B 7 2.48 100 21
C 6 2.70 101 18
D 6 2.70 110 18
E 5 2.96 111 15

TOTAL (# of bits): 87
The following points are worth noting about the above algorithm:

e Decoding for the above two algorithms is trivial as long as the coding
table (the statistics) is sent before the data. (There is a bit overhead for
sending this, negligible if the data file is big.)

e Unique Prefix Property: no code is a prefix to any other code (all
symbols are at the leaf nodes) —> great for decoder, unambiguous.

e If prior statistics are available and accurate, then Huffman coding is very
good.

In the above example:

entropy = (15%1.3847%248+6%2.7
+6 % 2.7+ 5%2.96)/39
= 85.26/39
2.19

Number of bits needed for Huffman Coding is: 87/39 = 2.23

7.4.4 Huffman Coding of Images
In order to encode images:

e Divide image up into 8x8 blocks

e Each block is a symbol to be coded

e compute Huffman codes for set of block

Encode blocks accordingly

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS164

7.4.5 Adaptive Huffman Coding

The basic Huffman algorithm has been extended, for the following reasons:

(a) The previous algorithms require the statistical knowledge which is often
not available (e.g., live audio, video).

(b) Even when it is available, it could be a heavy overhead especially when
many tables had to be sent when a non-order0) model is used, i.e. taking into
account the impact of the previous symbol to the probability of the current
symbol (e.g., 7qu” often come together, ...).

The solution is to use adaptive algorithms. As an example, the Adaptive
Huffman Coding is examined below. The idea is however applicable to other
adaptive compression algorithms.

ENCODER DECODER
Initialize_model(); Initialize_model();
while ((c = getc (input)) != eof) while ((c = decode (input)) != eof)
{ {
encode (c, output); putc (c, output);
update_model (c); update_model (c);
} }

e The key is to have both encoder and decoder to use exactly the same
iiatialization and update_model routines.

e update_model does two things: (a) increment the count, (b) update the
Huffman tree (Fig 7.2).

— During the updates, the Huffman tree will be maintained its sibling
property, i.e. the nodes (internal and leaf) are arranged in order of
increasing weights (see figure).

— When swapping is necessary, the farthest node with weight W is
swapped with the node whose weight has just been increased to W+1.
Note: If the node with weight W has a subtree beneath it, then the
subtree will go with it.

— The Huffman tree could look very different after node swapping
(Fig 7.2), e.g., in the third tree, node A is again swapped and becomes
the #5 node. It is now encoded using only 2 bits.

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS165

8. W=17

i B C K
1L.W=1 2.W=2 3.W=2 4. W=2

A Huffman Tree

Figure 7.2: Huffman Tree

9. W=21

2. W=12

1LW=2 2W=2 3.W=2 4, W=3 1LW=2 2. W=2

After anode switch (A was incremented twice) After A was incremented two more times

Note: Code for a particular symbol changes during the adaptive coding
process.

7.4.6 Arithmetic Coding

Arithmetic coding, is a widely used entropy coder (see JPEG, Chapter 8). The
only problem is it’s speed due possibly complex computations due to large sym-
bol tables, but compression tends to be better than Huffman can achieve, with
entropy around the Shannon value.

Huffman coding and the like use an integer number (k) of bits for each
symbol, hence k is never less than 1. Sometimes, e.g., when sending a 1-bit
image, compression becomes impossible.

Here we will just discuss the basic method of arithmetic coding. Some more
efficient algorithms exist.

Decimal Static Arithmetic Coding

We will first discuss the basic approach in relation to decimal coding and also
to the basic static coding mode of operation.
The idea behind arithmetic coding is

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS166

e to have a probability line, 0-1, and
e assign to every symbol a range in this line based on its probability,

e the higher the probability, the higher range which assigns to it.

Once we have defined the ranges and the probability line,
e start to encode symbols,

e every symbol defines where the output floating point number lands within
the range.

Lets consider an example to explain how basic arithmetic coding works.

Assume we have the following token symbol stream

BACA

Then the symbol A occurs twice and B and C once. Therefore A occurs with
probability 0.5, and B and C with probabilities 0.25.

So start by assigning each symbol to the probability range 0-1.

e Sort symbols highest probability first

Symbol Range
A [0.0, 0.5)
B 0.5, 0.75)
C 0.75, 1.0)
The square bracket, “[”, means that the number is also included, so all the

numbers from 0.0 to 0.499999... belong to A.

The first symbol in our stream is B we now know that the code will be in
the range 0.5 to 0.74999.. ..

What need to do now is narrow down the range to give us a unique code.

To do this we have to subdivide the range for the first token given the
probabilities of the second token then the third etc.

To recompute the range we simply subdivide the range as follows:

For all the symbols

e Range = high - low

e High = low + range * high_range of the symbol being coded
e Low = low + range * low_range of the symbol being coded
Where:

e Range, keeps track of where the next range should be.

e High and low, specify the output number.
e Initially High = 1.0, Low = 0.0

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS167

So for the second symbols we have (now Range = 0.25, Low = 0.5, High =
0.75):

Symbol Range
BA [0.5, 0.625)
BB [0.625, 0.6875)
BC [0.6875, 0.75)

The second symbol in our sequence is A so we now know that the code is in
the range 0.5 to 0.6249.. ..

‘We now reapply the subdivision of our scale again to get for our third symbol
(Range = 0.125, Low = 0.5, High = 0.625):

Symbol Range

BAA [0.5, 0.5625)

BAB [0.5625, 0.59375)

BAC [0.59375, 0.625)
The third symbol in our sequence is C so we now know that the code is in
the range 0.59375 to 0.6249. ..

Subdivide again (Range = 0.03125, Low = 0.59375, High = 0.625):

Symbol Range
BACA [0.59375, 0.60937)
BACB [0.609375, 0.6171875)
BACC [0.6171875, 0.625)

So the output code for BACA is any number in the range [0.59375, 0.60937).
To decode is essentially the opposite

e We compile the table for the sequence given probabilities.

e Find the range of number within which the code number lies and carry on

Binary static algorithmic coding

This is very similar except we us binary fractions.
Binary fractions are simply an extension of the binary systems into fractions
much like decimal fractions. That is to say:

0.1 decimal = T =1/10

0.01 decimal = 5 = 1/1()0

0.11 decimal = % + 15z = 11/100
So in binary W get

0.1 binary = ¢ = 1/2 decimal

0.01 binary = % = 1/4 decimal
0.11 binary = Ll + 2 = 3/4 decimal
For example:

e Suppose alphabet was
X, Y

and

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS168

prob(X)
prob(Y)

2/3
1/3

e If we are only concerned with encoding length 2 messages, then we can
map all possible messages to intervals in the range [0..1] as before:
X Y

XX XY YX YY

0 479 6/9 3/9 1

e With binary coding the trick is to encode message to send enough bits of
a binary fraction that uniquely specifies the interval.

Message 0 Codeword
- 1/4 01
XX
X
4/9
xy [2/4 10
6/9
YX - 3/4 110
Y
Yy -?'!g— 15/16 111
1

e Similarly, we can map all possible length 3 messages to intervals in the
range [0..1]:

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS169

0
XXX fe— 14 .01
XX
8/27
X
XXY e 38 .11
12427
XYX M— 48 .100
XY
16427
XYY | 10716 1010
18427
YXX +— 6/8 .110
YX
i 22427
YXY fe——— 14/16 L1110
2427
Yy YYX 426? 15716 L1111
YYY 41’(7 31732 11111

Implementation Issues

FPU Precision
In practice the resolution of the of the number we represent is limited by the
precision of the computers FPU. The binary coding is one extreme where start
to have to round, the full decimal coding is the other extreme.
Some FPUs may us up to 80 bits but let us consider working with 16 bit
resolution.
We now encode the range 0-1 into 65535 segments:
0.000 | 0.250 | 0.500 | 0,750 1.000
0000h | 4000h | 8000h | CO00h | FFFFh
If we take a number and divide it by the maximum (FFFFh) we will clearly
see this:

0000h: 0/65535 = 0.

o

4000h: 16384/65535 = 0.25
8000h: 32768/65535 = 0.5
COOOh: 49152/65535 = 0.75
FFFFh: 65535/655635 = 1.0

The operation of coding is similar to what we have seen with the binary
coding:

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS170
e adjust the probabilities so the bits needed for operating with the number
aren’t above 16 bits.
e define a new interval
e The way to deal with the infinite number is

— to have only loaded the 16 first bits, and when needed shift more
onto it:

1100 0110 0001 000 0011 0100 0100 ...
— Work only with those bytes
— as new bits are needed they’ll be shifted.

Memory Problems
What about an alphabet with 26 symbols, or 256 symbols, ...7

e In general, number of bits is determined by the size of the interval.
e In general, (from entropy) need — logp bits to represent interval of size p.

e can be memory and CPU intensive

Estimating Probabilities - Dynamic Arithmetic Coding?
How to determine probabilities?

e If we have a static stream we simply count the tokens.

Could use a priori information for static or dynamic if scenario familiar.
But for Dynamic Data?

e Simple idea is to use adaptive model: Start with guess of symbol frequen-
cies. Update frequency with each new symbol.

e Another idea is to take account of intersymbol probabilities, e.g., Predic-
tion by Partial Matching.
7.4.7 Lempel-Ziv-Welch (LZW) Algorithm

The LZW algorithm is a very common compression technique.

Suppose we want to encode the Oxford Concise English dictionary which
contains about 159,000 entries. Why not just transmit each word as an 18 bit
number?

Problems:

e Too many bits,
e everyone needs a dictionary,

e only works for English text.

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS171

Solution: Find a way to build the dictionary adaptively.

Original methods due to Ziv and Lempel in 1977 and 1978. Terry Welch
improved the scheme in 1984 (called LZW compression).

It is used in UNIX compress — 1D token stream (similar to below)

It used in GIF comprerssion — 2D window tokens (treat image as with
Huffman Coding Above).

Reference: Terry A. Welch, ” A Technique for High Performance Data Com-
pression”, IEEE Computer, Vol. 17, No. 6, 1984, pp. 8-19.
The LZW Compression Algorithm can summarised as follows:

w = NIL;
while (read a character k)
{
if wk exists in the dictionary
w = wk;
else

add wk to the dictionary;
output the code for w;

w = k;
}
e Original LZW used dictionary with 4K entries, first 256 (0-255) are ASCII
codes.
Example:

Input string is ""WED"WE"WEE"WEB"WET".

w k output index symbol

NIL °
- W - 256 W
W E W 257 WE
E D E 258 ED
D - D 259 D~
- W

W E 256 260 “WE
E - E 261 E”
- W

W E

“WE E 260 262 “WEE
E -

E” W 261 263 E"W

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS172

W E
WE B 257 264 WEB
- B 265 B~
- W
W E
“WE T 260 266 “WET
T EOF T

e A 19-symbol input has been reduced to 7-symbol plus 5-code output. Each
code/symbol will need more than 8 bits, say 9 bits.

e Usually, compression doesn’t start until a large number of bytes (e.g., >
100) are read in.

The LZW Decompression Algorithm is as follows:

read a character k;
output k;
w = k;
while (read a character k)
/* k could be a character or a code. */
{
entry = dictionary entry for k;
output entry;
add w + entry[0] to dictionary;
w = entry;

}

Example (continued):

Input string is "“WED<256>E<260><261><257>B<260>T".

w k output index symbol
- W W 256 W
W E E 257 WE
E D D 258 ED
D <256> W 259 D"
<256> E E 260 “WE
E <260> “WE 261 E”
<260> <261> E” 262 “WEE
<261> <257> WE 263 E°W
<257> B B 264 WEB
B <260> "WE 265 B~

<260> T T 266 “WET

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS173

e Problem: What if we run out of dictionary space?

— Solution 1: Keep track of unused entries and use LRU

— Solution 2: Monitor compression performance and flush dictionary
when performance is poor.

e Implementation Note: LZW can be made really fast; it grabs a fixed
number of bits from input stream, so bit parsing is very easy. Table
lookup is automatic.

7.4.8 Entropy Encoding Summary

e Huffman maps fixed length symbols to variable length codes. Optimal
only when symbol probabilities are powers of 2.

e Arithmetic maps entire message to real number range based on statistics.
Theoretically optimal for long messages, but optimality depends on data
model. Also can be CPU/memory intensive.

e Lempel-Ziv-Welch is a dictionary-based compression method. It maps a
variable number of symbols to a fixed length code.

e Adaptive algorithms do not need a priori estimation of probabilities, they
are more useful in real applications.

7.4.9 Further Reading/Information
Two good text books:

e The Data Compression Book, Mark Nelson,M&T Books, 1995.

e Introduction to Data Compression, Khalid Sayood, Morgan Kaufmann,
1996.

7.5 Source Coding Techniques

Source coding is based on the content of the original signal is also called semantic-
based coding

High compression rates may be high but a price of loss of information. Good
compression rates make be achieved with source encoding with lossless or little
loss of information.

There are three broad methods that exist:

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS174

7.5.1 Transform Coding
A simple transform coding example

A Simple Transform Encoding procedure maybe described by the following steps
for a 2x2 block of monochrome pixels:

1. Take top left pixel as the base value for the block, pixel A.

2. Calculate three other transformed values by taking the difference between
these (respective) pixels and pixel A, i.e. B-A, C-A, D-A.

3. Store the base pixel and the differences as the values of the transform.

Given the above we can easily for the forward transform:

Xo = A
X, = B-A
X = C-A
X3 = D-A
and the inverse transform is:
A, = X,
B, = Xi+Xp
C, = Xo+ X,
D, = X3+Xo

The above transform scheme may be used to compress data by exploiting
redundancy in the data:

Any Redundancy in the data has been transformed to values, X;. So We
can compress the data by using fewer bits to represent the differences. I.e if we
use 8 bits per pixel then the 2x2 block uses 32 bits/ If we keep 8 bits for the
base pixel, X0, and assign 4 bits for each difference then we only use 20 bits.
Which is better than an average 5 bits/pixel
Example
Consider the following 4x4 image block:

120 | 130
125 | 120
then we get:

Xy = 120
X, = 10
X, =

X;s =0

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS175

We can then compress these values by taking less bits to represent the data.
However for practical purposes such a simple scheme as outlined above is
not sufficient for compression:

e It is Too Simple
e Needs to operate on larger blocks (typically 8x8 min)

e Calculation is also too simple and from above we see that simple encoding
of differences for large values will result in loss of information — v poor
losses possible here 4 bits per pixel = values 0-15 unsigned, -7 — 7 signed
so either quantise in multiples of 255/max value or massive overflow!!

However, More advance transform encoding techniques are very common
(See JPEG/MPEG below). Frequency Domain methods such as Fourier Trans-
form and (more commonly) Discrete Cosine Transforms (DCT) compression
techniques fall into this category. We no consider these methods in general and
then specifically.

7.5.2 Frequency Domain Methods

Frequency domains can be obtained through the transformation from one (Time
or Spatial) domain to the other (Frequency) via

e Discrete Cosine Transform (DCT),
e Discrete Fourier Transform (DFT)

As we see later, the DCT at the heart of image (JPEG, Chapter 8) and
video (MPEG, Chapter 9) compression methods, it may also be a component
of MPEG audio compression. The DFT is used in MPEG audio compression
(Section 9.6)

1D Example

Lets consider a 1D (e.g. Audio) example to see what the different domains
mean:

Consider a complicated sound such as the noise of a car horn. We can
describe this sound in two related ways:

e sample the amplitude of the sound many times a second, which gives an
approximation to the sound as a function of time.

e analyse the sound in terms of the pitches of the notes, or frequencies,
which make the sound up, recording the amplitude of each frequency.

In the example below (Fig ??) we have a signal that consists of a sinusoidal
wave at 8 Hz. 8Hz means that wave is completing 8 cycles in 1 second and is
the frequency of that wave. From the frequency domain we can see that the
composition of our signal is one wave (one peak) occurring with a frequency of
8Hz with a magnitude/fraction of 1.0 i.e. it is the whole signal.

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS176

. |
AU =

Time
(11250 5)

10

08
Diornain

g 0.4

0.2

0 20 40 60 80 log 120

Frecuenc v (Hz)

Figure 7.3: Relationship between Time and Frequency Domain

2D (Image) Example

Now images are no more complex really:

Similarly brightness along a line can be recorded as a set of values measured
at equally spaced distances apart, or equivalently, at a set of spatial frequency
values.

Each of these frequency values is referred to as a frequency component.

An image is a two-dimensional array of pixel measurements on a uniform
grid.

This information be described in terms of a two-dimensional grid of spatial
frequencies.

A given frequency component now specifies what contribution is made by
data which is changing with specified z and y direction spatial frequencies.

What do frequencies mean in an image?

If an image has large values at high frequency components then the data is
changing rapidly on a short distance scale. e.g. a page of text

If the image has large low frequency components then the large scale features
of the picture are more important. e.g. a single fairly simple object which
occupies most of the image.

For colour images, The measure (now a 2D matrix) of the frequency content
is with regard to colour/chrominance: this shows if values are changing rapidly
or slowly. Where the fraction, or value in the frequency matrix is low, the colour
is changing gradually. Now the human eye is insensitive to gradual changes in

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS177

colour and sensitive to intensity. So we can ignore gradual changes in colour
and throw away data without the human eye noticing, we hope.

How can transforms into the Frequency Domain Help?

Any function (signal) can be decomposed into purely sinusoidal components
(sine waves of different size/shape) which when added together make up our
original signal.

In the example below (Fig 7.4) we have a square wave signal that has been
decomposed by the Fourier Transform to render its sinusoidal components. Only
the first few sine wave components are shown here. You can see that a the
Square wave form will be roughly approximated if you add up the sinusoidal
components.

DFT of a Square Wave

VAN =

Amplitude

SR |-

(98]
w
w
m)
(:{
S
L
o
@
[
o
)Jh
n
o
s
=]
{_O
}
&
8]
w
©

Frequency

Figure 7.4: DFT of a Square Wave

Thus Transforming a signal into the frequency domain allows us to see what
sine waves make up our signal e.g. One part sinusoidal wave at 50 Hz and two
parts sinusoidal waves at 200 Hz.

More complex signals will give more complex graphs but the idea is exactly
the same. The graph of the frequency domain is called the frequency spectrum.

An easy way to visualise what is happening is to think of a graphic equaliser
on a stereo (Fig 9.15).

The bars on the left are the frequency spectrum of the sound that you are
listening to. The bars go up and down depending on the type of sound that you
are listening to. It is pretty obvious that the accumulation of these make up
the whole. The bars on the right are used to increase and decrease the sound

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS178

EQUALIZER

Figure 7.5: A Graphic Equaliser

at particular frequencies, denoted by the numbers (Hz). The lower frequencies,
on the left, are for bass and the higher frequencies on the right are treble.

This is directly related to our example before. The bars show how much
of the signal is made up of sinusoidal waves at that frequency. When all the
waves are added together in their correct proportions that original sound is
regenerated.

7.5.3 Fourier Theory

In order to fully comprehend the DCT will do a basic study of the Fourier theory
and the Fourier transform first.

Whilst the DCT is ultimately used in multimedia compression it is easier to
perhaps comprehend how such compression methods work by studying Fourier
theory, from which the DCT is actually derived.

The tool which converts a spatial (real space) description of an image into
one in terms of its frequency components is called the Fourier transform

The new version is usually referred to as the Fourier space description
of the image.

The corresponding inverse transformation which turns a Fourier space de-
scription back into a real space one is called the inverse Fourier transform.

1D Case

Considering a continuous function f(z) of a single variable x representing dis-
tance.

The Fourier transform of that function is denoted F(u), where u represents
spatial frequency is defined by

F(u) = /_OO f(x)e™2™w dg, (7.1)

Note: In general F(u) will be a complex quantity even though the original
data is purely real.

The meaning of this is that not only is the magnitude of each frequency
present important, but that its phase relationship is too.

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS179

The inverse Fourier transform for regenerating f(z) from F'(u) is given by

fz) = /jo F(u)e*™ ™% du, (7.2)

which is rather similar, except that the exponential term has the opposite sign.
Let’s see how we compute a Fourier Transform: consider a particular function

f(z) defined as

1 ifjz| <1

0 otherwise, (7.3)

)= {

shown in Fig. 7.6.

I |

w ¥

Figure 7.6: A top hat function
So its Fourier transform is:

/ f(x)6727rixu dx
71

/ 1 x 6727Tia:u dx
J—1

-1

o (e2ﬂ'iu _e—QTriu)
U

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS180

_ sin 27ru. (7.4)
™

In this case F'(u) is purely real, which is a consequence of the original data
being symmetric in and —z. A graph of F(u) is shown in Fig. 7.7. This
function is often referred to as the Sinc function.

2.0
11
I

-6
Figure 7.7: Fourier transform of a top hat function

2D Case

If f(x,y) is a function, for example the brightness in an image, its Fourier
transform is given by

oo oo i
Flu,v) = / / fla,y)e 2=tV da dy, (7.5)
—0o0 — 00
and the inverse transform, as might be expected, is

flz,y) = / / F(u,v)e2™ @) gy dy. (7.6)

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS181

The Discrete Fourier Transform (DFT)

Images and Digital Audio are digitised !!

Thus, we need a discrete formulation of the Fourier transform, which takes
such regularly spaced data values, and returns the value of the Fourier transform
for a set of values in frequency space which are equally spaced.

This is done quite naturally by replacing the integral by a summation, to
give the discrete Fourier transform or DFT for short.

In 1D it is convenient now to assume that x goes up in steps of 1, and that
there are NV samples, at values of x from 0 to N — 1.

So the DFT takes the form

N-1
1)
F(u) = N Z f(x)e2mizu/N, (7.7)
=0
while the inverse DFT is
N-1 _
fle) =" F(u)e*™=/N, (7.8)
x=0

NOTE: Minor changes from the continuous case are a factor of 1/N in the
exponential terms, and also the factor 1/N in front of the forward transform
which does not appear in the inverse transform.

The 2D DFT works is similar. So for an N x M grid in x and y we have

1 N—-1M-1)
F(u,v) _ N7 Z Z f(.f(:,y)e_Qm(wu/NJ'_yv/M), (7'9)
y=0

=0

and
N—1M-1

Fay) =Y N F(u,v)e?miu/N+w/AD, (7.10)

u=0 v=0

Often N = M, and it is then it is more convenient to redefine F(u,v) by
multiplying it by a factor of IV, so that the forward and inverse transforms are
more symmetrical:

N—-1N-1

Fluw) =5 30 3 flay)e 2ritusv/y, (7.11)

=0 y=0

and
1

N—-1N-1
1 .
flz,y) = N E E F(u,v)e?m@uty)/N (7.12)
u=0 v=0

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS182

Compression

How do we achieve compression:

e Low pass filter — ignore high frequency noise components

Only store lower frequency components

High Pass Filter — Spot Gradual Changes

If changes to low Eye does not respond so ignore?

Where do put threshold to cut off?

Relationship between DCT and FFT
DCT (Discrete Cosine Transform) is actually a cut-down version of the FFT:
e Only the real part of FFT
e Computationally simpler than FFT
e DCT — Effective for Multimedia Compression
e DCT MUCH more commonly used.

7.5.4 The Discrete Cosine Transform (DCT)

The discrete cosine transform (DCT) helps separate the image into parts (or
spectral sub-bands) of differing importance (with respect to the image’s visual
quality). The DCT is similar to the discrete Fourier transform: it transforms a
signal or image from the spatial domain to the frequency domain (Fig 7.8).

fij) | Fuv)

B So

Figure 7.8: DCT Encoding

The general equation for a 1D (N data items) DCT is defined by the following
equation:

F(u) = (%) :]jz_;A(i).cos [%(% + 1)] £(0)

and the corresponding inverse 1D DCT transform is simple F~1(u), i.e.:

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS183

where

A(i):{ % foré =0

1 otherwise

The general equation for a 2D (N by M image) DCT is defined by the
following equation:

2.N 2.M

F(u,v) = <%)% <%) : N_Ol J\j_ol A(7).A(f).cos [LU(QZ + 1)} cos {T—'U(Qj + 1) .f(4,5)

?

and the corresponding inverse 2D DCT transform is simple F~!(u,v), i.e.:

f@) = F(uv)
9 %N*lM*l p_— T
_ (N) > X A os [T @i 1)) cos [(27 -+ 1)] F (G,)
where

L foré =0
A frng \/§
© { 1 otherwise

The basic operation of the DCT is as follows:

e The input image is N by M;

e f(i,j) is the intensity of the pixel in row i and column j;

e F(u,v) is the DCT coefficient in row k1 and column k2 of the DCT matrix.

e For most images, much of the signal energy lies at low frequencies; these
appear in the upper left corner of the DCT.

e Compression is achieved since the lower right values represent higher fre-
quencies, and are often small - small enough to be neglected with little
visible distortion.

e The DCT input is an 8 by 8 array of integers. This array contains each
pixel’s gray scale level;

e 8 bit pixels have levels from 0 to 255.

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS184

e Therefore an 8 point DCT would be:

U

Flu,v) — EZA@).AU).COS (7004 1)) cos [T (23 + 1)) £66.5)

where

L foré =0
frng \/§
A®) { 1 otherwise

Question: What is F[0,0]?
answer: They define DC and AC components.

e The output array of DCT coefficients contains integers; these can range
from -1024 to 1023.

e It is computationally easier to implement and more efficient to regard the
DCT as a set of basis functions which given a known input array size (8 x
8) can be precomputed and stored. This involves simply computing values
for a convolution mask (8 x8 window) that get applied (sum values x pixel
the window overlap with image apply window across all rows/columns of
image). The values as simply calculated from the DCT formula. The 64
(8 x 8) DCT basis functions are illustrated in Fig 7.9.

Figure 7.9: DCT basis functions

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS185

e Why DCT not FFT?

DCT is similar to the Fast Fourier Transform (FFT), but can approximate
lines well with fewer coefficients (Fig 7.10)

I i [[16]24[32 [40[458 [56 [64

I'TT nCT
(36]10[10]6 [6 [4 [4 4] foo[52]0 [-5]0 [2]0 [o.4)
Truncate Truncate
[36]I0[I0]6 % [O0F52[0 [-5 [-8 3.4
T IDCT

[24]12]20]32[40[51 [59 [45] [8 [15[24[32]40]48 [57]63]

N P

Figure 7.10: DCT/FFT Comparison

e Computing the 2D DCT

— Factoring reduces problem to a series of 1D DCTs (Fig 7.11):

* apply 1D DCT (Vertically) to Columns
* apply 1D DCT (Horizontally) to resultant Vertical DCT above.
x or alternatively Horizontal to Vertical.

The equations are given by:

Gli,v) = %ZA(U).COS [7;—'6”(23'“)} £,)

1 .
F(u,v) = 3 ZA(U).COS {2—5(21 + 1)} G(i,v)
Bx1D Ex1D
DCTs DCTs
(vert) (hotiz)

Figure 7.11: 2x1D Factored 2D DCT Computation

— Most software implementations use fixed point arithmetic. Some fast

implementations approximate coefficients so all multiplies are shifts
and adds.

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS186

— World record is 11 multiplies and 29 adds. (C. Loeffler, A. Ligten-
berg and G. Moschytz, ”Practical Fast 1-D DCT Algorithms with
11 Multiplications”, Proc. Int’l. Conf. on Acoustics, Speech, and
Signal Processing 1989 (ICASSP ‘89), pp. 988-991)

7.5.5 Differential Encoding

Simple example of transform coding mentioned earlier and instance of this ap-
proach.
Here:

e The difference between the actual value of a sample and a prediction of
that values is encoded.

e Also known as predictive encoding.

e Example of technique include: differential pulse code modulation, delta
modulation and adaptive pulse code modulation — differ in prediction
part.

e Suitable where successive signal samples do not differ much, but are not
zero. E.g. Video — difference between frames, some audio signals.

e Differential pulse code modulation (DPCM) simple prediction:

fpredict (tz) = factual (tif 1)

i.e. a simple Markov model where current value is the predict next value.

So we simply need to encode:

Af(tz) = factual(ti) - factual(ti—l)

If successive sample are close to each other we only need to encode first
sample with a large number of bits:

Actual Data: 910 7 6
Predicted Data: 09 10 7
Af(t): 49, +1, -3, -1.
e Delta modulation is a special case of DPCM: Same predictor function,

coding error is a single bit or digit that indicates the current sample should
be increased or decreased by a step.

Not Suitable for rapidly changing signals.
o Adaptive pulse code modulation — Fuller Markov model: data is extracted

from a function of a series of previous values: FE.g. Average of last n
samples. Characteristics of sample better preserved.

CHAPTER 7. COMPRESSION I: BASIC COMPRESSION ALGORITHMS187

7.5.6 Vector Quantisation

The basic outline of this approach is:
e Data stream divided into (1D or 2D square) blocks — wvectors
e A table or code book is used to find a pattern for each block.

e Code book can be dynamically constructed or predefined.

Each pattern for block encoded as a look value in table

e Compression achieved as data is effectively subsampled and coded at this
level.

Chapter 8

Compression II: Images

(JPEG)

What is JPEG?
e 7 Joint Photographic Expert Group” — an international standard in 1992.

e Works with colour and greyscale images, Many applications e.g., satellite,
medical, ...

8.1 Basic JPEG Compression Pipeline

JPEG compression does not involve one compression algorithm per se. It uses
(or may use depending on comprssion level/quality desired) most of the under-
lying compression algorithms we have previously studied.

JPEG compression involves the following:

e Encoding (Fig 8.1)

e Decoding — Reverse the order for encoding

The Major algorithms used at various steps in JPEG Coding are:

e DCT (Discrete Cosine Transformation) - The heart of JPEG Compression.

Quantization

Zigzag Scan
e DPCM on DC component
RLE on AC Components

Entropy Coding

The DCT has already been introduced (Section 7.5.4) we now summarise
the other steps.

188

CHAPTER 8. COMPRESSION II: IMAGES (JPEG) 189

B
G| | RGB w0 YIQ

P

foptienal) o Q

for each plane (scan) |

for each ner

Quant
S PR
8x8 black

DPCM Zig-zag

[(]-————
fhiffran ar
01101.., RLE
Avrithmetic —

Figure 8.1: JPEG Encoding

8.1.1 Quantization
Why do we need to quantise:
e To throw out bits

e Ezample: 101101 = 45 (6 bits).
Truncate to 4 bits: 1011 = 11.
Truncate to 3 bits: 101 = 5.

e Quantization error is the main source of the Lossy Compression.

Uniform quantization
e Divide by constant N and round result (N = 4 or 8 in examples above).

e Non powers-of-two gives fine control (e.g., N = 6 loses 2.5 bits)

Quantization Tables
e In JPEG, each F[u,v] is divided by a constant q(u,v).

e Table of q(u,v) is called quantization table.

18 22 37 66 68 109 103 77

CHAPTER 8. COMPRESSION II: IMAGES (JPEG) 190

24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

e Eye is most sensitive to low frequencies (upper left corner), less sensitive
to high frequencies (lower right corner)

e Standard defines 2 default quantization tables, one for luminance (above),
one for chrominance.

e Q: How would changing the numbers affect the picture (e.g., if I doubled
them all)?

Quality factor in most implementations is the scaling factor for default
quantization tables.

e Custom quantization tables can be put in image/scan header.

8.1.2 Zig-zag Scan
What is the purpose of the Zig-zag Scan:

e to group low frequency coefficients in top of vector.

e Maps 8 x 8 to a 1 x 64 vector

8.1.3 Differential Pulse Code Modulation (DPCM) on DC
component

Here we see that besides DCT another encoding method is employed: DPCM
on the DC component at least. Why is this strategy adopted:

e DC component is large and varied, but often close to previous value (like
lossless JPEG).

e Encode the difference from previous 8x8 blocks - DPCM

CHAPTER 8. COMPRESSION II: IMAGES (JPEG) 191

8.1.4 Run Length Encode (RLE) on AC components
Yet another simple compression technique is applied to the AC component:
e 1x64 vector has lots of zeros in it

e Encode as (skip, value) pairs, where skip is the number of zeros and value
is the next non-zero component.

e Send (0,0) as end-of-block sentinel value.

8.1.5 Entropy Coding

DC and AC components finally need to be represented by a smaller number of
bits:

e Categorize DC values into SSS (number of bits needed to represent) and
actual bits.

Value SSS

0 0

-1,1 1
-3,-2,2,3 2
-7..-4,4..7 3

o Example: if DC value is 4, 3 bits are needed.
Send off SSS as Huffman symbol, followed by actual 3 bits.

e For AC components (skip, value), encode the composite symbol (skip,SSS)
using the Huffman coding.

e Huffman Tables can be custom (sent in header) or default.

8.1.6 Example JPEG Compression

In Figure 8.2 below we see an example of the whole JPEG compression pipeline
being applied to a single 8x8 block.

8.1.7 Summary of the JPEG bitstream

Figure 8.1 and the above JPEG components have described how compression
is achieved at several stages. Let us conclude by summarising the overall com-
pression process:

e A ”Frame” is a picture, a "scan” is a pass through the pixels (e.g., the red
component), a "segment” is a group of blocks, a "block” is an 8x8 group
of pixels.

CHAPTER 8. COMPRESSION II.

- IMAGES (JPEG) 192

8 x 8 Block Sample
173 166 122 133 322 222 111 |
145 155 222 | 222 176 167 188 |
120 120 130 | 122 133 264 100
096 078 087 | 066 045 123 122
056 321 123 | 075 04¢ 055 023
102 123 133 | 233 111 111 123

162 163 163 | 154 153 153 152
|
143 123 122 | 133 143 432 122

DCT

DCT Coefficient Matrix

001 001 001 001 001 004 008 016

| 185 044 006 002 002 001 001 001
001 001 001 001 004 004 008 016

| | 055 033 004 002 002 001 001 001 |

010 005 003 002 002 001 002 001
002 008 008 008 016 016 016 016 |
{ F (u,v) 003 004 003 005 001 001 001 001

001 001 001 002 004 004 008 016

00¢ 008 008 008 008 016 016 032
Q (u,v) 003 002 002 001 001 001 001 001

002 002 002 001 001 001 001 000

001 001 001 002 001 002 001 000 |
008 008 008 016 016 032 032 064 |

004 008 008 016 016 016 032 032
004 008 008 016 016 016 032 032 |

001 001 002 001 002 001 000 000 |
: DC Coefficient F (u,v)
-~ Le
_ r%0,0
V' |
162 04¢ 007 003 002 000 000 000 12 407121373352

007 018 003 003 002 000 000 000 005320220000

000000000000

012 005 005 002 000 000 000 000

| 002 000 000 400 000 000 000 000 000000000000
| — 000000000000

000 000 000 000 000 000 000 000 i 000000

000 000 000 000 000 000 000 000 zig-zag Sequence

| 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000

Quantized
DCT Coefficient

% (v

Figure 8.2: Example JPEG Compression (Figure taken from Networked Multi-
media Systems, Raghavan and Tripathi, Prentice Hall)

CHAPTER 8. COMPRESSION II: IMAGES (JPEG) 193

e Frame header: sample precision (width, height) of image number of com-
ponents unique ID (for each component) horizontal /vertical sampling fac-
tors (for each component) quantization table to use (for each component)

e Scan header Number of components in scan component ID (for each com-
ponent) Huffman table for each component (for each component)

e Misc. (can occur between headers) Quantization tables Huffman Tables
Arithmetic Coding Tables Comments Application Data

8.2 Practical JPEG Compression

JPEG compression algorithms may fall in to one of several categories depending
on how the compression is actually performed:

e Baseline/Sequential — the one that we described in detail

e Lossless

e Progressive

e Hierarchical

e "Motion JPEG” — Baseline JPEG applied to each image in a video.
Briefly, this is how each above approach is encoded:

1. Lossless Mode

Huffman

010010110

e Take difference from previous pixels (not blocks as in the Baseline
mode) as a ”predictor”.
Predictor uses linear combination of previously encoded neighbors.
It can be one of seven different predictor based on pixels neighbors

CHAPTER 8. COMPRESSION II: IMAGES (JPEG) 194

-1/2 12 -2 1 0 1/2

1 172 172

B3 Do 27

e Since it uses only previously encoded neighbors, first row always uses
P2, first column always uses P1.

e Effect of Predictor (test with 20 images)
4

srandard deviation —

35
3
2:5

(%]

1.5

Compression Ratio

—

03

=1

3
BSY

Note: ”2D” predictors (4-7) always do better than ”1D” predictors.

Comparison with Other Lossless Compression Programs (com-
pression ratio):

Compression Program Compression Ratio
Lena football F-18 flowers

lossless JPEG 1.45 1.54 2.29 1.26
optimal lossless JPEG 1.49 1.67 2.71 1.33
compress (LZW) 0.86 1.24 2.21 0.87

gzip (Lempel-Ziv) 1.08 1.36 3.10 1.05

gzip -9 (optimal Lempel-Ziv) 1.08 1.36 3.13 1.05
pack (Huffman coding) 1.02 1.12 1.19 1.00

2. Progressive Mode

e Goal: display low quality image and successively improve.

e Two ways to successively improve image:

CHAPTER 8. COMPRESSION II: IMAGES (JPEG) 195

(a) Spectral selection: Send DC component, then first few AC, some
more AC, etc.

(b) Successive approzimation: send DCT coeflicients MSB (most sig-
nificant bit) to LSB (least significant bit).
3. Hierarchical Mode
A Three-level Hierarchical JPEG Encoder

(From V. Bhaskaran and K. Konstantinides, "Image and Video Compres-
sion Standards: Algorithms and Architectures”, Kluwer Academic Pub-
lishers, 1995.)

Encedar : Decodar

e Down-sample by factors of 2 in each direction.
Example: map 640x480 to 320x240

e Code smaller image using another method (Progressive, Baseline, or
Lossless).

e Decode and up-sample encoded image

e Encode difference between the up-sampled and the original using
Progressive, Baseline, or Lossless.

e Can be repeated multiple times.

e Good for viewing high resolution image on low resolution display.
4. JPEG-2

e Big change was to use adaptive quantization

8.3 JPEG 2000

A new version of JPEG has been defined and was released in 2002.

CHAPTER 8. COMPRESSION II: IMAGES (JPEG) 196

The JPEG 2000 standard is based on discrete wavelet transform (DWT)
(instead of DCT), scalar quantization, context modeling, arithmetic coding and
post-compression rate allocation. The standard lends itself to a variety of uses,
ranging from digital photography to medical imaging to advanced digital scan-
ning and printing. For more information on the JPEG 2000 standard for still
image coding, refer to

http:/ /www.jpeg.org/JPEG2000.htm

Most notably, JPEG 2000 provides high compression efficiencyin many cases,
visually lossless compression at 1 bit per pixel or better.

8.3.1 Further Reading

A good tutorial on JPEG may be found at:
http://www.ece.purdue.edu/ ace/jpeg-tut/jpegtutl.html
The main JPEG web page is:
http:/ /www.jpeg.org/

Futher information on JPEG 2000 may be found at:
http:/ /www.jpeg.orq/JPEG2000.htm

Chapter 9

Compression III: Video and
Audio Compression

We have studied the theory of encoding now let us see how this is applied in
practice to video (MPEG and others) and then we revisit audio.
We need to compress video (and audio) in practice since:

1. Uncompressed video (and audio) data are huge. In HDTV, the bit rate
easily exceeds 1 Gbps. — big problems for storage and network commu-
nications.

For example:

One of the formats defined for HDTV broadcasting within the United
States is 1920 pixels horizontally by 1080 lines vertically, at 30 frames per
second. If these numbers are all multiplied together, along with 8 bits
for each of the three primary colors, the total data rate required would
be approximately 1.5 Gb/sec. Because of the 6 MHz. channel bandwidth
allocated, each channel will only support a data rate of 19.2 Mb/sec,
which is further reduced to 18 Mb/sec by the fact that the channel must
also support audio, transport, and ancillary data information. As can be
seen, this restriction in data rate means that the original signal must be
compressed by a figure of approximately 83:1. This number seems all the
more impressive when it is realized that the intent is to deliver very high
quality video to the end user, with as few visible artifacts as possible.

2. Lossy methods have to employed since the compression ratio of lossless
methods (e.g., Huffman, Arithmetic, LZW) is not high enough for im-
age and video compression, especially when distribution of pixel values is
relatively flat.

The following compression types are commonly used in Video compression:

e Spatial Redundancy Removal — Intraframe coding (JPEG)

197

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 198
e Spatial and Temporal Redundancy Removal — Intraframe and Interframe
coding (H.261, MPEG)

These are discussed in the following sections. We only concentrate on some
basic principles of video compression (which evolved from the earlier H.261 and
MPEG 1/2 standards).

9.1 Compression Standards

Image, Video and Audio Compression standards have been specifies and released
by two main groups since 1985:

ISO - International Standards Organisation: JPEG, MEPG.

ITU - International Telecommunications Union: H.261 - 264.

Whilst in many cases one of the groups have specified the standards there
is some crossover between the groups, For example:

e JPEG issued by ISO in 1989 but adopted by ITU as ITU T.81)
e MPEG 1 released by ISO in 1991,

e H.261 released by ITU in 1993 (based on CCITT 1990 draft). CCITT
stands for Comité Consultatif International Téléphonique et Télégraphique
whose parent company is ITU.

e H.262 is alternatively better known as MPEG-2 released in 1994.
e H.263 released in 1996 extended as H.263+, H.263++.
MPEG 4 release in 1998.

e H.264 releases in 2002 for DVD quality and is now part of MPEG 4 (Part
10). Quicktime 6 supports this.

9.2 Basic Idea of Video Compression: Motion
Estimation/Compensation

Video embraces two basic forms of means of compression the data:

e Spatial — Each frame can be regarded as an image and can be compressed
very much like JPEG. As we shall see this is termed Intraframe Coding

e Temporal — Greater compression (than just JPEG coding each frame) can
be achieved by noting the temporal coherence/incoherence over frames.
Essentially we note the difference between frames.

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 199

e Furthermore, spatial and temporal information can used together so that
if we can estimate the motion of parts of the picture (blocks) then we can
represent each block (Compressed) and track it across frames and reuse
the block in subsequent frame (frames). As we shall see this is termed
Interframe Coding This is also called Motion estimation/compensation.

Lets us look at a very simple example to explain this (things are much more
complex in practice of course).

How can be represent the compressed data? Simply based on Differential
Pulse Code Modulation (DPCM).

Consider a simple image (block) of a moving circle (Fig 9.1)

(o] - [¢] - K

present previous difference
picture picture picture

Encoder

K - [e] - [

difference previous present
picture picture picture

Decoder

Figure 9.1: DPCM without motion compensation.

The example in Figures 9.3-77 explains the concept of motion estimation/compensation.
We will examine methods of estimating motion vectors in due course.

actual previous picture,
picture motion compensated difference picture

L] - -

\ mation
vedors

previous () Encoder

picture
Figure 9.2: Motion estimation/compensation (encoding)

difference actual
picture picture

* B
mation R N
vedors motion compensation

presious |~
picture |~ Decoder

Figure 9.3: Motion estimation/compensation (decoding)

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 200

As we will shortly see motion estimation in MPEG-1/H.261 is done by using
block matching techniques, i.e. for a certain area of pixels in a picture, one
tries to find a good estimate of this area in a previous (or in a future) frame,
within a specified search area. Motion compensation uses the motion vectors to
compensate the picture. This means that parts of a previous (or future) picture
can be reused in a subsequent picture.

In summary: Motion estimation/compensation techniques reduces the video
bitrate significantly but also introduces complexity and delay, due to the need
of buffering reference pictures.

9.3 H. 261 Compression

H. 261 Compression has been specifically designed for video telecommunication
applications:

e Developed by CCITT in 1988-1990

e Meant for videoconferencing, videotelephone applications over ISDN tele-
phone lines.

e Baseline ISDN is 64 kbits/sec, and integral multiples (px64)

9.3.1 Overview of H.261

The basic approach to H. 261 Compression is summarised as follows:

e Decoded Sequence

P B GBI B PP

L

e Frame types are CCIR 601 CIF (352x288) and QCIF (176x144) images
with 4:2:0 subsampling.

e Two frame types: Intraframes (I-frames) and Interframes (P-frames)
e [-frames use basically JPEG

e P-frames use pseudo-differences from previous frame (predicted), so frames
depend on each other.

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 201
e I-frame provide us with an accessing point.

9.3.2 Intra Frame Coding

The term intra frame coding refers to the fact that the various lossless and lossy
compression techniques are performed relative to information that is contained
only within the current frame, and not relative to any other frame in the video
sequence. In other words, no temporal processing is performed outside of the
current picture or frame. This mode will be described first because it is simpler,
and because non-intra coding techniques are extensions to these basics. Figure
1 shows a block diagram of a basic video encoder for intra frames only. It turns
out that this block diagram is very similar to that of a JPEG still image video
encoder, with only slight implementation detail differences.

Cr
¥ Foreach

-
Ch j macrobleck

k__i__J

far each

Quant
8x8 biock |:| |:|

fTuffinan
01101.. 4—{ E

The potential ramifications of this similarity will be discussed later. The ba-
sic processing blocks shown are the video filter, discrete cosine transform, DCT
coefficient quantizer, and run-length amplitude/variable length coder. These
blocks are described individually in the sections below or have already been
described in JPEG Compression.

This is a basic Intra Frame Coding Scheme is as follows:

Zig-zay

e Macroblocks are 16x16 pixel areas on Y plane of original image.
A macroblock usually consists of 4 Y blocks, 1 Cr block, and 1 Cb block.

In the example HDTV data rate calculation shown previously, the pixels
were represented as 8-bit values for each of the primary colors red, green,
and blue. It turns out that while this may be good for high performance
computer generated graphics, it is wasteful in most video compression
applications. Research into the Human Visual System (HVS) has shown
that the eye is most sensitive to changes in luminance, and less sensitive to
variations in chrominance. Since absolute compression is the name of the
game, it makes sense that MPEG should operate on a color space that can
effectively take advantage of the eyes different sensitivity to luminance and

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 202

chrominance information. As such, H/261 (and MPEG) uses the YCbCr
color space to represent the data values instead of RGB, where Y is the
luminance signal, Cb is the blue color difference signal, and Cr is the red
color difference signal.

A macroblock can be represented in several different manners when refer-
ring to the YCbCr color space. Figure 9.4 below shows 3 formats known
as 4:4:4, 4:2:2, and 4:2:0 video. 4:4:4 is full bandwidth YCbCr video, and
each macroblock consists of 4 Y blocks, 4 Cb blocks, and 4 Cr blocks.
Being full bandwidth, this format contains as much information as the
data would if it were in the RGB color space. 4:2:2 contains half as much
chrominance information as 4:4:4, and 4:2:0 contains one quarter of the
chrominance information. Although MPEG-2 has provisions to handle the
higher chrominance formats for professional applications, most consumer
level products will use the normal 4:2:0 mode.

d:2:0 422 4:4-4

SErEaad IR EESS e S
ST ST B S TR O T [TR T
LUMA R PR FEEEEET
b By Do - WLDDE - oLock -+ aLock - = 1 eai -
it e O 3 O 1

PRSEEEEE riam tEEEEE
H FasdiL Fatiiat itarsies
Cr L5, EEE S
=55, - Lok R
FHHT t Dt
LLLLL L1 |+I l
Tt ||...i“:':
- BLOGK W= e
A mmn s k

co Triai '
T TEE -I':' |I.'i-l_' 4 nLDoK
RaEaRERE EEIEEEE [IRRESE

Figure 9.4: Macroblock Video Formats

Because of the efficient manner of luminance and chrominance represen-
tation, the 4:2:0 representation allows an immediate data reduction from
12 blocks/macroblock to 6 blocks/macroblock, or 2:1 compared to full
bandwidth representations such as 4:4:4 or RGB. To generate this format
without generating color aliases or artifacts requires that the chrominance

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 203

signals be filtered.

The Macroblock is coded as follows:
Addr | Type | Quant | Vector | CBP | BD | Bl | rer | b5

— Many macroblocks will be exact matches (or close enough). So send
address of each block in image —> Addr

— Sometimes no good match can be found, so send INTRA block —>
Type

— Will want to vary the quantization to fine tune compression, so send
quantization value —> Quant

— Motion vector —> vector

— Some blocks in macroblock will match well, others match poorly.
So send bitmask indicating which blocks are present (Coded Block
Pattern, or CBP).

— Send the blocks (4 Y, 1 Cr, 1 Cb) as in JPEG.

e Quantization is by constant value for all DCT coefficients (i.e., no quan-
tization table as in JPEG).

9.3.3 Inter-frame (P-frame) Coding

The previously discussed intra frame coding techniques were limited to process-
ing the video signal on a spatial basis, relative only to information within the
current video frame. Considerably more compression efficiency can be obtained
however, if the inherent temporal, or time-based redundancies, are exploited
as well. Anyone who has ever taken a reel of the old-style super-8 movie film
and held it up to a light can certainly remember seeing that most consecutive
frames within a sequence are very similar to the frames both before and after
the frame of interest. Temporal processing to exploit this redundancy uses a
technique known as block-based motion compensated prediction, using motion
estimation. A block diagram of the basic encoder with extensions for non-intra
frame coding techniques is given in Figure 9.5. Of course, this encoder can also
support intra frame coding as a subset.

Starting with an intra, or I frame, the encoder can forward predict a future
frame. This is commonly referred to as a P frame, and it may also be predicted
from other P frames, although only in a forward time manner. As an example,
consider a group of pictures that lasts for 6 frames. In this case, the frame
ordering is given as I,P,P,P. P P1 P PP P

Each P frame in this sequence is predicted from the frame immediately
preceding it, whether it is an I frame or a P frame. As a reminder, I frames are
coded spatially with no reference to any other frame in the sequence.

P-coding can be summarised as follows:

-y

I Wideo |

Filver b

: (Optional) 1

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 204

8- HKare Comiral

.

Hinsgreanm
Hudfer

) i Aun-Lemgth
1
DET Dueniizer s
T |-|1"-"II.!E
Dmarilisee
Nfaciom Mlanivn
Estiimation Campenzation —l
L *

Al
Frame
Mlemuory (1)

Figure 9.5: P-Frame Coding

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 205

largel

DCh
DCI

R |

l

J,_~|DCT+ Quan + RLE---|

'

£
,&
anuaIsgIp

4 b |7 -best match
-+ 64w - motion veclor

Hullman
coder

0100110

An Coding Example (P-frame)

e Previous image is called reference image.

Image to code is called target image.

Actually, the difference is encoded.

Subtle points:

1. Need to use decoded image as reference image, not original. Why?

2. We're using ” Mean Absolute Difference” (MAD) to decide best block.
Can also use "Mean Squared Error” (MSE) = sum(E*E)

9.3.4 The H.261 Bitstream Structure

The H.261 Bitstream structure may be summarised as follows:

PSC TR |PType | GOB | GOB " GOB

Addr | Type |Quant | Vector | COP | B0 | bl | »or | BS

DC Skip,Val e Skip,Val | COB

e Need to delineate boundaries between pictures, so send Picture Start Code

-> PSC

e Need timestamp for picture (used later for audio synchronization), so send
Temporal Reference —> TR

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 206

e Is this a P-frame or an I-frame? Send Picture Type —> PType

e Picture is divided into regions of 11x3 macroblocks called Groups of Blocks

-> GOB
e Might want to skip whole groups, so send Group Number (Grp #)

e Might want to use one quantization value for whole group, so send Group
Quantization Value —> GQuant

e Overall, bitstream is designed so we can skip data whenever possible while
still unambiguous.

The overall H.261 Codec is summarised in Fig 9.3.4.

I-Frames: ‘

Video e
e

Control ‘

MYV search
& memaory

1*-Frames: ‘

Control ‘

7 ¥
i

molion veclors

MYV search
& memory

Figure 9.6: H.261 Codec

9.3.5 Hard Problems in H.261

There are however a few difficult problems in H.261:
e Motion vector search
e Propagation of Errors

e Bit-rate Control

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 207

Motion Vector Search

Target Reference
p
=y N xy) N
a '
Macroblock P 5
)
Reference searching region

Searching Region

Motion vector (u.v)

e C(xz+k,y+1)— pixels in the macro block with upper left corner (z,y) in
the Target.

R(X 4+ i+ k,y+j+1) — pixels in the macro block with upper left corner
(x 414,y +j) in the Reference.

Cost function is:

N-1 N

| Clerk, yH) - Rpcsik, yj+) |

1 NN
MAE(, j) = —
N D im0

Where MAE stands for Mean Absolute Error.
e Goal is to find a vector (u,v) such that MAE (u,v) is minimum

e Full Search Method:

1. Search the whole [—p, p| searching region.
2. Cost is:
IJF 7
———(2p+ 1]2:~c N3
N Z

operations,

assuming that each pixel comparison needs 3 operations (Subtraction,
Absolute value, Addition).

e Two-Dimensional Logarithmic Search:

Similar to binary search. MAE function is initially computed within a
window of [—p/2,p/2] at nine locations as shown in the figure.

Repeat until the size of the search region is one pixel wide:

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 208

1. Find one of the nine locations that yields the minimum MAE.

2. Form a new searching region with half of the previous size and cen-
tered at the location found in step 1.

7.7} (0,-7) 79

o

£
e

Koz o

-
121

Bl

o b
?\:J

dy

(7.7 r.n

e Hierarchical Motion Estimation:

Motion L Motion
Estimation Vector

Downsample

by 2
Motion
Estimation
Low-pass filter Downsample
by 2
Level 2 Motion
Estimation

1. Form several low resolution version of the target and reference pic-
tures

2. Find the best match motion vector in the lowest resolution version.

3. Modify the motion vector level by level when going up

e Performance comparison:

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 209

Search Method Operation for 720x480 at 30 fps

p =15 p=7
Full Search 29.89 GOPS 6.99 GOPS
Logarithmic 1.02 GOPS 777.60 MOPS
Hierarchical 507.38 MOPS 398.52 MOPS

Propagation of Errors
e Send an I-frame every once in a while

e Make sure you use decoded frame for comparison

Bit-rate Control

e Simple feedback loop based on ”buffer fullness”

If buffer is too full, increase the quantization scale factor to reduce the
data.

9.4 MPEG Compression

The acronym MPEG stands for Moving Picture Expert Group, which worked
to generate the specifications under ISO, the International Organization for
Standardization and IEC, the International Electrotechnical Commission. What
is commonly referred to as "MPEG video” actually consists at the present time
of two finalized standards, MPEG-11 and MPEG-22, with a third standard,
MPEG-4, was finalized in 1998 for Very Low Bitrate Audio-Visual Coding. The
MPEG-1 and MPEG-2 standards are similar in basic concepts. They both
are based on motion compensated block-based transform coding techniques,
while MPEG-4 deviates from these more traditional approaches in its usage
of software image construct descriptors, for target bit-rates in the very low
range, < 64Kb/sec. Because MPEG-1 and MPEG-2 are finalized standards and
are both presently being utilized in a large number of applications, this paper
concentrates on compression techniques relating only to these two standards.
Note that there is no reference to MPEG-3. This is because it was originally
anticipated that this standard would refer to HDTV applications, but it was
found that minor extensions to the MPEG-2 standard would suffice for this
higher bit-rate, higher resolution application, so work on a separate MPEG-3
standard was abandoned.

The current thrust of is on Multimedia content and frameworks. MPEG-7
”"Multimedia Content Description Interface” was defined in 2001. Work on the
new standard MPEG-21 ”Multimedia Framework” has started in June 2000 and
has already produced a Draft Technical Report and two Calls for Proposals.

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 210

MPEG-1 was finalized in 1991, and was originally optimized to work at
video resolutions of 352x240 pixels at 30 frames/sec (NTSC based) or 352x288
pixels at 25 frames/sec (PAL based), commonly referred to as Source Input
Format (SIF) video. It is often mistakenly thought that the MPEG-1 resolution
is limited to the above sizes, but it in fact may go as high as 4095x4095 at 60
frames/sec. The bit-rate is optimized for applications of around 1.5 Mb/sec, but
again can be used at higher rates if required. MPEG-1 is defined for progressive
frames only, and has no direct provision for interlaced video applications, such
as in broadcast television applications.

MPEG-2 was finalized in 1994, and addressed issues directly related to digital
television broadcasting, such as the efficient coding of field-interlaced video and
scalability. Also, the target bit-rate was raised to between 4 and 9 Mb/sec,
resulting in potentially very high quality video. MPEG-2 consists of profiles and
levels. The profile defines the bitstream scalability and the colorspace resolution,
while the level defines the image resolution and the maximum bit-rate per profile.
Probably the most common descriptor in use currently is Main Profile, Main
Level (MP@ML) which refers to 720x480 resolution video at 30 frames/sec, at
bit-rates up to 15 Mb/sec for NTSC video. Another example is the HDTV
resolution of 1920x1080 pixels at 30 frame/sec, at a bit-rate of up to 80 Mb/sec.
This is an example of the Main Profile, High Level (MP@QHL) descriptor.

9.4.1 MPEG Video

MPEG compression is essentially a attempts to over come some shortcomings
of H.261 and JPEG:

e Recall H.261 dependencies:

r P B GBI B PR

ERE R E e E R R R RN R

L

e The Problem here is that many macroblocks need information is not in
the reference frame.

e For example:

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 211

e The MPEG solution is to add a third frame type which is a bidirectional
frame, or B-frame

e B-frames search for macroblock in past and future frames.

e Typical pattern is IBBPBBPBB IBBPBBPBB IBBPBBPBB

Actual pattern is up to encoder, and need not be regular.

M
E
i

]

i
s
p
E:
S
i
E

MPEG Video Layers

MPEG video is broken up into a hierarchy of layers to help with error handling,
random search and editing, and synchronization, for example with an audio bit-
stream. From the top level, the first layer is known as the video sequence layer,
and is any self-contained bitstream, for example a coded movie or advertise-
ment. The second layer down is the group of pictures, which is composed of 1
or more groups of intra (I) frames and/or non-intra (P and/or B) pictures that
will be defined later. Of course the third layer down is the picture layer itself,
and the next layer beneath it is called the slice layer. Each slice is a contiguous
sequence of raster ordered macroblocks, most often on a row basis in typical
video applications, but not limited to this by the specification. Each slice con-
sists of macroblocks, which are 16x16 arrays of luminance pixels, or picture data
elements, with 2 8x8 arrays of associated chrominance pixels. The macroblocks
can be further divided into distinct 8x8 blocks, for further processing such as
transform coding. Each of these layers has its own unique 32 bit start code
defined in the syntax to consist of 23 zero bits followed by a one, then followed
by 8 bits for the actual start code. These start codes may have as many zero
bits as desired preceding them.

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 212

B-Frames

The MPEG encoder also has the option of using forward /backward interpolated
prediction. These frames are commonly referred to as bi-directional interpolated
prediction frames, or B frames for short. As an example of the usage of I, P, and
B frames, consider a group of pictures that lasts for 6 frames, and is given as
I,B,P,B,P,B,I,B,P,B,P,B, As in the previous I and P only example, I frames are
coded spatially only and the P frames are forward predicted based on previous I
and P frames. The B frames however, are coded based on a forward prediction
from a previous I or P frame, as well as a backward prediction from a succeeding
I or P frame. As such, the example sequence is processed by the encoder such
that the first B frame is predicted from the first I frame and first P frame, the
second B frame is predicted from the second and third P frames, and the third
B frame is predicted from the third P frame and the first I frame of the next
group of pictures. From this example, it can be seen that backward prediction
requires that the future frames that are to be used for backward prediction
be encoded and transmitted first, out of order. This process is summarized in
Figure 9.7. There is no defined limit to the number of consecutive B frames
that may be used in a group of pictures, and of course the optimal number
is application dependent. Most broadcast quality applications however, have
tended to use 2 consecutive B frames (I,B,B,P,B,B,P,) as the ideal trade-off
between compression efficiency and video quality.

Encoding &
Iransmission

orger

Framae
R O G R R R i TR

1E y ing e 07 iap Dasplay
order

Figure 9.7: B-Frame Encoding

The main advantage of the usage of B frames is coding efficiency. In most
cases, B frames will result in less bits being coded overall. Quality can also be
improved in the case of moving objects that reveal hidden areas within a video

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 213

sequence. Backward prediction in this case allows the encoder to make more
intelligent decisions on how to encode the video within these areas. Also, since
B frames are not used to predict future frames, errors generated will not be
propagated further within the sequence.

One disadvantage is that the frame reconstruction memory buffers within
the encoder and decoder must be doubled in size to accommodate the 2 anchor
frames. This is almost never an issue for the relatively expensive encoder, and
in these days of inexpensive DRAM it has become much less of an issue for the
decoder as well. Another disadvantage is that there will necessarily be a delay
throughout the system as the frames are delivered out of order as was shown in
Figure ?7?7. Most one-way systems can tolerate these delays, as they are more
objectionable in applications such as video conferencing systems.

Motion Estimation

The temporal prediction technique used in MPEG video is based on motion
estimation. The basic premise of motion estimation is that in most cases, con-
secutive video frames will be similar except for changes induced by objects
moving within the frames. In the trivial case of zero motion between frames
(and no other differences caused by noise, etc.), it is easy for the encoder to ef-
ficiently predict the current frame as a duplicate of the prediction frame. When
this is done, the only information necessary to transmit to the decoder becomes
the syntactic overhead necessary to reconstruct the picture from the original
reference frame. When there is motion in the images, the situation is not as
simple.

Figure 9.8 shows an example of a frame with 2 stick figures and a tree.
The second half of this figure is an example of a possible next frame, where
panning has resulted in the tree moving down and to the right, and the figures
have moved farther to the right because of their own movement outside of the
panning. The problem for motion estimation to solve is how to adequately
represent the changes, or differences, between these two video frames.

The way that motion estimation goes about solving this problem is that
a comprehensive 2-dimensional spatial search is performed for each luminance
macroblock. Motion estimation is not applied directly to chrominance in MPEG
video, as it is assumed that the color motion can be adequately represented with
the same motion information as the luminance. It should be noted at this point
that MPEG does not define how this search should be performed. This is a
detail that the system designer can choose to implement in one of many possible
ways. This is similar to the bit-rate control algorithms discussed previously, in
the respect that complexity vs. quality issues need to be addressed relative to
the individual application. It is well known that a full, exhaustive search over
a wide 2-dimensional area yields the best matching results in most cases, but
this performance comes at an extreme computational cost to the encoder. As
motion estimation usually is the most computationally expensive portion of the
video encoder, some lower cost encoders might choose to limit the pixel search

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 214

tree moved down [:r-rrl:}ic-l moved farthar (o
and to the right the right than tree
AR, e B Frodi
!
A
,-"ll Il'l"-. "Il -"-. : |
FRAME 1 FRAME 2

Figure 9.8: Motion Estimation Example

range, or use other techniques such as telescopic searches, usually at some cost
to the video quality.

Figure 9.9 shows an example of a particular macroblock from Frame 2 of
Figure 9.8, relative to various macroblocks of Frame 1. As can be seen, the top
frame has a bad match with the macroblock to be coded. The middle frame
has a fair match, as there is some commonality between the 2 macroblocks.
The bottom frame has the best match, with only a slight error between the
2 macroblocks. Because a relatively good match has been found, the encoder
assigns motion vectors to the macroblock, which indicate how far horizontally
and vertically the macroblock must be moved so that a match is made. As such,
each forward and backward predicted macroblock may contain 2 motion vectors,
so true bidirectionally predicted macroblocks will utilize 4 motion vectors.

Figure 9.10 shows how a potential predicted Frame 2 can be generated from
Frame 1 by using motion estimation. In this figure, the predicted frame is sub-
tracted from the desired frame, leaving a (hopefully) less complicated residual
error frame that can then be encoded much more efficiently than before motion
estimation. It can be seen that the more accurate the motion is estimated and
matched, the more likely it will be that the residual error will approach zero,
and the coding efficiency will be highest. Further coding efficiency is accom-
plished by taking advantage of the fact that motion vectors tend to be highly
correlated between macroblocks. Because of this, the horizontal component is

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 215

| I

O 5
FAIR MATCH

BAD MATCH

o
GOOD MATCH

Macroblock to be coded

Figure 9.9: Motion Estimation Macroblock Example

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 216

compared to the previously valid horizontal motion vector and only the differ-
ence is coded. This same difference is calculated for the vertical component
before coding. These difference codes are then described with a variable length
code for maximum compression efficiency.

.

2

S
A

AIA

Desired Picture

Minus Predicted Picture

(.

A

£

Residual Error Picture

(Coded & Transmitted)

Figure 9.10: Final Motion Estimation Prediction

Of course not every macroblock search will result in an acceptable match.
If the encoder decides that no acceptable match exists (again, the ”acceptable”
criterion is not MPEG defined, and is up to the system designer) then it has
the option of coding that particular macroblock as an intra macroblock, even
though it may be in a P or B frame. In this manner, high quality video is

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 217

maintained at a slight cost to coding efficiency.

Estimating the Motion Vectors

Basic Ideas is to search for Macroblock (MB) Within a + nxm pixel search
window and work out Sum of Absolute Difference (SAD) (or Mean Absolute
Error (MAE) for each window but this is computationally more expensive) is

a minimum.
Where SAD is given by:

For i = -n to +n
For j = -m to +m

SAD(i,j) = zgj—lz;j* |Cx+ky+1)—Rx+i+ky+ji+1)]

Here N = is size of Macroblock window typically (16 or 32 pixels), (z,y) the
position of the original MB, C, and R is the region to compute the SAD.

It is sometimes applicable for an alpha mask to be applied to SAD calculation
to mask out certain pixels.

SAD(, j) = SN I T [Clatk,y+1) — Rz +i+k,y+5+1) | *(lalphac(i, j) = 0)

So for a + 2x2 Search Area is given by dashed lines and a 2x2 Macroblock
window example, the SAD is given by bold dot dash line (near top right corner)
in Figure 9.11.

Figure 9.11: SAD Window search Example

Selecting Intra/Inter Frame coding

Based upon the motion estimation a decision is made on whether INTRA or
INTER coding is made.
To determine INTRA/INTER MODE we do the following calculation:

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 218

EN? 1'7 |C(4,5)]
=0,5=0 B
7‘1B can = 1=0,7 N

A=3%"00 | C(i,j) = MBumean | *(lalphac(i, j) = 0)

If A< (SAD —2N) INTRA Mode is chosen.

Coding of Predicted Frames:Coding Residual Errors

After a predicted frame is subtracted from its reference and the residual error
frame is generated, this information is spatially coded as in I frames, by coding
8x8 blocks with the DCT, DCT coeflicient quantization, run-length/amplitude
coding, and bitstream buffering with rate control feedback. This process is ba-
sically the same with some minor differences, the main ones being in the DCT
coefficient quantization. The default quantization matrix for non-intra frames
is a flat matrix with a constant value of 16 for each of the 64 locations. This is
very different from that of the default intra quantization matrix which is tailored
for more quantization in direct proportion to higher spatial frequency content.
As in the intra case, the encoder may choose to override this default, and uti-
lize another matrix of choice during the encoding process, and download it via
the encoded bitstream to the decoder on a picture basis. Also, the non-intra
quantization step function contains a dead-zone around zero that is not present
in the intra version. This helps eliminate any lone DCT coefficient quantiza-
tion values that might reduce the run-length amplitude efficiency. Finally, the
motion vectors for the residual block information are calculated as differential
values and are coded with a variable length code according to their statistical
likelihood of occurrence.

Differences from H.261

e Larger gaps between I and P frames, so expand motion vector search
range.

e To get better encoding, allow motion vectors to be specified to fraction of
a pixel (1/2 pixels).

e Bitstream syntax must allow random access, forward/backward play, etc.

e Added notion of slice for synchronization after loss/corrupt data. Exam-
ple: picture with 7 slices:

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 219

e B frame macroblocks can specify two motion vectors (one to past and one

to future), indicating result is to be averaged.
pasl relerence largel luture relerence

0110140...

Type Size Compression
I 18 KB 7:1
P 6 KB 20:1
B 2.5 KB 50:1
Avg 4.8 KB 27:1

9.4.2 The MPEG Video Bitstream

The MPEG Video Bitstream is summarised as follows:

e Public domain tool mpeg_stat and mpeg_bits will analyze a bitstream.

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 220

Seq Seq " Seq
Video |Bitstream | QTs,

320 3C | prrams | Params Mise | BOF L GOP
.................. — o . |
GOPSC | tode | Params | Pl " Piet
PSC | TYP¢ | pyrams | Pasams | Stee | v | Stiee

o R i \\\\
........ il 4
SSC | pog |Qscale] MB |+ | MB
Addr e
Iner | 1¥Pe ‘ Veotor |Qscile | CBP | b0 | e | BS ‘

e Sequence Information

1. Video Params include width, height, aspect ratio of pixels, picture
rate.

2. Bitstream Params are bit rate, buffer size, and constrained parame-
ters flag (means bitstream can be decoded by most hardware)

3. Two types of QTs: one for intra-coded blocks (I-frames) and one for
inter-coded blocks (P-frames).

e Group of Pictures (GOP) information
1. Time code: bit field with SMPTE time code (hours, minutes, seconds,
frame).
2. GOP Params are bits describing structure of GOP. Is GOP closed?
Does it have a dangling pointer broken?
e Picture Information
1. Type: 1, P, or B-frame?
2. Buffer Params indicate how full decoder’s buffer should be before
starting decode.
3. Encode Params indicate whether half pixel motion vectors are used.
e Slice information
1. Vert Pos: what line does this slice start on?
2. QScale: How is the quantization table scaled in this slice?
e Macroblock information

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 221

Addr Incr: number of MBs to skip.
Type: Does this MB use a motion vector? What type?
QScale: How is the quantization table scaled in this MB?

Coded Block Pattern (CBP): bitmap indicating which blocks are
coded.

- 0D

9.4.3 Decoding MPEG Video in Software
e Software Decoder goals: portable, multiple display types

e Breakdown of time

Function % Time
Parsing Bitstream 17.4Y%
IDCT 14.2Y%
Reconstruction 31.5%
Dithering 24.5%
Misc. Arith. 9.9%
Other 2.7h

Intra Frame Decoding

To decode a bitstream generated from the encoder of Figure 9.12, it is necessary
to reverse the order of the encoder processing. In this manner, an I frame
decoder consists of an input bitstream buffer, a Variable Length Decoder (VLD),
an inverse quantizer, an Inverse Discrete Cosine Transform (IDCT), and an
output interface to the required environment (computer hard drive, video frame
buffer, etc.). This decoder is shown in Figure 9.13.

Rit-Hate Canidrol

______ =1
| Viden
ey | i Rum-Length i __.' EHrArres .
Hre — - VLI Bulfer |
I ((hpibenaly | |
R |

Figure 9.12: Intra Frame Encoding

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 222

! Ourpur

Hitserenmm . Run-Lengih Inverse | [i
VLD * Dwantier i . ITH [_r" Interfage

Buffer [Chpiinal|

Figure 9.13: Intra Frame Decoding

The input bitstream buffer consists of memory that operates in the inverse
fashion of the buffer in the encoder. For fixed bit-rate applications, the con-
stant rate bitstream is buffered in the memory and read out at a variable rate
depending on the coding efficiency of the macroblocks and frames to be decoded.

The VLD is probably the most computationally expensive portion of the
decoder because it must operate on a bit-wise basis (VLD decoders need to look
at every bit, because the boundaries between variable length codes are random
and non-aligned) with table look-ups performed at speeds up to the input bit-
rate. This is generally the only function in the receiver that is more complex to
implement than its corresponding function within the encoder, because of the
extensive high-speed bit-wise processing necessary.

The inverse quantizer block multiplies the decoded coefficients by the cor-
responding values of the quantization matrix and the quantization scale factor.
Clipping of the resulting coefficients is performed to the region 2048 to +2047,
then an IDCT mismatch control is applied to prevent long term error propaga-
tion within the sequence.

Non-Intra Frame Decoding

It was shown previously that the non-intra frame encoder built upon the basic
building blocks of the intra frame encoder, with the addition of motion estima-
tion and its associated support structures. This is also true of the non-intra
frame decoder, as it contains the same core structure as the intra frame decoder
with the addition of motion compensation support. Again, support for intra
frame decoding is inherent in the structure, so I, P, and B frame decoding is
possible. The decoder is shown in Figure 9.14.

MPEG-2, MPEG-3, and MPEG-4
e MPEG-2 target applications

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 223

S

Riistream
Rulles

* Rmn-Lengil
L

Imvirai
L amndier

THRCT

o

...-\.-\.-\.-\.-\.-\.h

edion
{nBspeesaation

T

bnehor
Framg
Memary (2]

Figure 9.14: Non-Intra Frame Decoding

i

! Dhudpud
Imteriace
|Udpriamal)

bit-rate

Application
(Mbits)

Main
High 1440
High

Pixels/sec
240 3 M
480 oM
1152 7 M
1080 3 M

consumer tape equiv.

studio TV

consumer HDTV
film production

e Differences from MPEG-1

SR

e MPEG-3: Originally for HDTV (1920 x 1080), got folded into MPEG-2

Search on fields, not just frames.
4:2:2 and 4:4:4 macroblocks
Frame sizes as large as 16383 x 16383

Scalable modes: Temporal, Progressive,...
Non-linear macroblock quantization factor
A bunch of minor fixes (see MPEG FAQ for more details)

e MPEG-4: Originally targeted at very low bit-rate communication (4.8 to
64 kb/sec). Now addressing video processing...

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 224

9.4.4 Further Reading/Information
e G.K. Wallace, The JPEG Still Picture Compression Standard

e CCITT, Recommendation H.261

e D. Le Gall, MPEG: A Video Compression Standard for Multimedia Ap-
plications

e K. Patel, et. al., Performance of a Software MPEG Video Decoder
e P. Cosman, et. al., Using Vector Quantization for Image Processing

e 7Coding of Moving Pictures and Associated Audio for Digital Storage
Media at up to about 1.5 Mbit/s,” ISO/IEC 11172-2: Video (November
1991).

e ”Generic Coding of Moving Pictures and Associated Audio Information:
Video,” ISO/IEC 13818-2 : Draft International Standard (November 1994).

e Barry G. Haskell, Atul Puri, Arun N. Netravali, Digital Video: An Intro-
duction to MPEG-2, Chapman and Hall, 1997.

e K.R. Rao, P. Yip, Discrete Cosine Transform Algorithms, Advantages,
Applications, Academic Press, Inc., 1990.

e Majid Rabbani, Paul W. Jones, Digital Image Compression Techniques,
SPIE Optical Engineering Press, 1991.

e Joan L. Mitchell, William B. Pennebaker, Chad E. Fogg, Didier J. LeGall,
MPEG Video Compression Standard, Chapman and Hall, 1997.

e IEEE Micro Magazine Media Processing, IEEE Computer Society, Vol-
ume 16 Number 4, August 1996.

o http://www.mpeg.org/MPEG/— MPEG Resources on the Web.
e http://drogo.cselt.stet.it/mpeg/ — The Official MPEG Committee

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 225

9.5 Audio Compression

As with video a number of compression techniques have been applied to audio.

9.5.1 Simple Audio Compression Methods

Traditional lossless compression methods (Huffman, LZW, etc.) usually don’t
work well on audio compression (the same reason as in image compression).
The following are some of the Lossy methods applied to audio compression:

e Silence Compression - detect the ”silence”, similar to run-length coding

e Adaptive Differential Pulse Code Modulation (ADPCM)
e.g., in CCITT G.721 - 16 or 32 Kbits/sec.
(a) encodes the difference between two consecutive signals,

(b) adapts at quantization so fewer bits are used when the value is smaller.

— It is necessary to predict where the waveform is headed —> difficult

— Apple has proprietary scheme called ACE/MACE. Lossy scheme that
tries to predict where wave will go in next sample. About 2:1 com-
pression.

e Linear Predictive Coding (LPC) fits signal to speech model and then trans-
mits parameters of model. Sounds like a computer talking, 2.4 kbits/sec.

e Code Excited Linear Predictor (CELP) does LPC, but also transmits error

term — audio conferencing quality at 4.8 kbits/sec.

9.5.2 Psychoacoustics

These methods are related to how humans actually hear sounds:

Human hearing and voice

e Range is about 20 Hz to 20 kHz, most sensitive at 2 to 4 KHz.
e Dynamic range (quietest to loudest) is about 96 dB

e Normal voice range is about 500 Hz to 2 kHz

— Low frequencies are vowels and bass

— High frequencies are consonants

Question: How sensitive is human hearing?

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 226

e Experiment: Put a person in a quiet room. Raise level of 1 kHz tone until

just barely audible. Vary the frequency and plot
Threshald in Quiet

4
30
20
10

4

dB

3 4 3 8 0 1z 14 16
Frequency (kHz)
Frequency Masking

Question: Do receptors interfere with each other?

o Experiment: Play 1 kHz tone (maskingtone) at fixed level (60 dB). Play
test tone at a different level (e.g., 1.1kHz), and raise level until just dis-
tinguishable.

e Vary the frequency of the test tone and plot the threshold when it becomes
audible:

e Repeat for various frequencies of masking tones

Critical Bands

e Perceptually uniform measure of frequency, non-proportional to width of
masking curve

About 100 Hz for masking frequency < 500 Hz, grow larger and larger
above 500 Hz.

e The width is called the size of the critical band

Barks

e Introduce new unit for frequency called a bark (after Barkhausen)
1 Bark = width of one critical band
For frequency < 500 Hz,
For frequency > 500 Hz,

e Masking Thresholds on critical band scale:

Temporal masking

e If we hear a loud sound, then it stops, it takes a little while until we can
hear a soft tone nearby

e Question: how to quantify?

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 227

e Experiment: Play 1 kHz masking tone at 60 dB, plus a test tone at 1.1
kHz at 40 dB. Test tone can’t be heard (it’s masked).

Stop masking tone, then stop test tone after a short delay.

Adjust delay time to the shortest time that test tone can be heard (e.g.,
5 ms).

Repeat with different level of the test tone and plot:
e Try other frequencies for test tone (masking tone duration constant). Total
effect of masking
Summary
e If we have a loud tone at, say, 1 kHz, then nearby quieter tones are masked.

e Best compared on critical band scale — range of masking is about 1 critical
band

e Two factors for masking — frequency masking and temporal masking

e Question: How to use this for compression?

9.5.3 MPEG Audio Compression

Some facts

e MPEG-1: 1.5 Mbits/sec for audio and video
About 1.2 Mbits/sec for video, 0.3 Mbits/sec for audio
(Uncompressed CD audio is 44,100 samples/sec * 16 bits/sample * 2 chan-
nels > 1.4 Mbits/sec)

e Compression factor ranging from 2.7 to 24.

e With Compression rate 6:1 (16 bits stereo sampled at 48 KHz is reduced
to 256 kbits/sec) and optimal listening conditions, expert listeners could
not distinguish between coded and original audio clips.

e MPEG audio supports sampling frequencies of 32, 44.1 and 48 KHz.

e Supports one or two audio channels in one of the four modes:

1. Monophonic — single audio channel
2. Dual-monophonic — two independent channels (similar to stereo)

3. Stereo — for stereo channels that share bits, but not using joint-stereo
coding

4. Joint-stereo — takes advantage of the correlations between stereo
channels

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 228

Steps in algorithm:

1.

2.

3.
4.

5.

Use convolution filters to divide the audio signal (e.g., 48 kHz sound) into
frequency subbands that approximate the 32 critical bands —> sub-band
filtering.

Determine amount of masking for each band caused by nearby band using
the results shown above (this is called the psychoacoustic model).

If the power in a band is below the masking threshold, don’t encode it.

Otherwise, determine number of bits needed to represent the coefficient
such that noise introduced by quantization is below the masking effect
(Recall that 1 bit of quantization introduces about 6 dB of noise).

Format bitstream

Example:

After analysis, the first levels of 16 of the 32 bands are these:

Band 1 2 3 4 6 7 8 9 10 11 12 13 14
2

10 60 35 20 156 2 3 b5

If the level of the 8th band is 60dB,

it gives a masking of 12 dB in the 7th band, 15dB in the 9th.
Level in 7th band is 10 dB (< 12 dB), so ignore it.

Level in 9th band is 35 dB (> 15 dB), so send it.

—> Can encode with up to 2 bits (= 12 dB) of quantization error.

MPEG Layers

MPEG defines 3 layers for audio. Basic model is same, but codec com-
plexity increases with each layer.

Divides data into frames, each of them contains 384 samples, 12 samples
from each of the 32 filtered subbands as shown below.
Figure: Grouping of Sub-band Samples for Layer 1, 2, and 3

Layer 1: DCT type filter with one frame and equal frequency spread per
band. Psychoacoustic model only uses frequency masking.

Layer 2: Use three frames in filter (before, current, next, a total of 1152
samples). This models a little bit of the temporal masking.

Layer 3: Better critical band filter is used (non-equal frequencies), psy-
choacoustic model includes temporal masking effects, takes into account
stereo redundancy, and uses Huffman coder.

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 229

Effectiveness of MPEG audio

Layer Target Ratio Quality @ Quality @ Theoretical
bitrate 64 kbits 128 kbits Min. Delay
Layer 1 192 kbit 4:1 - - 19 ms
Layer 2 128 kbit 6:1 2.1 to 2.6 4+ 35 ms
Layer 3 64 kbit 12:1 3.6 to 3.8 4+ 59 ms

e 5 = perfect, 4 = just noticeable, 3 = slightly annoying, 2 = annoying, 1
= very annoying

e Real delay is about 3 times theoretical delay

9.5.4 Streaming Audio (and video)

Popular new delivery medium for the Web and other Multimedia networks
Real Audio (http://www.realaudio.com/), Shockwave (http://www.macromedia.com)
and .wav files are examples of streamed audio (and video)

e Buffered Data:

Trick get data to destination before it’s needed
— Temporarily store in memory (Buffer)

— Server keeps feeding the buffer

— Client Application reads buffer

e Needs Reliable Connection, moderately fast too.

e Specialised client, Steaming Audio Protocol (PNM for real audio).

9.5.5 Further Exploration
o http://www.raum.com/mpeg/ — MPEG Audio Page

o http://www.hitsquad.com/smm/news/9903-109/9n19905 — MP3 Beginner’s
Guide

A good article on this subject is:

e “A Tutorial on MPEG/Audio Compression”, Davis Pan, IEEE Multime-
dia, pp. 60-74, 1995.

See Video MPEG Further Reading Resources above also

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 230

9.6 Audio Compression

As with video a number of compression techniques have been applied to audio.

9.6.1 Simple Audio Compression Methods

Traditional lossless compression methods (Huffman, LZW, etc.) usually don’t
work well on audio compression (the same reason as in image and video com-
pression).

The following are some of the simple methods applied to audio compres-
sion, we have seen the basic methods working (sometimes with audio examples)
previously:

e Silence Compression - detect the ”silence”, similar to run-length coding
(seen example before)

o Differential Pulse Code Modulation (DPCM)
Relies on the fact that difference in amplitude in successive samples is
small then we can used reduced bits to store the difference (seen examples
before)

o Adaptive Differential Pulse Code Modulation (ADPCM)
e.g., in CCITT G.721 - 16 or 32 Kbits/sec.

(a) encodes the difference between two consecutive signals but a refinement
on DPCM, (b) adapts at quantisation so fewer bits are used when the value
is smaller.

— It is necessary to predict where the waveform is headed —> difficult

— Apple had a proprietary scheme called ACE/MACE. Lossy scheme
that tries to predict where wave will go in next sample. About 2:1
compression.

e Adaptive Predictive Coding (APC) typically used on Speech.

Input signal is divided into fixed segments (windows)

— For each segment, some sample characteristics are computed, e.g.
pitch, period, loudness.

These characteristics are used to predict the signal

Computerised talking (Speech Synthesisers use such methods) but
low bandwidth: acceptable quality at 8 kbits/sec

e Linear Predictive Coding (LPC) fits signal to speech model and then trans-
mits parameters of model as in APC.

Speech Model:

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 231

— Speech Model: pitch, period, loudness, vocal tract parameters (voiced
and unvoiced sounds).

— synthesised speech
— Still sounds like a computer talking,
— Bandwidth as low as 2.4 kbits/sec.

e Code Excited Linear Predictor (CELP) does LPC, but also transmits error
term.
— Based on more sophisticated model of vocal tract than LPC
— Better perceived speech quality
— audio conferencing quality at 4.8 kbits/sec.

9.6.2 Psychoacoustics or Perceptual Coding

Just as we have seen with image (JPEG) and Video compression if we can
employ some knowledge of how humans perceive sound, we can then exploit
areas where the human ear is less sensitive to sound to achieve compression.
MPEG audio works on this principal.

How do we hear sound?

Sound is produced by a vibrating source. The vibrations disturb air molecules
and thus produce variations in air pressure: lower than average pressure, rar-
efactions, and higher than average, compressions. This produces sound waves.

When a sound wave impinges on a surface (e.g. eardrum or microphone) it
causes the surface to vibrate in sympathy:

In this way acoustic energy is transferred from a source to a receptor.

So in human hearing, upon receiving the the waveform the eardrum vibrates
in sympathy and through a variety of mechanisms the acoustic energy is trans-
ferred to nerve impulses that the brain interprets as sound.

The ear can be regarded as being made up of 3 parts: The outer, middle
and inner ear.

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 232

Let us now consider the function of the main parts of the ear and in particular
how the transmission of sound is processed.
The Outer Ear

tyrnpanic
mermtrane

extemal acoustic
tneatus (ear canal)

The outer ear has the following main components:

FEar Canal: The ear canal is open at the outer end which is surrounded by
the pinna or auricle (below left). The pinna plays an important spacial focusing
role in hearing. The canal then narrows slightly and widens toward its inner
end, which is sealed off by the eardrum, or tympanic membrane. Thus the canal
is a shaped tube enclosing a resonating column of air - with the combination of
open and closed ends. This makes it rather like an organ pipe.

Eardrum (Tympanic Membrane): This acts as the interface between the
external and middle ear. At this point, sound is converted into mechanical
vibrations in the solid materials of the middle ear. Sounds (air pressure waves)
first set up sympathetic vibrations on the membrane of the eardrum, just as
they do in the diaphragm of some types of microphone. The eardrum passes
these vibrations on to the middle ear structure.

The Middle Ear

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 233

head of INCUS

malleus

long crus
of IncUs

lateral
process

' i .
anterior manubrium b?se O

The middle ear contains three small bones which are known collectively as
the ossicles and individually as the Malleus, Incus, and Stapes. These bones
form a system of levers which are linked together and driven by the eardrum;
Malleus pushing Incus, Incus pushing Stapes. Working together as a lever sys-
tem, the bones amplify the force of sound vibrations.

The Inner Ear

posterior semicrc, ANTEAOr Semidi.
canal canal

(f'ﬂlhle-ﬂ .,-

nerye

oAl @

(vest t:uuar]l
minclom

round (oochlear)
winciou

The Cochlea: The amplified mechanical force transmitted from the middle
ear to the inner ear by the ossicles is immediately transformed in the cochlea into
hydraulic pressure, as the cochlea is filled with fluid. This hydraulic pressure
imparts movement to the cochlear duct and to the organ of Corti. It is staggering
to note that this process is accomplished in the cochlea which is no bigger than
the tip of a little finger.

How the Cochlea Works: The pressure waves in the cochlea exert energy
along a route that begins at the oval window and ends abruptly at the membrane-

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 234

covered round window, where the pressure is dissipated. In keeping with the
principles of hydraulics, the pressure applied to the oval window at the stirrup
(stape) is transmitted to all parts of the cochlea.

In addition to being filled with fluid, the inner surface of the cochlea (, the
basilar membrane) is lined with over 20,000 hair-like nerve cells, called stere-
ocilia, which perform one of the most critical roles in our ability to hear.

S000m

Hydraulic pressure waves in the cochlea induce a wave-like ripple in the
basilar membrane which travels from the tight towards the loose end. High
tones create their greatest crests where the membrane is tight, low tones where
the wall is slack. This is because resonant frequency is correlated with tension
as in a tight string. The position of this crest is important because it determines
which nerve fibres will send signals to the brain. High frequency tones cause
the crest to occur at the base of the cochlea and the lower frequencies toward
the apex.

The stereocilia differ in length by minuscule amounts; they also have differ-
ent degrees of resiliency to the fluid which passes over them. As a compressional
wave moves from the interface between the hammer of the middle ear and the
oval window of the inner ear through the cochlea, the stereocilia will be set in
motion, vibrating in sympathy. Each hair cell has a natural sensitivity to a par-
ticular frequency of vibration. When the frequency of the compressional wave
matches the natural frequency of the stereocilia, that stereocilia will resonate

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 235

with a larger amplitude of vibration. This increased vibrational amplitude in-
duces the stereocilia cell to release an electrical impulse which passes along the
auditory nerve towards the brain. In a process which is not clearly understood,
the brain is capable of interpreting the qualities of the sound upon reception of
these electric nerve impulses.

The other parts of the inner ear, the semicircular canals are the body’s
balance mechanism and it is thought that it plays no part in hearing. One
of the two walls of the cochlear duct is the vibrating basilar membrane whose
function is to separate sounds according to frequency. The membrane is narrow
and tight at the end near the stirrup and wider and more pliant at the other.

Sensitivity of the Ear
e Range is about 20 Hz to 20 kHz, most sensitive at 2 to 4 KHz.
e Dynamic range (quietest to loudest) is about 96 dB

e Approximate threshold of pain: 130 dB

Hearing damage: > 90 dB (prolonged exposure)

Normal conversation: 60-70 dB

Typical classroom background noise: 20-30 dB

Normal voice range is about 500 Hz to 2 kHz

— Low frequencies are vowels and bass
— High frequencies are consonants
Question: How sensitive is human hearing?

The sensitivity of the human ear with respect to frequency is given by the
following graph.

5 60 et
Ohams e B

sensitivity level of the ear (dB)

N
O

Signal amplitude relative to the minimum

| 1 | I | |

0 -
0013010240058 Q41 | 020 6:6 Gl D@0 5.0+ “104u= 20

Frequency [kHz]

But, it’s even more complicated than this. The frequency dependence is also
level dependent! To illustrate this rather complex phenomenon, we often use a
set of graphs called Loudness Curves or Fletcher-Munson Curves (named after
those who originally made these back in the 1930s).

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 236

dB
A Fhon
130 Se—— 130
110 ¥110--\\J/“’
G &'90'\//\/
70 0T N
50 50 e N
30 30.___//\/
10 10 _/\J
20 200 1K Tt

These curves shown here indicate how the perceived loudness is a function
of both the frequency and the level of a sinusoidal sound signal. The equal
loudness curves are contours of equal loudness and express how much a sound
level must be changed as the frequency varies, to maintain a certain perceived
loudness

The unit used is called phon. At 1 kHz the phon and the dB SPL values are
identical. As frequency varies, the phon follows the contour curve while the dB
remains constant.

What do the curves mean?

They tell that for some frequency regions a sound must be increased in level
to appear equally loud as a sound of 1 kHz, while for other ranges, the sound
must be attenuated to maintain equal perceived loudness.

The frequency-range your hearing accentuates, happens to coincide with
the frequency range in which very important lingual sounds have their major
spectral contents. Typically, sounds like “p” and “t” have very important parts
of their spectral energy within the accentuated range, making them more easy
to discriminate between.

The ability to hear sounds of the accentuated range (around a few kHz) is
thus vital for speech communication.

Frequency Masking

Frequency Masking: When an Audio signal consists of multiple frequencies the
sensitivity of the ear changes with the relative amplitude of the signals. If
the frequencies are close and the amplitude of one is less than the other close
frequency then the second frequency may not be heard.

For example in the figure below

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 237

Relative signal amplitude
level (dB)

0 "
0,01 0020058 01 02 05 10,20 50 10 20
Frequency (kHzl

Hearing sensitivity of the human ear

Note how the sensitivity of the ear changes in the vicinity of the loud signal
B. Signal A is smaller in amplitude but close in frequency. The basic sensitivity
is distorted in the region of B so as a result signal A will no longer be heard.

The range of closeness for frequency masking (the Critical Bands) depends
on the frequencies and relative amplitudes. The critical bandwidth for aver-
age human hearing is a constant 100 Hz for frequencies less than 500 Hz and
increases (approximately) linearly by 100 Hz for each additional 500 Hz. The
width of the critical band is called a bark.

80 1 250 Hz I ki 4 kHz
500 Hz 2 kHz 8 kHz

60

4B

40

20

o 5 10 5 20 25
Critical Band Rate {Bark)

What is the cause of Frequency Masking?

As we have seen above, within the human (inner) ear there are the stere-
ocilia. These are excited by air pressure variations, transmitted via outer and
middle ear. We also noted that different stereocilia respond to different ranges
of frequencies, the critical bands

Frequency Masking occurs because after excitation by one frequency further
excitation by a less strong similar frequency of the same group of cells is not
possible.

e Example: Play 1 kHz tone (maskingtone) at fixed level (60 dB). Play
test tone at a different level (e.g., 1.1 kHz), and raise level until just
distinguishable.

e Vary the frequency of the test tone and plot the threshold when it becomes
audible:

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 238

Masking by 1 kHz tone

&0
60 ¥
40 -

20 .-

4B

2 4 [8 10 12 14 16
Frequency (kHz)

e If we repeat for various frequencies of masking tones we get:
Masking

a0
60
48
a8

[

dB

2 4 6 8 10 12 14 16
Frequency (kfz)

Temporal masking

Temporal Masking: After the ear hears a loud sound it takes a further short
while before it can hear a quieter sound.

Why is this so?

Stereocilia vibrate with corresponding force of input sound stimuli. If the
stimuli is strong then the stereocilia will be in a high state of excitation and get
fatigued. After extended listening to loud music or headphones this sometime
manifests itself with ringing in the ears and even temporary deafness. Prolonged
exposure to noise permanently damages the Stereocilia.

Temporal Masking occurs because the hairs take time to settle after excita-
tion to respond again.

e Example: Play 1 kHz masking tone at 60 dB, plus a test tone at 1.1 kHz
at 40 dB. Test tone can’t be heard (it’s masked).
Stop masking tone, then stop test tone after a short delay.

Adjust delay time to the shortest time that test tone can be heard (e.g.,
5 ms).

Repeat with different level of the test tone and plot:
60

test tone

-5 ¢ 5 i0 20 50 100 200 500"
delay time (ms)

e Try other frequencies for test tone (masking tone duration constant). Total
effect of masking:

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 239

fevel (dB)

| L

Inaudible tones (under curve)

time

Masking tone

freq

Summary

e If we have a loud tone at, say, 1 kHz, then nearby quieter tones are masked.

Best compared on critical band scale — range of masking is about 1 critical
band

Two factors for masking — frequency masking and temporal masking

Question: How to use this for compression? Two examples:

— MPEG Audio
— Dolby

How to compute?
‘We have met basic tools:

e Fourier and Discrete Cosine Transforms
e Work in frequency space

e Band Pass Filtering — Visualise a graphic equaliser

EQUALIZER

Figure 9.15: A Graphic Equaliser

9.6.3 MPEG Audio Compression

MPEG audio compression basically aims to exploit the psychoacoustic models
described above. Frequency masking is always utilised and more complex forms
of MPEG also employ temporal masking.

MPEG audio compression basically works by dividing the audio signal up
into a set of frequency subbands (that approximate critical bands). Each band
is then quantised according to the audibility of quantisation moise within that
band. Quantisation is the key to MPEG audio compression and is the reason
why it is lossy. Although MPEG claims to be perceptually lossless:

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 240

Human tests (part of standard development), Expert listeners.

6-1 compression ratio, stereo 16 bit samples at 48 Khz compressed to 256
kbits/sec

Difficult, real world examples.

Under Optimal listening conditions no statistically distinguishable differ-
ence between original and MPEG.

Basic MPEG

MPEG defines a set of standards for for use of video with sound. The com-
pression methods or coders associated with audio compression are called MPEG
audio coders.

The MPEG standard allows for a variety of different coders to employed.
The difference is their level of sophistication in applying perceptual compression
ideas. There are different layers. One key aspect of MPEG is that whilst some
complex psychoacoustic modelling may be applied in coding phase this modelling
is not required in the decoding phase. This is a desirable feature as this allows for
real time (Hardware or software) decompression which is essential for broadcast
purposes. This also means decompression is independent of the psychoacoustic
models used: different models can be used or if there is enough bandwidth no
models at all.

There have also been evolving standards for MPEG audio compression.
MPEG-1 is by the most prevalent but as we have already seen (Section 6.3.7) the
standard now extends to MPEG-4 (structured audio). For now we concentrate
on MPEG-1. We will discuss aspects of others later.

Some basic facts:

e MPEG-1: 1.5 Mbits/sec for audio and video
About 1.2 Mbits/sec for video, 0.3 Mbits/sec for audio
(Uncompressed CD audio is 44,100 samples/sec * 16 bits/sample * 2 chan-
nels > 1.4 Mbits/sec)

e Compression factor ranging from 2.7 to 24.

e MPEG audio supports sampling frequencies of 32, 44.1 and 48 KHz.

e Supports one or two audio channels in one of the four modes:

1. Monophonic — single audio channel

2. Dual-monophonic — two independent channels (functionally identical
to stereo)

3. Stereo — for stereo channels that share bits, but not using joint-stereo
coding

4. Joint-stereo — takes advantage of the correlations between stereo
channels

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 241

Basic MPEG-1 Compression algorithm

The basic encoding algorithm is summarised in the figure below:

POM FllterSEIank S ubband Data Granule | | g
Input Sibbands Blocks Redudion Grouping g
| &
<
Scale Factor §
Extraction, g
IS:Ijedgn& Data = | Bitstream
nformation Reduction % Output
L 1
| E
=
1024 Paycho- Dynamic "é
Paoint [acoustic Bit [
FFT Model | |Alocation £
| &

Bit Rate
The main stages of the algorithm are:

1. The audio signal is first samples and quantised use PCM
e Application dependent: Sample rate and number of bits

2. The PCM samples are then divided up into a number of frequency subband
and compute subband scaling factors:

12 IZ ----- 12
samples; samples samples
Sui?.bdﬂd filter &) t. i Y T5 Lin-

Jsampies; samples samples:

subsband filter 1 o T3 7% -
PR samples! samples sagp)esg
Audin subband filer 2 —f T L g
samplas iy i o J

-

j c1z 1204
o T ;&a:naleslsameies saenples
g_h\bél;suhbdnd filter 3 : .

PR o
isamples; sampies sampley

subband filter 35 b

Layer E

frame | Rayerdl,
PR ¢ Layer il
: frame

o Analysis filters (also called critical-band filters, break signal up into
equal width subbands

o Use discrete fourier transform (or the so called efficient implemen-
tation of DFT, the fast Fourier transform (FFT)) or discrete cosine
transform (DCT) to filter signal.

e Filters divide audio signal into frequency subbands that approximate
the 32 critical bands

e Each band is known as a sub-band sample.

e Ezample: 16 kHz signal frequency, Sampling rate 32 kbits/sec gives
each subband a bandwidth of 500 Hz.

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 242

e Time duration of each sampled segment of input signal is time to
accumulate 12 successive sets of 32 PCM (subband) samples, i.e.
32*%12 = 384 samples.

e In addition to filtering the input, analysis banks determine

— maximum amplitude of 12 subband samples in each subband.
— each known as the scaling factor of the subband.
— passed to psychoacoustic model and quantiser blocks

3. Psychoacoustic modeller

e Frequency Masking and may employ temporal masking.
e Performed concurrently with filtering and analysis operations.
e Determine amount of masking for each band caused by nearby bands.

e Input: set hearing thresholds and subband masking properties (model
dependent) and scaling factors (above).

Output: a set of signal-to-mask ratios:

— Indicate those frequencies components whose amplitude is below
the audio threshold.

— If the power in a band is below the masking threshold, don’t
encode it.

— Otherwise, determine number of bits (from scaling factors) needed
to represent the coefficient such that noise introduced by quan-
tisation is below the masking effect (Recall that 1 bit of quanti-
sation introduces about 6 dB of noise).

Example:

e Assume that after analysis, the first levels of 16 of the 32 bands are these:

Band 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16
2 10 60 35 20 15 2 3 5 3 1

e If the level of the 8th band is 60 dB,

then assume (according to model adopted) it gives a masking of 12 dB in
the 7th band, 15 dB in the 9th.

Level in 7th band is 10 dB (< 12 dB), so ignore it.
Level in 9th band is 35 dB (> 15 dB), so send it.
—> Can encode with up to 2 bits (= 12 dB) of quantisation error.

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 243

Output bitstream

The basic output stream for a basic MPEG encoder is as follows:

Header SES Forrmat 12%32 subband | Ancillary data

e Header: contains information such as the sample frequency and quantisa-
tion,.

o subband sample (SBS) format: Quantised scaling factors and 12 frequency
components in each subband.

— Peak amplitude level in each subband quantised using 6 bits (64
levels)
— 12 frequency values quantised to 4 bits

e Ancillary data: Optional. Used, for example, to carry additional coded
samples associated with special broadcast format (e.g surround sound)

Decoding the bitstream

e Dequantise the subband samples after demultiplexing the coded bitstream
into subbands.

o Synthesis bank decodes the dequantised subband samples to produce PCM
stream.

— This essentially involves applying the inverse fourier transform (IFFT)
on each substream and multiplexing the channels to give the PCM
bit stream.

MPEG Layers

MPEG defines 3 levels of processing layers for audio. Each with increasing levels
of sophistication and thus greater compression ratios.

Level 1 is the basic mode, Levels 2 and 3 more advance (use temporal mask-
ing). Level 3 is the most common form for audio files on the Web — our beloved
MP3 files that record companies claim are bankrupting their industry. Strictly
speaking these files should be called MPEG-1 level 3 files.

Level 1

e Best suited for bit rate bigger than 128 kbits/sec per channel.

e Example: Phillips Digital Compact Cassette uses Layer 1 192 kbits/sec
compression

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 244
e Divides data into frames, each of them contains 384 samples, 12 samples
from each of the 32 filtered subbands as shown above.
e Psychoacoustic model only uses frequency masking.

e Optional Cyclic Redundancy Code (CRC) error checking.

Layer 2

e Targeted at bit rates of around 128 kbits/sec per channel.

e Examples: Coding of Digital Audio Broadcasting (DAB) on CD-ROM,
CD-I and Video CD.

e Enhancement of level 1.
e Codes audio data in larger groups:

— Use three frames in filter (before, current, next, a total of 1152 sam-
ples).
— This models a little bit of the temporal masking.

e Imposes some restrictions on bit allocation in middle and high subbands.
e More compact coding of scale factors and quantised samples.

e Better audio quality due to saving bits here so more bits cab be used in
quantised subband values

Layer 3

e Targeted at bit rates of 64 kbits/sec per channel.

e Example: audio transmission of ISDN or suitable bandwidth network.
e Much more complex approach.

e Psychoacoustic model includes temporal masking effects,

e Takes into account stereo redundancy.

e Better critical band filter is used (non-equal frequencies)

e Uses a modified DCT (MDCT) for lossless subband transformation.

e Two different block lengths: 18 (long) or 6 (short)

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 245
e 50% overlap between successive transform windows gives window sizes of
36 or 12 — accounts for temporal masking
e Greater frequency resolution accounts for poorer time resolution

e Uses Huffman coding on quantised samples for better compression.

Comparison of MPEG Levels

Layer Target Ratio Quality @ Quality @ Theoretical
bitrate 64 kbits 128 kbits Min. Delay
Layer 1 192 kbit 4:1 -—= —-—= 19 ms
Layer 2 128 kbit 6:1 2.1 to 2.6 4+ 35 ms
Layer 3 64 kbit 12:1 3.6 to 3.8 4+ 59 ms

e 5 = perfect, 4 = just noticeable, 3 = slightly annoying, 2 = annoying, 1
= very annoying

e Real delay is about 3 times theoretical delay

Bit Allocation

The bit allocation process determines the number of code bits to be allocated to
each subband based on information from the psychoacoustic model. For Layer
I and 2, this process starts by computing the mask-to-noise ratio as given by
the following equation:

MNRy;g =SNRsg — SMRyp

where

M N Ryp is the mask-to-noise ratio, SINR4p is the signal-to-noise ratio, and
SMRyp is the signal-to-mask ratio from the psychoacoustic model. All values
are in decibels.

The MPEG audio standard provides tables that give estimates for the signal-
to-noise ratio resulting from quantising to a given number of quantiser levels.
Designers are free to try other methods of getting the signal-to-noise ratios.

Once the bit allocation unit has mask-to-noise ratios for all the subbands,
it searches for the subband with the lowest mask-to noise ratio and allocates
code bits to that subband. When a subband gets allocated more code bits, the
bit allocation unit looks up the new estimate for the signal-to-noise ratio and
recomputes that subband’s mask-to-noise ratio. The process repeats until no
more code bits can be allocated.

The Layer 3 encoder uses noise allocation. The encoder iteratively varies the
quantisers in an orderly way, quantises the spectral values, counts the number
of Huffman code bits required to code the audio data and actually calculates
the resulting noise. If, after quantisation, there are still scale factor bands with

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 246

more than the allowed distortion, the encoder amplifies the values in those scale
factor bands and effectively decreases the quantiser step size for those bands.
After this the process repeats. The process stops if any of these three conditions
is true:

e None of the scale factor bands have more than the allowed distortion.

e The next iteration would cause the amplification for any of the bands to
exceed the maximum allowed value.

e The next iteration would require all the scale factor bands to be amplified.

Real-time encoders also can include a time-limit exit condition for this pro-
cess.

Stereo Redundancy Coding

The MPEG audio compression algorithm supports two types of stereo redun-
dancy coding: intensity stereo coding and Middle/Side (MS) stereo coding. All
layers support intensity stereo coding. Layer III also supports MS stereo cod-
ing. Both forms of redundancy coding exploit another perceptual property of
the human auditory system.

Simply stated at low frequencies, the human auditory system cant detect
where the sound is coming from. So save bits and encode it mono. Psychoa-
coustic results show that above about 2 kHz and within each critical band,
the human auditory system bases its perception of stereo imaging more on the
temporal envelope of the audio signal than its temporal fine structure.

In intensity stereo mode the encoder codes some upper-frequency subband
outputs with a single summed signal instead of sending independent left and
right channel codes for each of the 32 subband outputs. The intensity stereo
decoder reconstructs the left and right channels based only on a single summed
signal and independent left and right channel scale factors. With intensity stereo
coding, the spectral shape of the left and right channels is the same within each
intensity-coded subband but the magnitude is different. The MS stereo mode
encodes the left and right channel signals in certain frequency ranges as middle
(sum of left and right) and side (difference of left and right) channels. In this
mode, the encoder uses specially tuned threshold values to compress the side
channel signal further.

Further MPEG Audio Standards

Since MPEG-1 there have been three other standards. The second phase of the
MPEG audio compression standard, MPEG-2 audio, was completed in Novem-
ber of 1994 when it became an ISO standard.

This standard extends the MPEG-1 standard in the following ways:

o Multichannel audio support: The enhanced standard supports up to 5
high fidelity audio channels, plus a low frequency enhancement channel,

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 247

thus it will be applicable for the compression of audio for High Definition
Television or digital movies.

o Multilingual audio support: The standard supports up to 7 additional
commentary channels.

e Lower compressed audio bit rates: The standard supports additional lower,
compressed bit rates down to 8 kbits/sec.

e Lower audio sampling rates: Besides 32, 44.1, and 48 kHz, the new stan-
dard accommodates 16, 22.05, and 24 kHz sampling rates as well. The
commentary channels can have a sampling rate that is half the high fidelity
channel sampling rate.

In many ways this new standard is compatible with the first MPEG audio
standard (MPEG-1). MPEG-2 audio decoders can decode MPEG-1 audio bit-
streams. In addition, MPEG-1 audio decoders can decode two main channels of
MPEG-2 audio bitstreams. This backward compatibility is achieved by combin-
ing suitably weighted versions of each of the up to 5 channels into a down-mized
left and right channel. These two channels fit into the audio data framework
of a MPEG-1 audio bitstream. Information needed to recover the original left,
right, and remaining channels fit into the ancillary data portion of a MPEG-1
audio bitstream, or in a separate auxiliary bitstream.

MPEG-3 audio:

e does not exist anymore — merged with MPEG-2
MPEG-4 audio:

e Already studied in Section 6.3.7
e uses structures audio concept
e delegates audio production to client synthesis where appropriate

e otherwise compress audio stream as above.

9.6.4 Dolby Audio Compression

Application areas:
e FM radio Satellite transmission and broadcast TV audio (DOLBY AC-1)
e Common compression format in PC sound cards (DOLBY AC-2)

e High Definition TV standard advanced television (ATV) (DOLBY AC-3).
MPEG competitor in this area.

Differences with MPEG:

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 248

e MPEG perceptual coders control quantisation accuracy of each subband
by computing bit numbers for each sample.

e MPEG needs to store each quantise value with each sample.

e MPEG Decoder uses this information to dequantise: forward adaptive bit
allocation

e Advantage of MPEG?: no need for psychoacoustic modelling in the de-
coder due to store of every quantise value.

e DOLBY: Use fized bit rate allocation for each subband. No need to send
with each frame.

e DOLBY encoders and decoder need this information.

Fixed Bit Rate Allocation:

e Bit allocations are determined by known sensitivity characteristics of the
ear.

Different Dolby standards:
DOLBY AC-1 : Low complexity psychoacoustic model

e 40 subbands at sampling rate of 32 kbits/sec or
e (proportionally more) subbands at 44.1 or 48 kbits/sec
e typical compressed bit rate of 512 kbits per second for stereo.

e Example: FM radio Satellite transmission and broadcast TV audio
DOLBY AC-2 : Variation to allow subband bit allocations to vary

e NOW Decoder needs copy of psychoacoustic model.

e Minimised encoder bit stream overheads at expense of transmit-
ting encoded frequency coefficients of sampled waveform segment —
known as the encoded spectral envelope.

e Mode of operation known as backward adaptive bit allocation mode
e HiIgh (hi-fi) quality audio at 256 kbits/sec.
e Not suited for broadcast applications:

— encoder cannot change model without changing (remote/distributed)
decoders

e Example: Common compression format in PC sound cards.

DOLBY AC-3 : Development of AC-2 to overcome broadcast challenge

CHAPTER 9. COMPRESSION III: VIDEO AND AUDIO COMPRESSION 249

e Use hybrid backward/forward adaptive bit allocation mode
e Any model modification information is encoded in a frame.

e Sample rates of 32, 44.1, 48 kbits/sec supported depending on band-
width of source signal.

e Each encoded block contains 512 subband samples, with 50% (256)
overlap between successive samples.

e For a 32 kbits/sec sample rate each block of samples is of 8 ms du-
ration, the duration of each encoder is 16 ms.

e Audio bandwidth (at 32 kbits/sec) is 15 KHz so each subband has
62.5 Hz bandwidth.

e Typical stereo bit rate is 192 kbits/sec.

e Example: High Definition TV standard advanced television (ATV).
MPEG competitor in this area.

9.6.5 Streaming Audio (and video)

Popular new delivery medium for the Web and other Multimedia networks
Real Audio (http://www.realaudio.com/), Shockwave (http://www.macromedia.com)
and .wav files are examples of streamed audio (and video)

e Need to compress and uncompress data in realtime

e Buffered Data:

Trick get data to destination before it’s needed

Temporarily store in memory (Buffer)

— Server keeps feeding the buffer

Client Application reads buffer
e Needs Reliable Connection, moderately fast too.

e Specialised client, Steaming Audio Protocol (PNM for real audio).

9.6.6 Further Exploration
o http://www.raum.com/mpeg/ — MPEG Audio Page

o http://www.hitsquad.com/smm/news/9903-109/%n19905 — MP3 Beginner’s
Guide

A good article on this subject is:

e “A Tutorial on MPEG/Audio Compression”, Davis Pan, IEEE Multime-
dia, pp. 60-74, 1995.

See Video MPEG Further Reading Resources above also

Chapter 10

Multimedia Integration,
Interaction and Interchange

10.1 Integrating Multimedia

So far we have been primarily concerned with each media type or format indi-
vidually. We have noted that certain media (individually) are based on spatial
and/or temporal representations, other may be static.

Once we start to integrate media spacial and temporal implications become
even more critical. For example static text may need to index or label a portion
of video at a given instant or segment of time and there the integration becomes
temporal and spatial if the label is placed at a given location (or locations
moving over time).

Clearly, it is important to know the tolerance and limits for each medium as
integration will require knowledge of these for synchronisation and indeed create
further limits (e.g. bandwidth of two media types increase, if audio is encoded
at a 48 Khz sampling rate and it needs to accompany video being streamed
out at 60 frames per second then inter-stream synchronisation is not necessarily
straightforward.

It is common (obvious) that media types are bundled together for ease of
delivery, storage etc.. Therefore, it is not surprising that formats have been
developed to support, store and deliver media in an integrated form.

The need for interchange between different multimedia applications probably
running on different platforms have lead to the evolution of common interchange
file formats. Many of these formats build on underlying individual media for-
mats (MPEG, JPEG etc.) however further relationships are necessary when the
media is truly integrated to become multimedia. Spatial, temporal structural
and procedural constraints will exist between the media. This especially true
now that interaction is a common feature of multimedia.

250

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE251

10.2 Interactive Multimedia

Modern multimedia presentation and applications are becoming increasingly
interactive.

Simple interactions that simply start movie clips, audio segments animations
etc are very common. Recently complex interactions between media is available.
Following hyperlinks is instinctively non-linear and the advent of digital TV has
lead to the need of a wide choice and the need for interactivity.

Interactivity now needs to be incorporated as part of the media representa-
tion/format. The MHEG format (see below) has been developed expressly for
such purposes.

We have now briefly addressed the need for integrated and interactive media
formats. One last topic before we discuss specific formats is the need for common
interchange formats.

10.3 Multimedia Interchange

A Variety of multimedia applications running on different platforms will need to
communicate with each other particularly if they are running on a distributed
network.

Until recently (and it may even still pose some problems) the lack of a
common interchange file format was a serious impediment to development of a
market of multimedia applications.

A common interchange format needs to be widely adopted (be supported by
many applications) and be sufficiently expressive to represent a wide variety of
media content. These may be conflicting requirements since only when a wide
variety of media is supported will it be widely adopted. Propriety application
on support a small variety of media they require and may not readily adapt to
other formats. Fortunately some widely accept standard that support a wide
variety of media (with open standards even) are now developed.

The need for interchange formats are significant in several applications:

e As a final storage model for the creation and editing of multimedia docu-
ments.

e As a format for delivery of final form digital media. E.g. Compact Discs
to end-use players.

e As a format for real-time delivery over a distributed network
e for interapplication exchange of data.

We will look at two broad area where the interchange and integration of
multimedia:

e Desktop media — Quicktime (also main file format in MPEG-4)
e Digital TV — MHEG

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE252

10.4 Quicktime

10.4.1 Introduction

QuickTime is the most widely used cross-platform multimedia technology avail-
able today. QuickTime now has powerful streaming capabilities, so you can
enjoy watching live events as they happen. QuickTime 6 is the latest version
(2002) and it includes wide support of main media types and formats, stream-
ing capabilities as well as the tools needed to create, edit, and save QuickTime
movies. These tools include the QuickTime Player, PictureViewer, and the
QuickTime Plug-in.

QuickTime developed out of a multimedia extension for Apple’s Macin-
tosh(proprietary) System 7 operating system. It is now an international stan-
dard for multimedia interchange and is available for many platforms and as Web
browser plug ins.

The following main features are summarised below:

Versatile support for web-based media

e Access to live and stored streaming media content with the QuickTime
Player

e High-Quality Low-Bandwidth delivery of multimedia

e Easy view of QuickTime movies (with enhanced control) in Web Browsers
and applications.

e Multi platform support.

e Built in support for most popular Internet media formats (Over 35 for-
mats).

e Easy import/export of movies in the QuickTime Player
Sophisticated playback capabilities

e Play back full-screen video

e Play slide shows and movies continuously

o Work with video, still-image, and sound files in all leading formats

Easy content authoring and editing

e Create new QuickTime streaming movies by copying and pasting content
from any supported format

e Enhance movies and still pictures with filters for sharpening, color tinting,
embossing, and more

e Save files in multiple formats, including the new DV format for high-
quality video

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE253

e Create slide shows from pictures

e Add sound to a slide show

QuickTime is an open standard — it embraces other standards and incorpo-
rates them into its environment. It supports every major file format for pictures,
including BMP, GIF, JPEG, PICT, and PNG. QuickTime also supports every
important professional file format for video, including AVI, AVR, DV, M-JPEG,
MPEG-1, and OpenDML. Key standards for web streaming, including HTTP,
RTP, and RTSP as set forth by the Internet Engineering Task Force, are sup-
ported as well. QuickTime supports Timecode tracks, including the critical
standard for video Timecode set forth by SMPTE. And for musicians, Quick-
Time supports MIDI standards such as the Roland Sound Canvas and the GS
format extensions. QuickTime is not a proprietary environment. Not only can
QuickTime movies be played back on both Windows- and Mac OSbased sys-
tems (including Windows 95, Windows 98, and Windows NT), it can also be
used on web servers in UNIX, Windows, or Mac OS environments. QuickTime
movies can also be played back in any standard web browser, including Mi-
crosoft Internet Explorer, Netscape Navigator, Netscape Communicator, and
America Online. Unlike more limited or proprietary formats, QuickTime makes
it easy to combine media types and authoring tools from multiple platforms.
Content creators can work on the platform of their choice and then deliver the
output to a wide range of playback devices and computer platforms. Robust
multiplatform support dramatically reduces production time, because different
creators can simultaneously work on the same content using different platforms.
QuickTime 4 extends this capability to any RTP/RTSP standards-based server
running a QuickTime Streaming Server.

10.4.2 Quicktime Support of Media Formats

QuickTime can work with more types of media than any other technology.
Whether youre creating streaming video web sites, CD-ROMs, DV Ds, or profes-
sional video, QuickTime gives you the best options for quality and bandwidth
efficiency.

Video — QuickTime supports AVI, AVR, DV, OpenDML, and other profes-
sional digital video formats. AVI and other files can contain only audio
and video, QuickTime can easily enhance these files with text, additional
music tracks, and any other supported media types. QuickTime 6 features
a variety of video compressors and decompressors that can handle needs
ranging from CD-ROMs and DVDs to dial-up Internet access. Quick-
Time can stream video over the Internet even with 28.8-Kbps modems.
QuickTime 6 includes support for Cinepak, IMA, Intel Indeo Video, the
industry-standard H.263 compressor, Sorenson Video 3, and many others.

MPEG format — The MPEG standard for Macintosh is used extensively for
consumer products, combining high-quality audio with low data rates.

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE254

An Apple extension for QuickTime 6 for Macintosh provides direct ac-
cess to MPEG-1 audio and video, including the popular MPEG-1, Layer
3 (MP3). You can also play back MP3 files with QuickTime for Windows.
The QuickTime file format for MPEG-4 has been adopted as an ISO stan-
dard since Quicktime 4. In February 1998, the International Standards
Organization (ISO) formally adopted the QuickTime file format as the
starting point for the MPEG-4 (Fig 10.1) file format. Quicktime 6 is
the first major iteration to offer support of all MPEG-4 video and audio
specifications, though not all features are supported.

Terminal
or Client

Scene is constructed by
drawing the basic scene,
placing audio and video
in the scene, and then
animating it

Scene animafion

,

General AAC and Sipeu Music Mo Textto Face/Body

. . Celp, and g Structured video sfill
audio TwinvQ HySe HILM aido speech animation

——] =l

r

|: Stream Manager
RS & . 4 3 -

Local or Describe, add, and
Notwork [Delivery streams [local or over network) Aatate shasri
MP4 File

Visual Audio Scene MPEG) DRM Objectdescriptor oo

(IPMP) (slream management) Object

Lt _t__jt__st it i}

MP4 file format

Figure 10.1: MPEG-4 File Structure

Audio and Speech — QuickTime supports high-quality digital audio which
can be used in many types of applications. Audio is used by itself (e.g.
MP3 player) or integrated with other media types (film audio track).
Quicktime also offers special support for speech — Qualcomms PureVoice
technology allows for some of the highest quality voice compression avail-
able (14.4 Kbps modem transmission rate). Support for MPEG-4 struc-

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE255

tured audio is also available in Quicktime 6 — .mp4 files.

MIDI — MIDI music is an integral part of the QuickTime architecture. It
can be used alone or with video, animation, still images, or other visual
elements. In addition to playing music through internal or external speak-
ers, QuickTime can route musical information to external MIDI devices,
effects processors, and drum machines. QuickTime 6 provides CD-quality,
low-bandwidth music by supporting over 200 instruments with the Roland
Sound Canvas sound set. It also supports GS format extensions, which
allow additional expressions for General or standard MIDI sequences. On
Windows systems, QuickTime supports the use of the MIDI Mapper for
use with external MIDI hardware. Midi is also a component of the MPEG-
4 structured audio format.

Images and Graphics — The extensive collection of still-image importers in
QuickTime 4 allows media authors to leverage photography and illustra-
tions created in a wide range of formats. QuickTime 4 now has the ability
to open FlashPix images with PictureViewer and export to PNG, TIFF,
TARGA, and MacPaint images, while supporting 16-bit-per-channel files.
It also supports multiple images in TIFF, FlashPix, and Adobe Photoshop
formats. To enable you to work easily within workgroups, QuickTime sup-
ports all the main image formats e.g.BMP, GIF, JPEG, PICT, PNG, and
SGI formats. Quicktime 6 also supports JPEG 2000 standard which os
based on wavelets rather than the DCT.

Text — QuickTime supports searchable text tracks, with a Find command
in the QuickTime Player or through Quicktime C/Java API. A single
QuickTime movie can have multiple text tracks, simplifying the creation
of multilingual movies. Text annotation can be used with any QuickTime-
enabled media types: AVI for video files, and WAV, AIFF, or MPEG-1
for audio files. It can also be deployed as an HREF track, allowing you to
embed URLs in your movies.

Animations — Macromedia Flash animation can now be played with any
QuickTime application, including the QuickTime Plug-in. Quicktime cur-
rently offers support for Flash 5. For high quality animation with compact
files, QuickTime 6 integrates a curve-based vector animation compressor
and flexible sprite capabilities. Recall that for some types of animations,
these vector-based tools can produce a dramatically smaller file than tradi-
tional compressors and prerendered video tracks can produce. QuickTime
6 also supports alpha channel compositing and special effects up to 16 bits
per pixel.

10.4.3 QuickTime Concepts

The following concepts QuickTime are used by Quicktime:

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE256

Movies and Media Data Structures —

A traditional movie, whether stored on film, laser disk, or tape, is a con-
tinuous stream of data. A QuickTime movie can be similarly constructed,
but it need not be: a QuickTime movie can consist of data in sequences
from different forms, such as analog video and CD-ROM. The movie is
not the medium; it is the organizing principle.

A QuickTime movie may contain several tracks. Each track refers to a
media that contains references to the movie data, which may be stored
as images or sound on hard disks, floppy disks, compact discs, or other
devices. The data references constitute the track’s media. Each track has
a single media data structure.

Components —

QuickTime provides components so that every application doesn’t need to
know about all possible types of audio, visual, and storage devices. A com-
ponent is a code resource that is registered by the Component Manager.
The component’s code can be available as a system wide resource or in a
resource that is local to a particular application. Each QuickTime compo-
nent supports a defined set of features and presents a specified functional
interface to its client applications. Applications are thereby isolated from
the details of implementing and managing a given technology. For exam-
ple, you could create a component that supports a certain data encryption
algorithm. Applications could then use your algorithm by connecting to
your component through the Component Manager, rather than by imple-
menting the algorithm over again.

Image Compression —

Image data requires a large amount of storage space. Storing a single 640-
by-480 pixel image in 32-bit color can require as much as 1.2 MB. Similarly,
sequences of images, like those that might be contained in a QuickTime
movie, demand substantially more storage than single images. This is true
even for sequences that consist of fairly small images, because the movie
consists of a large number of those images. Consequently, minimizing the
storage requirements for image data is an important consideration for any
application that works with images or sequences of images.

The Image Compression Manager provides your application with an inter-
face for compressing and decompressing images and sequences of images
that is independent of devices and algorithms.

Time —

Image compression is difficult but worthwhile-images, not to mention long
sequences of images, take a lot of memory. Time management in Quick-
Time is equally essential. You must understand time management to
understand the QuickTime functions and data structures.

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE257

Seemingly simple issues prove interesting—for example, determining the
proper length (duration) of a movie. For many movies, the proper duration
is the time required to play them in "real” time—that is, a rate in which
human actions appear natural, and objects fall to earth accelerating at
32 feet per second per second. But what is the length of a movie that
shows spreadsheet data charted over time, or a map of the earth that
recapitulates continental drift? Add to this the differing clock speeds of
different platforms, and the need to decompress in real time, and time
proves, as ever, complex.

To manage these situations, QuickTime defines time coordinate systems,
which anchor movies and their media data structures to a common tem-
poral reality, the second. A time coordinate system contains a time scale
that provides the translation between real time and the time in a movie.
Time scales are marked in time units. The number of units that pass per
second quantifies the scale—that is, a time scale of 26 means that 26 units
pass per second and each time unit is 1/26 of a second. A time coordinate
system also contains a duration, which is the length of a movie or a media
in the number of time units it contains. Particular points in a movie can
be identified by a time value, the number of time units elapsed to that
point.

Each media has its own time coordinate system, which starts at time 0.
The Movie Toolbox maps each type of media data from the movie’s time
coordinate system to the media’s time coordinate system.

10.4.4 The QuickTime Architecture

QuickTime comprises two managers: the Movie Toolbox and the Image Com-
pression Manager. QuickTime also relies on the Component Manager, as well
as a set of predefined components. Figure 1-1 shows the relationships of these
managers and an application that is playing a movie.

The Movie Toolbox —

Your application gains access to the capabilities of QuickTime by calling
functions in the Movie Toolbox. The Movie Toolbox allows you to store,
retrieve, and manipulate time-based data that is stored in QuickTime
movies. A single movie may contain several types of data. For example, a
movie that contains video information might include both video data and
the sound data that accompanies the video.

The Movie Toolbox also provides functions for editing movies. For exam-
ple, there are editing functions for shortening a movie by removing por-
tions of the video and sound tracks, and there are functions for extending
it with the addition of new data from other QuickTime movies.

The Movie Toolbox is described in the chapter ”Movie Toolbox” later in
this book. That chapter includes code samples that show how to play
movies.

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE258

ficnrie
plytiack
functions
Sound
flsneger EC} EQD)
: Irnage
filowrie Toobozx Compression
ilznsoer
icwie ﬂ I{!?
Q]IIIIIII':IIIIIIIIZIIIII':II]IIIIIII:II'ZIIIII]IIIIIIEIIIII."k demrrpgressnr
T ocks o rrponert
illununuuunuuuuunuunuuu.i. "J“}
Gk
iz, e
Dmm

Figure 10.2: Quicktime Architecture

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE259

The Image Compression Manager —

The Image Compression Manager comprises a set of functions that com-
press and decompress images or sequences of graphic images.

The Image Compression Manager provides a device-independent and driver-
independent means of compressing and decompressing images and se-
quences of images. It also contains a simple interface for implementing
software and hardware image-compression algorithms. It provides system
integration functions for storing compressed images as part of PICT files,
and it offers the ability to automatically decompress compressed PICT
files on any QuickTime-capable Macintosh computer.

In most cases, applications use the Image Compression Manager indirectly,
by calling Movie Toolbox functions or by displaying a compressed picture.
However, if your application compresses images or makes movies with
compressed images, you will call Image Compression Manager functions.

The Image Compression Manager is described in the chapter ”Image Com-
pression Manager” later in this book. This chapter also includes code sam-
ples that show how to compress images or make movies with compressed
images.

The Component Manager —

Applications gain access to components by calling the Component Man-
ager. The Component Manager allows you to define and register types of
components and communicate with components using a standard inter-
face. A component is a code resource that is registered by the Component
Manager. The component’s code can be stored in a system wide resource
or in a resource that is local to a particular application.

Once an application has connected to a component, it calls that compo-
nent directly. If you create your own component class, you define the
function-level interface for the component type that you have defined,
and all components of that type must support the interface and adhere to
those definitions. In this manner, an application can freely choose among
components of a given type with absolute confidence that each will work.

10.4.5 QuickTime Components

QuickTime includes several components that are provided by Apple. These com-
ponents provide essential services to your application and to the managers that
make up the QuickTime architecture. The following Apple-defined components
are among those used by QuickTime:

e movie controller components, which allow applications to play movies us-
ing a standard user interface standard image compression dialog compo-
nents, which allow the user to specify the parameters for a compression
operation by supplying a dialog box or a similar mechanism

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE260

e image compressor components, which compress and decompress image
data sequence grabber components, which allow applications to preview
and record video and sound data as QuickTime movies video digitizer
components, which allow applications to control video digitization by an
external device

e media data-exchange components, which allow applications to move var-
ious types of data in and out of a QuickTime movie derived media han-
dler components, which allow QuickTime to support new types of data in
QuickTime movies

e clock components, which provide timing services defined for QuickTime
applications preview components, which are used by the Movie Toolbox’s
standard file preview functions to display and create visual previews for
files sequence grabber components, which allow applications to obtain
digitized data from sources that are external to a Macintosh computer

e sequence grabber channel components, which manipulate captured data
for a sequence grabber component

e sequence grabber panel components, which allow sequence grabber com-
ponents to obtain configuration information from the user for a particular
sequence grabber channel component

We will study programming aspects of the above with Java in the next
Chapter.

10.4.6 Quicktime File Format

The Quicktime Movie File Format is a published (http://developer.apple.com/
techpubs/quicktime/qtdevdocs/PDF/QTFileFormat.pdf) file format for storing
multimedia content for Quicktime presentation. Several players are available on
many platforms.

The Quicktime file format uses a track model for organising the temporally
data of a movie. A movie can contain one or more tracks — a track is a time-
ordered sequence of a media type. The media are addressed using an edit list
which is a list of end-points of digital media clips or segments.

See handouts, Ch 14 in Multimedia Systems by J. Buford (Addison Wesley)
and the online Apple documentation for further details.

10.4.7 Further Information

Quicktime Software, information, news etc . may b e obtained from Apple’s
Quicktime Web site: http://www.apple.com/quicktime
Specific documents of interest to this course are:

e http://developer.apple.com/techpubs/quicktime/qtdevdocs/RM/qthead].htm
— quicktime documentation online

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE261

o hitp://www.apple.com/quicktime/pdf/QuickTimej_FS-a.pdf — Quicktime
Information

o http://www.apple.com/quicktime/pdf/Quick Time4 Pro_DS-a.pdf — Quick-
time Pro Features

o http://developer.apple.com/techpubs/quicktime/qtdevdocs/PDF /QTFileFormat.pdf
— Quicktime file format

10.5 Open Media Framework Interchange (OMFT)
Format

The OMFT is a common interchange framework developed in repsonse to an
industry led standardisation effort (including Avid — a major digital video
hardware/applications vendor)

Like Quicktime the primary concern of the OMFI format is concerned with
temporal representation of media (such as video and audio) and a track model
is used.

The primary emphasis is video production and an number of additional
features reflect this:

e Source (analogue) material object represent videotape and film so that the
origin of the data is readily identified. Final footage may resort to this
original form so as to ensure highest possible quality.

e Special track types store (SMPTE) time codes for segments of data.

e Transitions and effects for overlapping and sequences of segments are pre-
defined.

e Motion Control — the ability to play one track at a speed which is a ratio
of the speed of another track is supported.

The OMFT file format incorporates:

e a header — include indices for objects contained in file

e Object dictionary — to enhance the OMFT class hierarchy in an applica-
tion

e Object data

e Track data

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE262

10.6 Multimedia and Hypermedia Information
Encoding Expert Group (MHEG)

The development of MHEG arose directly out of the increasing convergence
of broadcast and interactive technologies for Digital TV. It specifies an encod-
ing format for multimedia applications independently of service paradigms and
network protocols. Like Quicktime and OMFTI it is concerned with time-based
media objects, whose encodings are determined by other standards.However,
the scope of MHEG is larger in that it directly supports interactive media and
real-time delivery over networks.

There have been a progressions of MHEG standards (much like MPEG)
The current widespread standard is MHEG-5 but drafts standards exist up to
MHEG-7.

Every design generally represents a compromise between conflicting goals.
MHEG’s design is no exception, especially if you consider that MHEG-5 (and
later) targets a continuously growing and fiercely competitive market where
broadcast and interactive technologies converge almost daily.

Converging technologies have often stimulated adopting standard solutions.
Multimedia applications standards provide more than just the obvious objec-
tives of portability and interoperability. A good multimedia standard can be-
come a reference solution for system developers and application programmers.
It also promotes the use of modular architectures that rely on common com-
ponents that accomplish a specific functionality, such as interpreting and pre-
senting MHEG applications to users. This task is performed by a compliant
runtime engine (RTE), a resident software component that schedules delivery
of an application to the user. It’s aimed at a wide installation base within com-
plete solutions, like a Video on Demand or an Interactive TV system. RTEs
help improve a product’s return on investment, abate a product’s per unit costs,
and provide high quality, robust products due to extensive product testing.

10.6.1 Practical MHEG: Digital Terrestrial TV

MHEG has been used as the Media interchange format in Digital TV set top
boxes (Fig 10.3).

In the UK, ITV digital used this format and the newer Freeview digital
terrestrial (Fig: 10.4 services use this. MHEG is also widely used in European
Digital TV.

UK digital TV interests are managed by the Digital TV Group UK —
http://www.dtg.org.uk/.

Note that the other (satellite) digital TV interest in the UK, SKY, uses a
proprietary API format, called OPEN (!). The advantage is that MHEG is a
truly open format (ISO standard). MHEG is the only open standard in this
area.

Some excellent and interesting document relating to the implementation and
delivery of MHEG digital TV is available at

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE263

Figure 10.3: Digital TV set top box

DIOITAL TV

THROUGH AN AERIAL

; dghsl
EHEE XY 4 SDN nshet O

Figure 10.4: UK Digital TV Consortium

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE264

http://www.dtg. org.uk/reference/mheg/-mheg_index.html

Digital TV services

What sort of multimedia services does digital TV provide. The figure below
(Fig. 10.5) summarises and illustrates typical digital TV services.
MHEG has been designed to provide such functionality.

10.6.2 The family of MHEG standards

MHEG encompasses the family of standards issued by the ISO/IEC JTC1 joint
technical committee’s working group WG12information technology subcommit-
tee SC29, coding of audio, picture multimedia, and hypermedia information.
See Table 10.1 for the complete list of MHEG standards.

Version | Complete Name Status
MHEG-1 | MHEG object representation-base International standard
notation (ASN.1)
MHEG-2 | MHEG object representation-alternate Withdrawn
notation (SGML)
MHEG-3 | MHEG script interchange representation International standard
MHEG-4 | MHEG registration procedure International standard

MHEG-5 | Support for base-level interactive applications | International standard
MHEG-6 | Support for enhanced interactive applications | International standard
(April 1998)

MHEG-7 | Interoperability and conformance testing Draft international standard
for ISO/IEC 13522-5 (Jan 1999)

Table 10.1: MHEG Standards

Since it was introduced first, MHEG-1 received the most attention. It’s the
generic standard for encoding multimedia objects without specific assumptions
on the application area or on the target platform used for delivering and render-
ing these objects to the user. MHEG-3 provides a script extension to MHEG-1.
MHEG-4 specifies a registration procedure for identifiers used by the objects to
identify, for example, a specific format for content data. MHEG-5 can conceptu-
ally be considered a simplifying profile of MHEG-1. It addresses terminals with
limited resources, like the set-top unit. Actually, an MHEG-1 decoder can’t
decode MHEG-5 applications due to some slightly different provisions added to
optimize performance in VoD /ITV environments. MHEG-6 extends the declar-
ative MHEG-5 approach with procedural code capabilities typical of a scripting
language. It defines the interface (MHEG-5 API) and a script engine’s runtime
environment on top of an MHEG-5 engine using the Java virtual machine to
provide a complete solution for application representation. MHEG-7, a new
standard, addresses the conformance and interoperability of MHEG-5 engines
and applications.

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE265

¥isual Appearance Description

1. Conventional TV

2. TV with visual prompt of available information

3. TV with information overlaid

4. Information with video or picture inset

Car Sales
i i R R
B Baguri] weien T8
E =Bl b

Finar peicaciactican o P00
vl 5L i, R

wryaid s e P e
2 pmued fa cwrrp Findd Hasu

5. Just information

Figure 10.5: UK Digital TV Consortium

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE266

10.6.3 MHEG-5 overview

SInce MHEG-5 is the widest MHEG standard in operation and is widely known
we will highlight this MHEG standard.

A multimedia application can be conceived as a set of self-contained objects
based on synchronization and spatial-temporal relationships of multiple media
formats, structural composition, event-action associations, navigation, and user
interaction capabilities. Controlling the playback of time-dependent contents,
like streams of multiplexed audiovisual data requires specific support. These
streams demand VCR control functions (play, pause, fast forward, and so on),
as well as the capability to manage events generated during their presentation.
For example, rendering text subtitles can be synchronized with timecode events
generated during the playback of a stream. MHEG-5 represents an applica-
tion, as a set of scenes, which contain objects common to all scenes. A scene
supports the spatially and temporally coordinated presentation of audiovisual
content consisting of graphics, bitmaps, text, and streams (based on the multi-
plex of audio and video components). Interaction can be performed via graphic
elements like buttons, sliders, text entry boxes, and hypertext selections. Every
scene, as well as an entire application, is a self-contained entity that can rep-
resent its localized behavior by links that are event-action associations. Events
can be generated by users, expiration of timers, playback of streams, and other
conditions within the RTE.

The global scope of MHEG-5 is to define the syntax and semantics of a set
of object classes that can be used for interoperability of multimedia applications
across minimal-resources platforms. The developed applications will reside on a
server, and as portions of the application are needed, they will be downloaded
to the client. In a broadcast environment, this download mechanism could rely,
for instance, on cyclic rebroadcasting of all portions of the application. It is
the responsibility of the client to have a runtime that interprets the application
parts, presents the application to the user, and handles the local interaction
with the user.

The major goals of MHEG-5 are:

e To provide a good standard framework for the development of client/server
multimedia applications intended to run on a memory-constrained Client.

e To define a final-form coded representation for interchange of applications
across platforms of different versions and brands.

e To provide the basis for concrete conformance levelling, guaranteeing that
a conformant application will run on all conformant terminals.

e To allow the runtime engine on the Client to be small and easy to imple-
ment.

e To be free of strong constraints on the architecture of the Client.

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE267

e To allow the building of a wide range of applications. This means also pro-
viding access to external libraries. An application using external libraries
will only be partly portable.

e To allow for application code that is guaranteed to be ”safe” in the sense
that it cannot harm other code in the Client, nor put the Client in an
abnormal state.

e To allow automatic static analysis of (final-form) application code in order
to help insure bug-free applications and minimize the debugging invest-
ment needed to get a robust application. Note that this analysis should
be possible to implement independently of the authoring environment.

e To promote rapid application development by providing high-level primi-
tives and provide a declarative paradigm for the application development.

The MHEG-5 model is object-oriented. The actions are methods targeted
to objects from different classes to perform a specific behavior and include:

e preparation,

e activation,

controlling the presentation,

e user interaction,

getting the value of attributes,

e and so on.

To allow interoperability across heterogeneous systems, MHEG-5 specifies
the precise encoding syntax. Two notations are possible: the ASN.1 notation,
which MHEG-1 also adopts, and a textual notation as illustrated below:.

In a client-server architecture (Fig 10.6), MHEG-5 applications are stored
on the server and downloaded to the terminal for the RTE to interpret. This
model is not limited to storage and retrieval services. In the broadcast environ-
ment, for example, the set of channels transmitted on a broadcast network can
be considered a virtual server, where the download mechanism relies on cyclic
rebroadcast of all portions of an application.

10.6.4 MHEG Programming Principles

MHEG-5 provides suitable abstractions for managing active, autonomous, and
reusable entities (since it adopts an object-oriented approach).
A class is specified by three kinds of properties:

e attributes that make up an object’s structure,

e events that originate from an object, and

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE268

Parts of applicaion
- downloaded from server

Run-time engine

Chient
Figure 10.6: MHEG Client-Server Interaction

e actions that target an object to accomplish a specific behavior or to set
or get an attribute’s value.

The most significant classes of MHEG-5 are now briefly described:

Root — A common Root superclass provides a uniform object identification
mechanism and specifies the general semantics for preparation/destruction
and activation/deactivation of objects, including notification of changes of
an object’s availability and running status. These general provisions are
further specialized moving downwards through the inheritance tree, which
first branches into the Group and Ingredient classes.

Group — This abstract class handles the grouping of objects in the Ingredient
class as a unique entity of interchange. In fact, Group objects can be
addressed and independently downloaded from the server. A Group can
be specialized into Application and Scene classes.

Application — An MHEG-5 application is structurally organized into one
Application and one or more Scene objects. The Application object rep-
resents the entry point that performs a transition to the presentation’s
first Scene. Generally, this transition occurs at startup (see below code
examples) because a presentation can’t happen without a Scene running.

The Launch action activates an Application after quitting the active Ap-
plication. The Quit action ends the active Application, which also termi-
nates the active Scene’s presentation. The Ingredients of an Application
are available to the different Scenes that become active, thereby allow-
ing an uninterrupted presentation of contents (for example, a bitmap can
serve as the common background for all Scenes in an Application).

Scene — This class allows spatially and temporally coordinated presentations
of Ingredients. At most, one Scene can be active at one time. Navigating
within an Application is performed via the TransitionToaction that
closes the current Scene, including its Ingredients, and activates the new
one. The SceneCoordinateSystem attribute specifies the presentation
space’s 2D size for the Scene. If a user interaction occurs in this space,
a UserInput event is generated. A Scene also supports timers. A Timer
event is generated when a timer expires.

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE269

Ingredient — This abstract class provides the common behavior for all objects
that can be included in an Application or a Scene.

The OriginalContent attribute maps object and content data. It con-
tains either included content or a reference to an external data source
(such as a URL or a DSMCC file name). The ContentHook attribute
specifies the encoding format for the content. However, MHEG-5 does
not list the supported encoding formats. See coding examples below for
the use of content references and hooks.

The action Preload gives hints to the RTE for making the content avail-
able for presentation. Especially for streams, this action does not com-
pletely download the content, it just sets up the proper network connection
to the site where the content is stored. The action Unload frees allocated
resources for the content.

The Presentable, Stream, and Link classes are subclasses of the Ingredient
class.

Presentable — This abstract class specifies the common aspects for in-
formation that can be seen or heard by the user. The Run and Stop
actions activate and terminate the presentation, while generating the
IsRunning and IsStopped events.

Visible — The Visible abstract class specializes the Presentable class
with provisions for displaying objects in the active Scene’s presenta-
tion space.

The OriginalBoxSize and OriginalPosition attributes respectively
specify the size and position of the object’s bounding box relative to
the Scene’s presentation space. The actions SetSize and SetPosition
change the current values of these attributes.

The specialized objects in the Visible class include:

e Bitmap — This object displays a 2D array of pixels. The Tiling
attribute specifies whether the content will be replicated through-
out the BoxSize area. The action ScaleBitmap scales the con-
tent to a new size.

Example, to create a simple bitmap object:

(bitmap: BgndInfo
content-hook: #bitmapHook
content-data: referenced-content: "Info.bitmap"
box-size: (320 240)
original-position: (0 O)
)
e LineArt, DynamicLineArt— A LineArt is a vectorial representa-
tion of graphical entities, like polylines and ellipses. DynamicLineArt
draws lines and curves on the fly in the BoxSize area.

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE270

e Text — This object represents a text string with a set of ren-
dition attributes. Essentially, these attributes specify fonts and
formatting information like justification and wrapping.

Stream — This class (a subclass of Ingredient) controls the synchronized
presentation of multiplexed audio-visual data (such as an MPEG-2
file). A Stream object consists of a list of components from the
Video, Audio, and RTGraphics (animated graphics) classes. The
OriginalContent attribute of the Stream object refers to the whole
multiplex of data streams.

When a Stream object is running, its streams can be switched on
and off independently. This lets users switch between different au-
dio trails (different languages) or choose which video stream(s) to
present among a range of available ones. For example, the Turin
code example below contains an MPEG-1 Stream composed of one
audio and one video component. These components automatically
activate when a run action targets the whole Stream because their
InitiallyActive attribute is set to true.

Specific events are associated with playback: StreamPlaying/StreamStopped
notifies the actual initiation/termination and CounterTrigger no-

tifies the system when a previously booked time-code event occurs.

The Turin code example below shows how the CounterTrigger event

can be used to synchronize text subtitling and also illustrates the
SetCounterPosition and SetCounterEndPosition actions to spec-

ify a temporal segment for presentation.

Link — The Link class implements event-action behavior by a condition
and an effect. The LinkCondition contains an EventSource - a
reference to the object on which the event occurs - an EventType
that specifies the kind of event and a possible EventData that is a
data value associated with the event.

MHEG-5 Action objects consist of a sequence of elementary actions.
Elementary actions are comparable to methods in an object-oriented
paradigm. The execution of an Action object means that each of its
elementary actions are invoked sequentially.

As an example, consider the following Link, which transitions to an-
other Scene when the character A is entered in the EntryField EF1.

Example, to create a simple link:

(1ink: Link1
event-source: EF1
event-type: #NewChar
event—-data: ‘A’
link-effect:
(action: transition-to: Scene2)

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE2T71

In the Turin code example below, Link 49 triggers only if a CounterTrigger
event on the video clip occurs with EventData = 3.

Specifically, this lets you associate a different effect with every booked

value of the CounterPosition. The LinkEffect comprises a set of
actions that are executed in sequence when an event that matches

with the LinkCondition occurs. Every action specifies the target ob-

ject and, possibly, other parameters depending on the type of action.
MHEG-5 specifies more than 100 kinds of actions.

Interactible — This abstract class provides a way for users to interact with
objects within the following sub-classes:

Hotspot, PushButton, and SwitchButton — These subclasses im-
plement button selection capability and generate the IsSelected
event.

Example, to create a simple SwitchButton:

(switchbutton: Switchl
style: #radiobutton
position: (50 70)
label: "On"

)

Hypertext — This class extends the Text class with anchors. When
selected, these anchors link text content to associated information.

Slider and EntryField — Respectively, these objects let users adjust a
numeric value (such as the volume of an audio stream) and edit text.

Example, to create a simple slider:

(slider: Sliderl
box-size: (40 5)
original-position: (100 100)
max-value: 20
orientation: #right

UK Digital Terrestrial MHEG Support: EuroMHEG

Above we described the main classes of MHEG. There a few other classes that
we will not address in this course. It is enough that we basically gain a broad
understanding of how MHEG works and the basic classes that support this.

Not all MHEG engines support all MHEG classes. In fact the MHEG stan-
dard use by UK digital TV needed to be initially retricted to meet production
timescales for the launch. An EuroMHEG standard was thus defined. The
standard was defined to be extensible so as to be able to include updates and
additions in due course.

The MHEG classes supported by EuroMHEG are:

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE272

Root Group Application
Scene Ingredient Link

Program ResidentProgram RemoteProgram
Palette Font CursorShape
Variable BooleanVariable IntegerVariable
OctetStringVariable ObjectRefVariable ContentRefVariable
Presentable TokenManager TokenGroup
ListGroup Visible Bitmap

LineArt Rectangle DynamicLineArt
Text Stream Audio

Video RTGraphics Interactible
Slider EntryField HyperText
Button HotSpot PushButton
SwitchButton Action

10.6.5 Interaction within a Scene

The MHEG application is event-driven, in the sense that all actions are called
as the result of an event firing a link. Events can be divided into two main
groups: synchronous events and asynchronous events. Asynchronous events
are events that occur asynchronously to the processing of Links in the MHEG
engine. These include timer events and user input events. An application area
of MHEG-5 (such as DAVIC) must specify the permissible UserInput events
within that area. Synchronous events are events that can only occur as the
result of an MHEG-5 action being targeted to some objects. A typical example
of a synchronous event is IsSelected, which can only occur as the result of
the MHEG-5 action Select being invoked. Synchronous events are always dealt
with immediately; asynchronous events are queued.

The mechanism at the heart of the MHEG engine, therefore, is the following:

1. After a period of of idleness, an asynchronous event occurs. The event
can be a user input event, a timer event, a stream event, or some other
type of event.

2. Possibly, a link that reacts on the event is found. This link is then fired.
If no such link is found, the process starts again at 1.

3. The result of a link being fired is the execution of an action object, which
is a sequence of elementary actions. These can change the state of other
objects, create or destroy other objects, or cause events to occur.

4. As a result of the actions being performed, synchronous events may oc-
cur. These are dealt with immediately, i.e., before processing any other
asynchronous events queued.

When all events have been processed, the process starts again at 1.

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE273

10.6.6 Availability; Running Status

Before doing anything to an object, the MHEG-5 engine must prepare it. Prepar-
ing an object typically entails retrieving it from the server, decoding the in-
terchange format and creating the corresponding internal data structures, and
making the object available for further processing. The preparation of an object
is asynchronous; its completion is signalled by an IsAvailable event.

All objects that are part of an application or a scene have a RunningStatus,
which is either true or false. Objects whose RunningStatus is true are said to be
running, which means that they perform the behaviour they are programmed
for. More concretely:

e only running Visibles are actually visible on the screen,
e only running Audio objects are played out through the loudspeaker,

e only running Links will execute the action part if the associated event
occurs, etc.

10.6.7 Interactibles

The MHEG-5 mix-in class Interactible groups some functionality associated
with user interface-related objects (Slider, HyperText, EntryField, Buttons).

These objects can all be highlighted (by setting their HighlightStatus to
True).

They also have the attribute InteractionStatus, which, when set to true,
allows the object to interact directly with the user, thus bypassing the normal
processing of UserInput events by the MHEG-5 engine.

Exactly how an Interactible reacts when its InteractionStatus is true is
implementation-specific.

As an example, the way that a user enters characters in an EntryField can
be implemented in different ways in different MHEG-5 engines.

At most one Interactible at a time can have its InteractionStatus set to True.
Interactibles

10.6.8 Visual Representation
For objects that are visible on the screen, the following rules apply :

e Objects are drawn downwards and to the right of their position on the
screen. This point can be changed during the life cycle of an object, thus
making it possible to move objects.

e Objects are drawn without scaling. Objects that do not fit within their
bounding box are clipped.

e Objects are drawn with “natural” priority, i.e., on top of already existing
objects. However, it is possible to move objects to the top or the bottom
of the screen, as well as putting them before or after another object.

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE274

e The screen can be frozen, allowing the application to perform many (pos-
sibly slow) changes and not update the screen until it’s unfrozen.

10.6.9 Object Sharing Between Scenes

It is possible within MHEG-5 to share objects between some or all scenes of an
application. As an example, this can be used to have variables retain their value
over scene changes, or to have an audio stream play on across a scene change.
Shared objects are alway contained in an Application object. Since there is
always exactly one Application object running whenever a scene is running, the
objects contained in an application object are visible to each of its scenes.

10.6.10 Object Encoding

The MHEG-5 specification does not prescribe any specific formats for the en-
coding of content. For example, it is conceivable that a Video object is encoded
as MPEG or as motion-JPEG. This means that the group using MHEG-5 must
define which content encoding schemes to apply for the different objects in order
to achieve interoperability.

However, MHEG-5 does specify a final-form encoding of the MHEG-5 objects
themselves. This encoding is an instance of ASN.1, using the Basic Encoding
Rules (BER).

10.6.11 Conformance

The issue of conformance, though of crucial importance, has not yet been exten-
sively addressed by the MHEG committee. It is expected that a conformance
definition for the standard will have to be drafted, probably lagging the standard
itself by some period of time.

10.6.12 MHEG Coding Examples

A Simple MHEG Example

Below (Fig 10.7) is a very simple scene that displays a bitmap and text. The
user can press the 'Left” button on the input device and a transition is made
from the current scene, InfoScenel, to a new scene, InfoScene?2.

The pseudo-code from the above scene may look like the following:

(scene:InfoScenel
<other scene attributes here>
group-items:
(bitmap: BgndInfo

content-hook: #bitmapHook
original-box-size: (320 240)
original-position: (0 0)
content-data: referenced-content: "InfoBngd"

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE275

Figure 10.7: Simple MHEG Example

)
(text:
content-hook: #textHook
original-box-size: (280 20)
original-position: (40 50)
content-data: included-content: "1. Lubricate..."
)
links:

(link: Link1
event-source: InfoScenel
event-type: #UserInput
event-data: #Left
link-effect: action: transition-to: InfoScene2

A More Complex Example (Turin)
Another example application lets users retrieve tourist information about the
city of Turin, Italy. URL: http://drogo.cselt.stet.it /ufv/mediatouch/mhswebapp /to_audio_e_0.mhs

Figure 10.8 shows a screen shot of the main_scene object. This scene consists
of

e a text title,

e a bitmap background,

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE276
e a video clip, which is playing a segment of Porta Nuova, the main railway
station, enriched with a text subtitle object (left side),
e some interactive thumbnails (right side),
e a set of buttons that provide VCR controls,

e functions to switch between viewing the video in normal and zoom modes,
and item a return to previous screen capability.

The playback of the video clip synchronizes with the subtitle’s content. Se-
lecting an interactive thumbnail constrains the playback to the associated tem-
poral segment.

Figure 10.8: MHEG Example Presentation (Turin Guide)

The code listing below is an excerpt from the Turin application’s MHEG
textual notation:

{:Application ("turin.mh5" 0)

:0nStartUp (// sequence of initialization
actions

:TransitionTo (("main_scene.mh5" 0)) //
activation of the first scene

)

+

{:Scene ("main_scene.mh5" 0)

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE2TT7

:0nStartUp (// sequence of initialization
actions

preload (2) // the connection to the
source of the video clip is set up

setCounterTrigger (2 3 190000) // book a
time code event at 190000 msec

)

:Items (// both presentable ingredients and
links

{:Bitmap 1 // background bitmap
:InitiallyActive true

:CHook 3 // JPEG

:0rigContent

:ContentRef ("background.jpg")
:0rigBoxSize 800 600

:0rigPosition 0 O

¥

{:Stream 2 // video clip
:InitiallyActive false

:CHook 101 // MPEG-1

:0rigContent

:ContentRef ("turin.mpg")
:Multiplex (

{:Audio 3 // audio component of the
video clip

:ComponentTag 1 // refers to audio
elementary stream

:InitiallyActive true

3

{:Video 4 // video component of the
video clip

:ComponentTag 2 // refers to

video elementary stream
:InitiallyActive true

:0rigBoxSize 352 288

:0rigPosition 40 80

[N

{:HotSpot 20 // "Porta Nuova" hotspot
:InitiallyActive true

:0rigBoxSize 120 100

:0rigPosition 440 214

}

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE278

. // 25 more presentable ingredients
{:Link 30 // selecting an "interactive"
thumbnail
:EventSource (20) // "Porta Nuova"
hotspot
:EventType IsSelected
:LinkEffect (

:SetSpeed (2 1 1) // video clip:
speed is set to 1/1 (normal)
:SetCounterPosition (2 190000) //
initial point of the segment
:SetCounterEndPosition (2 246500) //
end point of the segment

:Run (2) // activate playback with
the above settings

)

}

{:Link 49 // the video clip crosses a pre
defined time code position
:EventSource (2) // video clip
:EventType CounterTrigger

:EventData 3 // booked at startup by
setCounterTrigger (2 3 190000)
:LinkEffect (

:SetData (5 // text subtitle is set
to a new string, that is
:NewRefContent ("st9.txt")) //
"Porta Nuova and via Roma"
:SetHighlightStatus (20 true) //
hotspot 20 is highlighted

)

}

. // 58 more links
)

:SceneCS 800 600 // size of the scene’s
presentation space

}

10.6.13 An MHEG Player Java Applet — Further MHEG
Examples

The Technical University of Berlin have produced a MHEG Java Engine (http://enterprise.prz.tu-
berlin.de/imw/” shttp: //enterprise.prz.tu-berlin.de/imw/

Java Class libraries (with JavaDoc documentation) and details on instal-
lation/compilation etc are also available. Several examples of MHEG coding,
including an MHEG Introduction written in MHEG.

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE279

Running the MHEG Engine

The MHEG engine exists as a Java applet (although you can of course is the
class libraries in your own java code (applications and applets)).

The MHEG engine is available in the MHEG:MHEG Java Applet folder on
the Macintosh Applications HD in the Multimedia Lab.

You can run the applet through any Java enabled browser or appletviewer.

Here as an example of how to run the main applet provided for the demo
MHEG example:

<applet name="MHEG 5 Engine"
code="mheg5/P0M/MhegbApplet.class"
codebase="applications/"
archive="mhegwww.zip"

width="510"

height="346"

align="center"

<param name="objectBasePath" value="file:.">
<param name="groupldentifier" value="demo/startup">
<param name="mon" value="false">

</applet>

If you use the applet yourself you may need to change:

e the code and codebase paths — these specify where the applications and
applet classes reside.

e the groupIdentifier value — for most of the application demos a startup
MHEG file is reference first in a folder for each application. (see other
examples below.

MHEG Example — The Simple MHEG Presentation

The Simple example produces the following output shown in Fig 10.9

The presentation create two buttons, labelled “Hello” and “World” respec-
tively, and some rectangle graphics.

When pressed the button is brought to the foreground of the display.

The applet is called via:

<html>

<head>

<title>MHEG-5 Engine written in Java</title>
</head>
<body bgcolor="#ffffff">

<center>

<h1>MHEG-5 Engine</h1>

<applet

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE280

BE

[0 = simple/helloworld.mheg

[Dwner : MHEG S Engine]

Figure 10.9: MHEG Simple application Example

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE281

name="MHEG 5 Engine"
code="mheg5/P0M/MhegbApplet.class"
codebase="applications/"
archive="mhegwww.zip"
width="510"
height="346"
align="center"
alt="If you had a java-enabled browser, you would see an applet here.">
<hr>If your browser recognized the applet tag,
you would see an applet here.<hr>
<param name="objectBasePath" value="file:.">
<param name="groupIdentifier" value="simple/startup">
<param name="mon" value="false">
</applet>
</center>
</body>
</html>

The MHEG modules for this presentation are:

startup — calls helloworld.mheg
helloworld.mheg — sets up main presentation

scenel.mheg — called in helloworld.mheg

The MHEG code for each module is a follows:
startup:

{:Application ("simple/startup" 0)
//:0nStartUp (:TransitionTo(("simple/helloworld.mheg" 0)))
:Ttems (
{:Link 1
:EventSource 1
:EventType IsRunning
:LinkEffect (:TransitionTo(("simple/helloworld.mheg" 0)))

+
)
}
\end{verbatim

{\bf helloworld.mheg}

\footnotesize
\begin{verbatim}

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE?282

{:Scene ("simple/helloworld.mheg" O)

:Items

(

{:Rectangle 4000
:0rigBoxSize 80 260 :0rigPosition 110 20
:0riglineWidth 5 :0riglineStyle 1
:0rigRefLineColour Green :0rigRefFillColour transparent

{:Rectangle 4001
:0rigBoxSize 200 200 :0rigPosition 50 50 :0riglineWidth 5 :0rigLineStyle 1
:0rigRefLineColour DarkGray :0rigRefFillColour Gray

¥
{:Rectangle 4002
:0rigBoxSize 100 100 :0rigPosition 100 100
:0OriglineWidth 5 :0riglineStyle 1
:0rigRefLineColour Blue :0rigRefFillColour transparent
3
{:Rectangle 4003
:0rigBoxSize 150 150 :0rigPosition 150 150
:0OriglineWidth 5 :0riglineStyle 1
:0rigRefLineColour "#FF2211" :0rigRefFillColour DarkRed
¥
{:Rectangle 4004
:0rigBoxSize 280 170 :0rigPosition 10 10
:0OriglineWidth 5 :0riglineStyle 1
:0rigRefLineColour Yellow :0rigRefFillColour transparent
b

{:PushButton 4005 :InitiallyActive true
:0rigBoxSize 100 50
:ButtonRefColour DarkGreen :0rigLabel "World"

~

:PushButton 4006 :InitiallyActive true
:0rigBoxSize 100 50 :0rigPosition 50 25
:ButtonRefColour Gray :0riglLabel "Hello"

{:Link 1015
:EventSource 4006 :EventType IsSelected
:LinkEffect (:BringToFront (4005)
:SetHighlightStatus (4005 true))

{:Link 1016

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE?283

:EventSource 4005 :EventType IsSelected
:LinkEffect (:BringToFront (4006))

¥

{:Link 1017
:EventSource 4005 :EventType CursorEnter
:LinkEffect (:BringToFront (4005))

b

{:Link 1018
:EventSource 4006 :EventType CursorEnter
:LinkEffect (:BringToFront (4006))

X

{:0bjectRefVar 100 :0rigValue :0bjectRef 4001 }

{:0bjectRefVar 101 :0rigValue :0bjectRef 4002 }

{:Link 1000
:EventSource 0 :EventType UserInput :EventData 1
:LinkEffect (:SetPosition(4006 50 25))

b

{:Link 1001
:EventSource 0 :EventType UserInput :EventData 2
:LinkEffect (:SetPosition (4006 50 200))

X

{:Link 1002
:EventSource 0 :EventType UserInput :EventData 3
:LinkEffect (:Stop (:IndirectRef 101))

}

{:Link 1003
:EventSource 0 :EventType UserInput :EventData 4
:LinkEffect (:Run (:IndirectRef 101))

¥

{:Link 1004
:EventSource 0 :EventType UserInput :EventData 15
:LinkEffect (:TransitionTo(("simple/scenel.mheg" 0)))

3

{:Link 1005
:EventSource 0 :EventType UserInput :EventData 5
:LinkEffect (:BringToFront (4000))

¥

{:Link 1006
:EventSource 0 :EventType UserInput :EventData 6
:LinkEffect (:BringToFront (4001))

X

{:Link 1007

:EventSource 0 :EventType UserInput :EventData 7

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE284

:LinkEffect (:BringToFront (4002))

b

{:Link 1008
:EventSource 0 :EventType UserInput :EventData 8
:LinkEffect (:BringToFront (4003))

X

{:Link 1009
:EventSource 0 :EventType UserInput :EventData 9
:LinkEffect (:BringToFront (4004))

}

{:Link 1010
:EventSource 0 :EventType UserInput :EventData 10
:LinkEffect (:SendToBack (4000))

}

{:Link 1011
:EventSource 0 :EventType UserInput :EventData 11
:LinkEffect (:SendToBack (4001))

3

{:Link 1012
:EventSource 0 :EventType UserInput :EventData 12
:LinkEffect (:SendToBack (4002))

b

{:Link 1013
:EventSource 0 :EventType UserInput :EventData 13
:LinkEffect (:SendToBack (4003))

3

{:Link 1014
:EventSource 0 :EventType UserInput :EventData 14
:LinkEffect (:SendToBack (4004))

}

)

:InputEventReg 1
:SceneCS 300 300
:MovingCursor true

}

scenel.mheg
{:Scene ("simple/scenel.mheg" 0)

:Items
(
{:Rectangle 4000
:0rigBoxSize 300 300 // 200 200
:0rigPosition 20 80
:0riglLineWidth 5 :0rigLineStyle 1

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE?285

:0rigRefLineColour "Black" :0rigRefFillColour DarkRed

-

:Rectangle 4001

:0rigBoxSize 200 200 :0rigPosition 100 180
:0rigLineWidth 5 :0rigLineStyle 1
:0rigRefLineColour Blue :0rigRefFillColour DarkBlue

{:Link 1000
:EventSource 0 :EventType UserInput :EventData 6
:LinkEffect (:PutBehind (4003 4000))

-~y

:Link 1001
:EventSource 0 :EventType UserInput :EventData 7
:LinkEffect (:PutBehind (4002 4000))

-

:Link 1002
:EventSource 0 :EventType UserInput :EventData 8
:LinkEffect (:PutBehind (4001 4000))

{:Link 1003
:EventSource 0 :EventType UserInput :EventData 9
:LinkEffect (:PutBefore (4003 4000))

-

:Link 1004
:EventSource 0 :EventType UserInput :EventData 10
:LinkEffect (:PutBefore (4002 4000))

-~

:Link 1005
:EventSource 0 :EventType UserInput :EventData 11
:LinkEffect (:PutBefore (4001 4000))

{:Link 1006
:EventSource 0 :EventType UserInput :EventData 1
:LinkEffect (:SetPosition (4000 20 80))

-~

:Link 1007
:EventSource O :EventType UserInput :EventData 2
:LinkEffect (:SetPosition (4000 20 120))

{:Link 1008
:EventSource O :EventType UserInput :EventData 3
:LinkEffect (:SetBoxSize (4000 200 300)) // 200 200

-~

:Link 1009
:EventSource 0 :EventType UserInput :EventData 4
:LinkEffect (:SetBoxSize (4000 300 300))

{:Link 1100 :InitiallyActive true
:EventSource 0 :EventType UserInput :EventData 16
:LinkEffect (:TransitionTo(("simple/helloworld.mheg" 0)))

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE?286

:InputEventReg 1
:SceneCS 400 400
}

MHEG Example — The Demo MHEG Presentation
The Demo example produces the output shown in Fig 10.10.

iz |

O =—p—————— demo/main.mhy B

An application for

presenting a
Mheg-5-Engine

Test the Displaystack, 1. Test:

Test the Displaystack, 2.Test:

Test Text features:

Test interactible Objects:

Test Bitmaps, 1.Test:

Test Bitmaps, 2.Test:

Test some Elementary Actions

Test many Classes and Elementary Actions

Test Tokengroup

[Owner : MHEG 5 Engine| 7

Figure 10.10: MHEG Demo application Example

As can be seen many of the key features of MHEG are illustrated in further
sub-windows (click on button to move to respective window). Try these out for
yourself.

The following MHEG modules are used:

startup — initial module

main.mhg — Called by startup

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE287

OJ=———————————demordisplmiy=— 15

Testing the Displaystack, 1.Test:

keyl: put the magenta rect behind the red rectkey2: put

[Dwner : MHEG S Engine] Z

Figure 10.11: MHEG Demo application Displayl Example

displ.mhg — input from numeric keys 1 and 2 to tile rectangles (Fig 10.11)

disp2.mhg — input from numeric keys 1 and 2 to tile rectangles (different
display) (Fig 10.12)

O==""——————————demotlispZmhj=——"———"———"—[IH

Testing the Displaystack, 2. Test:

keyl: bring to front: green rectanglekey2: by

[Crwrner : MHEG S Engine] o

Figure 10.12: MHEG Demo application Display2 Example

text.mhg — illustrates MHEG control of text display (Fig 10.13)
intact.mhg — illustrates MHEG interactive objects (Fig 10.14)
bitmapl.mhg — illustrates MHEG display of bitmaps

bitmap2.mhg — illustrates MHEG display of bitmaps

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE?288

O=—————— demo/textmyp——————————— [|H

Testing the Text Features:

Text 1: Plain.18TextWrapping =

Text 2: Bold.13, Towr 3 falie. 18,
HIustification = end, Hiliwarcation = centre,
Vlustification = end. SeareComer = gppei-left

M= 2a A "?d" >,; Text 5: Emphasis.18,
1{: j’ﬁ ’{{[5" f:) ;’wr;a%ﬂif [Text 6: black on white,

T e comment < Hlustification = justified, Strong.18, horizontally
Lerman wnlauls: i6d, and vertically centered.
AOU. 8. Vlustification = justified.

Text & bfack an

7 y Text 9: black hite,
Tex 7 blask on white, Plain 10, horizontally and Wj?j[{,?, ffﬁ.[?c.gﬁ{ ex Bold. 12? Fgge:,l i
wertically centered. /]0112’01)2‘3]{}’ é'.f]d v:rntrilczaulnltyﬂlcleynta:rdeﬂ,

vertcally centered.

Press key(n), or click on a Text. To change the size of a text presentation,
press cursor keys.

[Owner : MHEG 5 Enginel

Figure 10.13: MHEG Demo application Text Example

[=———————————— demo/intact.mhg

Testing interactible Objects:

T

A more complex one - vertically and
horizontally centered

A HotSpot:

Show Highlights: -—

roid

N Test of interacting
3 SwitchButtons: Objects. Use Cursor
- ! - keys to resize the

A Slider; _ EntryField above.

[Dwner : MHEG S Engine]

Figure 10.14: MHEG Demo application Interactive Objects Example

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE289

ea.mhg — illustrates MHEG elementary actions (Fig 10.15)

O0=—————— denmoframj=——————— NIH

Testing "Elementary Actions":

A more complex one. Tertically and horizoatally centred]

Pushbutton

PDynamicLinedrt.paintd)

[Dvner : MHEG S Engine] e

Figure 10.15: MHEG Demo application Elementary Actions Example

allcl.mhg — MHEG concrete classes and elementary actions (Fig 10.16)
token.mhg — MHEG token groups example (Fig 10.17)

The MHEG code for the modules is as follows:
Startup:

{:Application ("demo/startup" 0)

// :0nStartUp (:TransitionTo(("demo/main.mhg" 0)))
:Items(
{:Link 1

:EventSource 1

:EventType IsRunning

:LinkEffect (:TransitionTo(("demo/main.mhg" 0)))

}

~

main.mhg:
{:Scene ("demo/main.mhg" 0)

:Items
(
{:Text 100
:0rigContent ’An application for presenting a Mheg-5-Engine’
:0rigBoxSize 320 80
:0OrigPosition 90 10
:FontAttributes Bold.24 :FontName Proportional
:HJustification centre
:TextWrapping true

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE290

demosallcl.mhg

Testing all concrete Classes and el. Actions:

==

Dy narnicLinedrt.paint{
LineArt:

Text, ¥ideo,
R TGraphics:

CERNT 5] HypexText: an anchor 10
Tom Caseys sit
HotSpot,
PushButton,
SwitchButton:

[Crwrner : MHEG S Engine]

Slider,
EntryField,
Hyper Text:

Figure 10.16: MHEG Demo application Concrete Classes Example

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE291

[0 ==—— demo/tokentestmhg=—"=H B
TokenGroup iz not running

[Owrer : MHEG S Engine] e

Figure 10.17: MHEG Demo application Token Groups Example

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE292

{:Bitmap 101
:0rigContent :ContentRef ("demo/tu_klein.gif")
:0rigBoxSize 51 39 // 00
:0rigPosition 10 15
:Tiling false
}

{:Bitmap 102
:0rigContent :ContentRef ("demo/fsp_pv.gif")
:0OrigBoxSize 48 43
:0rigPosition 420 15
:Tiling false
¥

{:Bitmap 103
:0rigContent :ContentRef ("demo/prz.gif")
:0rigBoxSize 48 43
:0OrigPosition 470 15
:Tiling false
}

{:Link 110
:EventSource 0
:EventType UserInput
:EventData 16
:LinkEffect (
:Quit (("demo/startup" 0))
)

//

{:Text 1000
:0rigContent ’Test the Displaystack, 1.Test:’
:0rigBoxSize 300 30
:0rigPosition 10 100
:FontAttributes Bold.18 :FontName Proportional

{:PushButton 1001
:0rigBoxSize 85 30
:0rigPosition 420 95
:ButtonRefColour gray
:OrigLabel "Go!"

}
{:Link 1002
:EventSource 1001 :EventType IsSelected
:LinkEffect (:TransitionTo(("demo/displ.mhg" 0))
)
}
{:Link 1003

:EventSource 1001 :EventType CursorEnter
:LinkEffect (:Activate(1005))

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE293

}
{:Link 1004
:EventSource 1001 :EventType CursorLeave
:LinkEffect (:DeActivate(1005))
¥
{:Link 1005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15
:LinkEffect (:TransitionTo(("demo/displ.mhg" 0))

//

{:Text 2000
:0rigContent ’Test the Displaystack, 2.Test:’
:0rigBoxSize 300 30
:0rigPosition 10 150
:FontAttributes Bold.18 :FontName Proportional

{:PushButton 2001
:0rigBoxSize 85 30
:0rigPosition 420 145
:ButtonRefColour gray
:0riglabel "Go!"

{:Link 2002
:EventSource 2001 :EventType IsSelected
:LinkEffect (:TransitionTo(("demo/disp2.mhg" 0))
)

{:Link 2003
:EventSource 2001 :EventType CursorEnter
:LinkEffect (:Activate(2005))

{:Link 2004
:EventSource 2001 :EventType CursorLeave
:LinkEffect (:DeActivate(2005))

-

:Link 2005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15
:LinkEffect (:TransitionTo(("demo/disp2.mhg" 0))

//

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE294

{:Text 3000
:0rigContent ’Test Text features:’
:0rigBoxSize 300 30
:0rigPosition 10 200
:FontAttributes Bold.18 :FontName Proportional

{:PushButton 3001
:0rigBoxSize 85 30
:0rigPosition 420 195
:ButtonRefColour gray
:0riglabel "Go!"

{:Link 3002
:EventSource 3001 :EventType IsSelected
:LinkEffect (:TransitionTo(("demo/text.mhg" 0))
)

-

:Link 3003
:EventSource 3001 :EventType CursorEnter
:LinkEffect (:Activate(3005))

-~

:Link 3004
:EventSource 3001 :EventType CursorLeave
:LinkEffect (:DeActivate(3005))

}

{:Link 3005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15
:LinkEffect (:TransitionTo(("demo/text.mhg" 0))

)

}

//

{:Text 4000

:0rigContent ’Test interactible Objects:’
:0rigBoxSize 300 30

:0rigPosition 10 250

:FontAttributes Bold.18 :FontName Proportional

{:PushButton 4001
:0rigBoxSize 85 30
:0rigPosition 420 245
:ButtonRefColour gray
:OrigLabel "Go!"

{:Link 4002
:EventSource 4001 :EventType IsSelected
:LinkEffect (:TransitionTo(("demo/intact.mhg" 0))
)

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE295

{:Link 4003
:EventSource 4001 :EventType CursorEnter
:LinkEffect (:Activate(4005))

-~

:Link 4004
:EventSource 4001 :EventType CursorLeave
:LinkEffect (:DeActivate(4005))

}

{:Link 4005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15
:LinkEffect (:TransitionTo(("demo/intact.mhg" 0))

)

}

//

{:Text 5000

:0rigContent ’Test Bitmaps, 1.Test:’
:0rigBoxSize 300 30

:0rigPosition 10 300

:FontAttributes Bold.18 :FontName Proportional

{:PushButton 5001
:0rigBoxSize 85 30
:OrigPosition 420 295
:ButtonRefColour gray
:0riglLabel "Go!"

{:Link 5002
:EventSource 5001 :EventType IsSelected
:LinkEffect (:TransitionTo(("demo/bitmapl.mhg" 0))
)

{:Link 5003
:EventSource 5001 :EventType CursorEnter
:LinkEffect (:Activate(5005))

:Link 5004
:EventSource 5001 :EventType CursorLeave
:LinkEffect (:DeActivate(5005))

-~y

-~

:Link 5005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15
:LinkEffect (:TransitionTo(("demo/bitmapl.mhg" 0))

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE296

//

{:Text 6000
:0rigContent ’Test Bitmaps, 2.Test:’
:0rigBoxSize 300 30
:0rigPosition 10 350
:FontAttributes Bold.18 :FontName Proportional

{:PushButton 6001
:0rigBoxSize 85 30
:0rigPosition 420 345
:ButtonRefColour gray
:0riglLabel "Go!"

{:Link 6002
:EventSource 6001 :EventType IsSelected
:LinkEffect (:TransitionTo(("demo/bitmap2.mhg" 0))
)

{:Link 6003
:EventSource 6001 :EventType CursorEnter
:LinkEffect (:Activate(6005))

{:Link 6004
:EventSource 6001 :EventType CursorLeave
:LinkEffect (:DeActivate(6005))

}

{:Link 6005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15
:LinkEffect (:TransitionTo(("demo/bitmap2.mhg" 0))

)

}

//

{:Text 7000

:0rigContent ’Test some Elementary Actions’
:0rigBoxSize 300 30

:0rigPosition 10 400

:FontAttributes Bold.18 :FontName Proportional

{:PushButton 7001
:0rigBoxSize 85 30
:0rigPosition 420 395
:ButtonRefColour gray
:0rigLabel "Go!"

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE297

{:Link 7002
:EventSource 7001 :EventType IsSelected
:LinkEffect (:TransitionTo(("demo/ea.mhg" 0))
)

~—

:Link 7003
:EventSource 7001 :EventType CursorEnter
:LinkEffect (:Activate(7005))

-~

:Link 7004
:EventSource 7001 :EventType CursorLeave
:LinkEffect (:DeActivate(7005))

}

{:Link 7005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15
:LinkEffect (:TransitionTo(("demo/ea.mhg" 0))

)

}

//

{:Text 8000

:0rigContent ’Test many Classes and Elementary Actions’
:0rigBoxSize 400 30

:0rigPosition 10 450

:FontAttributes Bold.18 :FontName Proportional

{:PushButton 8001
:0rigBoxSize 85 30
:0rigPosition 420 445
:ButtonRefColour gray
:OrigLabel "Go!"

{:Link 8002
:EventSource 8001 :EventType IsSelected
:LinkEffect (:TramnsitionTo(("demo/allcl.mhg" 0))
)

{:Link 8003
:EventSource 8001 :EventType CursorEnter
:LinkEffect (:Activate(8005))

-

:Link 8004
:EventSource 8001 :EventType CursorLeave
:LinkEffect (:DeActivate(8005))

-~

:Link 8005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE298

:LinkEffect (:TransitionTo(("demo/allcl.mhg" 0))

//

{:Text 9000
:0rigContent ’Test Tokengroup’
:0rigBoxSize 400 30
:0rigPosition 10 500
:FontAttributes Bold.18 :FontName Proportional

{:PushButton 9001
:0rigBoxSize 85 30
:0rigPosition 420 495
:ButtonRefColour gray
:OrigLabel "Go!"

{:Link 9002
:EventSource 9001 :EventType IsSelected
:LinkEffect (:TransitionTo(("demo/token.mhg" 0))
)

-

:Link 9003
:EventSource 9001 :EventType CursorEnter
:LinkEffect (:Activate(9005))

-~

:Link 9004
:EventSource 9001 :EventType CursorLeave
:LinkEffect (:DeActivate(9005))

-~

:Link 9005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15
:LinkEffect (:TransitionTo(("demo/token.mhg" 0))

)

:InputEventReg 1
:SceneCS 520 550
:MovingCursor true

}
displ.mhg:
{:Scene ("demo/displ.mhg" 0)

:Items

(

{:Link 110
:EventSource 0
:EventType UserInput

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE299

:EventData 16

:LinkEffect (
:Quit (("demo/startup" 0))

)

{:Text 1000
:0rigContent ’Testing the Displaystack, 1.Test:’
:0rigBoxSize 500 30
:0rigPosition 90 20
:FontAttributes Bold.24 :FontName Proportional

{:Text 1001
:0rigContent ’keyl: put the magenta rect behind the red rect
key2: put the yellow rect behind the red rect
key3: put the blue rect behind the red rect
key4: put the magenta rect before the red rect
key5: put the yellow rect before the red rect
key6: put the blue rect before the red rect.’
:0rigBoxSize 400 200
:0rigPosition 250 100
:FontAttributes Plain.18 :FontName Proportional
:TextWrapping false

{:Bitmap 1010
:0rigContent :ContentRef ("demo/tu_klein.gif")
:0rigBoxSize 51 39 // 00
:0OrigPosition 10 15
:Tiling false
}

{:Bitmap 1011
:0rigContent :ContentRef ("demo/fsp_pv.gif")
:0OrigBoxSize 48 43
:0OrigPosition 540 15
:Tiling false
}

{:Bitmap 1012
:0rigContent :ContentRef ("demo/prz.gif")
:0rigBoxSize 48 43
:0OrigPosition 590 15
:Tiling false
¥

//

{:Rectangle 4000
:0rigBoxSize 100 100 :0rigPosition 20 130
:0rigLineWidth 5 :0rigLineStyle 1
:0rigRefLineColour Red :0rigRefFillColour DarkRed

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE300

{:Rectangle 4001
:0rigBoxSize 100 100 :0rigPosition 60 170
:0OrigLineWidth 5 :0rigLineStyle 1
:0rigRefLineColour Blue :0rigRefFillColour DarkBlue

-~

:Rectangle 4002

:0rigBoxSize 100 100 :0rigPosition 100 150
:0riglineWidth 5 :0rigLineStyle 1

:0rigRefLineColour Yellow :0rigRefFillColour DarkYellow

-~

:Rectangle 4003

:0rigBoxSize 100 100 :0rigPosition 70 100

:0riglineWidth 5 :0rigLineStyle 1

:0rigRefLineColour Magenta :0rigRefFillColour DarkMagenta

//

{:Link 2000
:EventSource 0 :EventType UserInput :EventData 6
:LinkEffect (:PutBehind (4003 4000))

-~

:Link 2001
:EventSource 0 :EventType UserInput :EventData 7
:LinkEffect (:PutBehind (4002 4000))

:Link 2002
:EventSource 0 :EventType UserInput :EventData 8
:LinkEffect (:PutBehind (4001 4000))

-~

{:Link 2003
:EventSource 0 :EventType UserInput :EventData 9
:LinkEffect (:PutBefore (4003 4000))

{:Link 2004
:EventSource 0 :EventType UserInput :EventData 10
:LinkEffect (:PutBefore (4002 4000))

-

:Link 2005
:EventSource 0 :EventType UserInput :EventData 11
:LinkEffect (:PutBefore (4001 4000))

//

{:PushButton 9001
:0rigBoxSize 100 60
:0rigPosition 540 280
:ButtonRefColour gray
:0rigLabel "back to main"

{:Link 9002
:EventSource 9001 :EventType IsSelected
:LinkEffect (:TransitionTo(("demo/main.mhg" 0)))

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE301

{:Link 9003
:EventSource 9001 :EventType CursorEnter
:LinkEffect (:Activate(9005))

¥
{:Link 9004
:EventSource 9001 :EventType CursorLeave
:LinkEffect (:DeActivate(9005))
}
{:Link 9005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15
:LinkEffect (:TransitionTo(("demo/main.mhg" 0))
)
}

:InputEventReg 1
:SceneCS 650 350
:MovingCursor true

disp2.mhg:

{:Scene ("demo/disp2.mhg" 0)

:Items
(
{:Link 110
:EventSource 0
:EventType UserInput
:EventData 16
:LinkEffect (
:Quit (("demo/startup" 0))
)
}
{:Text 1000
:0OrigContent ’Testing the Displaystack, 2.Test:’
:0rigBoxSize 500 30
:0rigPosition 90 20
:FontAttributes Bold.24 :FontName Proportional
}
{:Text 1001

:0OrigContent ’keyl: bring to front: green rectangle

key2: bring to front: gray rectangle

key3: bring to front: blue rectangle

key4: bring to front: red rectangle

key5: bring to front: yellow rectangle

key6: send to back: green rectangle

key7: send to back: gray rectangle

key8: send to back: blue rectangle

key9: send to back: red rectangle

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE302

keyO: send to back: yellow rectangle’
:0rigBoxSize 300 220
:0rigPosition 330 60
:FontAttributes Plain.18 :FontName Proportional
:TextWrapping false

{:Bitmap 101
:0rigContent :ContentRef ("demo/tu_klein.gif")
:0rigBoxSize 51 39 // 00
:0rigPosition 10 15
:Tiling false
}

{:Bitmap 102
:0rigContent :ContentRef ("demo/fsp_pv.gif")
:0OrigBoxSize 48 43
:0rigPosition 540 15
:Tiling false
}

{:Bitmap 103
:0rigContent :ContentRef ("demo/prz.gif")
:0OrigBoxSize 48 43
:0rigPosition 590 15
:Tiling false
}

//

{:Rectangle 4000
:0rigBoxSize 80 260 :0rigPosition 110 70
:0riglLineWidth 5 :0rigLineStyle 1
:0rigRefLineColour Green :0rigRefFillColour transparent

~—

:Rectangle 4001

:0rigBoxSize 200 200 :0rigPosition 50 100
:0riglLineWidth 5 :0riglLineStyle 1
:0rigRefLineColour DarkGray :0rigRefFillColour Gray

-

:Rectangle 4002

:0rigBoxSize 100 100 :0rigPosition 100 150
:0rigLineWidth 5 :0rigLineStyle 1

:0rigRefLineColour Blue :0rigRefFillColour transparent

-

:Rectangle 4003

:0rigBoxSize 150 150 :0rigPosition 150 190
:0rigLineWidth 5 :0rigLineStyle 1
:0rigRefLineColour Red :0rigRefFillColour DarkRed

e

:Rectangle 4004

:0rigBoxSize 280 170 :0rigPosition 10 60

:0riglineWidth 5 :0rigLineStyle 1

:0rigRefLineColour Yellow :0rigRefFillColour transparent

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE303

//

{:Link 1005
:EventSource 0 :EventType UserInput :EventData 6
:LinkEffect (:BringToFront (4000))

{:Link 1006
:EventSource 0 :EventType UserInput :EventData 7
:LinkEffect (:BringToFront (4001))

-~

:Link 1007
:EventSource 0 :EventType UserInput :EventData 8
:LinkEffect (:BringToFront (4002))

-~

:Link 1008
:EventSource 0 :EventType UserInput :EventData 9
:LinkEffect (:BringToFront (4003))

-~

:Link 1009
:EventSource 0 :EventType UserInput :EventData 10
:LinkEffect (:BringToFront (4004))

{:Link 1010
:EventSource O :EventType UserInput :EventData 11
:LinkEffect (:SendToBack (4000))

{:Link 1011
:EventSource 0 :EventType UserInput :EventData 12
:LinkEffect (:SendToBack (4001))

-

:Link 1012
:EventSource 0 :EventType UserInput :EventData 13
:LinkEffect (:SendToBack (4002))

~—

:Link 1013
:EventSource 0 :EventType UserInput :EventData 14
:LinkEffect (:SendToBack (4003))

-~

:Link 1014
:EventSource 0 :EventType UserInput :EventData 5
:LinkEffect (:SendToBack (4004))

//

{:PushButton 9001
:0rigBoxSize 100 60
:0rigPosition 540 280
:ButtonRefColour gray
:0riglabel "back to main"

{:Link 9002
:EventSource 9001 :EventType IsSelected
:LinkEffect (:TransitionTo(("demo/main.mhg" 0)))

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE304

{:Link 9003
:EventSource 9001 :EventType CursorEnter
:LinkEffect (:Activate(9005))

~—

:Link 9004
:EventSource 9001 :EventType CursorLeave
:LinkEffect (:DeActivate(9005))

-~

:Link 9005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15
:LinkEffect (:TransitionTo(("demo/main.mhg" 0))

:InputEventReg 1
:SceneCS 650 350
:MovingCursor true

text.mhg:

{:Scene ("demo/text.mhg" O)

:Items
(
{:Text 1000
:0rigContent ’Testing the Text Features:’
:0rigBoxSize 500 30
:0rigPosition 80 10
:FontAttributes Bold.24 :FontName Proportional

{:Text 3000
:0rigContent ’Text 1: Plain.18
TextWrapping = false’
:0rigBoxSize 220 110
:0rigPosition 10 50
:0rigFont ’OctetString in OriginalFont’
:FontAttributes Plain.18
:FontName Proportional
:TextColour black
:BackgroundColour white
:CharacterSet 1848
:HJustification start
:VJustification start
:LineOrientation horizontal
:StartCorner upper-left
:TextWrapping false

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE305

{:Bitmap 101
:0rigContent :ContentRef ("demo/tu_klein.gif")
:0rigBoxSize 51 39 // 00
:0rigPosition 10 5
:Tiling false
}

{:Bitmap 102
:0rigContent :ContentRef ("demo/fsp_pv.gif")
:0rigBoxSize 48 43
:0rigPosition 625 5
:Tiling false
}

{:Bitmap 103
:0rigContent :ContentRef ("demo/prz.gif")
:0rigBoxSize 48 43
:0OrigPosition 675 5
:Tiling false
}

{:Link 110
:EventSource 0
:EventType UserInput
:EventData 16
:LinkEffect (
:Quit (("demo/startup" 0))
)

{:HotSpot 3100
:0rigBoxSize 220 110
:0rigPosition 10 50

{:Text 3001

:0rigContent ’Text 2: Bold.18,
HJustification end,
VJustification = end.’

:0rigBoxSize 220 110

:0rigPosition 250 50

:0rigFont ’OctetString in OriginalFont’

:FontAttributes Bold.18

:TextColour black

:BackgroundColour white

:CharacterSet 1848

:HJustification end

:VJustification end

:LineOrientation horizontal

:StartCorner upper-left

:TextWrapping true

-~

:HotSpot 3101
:0rigBoxSize 220 110
:0rigPosition 250 50

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE306

}

{:Text 3002

:0rigContent ’Text 3: Italic.18,
HJustification = centre,
StartCorner = upper-left’

:0rigBoxSize 220 110

:0rigPosition 490 50

:0rigFont ’OctetString in OriginalFont’

:FontAttributes Italic.18

:TextColour black

:BackgroundColour white

:CharacterSet 1848

:HJustification centre

:VJustification end

:LineOrientation horizontal

:StartCorner upper-left

:TextWrapping true

-~

:HotSpot 3102
:0rigBoxSize 220 110
:0rigPosition 490 50

{:Text 3003
:0rigContent :ContentRef ("demo/to_load.txt")
:0rigBoxSize 220 110
:0rigPosition 10 180
:0rigFont ’OctetString in OriginalFont’
:FontAttributes Bold-Italic.18
:TextColour black
:BackgroundColour white
:CharacterSet 1848
:HJustification centre
:VJustification end
:LineOrientation horizontal
:StartCorner upper-left
:TextWrapping true

-

:HotSpot 3103
:0rigBoxSize 220 110
:0rigPosition 10 180

{:Text 3004

:0rigContent ’Text 5: Emphasis.18,
HJustification = justified,
VJustification = justified.’

:0rigBoxSize 220 110

:0rigPosition 250 180

:0rigFont ’OctetString in OriginalFont’

:FontAttributes Emphasis.18

:TextColour black

:BackgroundColour white

:CharacterSet 1848

:HJustification justified

:VJustification justified

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE307

:LineOrientation horizontal
:StartCorner upper-left
:TextWrapping true
}
{:HotSpot 3104
:0rigBoxSize 220 110
:0rigPosition 250 180
}

{:Text 3005
:0rigContent ’Text 6: black on white, Strong.18,
horizontally and vertically centered.’
:0rigBoxSize 220 110
:0rigPosition 490 180
:FontAttributes Strong.18
:TextColour black
:BackgroundColour white
:HJustification centre
:VJustification centre
:TextWrapping true

{:HotSpot 3105
:0rigBoxSize 220 110
:0rigPosition 490 180

{:Text 3006
:0rigContent ’Text 7: black on white, Plain.10,
horizontally and vertically centered.’
:0rigBoxSize 220 110
:0rigPosition 10 310
:FontAttributes Plain.10
:TextColour black
:BackgroundColour white
:HJustification centre
:VJustification centre
:TextWrapping true

-~

:HotSpot 3106
:0rigBoxSize 220 110
:0rigPosition 10 310

-~

:Text 3007

:0rigContent ’Text 8: black on white, Italic.24,
horizontally and vertically centered.’

:0rigBoxSize 220 110

:0rigPosition 250 310

:FontAttributes Italic.24

:TextColour black

:BackgroundColour white

:HJustification centre

:VJustification centre

:TextWrapping true

-

:HotSpot 3107
:0rigBoxSize 220 110

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE308

:0rigPosition 250 310
}

{:Text 3008
:0rigContent ’Text 9: black on white, Bold.12, Fixed,
horizontally and vertically centered.’
:0rigBoxSize 220 110
:0rigPosition 490 310
:FontAttributes Bold.12
:FontName Fixed
:TextColour black
:BackgroundColour white
:HJustification centre
:VJustification centre
:TextWrapping true
}
{:HotSpot 3108
:0rigBoxSize 220 110
:0rigPosition 490 310
}

//

{:Rectangle 2000
:0rigBoxSize 224 114 :0rigPosition 8 48
:0rigLineWidth 2 :0rigLineStyle 1
:0rigRefLineColour Red
:0rigRefFillColour transparent

}

{:IntegerVar 32000 :0OrigValue 350 }

{:IntegerVar 32001 :0rigValue 120 }

{:0bjectRefVar 32002 :0rigValue :0bjectRef 3000 } // the text
{:0bjectRefVar 32003 :0rigValue :0bjectRef 3100 } // the hotspot
{:IntegerVar 2001 :0OrigValue 8 }

{:IntegerVar 2002 :0OrigValue 48 }

{:IntegerVar 2003 :OrigValue 224 }

{:IntegerVar 2004 :0rigValue 114 }

{:Link 1004

:EventSource 0 :EventType UserInput :EventData 1
:LinkEffect (:GetBoxSize (:IndirectRef 32002 32000 32001)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (32001 1)
:Add (2003 4)
:Add (2004 3)
:SetBoxSize (:IndirectRef 32002 :IndirectRef 32000 :IndirectRef 32001)
:SetBoxSize (:IndirectRef 32003 :IndirectRef 32000 :IndirectRef 32001)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32003)

}
{:Link 1005
:EventSource 0 :EventType UserInput :EventData 2

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE309

:LinkEffect (:GetBoxSize (:IndirectRef 32002 32000 32001)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Add (32001 1)
:Add (2003 4)
:Add (2004 5)
:SetBoxSize (:IndirectRef 32002 :IndirectRef 32000 :IndirectRef 32001)
:SetBoxSize (:IndirectRef 32003 :IndirectRef 32000 :IndirectRef 32001)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32003)

}
{:Link 1006
:EventSource 0 :EventType UserInput :EventData 3
:LinkEffect (:GetBoxSize (:IndirectRef 32002 32000 32001)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (32000 1)
:Add (2003 3)
:Add (2004 4)
:SetBoxSize (:IndirectRef 32002 :IndirectRef 32000 :IndirectRef 32001)
:SetBoxSize (:IndirectRef 32003 :IndirectRef 32000 :IndirectRef 32001)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32003)

}
{:Link 1007
:EventSource 0 :EventType UserInput :EventData 4
:LinkEffect (:GetBoxSize (:IndirectRef 32002 32000 32001)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Add (32000 1)
:Add (2003 5)
:Add (2004 4)
:SetBoxSize (:IndirectRef 32002 :IndirectRef 32000 :IndirectRef 32001)
:SetBoxSize (:IndirectRef 32003 :IndirectRef 32000 :IndirectRef 32001)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32003)
)
}
//
{:Link 1008

:EventSource 0 :EventType UserInput :EventData 6
:LinkEffect (:SetVariable (32002 :GObjectRef 3000)
:SetVariable (32003 :GObjectRef 3100)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE310

:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003)

)
}
{:Link 1108
:EventSource 3100 :EventType IsSelected
:LinkEffect (:SetVariable (32002 :GObjectRef 3000)
:SetVariable (32003 :GObjectRef 3100)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003)
)
}

/===

{:Link 1009
:EventSource 0 :EventType UserInput :EventData 7
:LinkEffect (:SetVariable (32002 :GObjectRef 3001)
:SetVariable (32003 :GObjectRef 3101)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003)
)
}
{:Link 1109
:EventSource 3101 :EventType IsSelected
:LinkEffect (:SetVariable (32002 :GObjectRef 3001)
:SetVariable (32003 :GObjectRef 3101)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE311

:BringToFront (:IndirectRef 32003)
)
}

/-

{:Link 1010
:EventSource 0 :EventType UserInput :EventData 8
:LinkEffect (:SetVariable (32002 :GObjectRef 3002)
:SetVariable (32003 :GObjectRef 3102)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003)
)
}
{:Link 1110
:EventSource 3102 :EventType IsSelected
:LinkEffect (:SetVariable (32002 :GObjectRef 3002)
:SetVariable (32003 :GObjectRef 3102)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003)
)
}

/==

{:Link 1011
:EventSource O :EventType UserInput :EventData 9
:LinkEffect (:SetVariable (32002 :GObjectRef 3003)
:SetVariable (32003 :GObjectRef 3103)

:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE312

:BringToFront (:IndirectRef 32003)
)
}
{:Link 1111
:EventSource 3103 :EventType IsSelected
:LinkEffect (:SetVariable (32002 :GObjectRef 3003)
:SetVariable (32003 :GObjectRef 3103)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003)
)
}

/===

{:Link 1012
:EventSource 0 :EventType UserInput :EventData 10
:LinkEffect (:SetVariable (32002 :GObjectRef 3004)
:SetVariable (32003 :GObjectRef 3104)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003)
)
}
{:Link 1112
:EventSource 3104 :EventType IsSelected
:LinkEffect (:SetVariable (32002 :GObjectRef 3004)
:SetVariable (32003 :GObjectRef 3104)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003)
)

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE313

/===

{:Link 1013
:EventSource 0 :EventType UserInput :EventData 11
:LinkEffect (:SetVariable (32002 :GObjectRef 3005)
:SetVariable (32003 :GObjectRef 3105)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003)
)
}
{:Link 1113
:EventSource 3105 :EventType IsSelected
:LinkEffect (:SetVariable (32002 :GObjectRef 3005)
:SetVariable (32003 :GObjectRef 3105)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003)
)
}

/] ===

{:Link 1014
:EventSource 0 :EventType UserInput :EventData 12
:LinkEffect (:SetVariable (32002 :GObjectRef 3006)
:SetVariable (32003 :GObjectRef 3106)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003))
}
{:Link 1114

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE314

:EventSource 3106 :EventType IsSelected
:LinkEffect (:SetVariable (32002 :GObjectRef 3006)
:SetVariable (32003 :GObjectRef 3106)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003)
)
}

/===

{:Link 1015
:EventSource 0 :EventType UserInput :EventData 13
:LinkEffect (:SetVariable (32002 :GObjectRef 3007)
:SetVariable (32003 :GObjectRef 3107)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003)
)
}
{:Link 1115
:EventSource 3107 :EventType IsSelected
:LinkEffect (:SetVariable (32002 :GObjectRef 3007)
:SetVariable (32003 :GObjectRef 3107)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003)
)
}

/===

{:Link 1016

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE315

}
{:

//

EventSource 0O :EventType UserInput :EventData 14
LinkEffect (:SetVariable (32002 :GObjectRef 3008)
:SetVariable (32003 :GObjectRef 3108)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003)
)

Link 1116

EventSource 3108 :EventType IsSelected

LinkEffect (:SetVariable (32002 :GObjectRef 3008)

:SetVariable (32003 :GObjectRef 3108)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003)
)

:Text 9000

:0rigContent ’Press key(m), or click on a Text.

To change the size of a text presentation,
press cursor keys.’

:0rigBoxSize 550 110

:0rigPosition 10 430

:FontAttributes Plain.18 :FontName Proportional
:TextWrapping true

:PushButton 9001

:0rigBoxSize 100 60
:0rigPosition 600 430
:ButtonRefColour gray
:OriglLabel "back to main"

:Link 9002

:EventSource 9001 :EventType IsSelected

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE316

:LinkEffect (:TransitionTo(("demo/main.mhg" 0)))
}

{:Link 9003
:EventSource 9001 :EventType CursorEnter
:LinkEffect (:Activate(9005))

{:Link 9004
:EventSource 9001 :EventType CursorLeave
:LinkEffect (:DeActivate(9005))

-~y

:Link 9005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15
:LinkEffect (:TransitionTo(("demo/main.mhg" 0))

:InputEventReg 1
:SceneCS 730 500
:MovingCursor true

}

intact.mhg:

{:Scene ("demo/intact.mhg" 0)

:Items
(
{:Link 110
:EventSource 0
:EventType UserInput
:EventData 16
:LinkEffect (
:Quit (("demo/startup" 0))
)
}
{:Text 1000
:0rigContent ’Testing interactible Objects:’
:0rigBoxSize 500 30
:0rigPosition 80 10
:FontAttributes Bold.24 :FontName Proportional
}

{:Bitmap 101
:0rigContent :ContentRef ("demo/tu_klein.gif")
:0rigBoxSize 51 39 // 00
:0rigPosition 10 5
:Tiling false
}

{:Bitmap 102
:0rigContent :ContentRef ("demo/fsp_pv.gif")

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE317

:0OrigBoxSize 48 43
:0rigPosition 545 5
:Tiling false
}

{:Bitmap 103
:0rigContent :ContentRef ("demo/prz.gif")
:0OrigBoxSize 48 43
:0rigPosition 595 5
:Tiling false
}

{:Text 1001
:0rigContent ’Test of interacting Objects. Use Cursor keys to resize
the EntryField above.’
:0rigBoxSize 180 200
:0rigPosition 340 270
:FontAttributes Plain.18 :FontName Proportional
:HJustification justified
:TextWrapping true

{:EntryField 3001
:0rigContent ’A simple Entryfield.’
:0rigBoxSize 300 100
:0rigPosition 10 50
:0ObscuredInput true

}

// A more complex one - vertically and horizontally centered’
{:EntryField 3002

:0rigContent ’A more complex one - vertically and horizontally centered’

:0rigBoxSize 300 150

:0rigPosition 335 50

:FontAttributes Bold.16

:FontName Proportional

:TextColour red

:BackgroundColour white

:HJustification centre

:VJustification centre

{:0StringVar 3003
:0rigValue "void"

{:Link 3004
:EventSource 3002 :EventType InteractionCompleted
:LinkEffect (:GetTextData (3002 3003)
:SetData (3005 :indirectref 3003))

{:Text 3005
:0OrigContent ’void’

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE318

:0rigBoxSize 300 50
:0rigPosition 335 210
:FontAttributes Plain.10 :FontName Proportional

}

//

{:Text 4000
:0rigContent °’A Pushbutton:’
:0rigBoxSize 120 30
:0rigPosition 15 173
:FontAttributes Plain.18 :FontName Proportional

{:PushButton 4001
:0rigBoxSize 120 30
:0rigPosition 180 170
:ButtonRefColour darkYellow
:0rigLabel "A PushButton"

{:Rectangle 4002
:InitiallyActive false
:0rigBoxSize 30 30
:0rigPosition 130 170
:0riglLineWidth 5
:0riglineStyle 1
:0rigRefLineColour DarkRed
:0rigRefFillColour Red

}

/-

{:Text 4010
:0rigContent °’A HotSpot:’
:0rigBoxSize 120 30
:0rigPosition 15 213
:FontAttributes Plain.18 :FontName Proportional

{:HotSpot 4011
:0rigBoxSize 120 30
:0rigPosition 180 210

{:Rectangle 4012
:InitiallyActive false
:0rigBoxSize 30 30
:0rigPosition 130 210
:0riglineWidth 5
:OrigLineStyle 1
:0rigRefLineColour DarkRed
:0rigRefFillColour Red

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE319

/-

{:Text 4020
:0rigContent ’3 SwitchButtons:’
:0rigBoxSize 135 30
:0rigPosition 15 293
:FontAttributes Plain.18 :FontName Proportional

{:SwitchButton 4021
:0rigBoxSize 40 30
:0rigPosition 180 290
:0riglabel "A SwitchButton"
:ButtonStyle pushbutton

-~

:SwitchButton 4022
:0rigBoxSize 20 20
:0rigPosition 230 295
:0OrigLabel "A SwitchButton"
:ButtonStyle radiobutton

{:SwitchButton 4023
:0rigBoxSize 20 20
:0rigPosition 270 295
:OriglLabel "A SwitchButton"
:ButtonStyle checkbox

{:Text 4025
:0rigContent ’A Slider:’
:0rigBoxSize 135 30
:0rigPosition 15 333
:FontAttributes Plain.18 :FontName Proportional

{:Slider 4026
:0rigBoxSize 120 30
:0rigPosition 180 330
:Orientation right
:MaxValue 100
:InitialPortion 50
:SliderStyle proportional

}

//{:Rectangle 4029

// :InitiallyActive false

// :OrigBoxSize 30 30

// :0rigPosition 130 250

// :0rigLineWidth 5

// :0riglineStyle 1

// :0OrigRefLineColour DarkRed
// :0OrigRefFillColour Red

//

{:Text 4040

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE320

:0rigContent ’Show Highlights:’

:0rigBoxSize 150 30

:0rigPosition 15 253

:FontAttributes Plain.18 :FontName Proportional

{:PushButton 4041
:0rigBoxSize 60 30
:0rigPosition 180 250
:ButtonRefColour gray
:OrigLabel "On"

{:PushButton 4051
:0rigBoxSize 60 30
:0rigPosition 240 250
:ButtonRefColour gray
:OrigLabel "Off"

//

{:Link 5000
:EventSource 4041 :EventType IsSelected
:LinkEffect (:SetHighlightStatus (4001 true)
:SetHighlightStatus (4011 true)
)

-~

:Link 5001

:EventSource 4051 :EventType IsSelected

:LinkEffect (:SetHighlightStatus (4001 false)
:SetHighlightStatus (4011 false)

)

}

//

{:Link 5010
:EventSource 4001 :EventType IsSelected
:LinkEffect (:Run (4002))

}

{:Link 5011
:EventSource 4001 :EventType IsDeselected
:LinkEffect (:Stop (4002))

}

{:Link 5020
:EventSource 4011 :EventType IsSelected
:LinkEffect (:Run (4012))

}

{:Link 5021
:EventSource 4011 :EventType IsDeselected
:LinkEffect (:Stop (4012))

}

//

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE321

:IntegerVar 32000 :0rigValue -1 }
:IntegerVar 32001 :0rigValue -1 }

-

{:Link 1020
:EventSource O :EventType UserInput :EventData 4
:LinkEffect (:GetBoxSize (3002 32000 32001)
:Add (32000 4)
:SetBoxSize (3002 :IndirectRef 32000 :IndirectRef 32001))}
{:Link 1021
:EventSource 0 :EventType UserInput :EventData 3
:LinkEffect (:GetBoxSize (3002 32000 32001)
:Subtract (32000 4)
:SetBoxSize (3002 :IndirectRef 32000 :IndirectRef 32001))}
{:Link 1022
:EventSource 0 :EventType UserInput :EventData 2
:LinkEffect (:GetBoxSize (3002 32000 32001)
:Add (32001 4)
:SetBoxSize (3002 :IndirectRef 32000 :IndirectRef 32001))}
{:Link 1023
:EventSource 0 :EventType UserInput :EventData 1
:LinkEffect (:GetBoxSize (3002 32000 32001)
:Subtract (32001 4)
:SetBoxSize (3002 :IndirectRef 32000 :IndirectRef 32001))}

//

{:PushButton 9001
:0rigBoxSize 100 60
:0rigPosition 540 300
:ButtonRefColour gray
:OriglLabel "back to main"

{:Link 9002
:EventSource 9001 :EventType IsSelected
:LinkEffect (:TransitionTo(("demo/main.mhg" 0)))

{:Link 9003
:EventSource 9001 :EventType CursorEnter
:LinkEffect (:Activate(9005))

-~

:Link 9004
:EventSource 9001 :EventType CursorLeave
:LinkEffect (:DeActivate(9005))

{:Link 9005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15
:LinkEffect (:TransitionTo(("demo/main.mhg" 0))

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE322

:InputEventReg 1
:SceneCS 650 370
:MovingCursor true

bitmapl.mhg:
{:Scene ("demo/bitmap.mhg" 0)

:Items (
{:Text 100
:0rigContent ’Testing the drawing of Bitmaps, 1.Test:’
:0rigBoxSize 500 30
:0OrigPosition 80 10
:FontAttributes Bold.24
:FontName Proportional

}

{:Bitmap 101
:OrigContent :ContentRef ("demo/tu_klein.gif")
:0rigBoxSize 51 39 // 00
:0rigPosition 10 5
:Tiling false
}

{:Bitmap 102
:0OrigContent :ContentRef ("demo/fsp_pv.gif")
:0rigBoxSize 48 43
:0rigPosition 595 5
:Tiling false
}

{:Bitmap 103
:0rigContent :ContentRef ("demo/prz.gif")
:0rigBoxSize 48 43
:0rigPosition 645 5
:Tiling false
}

{:Link 110
:EventSource 0
:EventType UserInput
:EventData 16
:LinkEffect (
:Quit (("demo/startup" 0))

)

{:Bitmap 3000
:0rigContent
:ContentRef ("demo/pirogue.jpg")
:0OrigBoxSize 158 158
:0OrigPosition 10 100

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE323

:Tiling false
}
{:HotSpot 3001
:0OrigBoxSize 158 158
:0rigPosition 10 100
}
{:Text 3002
:0OrigContent ’A JPEG-encoded picture, drawn in another size:’
:0rigBoxSize 330 40
:0OrigPosition 10 48
:FontAttributes Plain.18
:FontName Proportional
:TextWrapping true

/7

{:Bitmap 3100
:0rigContent
:ContentRef ("demo/pirogue.gif")
:0rigBoxSize 158 158
:0OrigPosition 350 100
:Tiling false

}

{:HotSpot 3101
:0rigBoxSize 158 158
:0rigPosition 350 100

}

{:Text 3102

:0rigContent ’The GIF-encoded picture rescaled:’
:0OrigBoxSize 300 20
:OrigPosition 350 48
:FontAttributes Plain.18 :FontName Proportional
:TextWrapping true

}

//

{:Bitmap 3200
:0rigContent
:ContentRef ("demo/pirogue.jpg")
:0rigBoxSize 0 O
:0rigPosition 10 310
:Tiling false
}
{:Text 3202
:0rigContent ’The JPEG-encoded picture in original size:’
:0rigBoxSize 320 20
:0OrigPosition 10 270
:FontAttributes Plain.18 :FontName Proportional

//

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE324

{:Bitmap 3300
:0rigContent
:ContentRef ("demo/pirogue.gif")
:0rigBoxSize 0 0
:0rigPosition 350 310
:Tiling false
}
{:Text 3302
:0rigContent ’The GIF-encoded picture in original size:’
:0OrigBoxSize 320 20
:0OrigPosition 350 270
:FontAttributes Plain.18 :FontName Proportional

/7

{:Rectangle 2000
:0rigBoxSize 162 162 :0rigPosition 8 98
:OriglLineWidth 2 :0rigLineStyle 1
:0rigRefLineColour Red
:0rigRefFillColour transparent

}

{:IntegerVar 32000 :0OrigValue 158 }

{:IntegerVar 32001 :0OrigValue 158 }

{:0bjectRefVar 32002 :0rigValue :0bjectRef 3000 } // the bitmap
{:0bjectRefVar 32003 :0rigValue :0bjectRef 3001 } // the hotspot

:IntegerVar 2001 :0OrigValue 8 }

:IntegerVar 2002 :0rigValue 98 }
:IntegerVar 2003 :0OrigValue 162 }
:IntegerVar 2004 :0OrigValue 162 }

Lo N e Wan!

{:Link 1004
:EventSource 0 :EventType UserInput :EventData 1
:LinkEffect (:GetBoxSize (:IndirectRef 32002 32000 32001)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (32001 1)
:Add (2003 4)
:Add (2004 3)
:SetBoxSize (:IndirectRef 32002 :IndirectRef 32000 :IndirectRef 32001)
:SetBoxSize (:IndirectRef 32003 :IndirectRef 32000 :IndirectRef 32001)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32003)
)
}
{:Link 1005
:EventSource 0 :EventType UserInput :EventData 2
:LinkEffect (:GetBoxSize (:IndirectRef 32002 32000 32001)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Add (32001 1)
:Add (2003 4)
:Add (2004 5)
:SetBoxSize (:IndirectRef 32002 :IndirectRef 32000 :IndirectRef 32001)
:SetBoxSize (:IndirectRef 32002 :IndirectRef 32000 :IndirectRef 32001)

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE325

:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32003)
)
}
{:Link 1006
:EventSource 0 :EventType UserInput :EventData 3
:LinkEffect (:GetBoxSize (:IndirectRef 32002 32000 32001)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (32000 1)
:Add (2003 3)
:Add (2004 4)
:SetBoxSize (:IndirectRef 32002 :IndirectRef 32000 :IndirectRef 32001)
:SetBoxSize (:IndirectRef 32003 :IndirectRef 32000 :IndirectRef 32001)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32003)
)
}
{:Link 1007
:EventSource 0 :EventType UserInput :EventData 4
:LinkEffect (:GetBoxSize (:IndirectRef 32002 32000 32001)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Add (32000 1)
:Add (2003 5)
:Add (2004 4)
:SetBoxSize (:IndirectRef 32002
:IndirectRef 32000 :IndirectRef 32001)
:SetBoxSize (:IndirectRef 32002
:IndirectRef 32000 :IndirectRef 32001)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32003)

/7

{:Link 1008
:EventSource 0 :EventType UserInput :EventData 6
:LinkEffect (:SetVariable (32002 :GObjectRef 3000)
:SetVariable (32003 :GObjectRef 3001)
:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)
:Subtract (2002 2)
:Add (2003 4)
:Add (2004 4)
:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)
:BringToFront (:IndirectRef 32002)
:BringToFront (:IndirectRef 32003)
)
}
{:Link 1108

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE326

:EventSource 3001 :EventType IsSelected
:LinkEffect (:SetVariable (32002 :GObjectRef 3000)
:SetVariable (32003 :GObjectRef 3001)

:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)

:Subtract (2002 2)

:Add (2003 4)

:Add (2004 4)

:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)

:BringToFront (:IndirectRef 32002)

:BringToFront (:IndirectRef 32003)

)

}

/===

{:Link 1009

:EventSource 0 :EventType UserInput :EventData 7

:LinkEffect (:SetVariable (32002 :GObjectRef 3100)

:SetVariable (32003 :GObjectRef 3101)

:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)

:Subtract (2002 2)

:Add (2003 4)

:Add (2004 4)

:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)

:BringToFront (:IndirectRef 32002)

:BringToFront (:IndirectRef 32003)

)

}
{:Link 1109

:EventSource 3101 :EventType IsSelected

:LinkEffect (:SetVariable (32002 :GObjectRef 3100)

:SetVariable (32003 :GObjectRef 3101)

:GetPosition (:IndirectRef 32002 2001 2002)
:GetBoxSize (:IndirectRef 32002 2003 2004)
:Subtract (2001 2)

:Subtract (2002 2)

:Add (2003 4)

:Add (2004 4)

:SetPosition (2000 :IndirectRef 2001 :IndirectRef 2002)
:SetBoxSize (2000 :IndirectRef 2003 :IndirectRef 2004)
:BringToFront (2000)

:BringToFront (:IndirectRef 32002)

:BringToFront (:IndirectRef 32003)

)

}

//

{:Text 9000

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE327

:0OrigContent ’Press keyl or key2,

or click on one of the upper bitmaps.

To change the size of the

bitmap presentation, press cursor keys.’
:0rigBoxSize 550 110
:0OrigPosition 10 490
:FontAttributes Plain.18 :FontName Proportional
:TextWrapping true

{:PushButton 9001
:0rigBoxSize 100 60
:0OrigPosition 590 480
:ButtonRefColour gray
:Origlabel "back to main"

{:Link 9002
:EventSource 9001 :EventType IsSelected
:LinkEffect (:TransitionTo(("demo/main.mhg" 0)))

{:Link 9003
:EventSource 9001 :EventType CursorEnter
:LinkEffect (:Activate(9005))

:Link 9004
:EventSource 9001 :EventType CursorLeave
:LinkEffect (:DeActivate(9005))

[l

[

{:Link 9005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15
:LinkEffect (:TransitionTo(("demo/main.mhg" 0))

:InputEventReg 1
:SceneCS 700 560
:MovingCursor true

bitmap2.mhg:
{:Scene ("demo/bitmap2.mhg" O)

:Items (
{:Text 1000
:0OrigContent ’Testing the drawing of Bitmaps, 2.Test:’
:0rigBoxSize 500 30
:0rigPosition 80 10
:FontAttributes Bold.24
:FontName Proportional

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE328

}

{:Bitmap 101
:0OrigContent :ContentRef ("demo/tu_klein.gif")
:0rigBoxSize 51 39 // 00
:0OrigPosition 10 5
:Tiling false
¥

{:Bitmap 102
:0OrigContent :ContentRef ("demo/fsp_pv.gif")
:0rigBoxSize 48 43
:0OrigPosition 595 5
:Tiling false
}

{:Bitmap 103
:0OrigContent :ContentRef ("demo/prz.gif")
:0OrigBoxSize 48 43
:0rigPosition 645 5
:Tiling false
}

{:Link 110
:EventSource 0
:EventType UserInput
:EventData 16
:LinkEffect (
:Quit (("demo/startup" 0))
)
}

{:Bitmap 3000
:0rigContent
:ContentRef ("demo/colors.gif")
:0OrigBoxSize 680 400
:0rigPosition 10 50
:Tiling false

{:Bitmap 3100
:0rigContent
:ContentRef ("demo/capbla.gif")
:0OrigBoxSize 180 208
:0OrigPosition 50 100
:Tiling false

{:Bitmap 3200
:0rigContent
:ContentRef ("demo/capblb.gif")
:0OrigBoxSize 180 208
:0OrigPosition 150 100
:Tiling false
}
{:Bitmap 3300
:0rigContent

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE329

:ContentRef ("demo/capblc.gif")
:0rigBoxSize 180 208
:0OrigPosition 50 200

:Tiling false

{:Bitmap 3400
:0rigContent
:ContentRef ("demo/capbld.gif")
:0rigBoxSize 180 208
:0OrigPosition 150 200
:Tiling false

// {:Bitmap 3500
// :OrigContent
// :ContentRef ("demo/globe.gif")
// :0rigBoxSize 0 0
// :0OrigPosition 450 200
// :Tiling false

{:Bitmap 5000
:InitiallyActive false
:0OrigContent
:ContentRef ("demo/red_ball.gif")
:0rigBoxSize 50 50
:0OrigPosition 10 10
:Tiling true

//

{:IntegerVar 32000 :0rigValue 320 }
{:IntegerVar 32001 :0OrigValue 158 }

{:Link 1020
:EventSource 0 :EventType UserInput :EventData 4
:LinkEffect (:GetBoxSize (5000 32000 32001)
:Add (32000 5)
:SetBoxSize (5000
:IndirectRef 32000 :IndirectRef 32001))}

{:Link 1021
:EventSource 0 :EventType UserInput :EventData 3
:LinkEffect (:GetBoxSize (5000 32000 32001)
:Subtract (32000 5)
:SetBoxSize (5000
:IndirectRef 32000 :IndirectRef 32001))}

{:Link 1022
:EventSource 0 :EventType UserInput :EventData 2
:LinkEffect (:GetBoxSize (5000 32000 32001)
:Add (32001 5)
:SetBoxSize (5000
:IndirectRef 32000 :IndirectRef 32001))}

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE330

{:Link 1023
:EventSource 0 :EventType UserInput :EventData 1
:LinkEffect (:GetBoxSize (5000 32000 32001)
:Subtract (32001 5)
:SetBoxSize (5000
:IndirectRef 32000 :IndirectRef 32001))}

{:Link 1030
:EventSource 0 :EventType UserInput :EventData 14
:LinkEffect (:Run (5000)
:BringToFront (9001)
)

}

{:Link 1031
:EventSource 0 :EventType UserInput :EventData 5
:LinkEffect (:Stop (5000)

)

}

{:Link 2000
:EventSource 0 :EventType UserInput :EventData 6
:LinkEffect (:BringToFront (3100))

}

{:Link 2001
:EventSource 0 :EventType UserInput :EventData 7
:LinkEffect (:BringToFront (3200))

}

{:Link 2002
:EventSource 0 :EventType UserInput :EventData 8
:LinkEffect (:BringToFront (3300))

}

{:Link 2003
:EventSource 0 :EventType UserInput :EventData 9
:LinkEffect (:BringToFront (3400))

}

{:Link 2004
:EventSource 0 :EventType UserInput :EventData 10
:LinkEffect (:PutBefore (3100 3000))

}

{:Link 2005
:EventSource 0 :EventType UserInput :EventData 11
:LinkEffect (:PutBefore (3200 3000))

}

{:Link 2006
:EventSource 0 :EventType UserInput :EventData 12
:LinkEffect (:PutBefore (3300 3000))

}

{:Link 2007

:EventSource 0 :EventType UserInput :EventData 13
:LinkEffect (:PutBefore (3400 3000))

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE331

/7

{:Text 9000
:0OrigContent ’Press Key9 to activate a tiled bitmap,
KeyO to deactivate it,
and Cursor Keys to resize that bitmap.’
:0OrigBoxSize 550 110
:0rigPosition 10 480
:FontAttributes Plain.18 :FontName Proportional
:TextWrapping true
3

{:PushButton 9001
:0rigBoxSize 100 60
:0rigPosition 590 460
:ButtonRefColour gray
:OriglLabel "back to main"

{:Link 9002
:EventSource 9001 :EventType IsSelected
:LinkEffect (:TransitionTo(("demo/main.mhg" 0)))

{:Link 9003
:EventSource 9001 :EventType CursorEnter
:LinkEffect (:Activate(9005))

s Bad

:Link 9004
:EventSource 9001 :EventType CursorLeave
:LinkEffect (:DeActivate(9005))

:Link 9005

:InitiallyActive false

:EventSource 0

:EventType UserInput

:EventData 15

:LinkEffect (:TransitionTo(("demo/main.mhg" 0))

Ll

:InputEventReg 1
:SceneCS 700 530
:MovingCursor true

ea.mhg:

{:Scene ("demo/ea.mhg" 0)

:Items

(

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE332

{:Text 1000
:0rigContent ’Testing "Elementary Actions":’
:0OrigBoxSize 500 30
:0rigPosition 80 10
:FontAttributes Bold.24 :FontName Proportional

{:Bitmap 101
:0OrigContent :ContentRef ("demo/tu_klein.gif")
:0rigBoxSize 51 39 // 00
:0rigPosition 10 5
:Tiling false
}

{:Bitmap 102
:0rigContent :ContentRef ("demo/fsp_pv.gif")
:0OrigBoxSize 48 43
:0rigPosition 545 5
:Tiling false
}

{:Bitmap 103
:0rigContent :ContentRef ("demo/prz.gif")
:0OrigBoxSize 48 43
:0rigPosition 595 5
:Tiling false
}

{:Link 110
:EventSource 0
:EventType UserInput
:EventData 16
:LinkEffect (
:Quit (("demo/startup" 0))
)
}

//

// ElementaryActions for Rectangle

{:Rectangle 4000
:0rigBoxSize 100 100 :0rigPosition 20 130
:0rigLineWidth 5 :0rigLineStyle 1
:0rigRefLineColour Red :0rigRefFillColour DarkRed
}
{:Rectangle 4001
:0rigBoxSize 100 100 :0rigPosition 60 170
:0riglineWidth 5 :0rigLineStyle 1
:0rigRefLineColour Blue :0rigRefFillColour DarkBlue
}

// apply all ElementaryActions possible for Rectangle
{:Link 4102
:EventSource 0 :EventType UserInput :EventData 6
:LinkEffect (
// Root

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE333

:GetAvailabilityStatus(4000 2103)
:GetRunningStatus(4000 2103)
// Ingredient
:Clone(4000 4200)
:Preload(4000)
:SetData(4000 "new data_1")
:Unload(4000)
// Presentable
:Run(4000)
:SetData(4000 "new data_2")
:Stop(4000)
:Run(4000)
// Visible
:BringToFront (4000)
:GetBoxSize(4000 2101 2102)
:GetPosition (4000 2101 2102)
:PutBefore (4000 4001)
:PutBehind (4000 4001)
:SendToBack (4000)
:SetBoxSize (4000 150 100)
:SetPaletteRef (4000 100)
:SetPosition (4000 20 130)
// LineArt
:SetFillColour (4000 :NewAbsoluteColour blue)
:SetLineColour (4000 :NewAbsoluteColour red)
:SetLineStyle (4000 3)
:SetLineWidth (4000 6)
:PutBehind (4000 4001)
)

//

// ElementaryActions for PushButton

{:PushButton 5000
:0rigBoxSize 100 100
:0rigPosition 200 130
:ButtonRefColour darkYellow
:0OrigLabel "A Pushbutton"

}

{:Link 5100
:EventSource 0 :EventType UserInput :EventData 7
//:EventSource 5000 :EventType IsSelected
:LinkEffect (

//Root:
:GetAvailabilityStatus (5000 2101)
:GetRunningStatus (5000 2103)

//Ingredient:

:Clone (5000 5200)
:Preload(5000)
:SetData(5000 "setdata, ingredient")
:Unload (5000)
//Presentable:
:Run (5000)

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE334

:SetData(5000 "setdata, presentable")
:Stop(5000)
:Run (5000)
//Visible:
:BringToFront (5000)
:GetBoxSize (5000 2101 2102)
:GetPosition (5000 2101 2102)
:PutBefore (5000 4000)
:PutBehind (5000 4000)
:SendToBack (5000)
:SetBoxSize (5000 120 90)
:SetPaletteRef (5000 1)
:SetPosition(5000 190 120)
//Button:
:Deselect (5000)
:GetInteractionStatus (5000 2101)
:Select (5000)
:SetInteractionStatus (5000 true)
:Deselect (5000)
//PushButton:
:GetLabel (5000 5300)
:Select (5000)
:SetLabel (5000 "Label set by EA")
)

//

// ElementaryActions for EntryField

{:EntryField 2000
:0OrigContent ’A more complex one. vertically and horizontally centred.’
:0rigBoxSize 300 100
:0OrigPosition 335 50
:FontAttributes Bold.10 :FontName Proportional
:TextColour red
:BackgroundColour white
:HJustification centre
:VJustification centre

{:IntegerVar 2101 :0rigValue 1 }
{:IntegerVar 2102 :OrigValue 1 }
{:BooleanVar 2103 :0rigValue true}

// apply all ElementaryActions possible for Entryfield
{:Link 2100
:EventSource 0 :EventType UserInput :EventData 9
:LinkEffect (
// Root
:GetAvailabilityStatus(2000 2101)
:GetRunningStatus(2000 2103)
// Ingredient
:Clone(2000 4200)
:Preload(2000)
:SetData(2000 "new data_1")

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE335

:Unload(2000)
// Presentable
:Run(2000)
:SetData(2000 "new data_2")
:Stop(2000)
:Run(2000)
// Visible
:BringToFront (2000)
:GetBoxSize(2000 2101 2102)
:GetPosition (2000 2101 2102)
:PutBefore (2000 4000)
:PutBehind (2000 4000)
:SendToBack (2000)
:SetBoxSize (2000 300 100)
:SetPaletteRef (2000 100)
:SetPosition (2000 335 50)
// Text
:GetTextContent (2000 2101)
:GetTextData (2000 2101)
:SetData(2000 "new data_3")
//:SetFontRef (2000 "Bold:20")
// Interactible
:GetHighlightStatus (2000 2101)
:GetInteractionStatus (2000 2101)
:SetHighlightStatus (2000 true)
:SetInteractionStatus (2000 true)
// EntryField
:GetEntryPoint (2000 2101)
:GetOverwriteMode (2000 2101)
:SetEntryPoint (2000 5)
:SetOverwriteMode (2000 true)

//

// ElementaryActions for DynamicLineArt

{:DynamicLineArt 3000
:0OrigBoxSize 300 100
:0rigPosition 335 160

}

// apply all ElementaryActions possible for DynamicLineArt
{:Link 3100
:EventSource 0 :EventType UserInput :EventData 8
:LinkEffect (
// Root
:GetAvailabilityStatus(3000 2101)
:GetRunningStatus(3000 2103)
// Ingredient
:Clone(3000 4200)
:Preload(3000)
:SetData(3000 "new data_1")
:Unload(3000)
// Presentable
:Run(3000)

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE336

:SetData(3000 "new data_2")
:Stop(3000)
:Run(3000)

// Visible
:BringToFront (3000)
:GetBoxSize(3000 2101 2102)
:GetPosition (3000 2101 2102)
:PutBefore (3000 4000)
:PutBehind (3000 4000)
:SendToBack (3000)
:SetBoxSize (3000 300 100)
:SetPaletteRef (3000 100)
:SetPosition(3000 335 160)

// LineArt
:SetFillColour (3000 :NewAbsoluteColour red)
:SetLineColour (3000 :NewAbsoluteColour blue)
:SetLineStyle (3000 3)
:SetLineWidth (3000 2)

//DynamicLineArt:
:BringToFront (3000)
:Clear (3000)

:SetPosition(3000 335 160)
:PutBefore (3000 2000)
:PutBehind (3000 2000)
:SendToBack (3000)
:SetBoxSize (3000 300 100)

:SetFillColour (3000 :NewAbsoluteColour red)
:SetLineColour (3000 :NewAbsoluteColour green)
:SetLineStyle (3000 2)

:SetLineWidth(3000 2)

:DrawArc (3000 5 5 100 50 30 180)

:SetFillColour (3000 :NewAbsoluteColour red)
:SetLineColour (3000 :NewAbsoluteColour blue)
:SetLineStyle (3000 2)

:SetLineWidth (3000 10)

:DrawLine (3000 5 5 300 100)

:SetFillColour (3000 :NewAbsoluteColour green)
:SetLineColour (3000 :NewAbsoluteColour yellow)
:SetLineStyle (3000 1)

:SetLineWidth(3000 2)

:DrawOval (3000 5 50 100 45)

:SetFillColour (3000 :NewAbsoluteColour red)
:SetLineColour (3000 :NewAbsoluteColour yellow)
:SetLineStyle (3000 2)
:SetLineWidth (3000 6)
:DrawPolygon (3000

((100 5) (100 45) (150 30) (199 45) (199 5)))

:SetFillColour (3000 :NewAbsoluteColour red)

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE337

(-]

P e s

:SetLineColour (3000 :NewAbsoluteColour black)
:SetLineStyle (3000 2)
:SetLineWidth (3000 3)
:DrawPolyLine (3000
((100 60) (100 95) (150 80) (199 95) (199 60)))

:SetFillColour (3000 :NewAbsoluteColour gray)
:SetLineColour (3000 :NewAbsoluteColour red)
:SetLineStyle (3000 2)

:SetLineWidth (3000 3)

:DrawRectangle (3000 205 5 90 40)

:SetFillColour (3000 :NewAbsoluteColour red)
:SetLineColour (3000 :NewAbsoluteColour green)
:SetLineStyle (3000 3)

:SetLineWidth (3000 2)

:DrawSector (3000 205 50 90 45 -30 180)

:IntegerVar 3101 :0rigValue 30 } // start_angle for arc
:IntegerVar 3102 :0OrigValue 10 } // linewidth for line
:IntegerVar 3103 :0rigValue 100 } // x-size for oval

:IntegerVar 3104 :0rigValue 150 } // xPos of a point of polygon
:IntegerVar 3105 :0rigValue 80 } // yPos of a point for polyline
:IntegerVar 3106 :0rigValue 90 } // xSize for rectangle
:IntegerVar 3107 :0rigValue 180 } // arc_angle for sector

:Link 3200

:EventSource 0 :EventType UserInput :EventData 1
:LinkEffect (

:Add (3101 5)
:Add (3102 1)
:Add (3103 10)
:Add (3104 5)
:Add (3105 5)
:Add (3106 10)
:Add (3107 10)
:Clear (3000)

:GetBoxSize(3000 2101 2102)

:SetFillColour (3000 :NewAbsoluteColour red)
:SetLineColour (3000 :NewAbsoluteColour green)
:SetLineStyle (3000 2)

:SetLineWidth (3000 2)

:DrawArc(3000 5 5 100 50 :IndirectRef 3101 180)

:SetFillColour (3000 :NewAbsoluteColour red)
:SetLineColour (3000 :NewAbsoluteColour blue)
:SetLineStyle (3000 3)

:SetLineWidth (3000 :IndirectRef 3102)
:DrawLine (3000 5 5 300 100)

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE338

:SetFillColour (3000 :NewAbsoluteColour green)
:SetLineColour (3000 :NewAbsoluteColour yellow)
:SetLineStyle (3000 1)

:SetLineWidth(3000 4)

:DrawOval(3000 5 50 :IndirectRef 3103 45)

:SetFillColour (3000 :NewAbsoluteColour red)
:SetLineColour (3000 :NewAbsoluteColour yellow)
:SetLineStyle (3000 2)
:SetLineWidth (3000 6)
:DrawPolygon (3000 ((100 5) (100 45)

(:IndirectRef 3104 30) (199 45) (199 5)))

:SetFillColour (3000 :NewAbsoluteColour red)
:SetLineColour (3000 :NewAbsoluteColour black)
:SetLineStyle (3000 2)
:SetLineWidth (3000 3)
:DrawPolyLine (3000 ((100 60) (100 95)

(150 :IndirectRef 3105) (199 95) (199 60)))

:SetFillColour (3000 :NewAbsoluteColour gray)
:SetLineColour (3000 :NewAbsoluteColour red)
:SetLineStyle (3000 2)

:SetLineWidth (3000 3)

:DrawRectangle (3000 205 5 :IndirectRef 3106 40)

:SetFillColour (3000 :NewAbsoluteColour red)
:SetLineColour (3000 :NewAbsoluteColour green)
:SetLineStyle (3000 3)
:SetLineWidth(3000 2)
:DrawSector (3000 205 50 90 45 -30 :IndirectRef 3107)
)
}
{:Link 3201
:EventSource 0 :EventType UserInput :EventData 2
:LinkEffect (

:Subtract (3101 5)
:Subtract (3102 1)
:Subtract (3103 10)
:Subtract (3104 5)
:Subtract (3105 5)
:Subtract (3106 10)
:Subtract (3107 10)
:Clear(3000)

:SetFillColour (3000 :NewAbsoluteColour red)
:SetLineColour (3000 :NewAbsoluteColour green)
:SetLineStyle (3000 2)

:SetLineWidth (3000 2)

:DrawArc(3000 5 5 100 50 :IndirectRef 3101 180)

:SetFillColour (3000 :NewAbsoluteColour red)
:SetLineColour (3000 :NewAbsoluteColour blue)
:SetLineStyle (3000 2)

:SetLineWidth(3000 :IndirectRef 3102)

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE339

:DrawLine (3000 5 5 300 100)

:SetFillColour (3000 :NewAbsoluteColour green)
:SetLineColour (3000 :NewAbsoluteColour yellow)
:SetLineStyle (3000 1)

:SetLineWidth (3000 2)

:DrawOval(3000 5 50 :IndirectRef 3103 45)

:SetFillColour (3000 :NewAbsoluteColour red)
:SetLineColour (3000 :NewAbsoluteColour yellow)
:SetLineStyle (3000 2)
:SetLineWidth (3000 6)
:DrawPolygon (3000 ((100 5) (100 45)

(:IndirectRef 3104 30) (199 45) (199 5)))

:SetFillColour (3000 :NewAbsoluteColour red)
:SetLineColour (3000 :NewAbsoluteColour black)
:SetLineStyle (3000 2)
:SetLineWidth (3000 3)
:DrawPolyLine (3000 ((100 60) (100 95)

(150 :IndirectRef 3105) (199 95) (199 60)))

:SetFillColour (3000 :NewAbsoluteColour gray)
:SetLineColour (3000 :NewAbsoluteColour red)
:SetLineStyle (3000 2)

:SetLineWidth(3000 3)

:DrawRectangle (3000 205 5 :IndirectRef 3106 40)

:SetFillColour (3000 :NewAbsoluteColour red)
:SetLineColour (3000 :NewAbsoluteColour green)
:SetLineStyle (3000 3)

:SetLineWidth (3000 2)

:DrawSector (3000 205 50 90 45 -30 :IndirectRef 3107)

//

{:PushButton 9001
:0rigBoxSize 100 60
:0rigPosition 540 280
:ButtonRefColour gray
:0riglabel "back to main"

}
{:Link 9002
:EventSource 9001 :EventType IsSelected
:LinkEffect (:TransitionTo(("demo/main.mhg" 0)))
}
{:Link 9003

:EventSource 9001 :EventType CursorEnter
:LinkEffect (:Activate(9005))

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE340

}
{:Link 9004
:EventSource 9001 :EventType CursorLeave
:LinkEffect (:DeActivate(9005))
¥
{:Link 9005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15
:LinkEffect (:TransitionTo(("demo/main.mhg" 0))
)
}

:InputEventReg 1
:SceneCS 650 350
:MovingCursor true

}

allcl.mhg:

{:Scene ("demo/allcl.mhg" O)

:Items

(

{:Text 1000
:0OrigContent ’Testing all concrete Classes and el.Actions:’
:0rigBoxSize 500 30
:0rigPosition 80 10
:FontAttributes Bold.24 :FontName Proportional

{:Bitmap 101
:0rigContent :ContentRef ("demo/tu_klein.gif")
:0rigBoxSize 51 39 // 00
:0rigPosition 10 5
:Tiling false
}

{:Bitmap 102
:0OrigContent :ContentRef ("demo/fsp_pv.gif")
:0rigBoxSize 48 43
:0OrigPosition 545 5
:Tiling false
}

{:Bitmap 103
:0OrigContent :ContentRef ("demo/prz.gif")
:0rigBoxSize 48 43
:0OrigPosition 595 5
:Tiling false
}

{:Link 110

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE341

:EventSource 0
:EventType UserInput
:EventData 16
:LinkEffect (
:Quit (("demo/startup" 0))
)

// Root 1008
// Group 1009
// Application 1010
// Scene 1011
// Ingredient 1012
// Link 1013

// ---- Programs (1014) ----
{:ResidentPrg 1015
:Name "Hello World, I’m a ResidentProgram."
}
{:RemotePrg 1016

:Name "Hello World, I’m a RemoteProgram."

{:InterchgPrg 1017
:Name "Hello World, I’m a InterchangedProgram."

}

{:Palette 1018

}

{:Font 1019

}

{:CursorShape 1020

}

// ---- Variables 1021 ----

{:BooleanVar 1022
:OrigValue true

}
{:IntegerVar 1023

:OrigValue 1

{:0StringVar 1024
:0rigValue "hello world"

{:0bjectRefVar 1025
:0rigValue :0bjectRef 1024

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE342

{:ContentRefVar 1026
:0rigValue :ContentRef "demo/to_load.txt"
}

// ---- Presentables 1027 ----
// TokenManager 1028

{:TokenGroup 1029
:TokenGroupItems ((1024))
}

{:ListGroup 1030
:TokenGroupItems ((1024))
:Positions ((10 10))

{:Stream 1037
:Multiplex ({:Audio 1038 :ComponentTag 100 })

{:Audio 1038
:ComponentTag 100

}
// ---- Visibles ----
{:Text 2000

:0rigContent ’Bitmap, LineArt, Rectangle, Dynamic- LineArt:’
:0rigBoxSize 95 95

:0rigPosition O 50

:FontAttributes Bold. 14

:TextColour black

:HJustification centre

:VJustification centre

:TextWrapping true

{:Bitmap 1032
:0rigContent :ContentRef ("demo/pirogue.jpg")
:0rigBoxSize 120 120
:0rigPosition 100 50

{:LineArt 1033
:0rigBoxSize 120 120
:0rigPosition 225 50

{:Rectangle 1034
:0rigBoxSize 120 120
:0rigPosition 350 50
:OrigLineWidth 5
:OriglLineStyle 1
:0OrigRefLineColour Red
:0rigRefFillColour Yellow

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE343

{:DynamicLineArt 1035
:0rigBoxSize 120 120
:0OrigPosition 475 50

}

/7

{:Text 2001
:0rigContent ’Text, Video, RTGraphics:’
:0rigBoxSize 95 95
:0rigPosition O 175
:FontAttributes Bold. 14
:TextColour black
:HJustification centre
:VJustification centre
:TextWrapping true

{:Text 1036
:0rigContent "I’m a simple Text"
:0rigBoxSize 120 120
:0rigPosition 100 175
:TextColour red
:BackgroundColour black
:HJustification centre
:VJustification centre
:TextWrapping true

{:Video 1039
:InitiallyActive true
:0rigContent
:ContentRef ("demo/saao.mlv")
:0rigBoxSize 120 120
:0rigPosition 225 175
:ComponentTag 100
:Termination loop

{:RTGraphics 1040
:0rigBoxSize 120 120
:0rigPosition 350 175
:ComponentTag 100

}
// ---- Interactibles 1041 ----
{:Text 2002

:0rigContent ’Slider, EntryField, HyperText:’
:0rigBoxSize 95 95

:0rigPosition O 300

:FontAttributes Bold.14

:TextColour black

:HJustification centre

:VJustification centre

:TextWrapping true

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE344

{:Slider 1042
:0rigBoxSize 120 120
:0rigPosition 100 300
:Orientation up
:MaxValue 100
:SliderStyle proportional

{:EntryField 1043
:0rigBoxSize 120 120
:0rigPosition 225 300

{:HyperText 1044
:0rigContent ’HyperText: an anchor to
Tom Caseys site’
:0rigBoxSize 120 120
:0rigPosition 350 300

}
// ---- Buttons 1045 ----
{:Text 2003

:0rigContent ’HotSpot, PushButton, SwitchButton:’
:0rigBoxSize 95 95

:0rigPosition O 425

:FontAttributes Bold. 14

:TextColour black

:HJustification centre

:VJustification centre

:TextWrapping true

{:Hotspot 1046
:0rigBoxSize 120 120
:0rigPosition 100 425

{:PushButton 1047
:0OrigBoxSize 120 120
:0rigPosition 225 425

{:SwitchButton 1048
:0rigBoxSize 120 120
:0OrigPosition 350 425
:ButtonStyle radiobutton

}

// TODO: ___TODO___:
//{:Action

// (:Activate 1000)
//}

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE345

/7

{:IntegerVar 3100 :0rigValue 1 }

{:IntegerVar 3101 :0rigValue 1 }

{:BooleanVar 3102 :0rigValue true }
{:0bjectRefVAr 3103 :0rigValue :0bjectRef 3000}

// apply all ElementaryActions possible for all classes
{:Link 3000
:EventSource 0 :EventType UserInput :EventData 6
:LinkEffect (
// Root (using the bitmap: 1032)
:GetAvailabilityStatus(1032 3102)
:GetRunningStatus(1032 3102)

// Scene
//:SendEvent (0 1) // todo.
:GetCursorPosition(0 3100 3101)
:SetCursorPosition(0 100 100)
:SetCursorShape (1000 1000)
:SetTimer (0 1 2 :AbsoluteTime true)
//:TransitionTo () // not so useful here.

//Application:
//:CloseConnection()
// :GetEngineSupport ()
//:Launch()
//:LockScreen()

// :OpenConnection()
//:Quit ()

// :ReadPersistent ()
// :Spawn ()
//:StorePersistent ()
//:UnlockScreen()

// Ingredient (using the bitmap: 1032)
:Clone(1032 1050)
:Preload(1032)
:SetData(1032 "new data_1")
:Unload(1032)

//Link:
//:Activate()
//:Deactivate()

//Program (using resident program: 1015)
//:Call(1015)
//:Fork(1015)
//:SetData(1015)
//:Stop(1015)

//Presentable (using the bitmap: 1032)
//:Run(1032)
//:SetData(1032)
//:Stop(1032)

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE346

//Stream:
//:Clone()
:SetCounterEndPosition(1037 5)
:SetCounterPosition (1037 1)
:SetCounterTrigger (1037 2)
//:SetData(1037)
:SetSpeed (1037 25)

//Visible (using the bitmap: 1032)
:BringToFront (1032)
:GetBoxSize (1032 3100 3101)
:GetPosition(1032 3100 3101)
:PutBefore (1032 1035)
:PutBehind (1032 1035)
:SendToBack (1032)
:SetBoxSize (1032 60 60)
//:SetPaletteRef (1032)
:SetPosition(1032 100 50)

//RTGraphics:
//:Clone (1040)
// :SetData(1040)

//LineArt:
//:SetFillColour (1033)
//:SetLineColour (1033)
:SetLineStyle (1033 3)
:SetLineWidth (1033 2)

//DynamicLineArt:
:BringToFront (1035)
:Clear (1035)
:DrawArc (1035 10 10 30 30 O 180)
:DrawLine (1035 10 10 50 50)
:DrawOval (1035 20 20 50 30)
//:DrawPolygon(1035)
// :DrawPolyline(1035)
:DrawRectangle (1035 10 10 30 50)
:DrawSector (1035 30 30 40 40 90 180)
//:GetFillColour (1035)
//:GetLineColour (1035)
:GetLineStyle (1035 3100)
:GetLineWidth (1035 3100)
:PutBefore (1035 1032)
:PutBehind (1035 1032)
:SendToBack (1035)
:SetBoxSize (1035 90 90)
//:SetFillColour (1035)
//:SetLineColour (1035)
:SetLineStyle (1035 5)
:SetLineWidth (1035 6)
:SetPosition(1035 400 50)

//Bitmap:
:ScaleBitmap (1032 50 50)
:SetTransparency (1032 25)

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE347

//Text:
//:GetTextContent (1036)
//:GetTextData(1036)
//:SetData(1036)
//:SetFontRef (1036)

//Interactible (using EntryField):
:GetHighlightStatus (1043 3102)
:GetInteractionStatus (1043 3102)
:SetHighlightStatus (1043 true)
:SetInteractionStatus (1043 true)

//EntryField:
:GetEntryPoint (1043 3101)
:GetOverwriteMode (1043 3102)
:SetEntryPoint (1043 4)
:SetOverwriteMode (1043 false)

//HyperText:
//:GetLastAnchorField (1044)

//Video:

//:Clone(1039)
:ScaleVideo (1039 30 30)
//:SetData(1039)

//Slider:
:GetPortion (1042 3101)
:GetSliderValue (1042 3101)
:SetPortion (1042 50)
:SetSliderValue (1042 25)
:Step(1042 1)

//Button (using PushButton)
:Deselect (1047)
:GetInteractionStatus (1047 3102)
:Select (1047)
:SetInteractionStatus (1047 true)

//HotSpot:
:Select (1046)

//PushButton:
//:GetLabel (1047)
:Select (1047)
:SetLabel (1047 "new Label")

//SwitchButton:
:Deselect (1048)
:GetSelectionStatus (1048 3102)
:Select (1048)

:SetLabel (1048 "new Label")
//:Toggle(1048)

//Audio:
//:Clone(1038)
:GetVolume (1038 3100)

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE348

//:SetData(1038)
//:SetVolume (1038 100)

//TokenGroup:
//:CallActionSlot (1029)

//ListGroup:
:AddItem (1030 1 1032)
:DelItem (1030 1032)
:DeselectItem(1030 2)
:GetCellItem(1030 2 1032)
:GetFirstItem(1030 1032)
//:GetItemStatus (1030)
//:GetListItem(1030)
//:GetListSize (1030)
//:Scrollltems(1030)
//:SelectItem(1030)
//:SetFirstItem(1030)
//:ToggleItem(1030)

//TokenManager (using TokenGroup) :
//:GetTokenPosition(1029)
// :Move (1029)
// :MoveTo (1029)

//Variable (using IntegerVariable):
//:SetVariable(1023)
//:TestVariable (1023)

//IntegerVariable:
//:Add (1023)
//:Divide(1023)
// :Modulo (1023)
//:Multiply(1023)
//:SetVariable(1023)
// :Subtract (1023)

//BooleanVariable:
//:SetVariable (1022)

//OctetStringVariable:
//:SetVariable(1024)
//:Append (1024)

//0bjectRefVariable:
//:SetVariable(1025)

//ContentRefVariable:
//:SetVariable (1026)

//

{:PushButton 9001

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE349

:0rigBoxSize 100 60
:0rigPosition 540 480
:ButtonRefColour gray
:OriglLabel "back to main"

{:Link 9002
:EventSource 9001 :EventType IsSelected
:LinkEffect (:TramnsitionTo(("demo/main.mhg" 0)))

{:Link 9003
:EventSource 9001 :EventType CursorEnter
:LinkEffect (:Activate(9005))

-~

:Link 9004
:EventSource 9001 :EventType CursorLeave
:LinkEffect (:DeActivate(9005))

-~

:Link 9005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15
:LinkEffect (:TransitionTo(("demo/main.mhg" 0))

:InputEventReg 1
:SceneCS 650 550
:MovingCursor true

token.mhg:

{:Scene ("demo/tokentest.mhg" 0)

:Items
(
{:Text 500 :InitiallyActive false
:0rigContent ’TokenGroup is running’
:0rigBoxSize 500 30
:0rigPosition 70 2
:FontAttributes Bold.18 :FontName Proportional

{:Text 501 :InitiallyActive true
:0rigContent ’TokenGroup is not running’
:0rigBoxSize 500 30
:0rigPosition 70 2
:FontAttributes Bold.18 :FontName Proportional

{:PushButton 50 :InitiallyActive true
:0rigBoxSize 150 30 :0rigPosition 10 175

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE350

:ButtonrefColour Gray :0OrigLabel "Run TokenGroup" }
:Link 60 :EventSource 50 :EventType IsSelected
:LinkEffect (:MoveTo(1000 O)

:CallActionSlot(1000 1)

:Run(1000))}

:PushButton 51 :InitiallyActive true
:0rigBoxSize 150 30 :0rigPosition 160 175
:ButtonRefColour Gray :0rigLabel "Stop TokenGroup" }
:Link 62 :EventSource 51 :EventType IsSelected
:LinkEffect (:MoveTo(1000 O)

:CallActionSlot(1000 2)

:Stop(1000 D)}

:Link 100 :EventSource 101 :EventType IsSelected

:LinkEffect (:GetTokenPosition(1000 104)
:SetVariable(103 :GInteger :IndirectRef 104)
:SetVariable(102 :GOctetString "Query TokenPosition<")

:Append (102 :IndirectRef 103)
:Append (102 ">")
:SetLabel (101 :IndirectRef 102))

-~

:PushButton 101
:0rigBoxSize 300
:ButtonRefColour

:InitiallyActive true
30 :0rigPosition 10 205
Gray :0riglabel "Query TokenPosition<?>" }

{:0StringVar 102 :0rigValue "" }
{:0StringVar 103 :0rigValue "" }
{:IntegerVar 104 :0rigValue -1 }
{:PushButton 106 :InitiallyActive true

-~

-~

-~

-~

-~

-~

-~

~

:0rigBoxSize 100
:ButtonRefColour
:PushButton 107
:0rigBoxSize 100
:ButtonRefColour

Gray :0OrigLabel
:InitiallyActive

Gray :0rigLabel

:Move(1000 2)) }

:PushButton 120 :InitiallyActive
:0rigBoxSize 60 30 :0rigPosition
:ButtonRefColour Gray :0rigLabel
:PushButton 121 :InitiallyActive
:0rigBoxSize 60 30 :0rigPosition
:ButtonRefColour Gray :0riglLabel
:PushButton 122 :InitiallyActive
:0rigBoxSize 60 30 :0rigPosition
:ButtonRefColour Gray :0rigLabel
:PushButton 123 :InitiallyActive
:0rigBoxSize 60 30 :0rigPosition
:ButtonRefColour Gray :0rigLabel
:PushButton 124 :InitiallyActive
:0rigBoxSize 60 30 :0rigPosition
:ButtonRefColour Gray :0rigLabel

30 :0rigPosition 10 235

"NextItem" }
true

30 :0rigPosition 110 235

"PrevItem" }

:Link 111 :EventSource 106 :EventType IsSelected
:LinkEffect(:Move(1000 1)) }
:Link 112 :EventSource 107 :EventType IsSelected
:LinkEffect (

true

10 265
"MoveTol"
true

70 265
"MoveTo2"
true

130 265
"MoveTo3"
true

190 265
"MoveTo4"
true

250 265
"MoveTo5"

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE351

{:Link 125 :EventSource 120
:LinkEffect(:MoveTo(1000
{:Link 126 :EventSource 121
:LinkEffect(:MoveTo(1000
{:Link 127 :EventSource 122
:LinkEffect(:MoveTo(1000
{:Link 128 :EventSource 123
:LinkEffect(:MoveTo(1000
{:Link 129 :EventSource 124
:LinkEffect(:MoveTo(1000

:EventType IsSelected
1))}
:EventType
2)) 3%
:EventType
3)) 3%
:EventType
4)) 1}
:EventType

5)) 1%

IsSelected
IsSelected
IsSelected
IsSelected

{:Rectangle 4711 :InitiallyActive false
:0rigBoxSize 64 64 :0rigPosition 40 25 :0riglLineWidth 4 :0rigLineStyle 1

- -~ -~

-~y

:Link 1001
:LinkEffect
:Link 1002
:LinkEffect
:Link 1003
:LinkEffect
:Link 1004
:LinkEffect
:Link 1005
:LinkEffect
:Link 1006
:LinkEffect
:Link 1007
:LinkEffect
:Link 1008
:LinkEffect
:Link 1009
:LinkEffect
:Link 1010
:LinkEffect

:Rectangle 4712 :InitiallyActive false
:0rigBoxSize 64 64 :0rigPosition 78 45 :0riglLineWidth 4 :0OrigLineStyle 1
:0rigRefLineColour DarkGray :0rigRefFillColour Gray

:Rectangle 4713 :InitiallyActive false
:0rigBoxSize 64 64 :0rigPosition 116 65 :0rigLineWidth 4 :0rigLineStyle 1
:0rigRefLineColour DarkBlue :0rigRefFillColour Blue

:Rectangle 4714 :InitiallyActive false
:0rigBoxSize 64 64 :0rigPosition 154 85 :0rigLineWidth 4 :0rigLineStyle 1
:0rigRefLineColour DarkGreen :0rigRefFillColour Green

:Rectangle 4715 :InitiallyActive false

:0rigBoxSize 64 64 :0rigPosition 192 105 :0rigLineWidth 4 :0rigLineStyle 1
:0rigRefLineColour DarkMagenta :0rigRefFillColour Magenta

:EventSource 1000 :EventType

(:CallActionSlot(1000 1)

:EventSource 1000 :EventType

(:CallActionSlot(1000 2)

:EventSource 1000 :EventType

(:CallActionSlot(1000 1)

:EventSource 1000 :EventType

(:CallActionSlot(1000 2)

:EventSource 1000 :EventType

(:CallActionSlot(1000 1)

:EventSource 1000 :EventType

(:CallActionSlot(1000 2)

:EventSource 1000 :EventType

(:CallActionSlot(1000 1)

:EventSource 1000 :EventType

(:CallActionSlot(1000 2)

:EventSource 1000 :EventType

(:CallActionSlot(1000 1)

:EventSource 1000 :EventType

(:CallActionSlot(1000 2)

:TokenGroup 1000
:InitiallyActive false
:Shared false

:0rigRefLineColour DarkRed :0rigRefFillColour Red

TokenMovedFrom :EventData 1

)}

TokenMovedTo :EventData 1
)}

TokenMovedFrom :EventData 2
)}

TokenMovedTo :EventData 2
)}

TokenMovedFrom :EventData 3
)}

TokenMovedTo :EventData 3
)}

TokenMovedFrom :EventData 4
)}

TokenMovedTo :EventData 4
)}

TokenMovedFrom :EventData 5
)}

TokenMovedTo :EventData 5
)}

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE352

:MovementTable
(
(23451)
(51234)
)
:TokenGroupItems
(
(4711
:ActionSlots
(
(:SetFillColour (4711 :NewAbsoluteColour red))
(:SetFillColour (4711 :NewAbsoluteColour transparent))
)
)
(4712
:ActionSlots
(
(:SetFillColour (4712 :NewAbsoluteColour gray))
(:SetFillColour (4712 :NewAbsoluteColour transparent))
)
)
(4713
:ActionSlots
(
(:SetFillColour (4713 :NewAbsoluteColour blue))
(:SetFillColour (4713 :NewAbsoluteColour transparent))
)
)
(4714
:ActionSlots
(
(:SetFillColour (4714 :NewAbsoluteColour green))
(:SetFillColour (4714 :NewAbsoluteColour transparent))
)
)
(4715
:ActionSlots
(
(:SetFillColour (4715 :NewAbsoluteColour magenta))
(:SetFillColour (4715 :NewAbsoluteColour transparent))
)
)
)
:NoTokenActionSlots
(
(:Run(500) :Stop(501))
(:Run(501) :Stop(500))
)

}

{:PushButton 9001
:0OrigBoxSize 100 30
:0rigPosition 210 300
:ButtonRefColour gray
:OrigLabel "back to main"

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE353

}

{:Link 9002

:EventSource 9001 :EventType IsSelected

:LinkEffect (:TransitionTo(("demo/main.mhg" 0)))
}

{:Link 9003
:EventSource 9001 :EventType CursorEnter
:LinkEffect (:Activate(9005))

-~

:Link 9004
:EventSource 9001 :EventType CursorLeave
:LinkEffect (:DeActivate(9005))

-

:Link 9005
:InitiallyActive false
:EventSource 0
:EventType UserInput
:EventData 15
:LinkEffect (:TransitionTo(("demo/main.mhg" 0))

)

:InputEventReg 1
:SceneCS 320 350
:MovingCursor true

}

More Examples

Further examples are available in the MHEG applications folder:
bitmap — further examples of bitmaps in MHEG

interacting — further examples of interaction in MHEG
intvar — integer variables

jmf — video and audio

quiz2 — MHEG quiz in MHEG

text — further text in MHEG.

10.6.14 Relationships to Major Standards

Important relationships exist between MHEG-5 and other standards and spec-
ifications.

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE354

Davic (Digital Audio Visual Council) — aims to maximize interoperabil-
ity across applications and services for the broadcast and interactive do-
mains. It selects existing standards and specifies their interfaces in the
realm of a complete reference model. This comprises the content provider
system, the service provider system, and the service consumer system.
This forum has prepared a series of specifications: Davic 1.0 selected
MHEG-5 for encoding base level applications and Davic 1.1 relies on
MHEG-6 to extend these applications in terms of the Java virtual ma-
chine that uses services from the MHEG-5 RTE.

DVB (Digital Video Broadcasting)s — provides a complete solution for
digital television and data broadcasting across a range of delivery media
where audio and video signals are encoded in MPEG-2. The specification
includes an open service information system, known as DVB-SI, which
provides the elements necessary for developing a basic electronic program
guide (EPG) to support navigation amongst the new digital television
services.

MPEG — the well-known(Chapter 7) family of standards used for coding au-
diovisual information (such as movies, video, and music) in a digital com-
pressed format. MPEG-1 and MPEG-2 streams are likely to be used by
MHEG-5 applications, which can easily control their playback through the
facilities provided by the Stream class.

DSMCC (Digital Storage Media Command and Control) — specifies a
set of protocols for controlling and managing MPEG streams in a client-
server environment. The user-to-user protocol (both the client and server
are users) consists of VCR commands for playback of streams stored on
the server, as well as commands for downloading other data (bitmaps,
text, and so on). The playback of MPEG streams from within MHEG-5
applications has a counterpart at the DSMCC layer.

10.6.15 MHEG Implementation

Several components may be requires in implementing and MHEG systems:

Runtime Engine (RTE) — MHEG-5 runtime engines generally run across
a client-server architecture (See The Armida system (Figure 10.18) refer-
enced below for an example application).

A preceding Start-up Module may be used to perform general initialization
ete.:

e The client can be launched either as an autonomous Windows appli-
cation or

e as a plug-in by an HTML browser, allowing seamless navigation be-
tween the World Wide Web and the webs of MHEG-5 applications.
(See Armida system for more details).

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE355

= TE——
Start-Lip | | Larcal Lacal
moduile file: sysbem data

A A

PAHECG-4 || || LML — il

runtime endgire weRskn TI:""L!:_IL'IF‘

A pgs
| el ide

Preseration Weh
layer A0S

MArdia || || DB channed
aleoiders, dribeers selection

Figure 10.18: Armedia Client Architecture
Armedia is a client-server based interactive
multimedia application retrieval system.

The MHEG-5 RTE is the kernel of the client’s architecture. It performs
the pure interpretation of MHEG-5 objects and, as a platform-independent
module, issues I/O and data access requests to other components that are
optimized for the specific runtime platform.

The RTE performs two main tasks. First, it prepares the presentation
and handles accessing, decoding, and managing MHEG-5 objects in their
internal format. The second task is the actual presentation, which is based
on an event loop where events trigger actions. These actions then become
requests to the Presentation layer along with other actions that internally
affect the engine.

Presentation layer — The presentation layer (PL) manages windowing re-
sources, deals with low-level events, and performs decoding and rendering
of contents from different media to the user. This functionality is available
to the RTE via an object-oriented API that encapsulates all I/O platform
specific aspects. The basic MHEG-5 Presentable classes have counterparts
at this API level, which makes provisions for initialization/termination,
data access and decoding, setting specific attributes (such as text font,
color, and so on), and performing spatial and temporal controls. In ad-
dition, an informative flow exists from the PL back to the RTE, which
notifies user interaction and stream events.

Access module — This module provides a consistent API for accessing infor-
mation from different sources. It’s used by the RTE to get objects and
the PL to access content data (either downloaded or streamed). Note that

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE356

the selection of a particular delivery strategy is out of MHEG-5’s scope,
and hence remains an implementation issue. Typical applications should
support:

e bulk download for bitmaps, text, and MHEG-5 objects; and

e progressive download for audio and audiovisual streams.

The implementation of these mechanisms occurs via the DSMCC interface.
The user has full interactive control of the data presentation, including
playback of higher quality MPEG-2 streams delivered through an ATM
network. Object and content access requests can also be issued to the
Web via HT'TP. However, this wide-spread protocol still suffers from limi-
tations when high-quality video clips are progressively down-loaded, since
the underlying networks may not yet provide adequate quality-of-service
(QoS). When accessing the broadcast service, the Access module requires
the DVB channel selection component to select the program referred to
by a Stream object. To achieve this, you set the ContentHook to a value
that means Switched DVB and the OriginalContent to the identifier of
the channel to select. The MPEG-2 stream transported by the selected
channel is displayed in the active Scene’s presentation space.

MHEG Authoring Tool: MediaTouch —

The availability of an adequate authoring tool is mandatory to create the
MHEG applications. The MediaTouch (Figure 10.19) application is one
example developed for the Armida System

(http://drogo.cselt.stet.it/ufv/ArmidalS/home_en.htm). It is a visual-
based Hierarchical Iconic authoring tool, similar to Authorware in many
approaches.

MediaTouch is based on the native approach, which lets the author operate
at the level of MHEG-5 objects.

MediaTouch provides authors with the following functions:

Hierarchy Editor — Supports the interactive creation of the structure
of Applications and Scenes objects. The author operates by adding,
moving, and deleting Ingredients on the tree that represents the hi-
erarchy’s current status. Several Scenes from different Applications
can be edited at one time and you can copy and move Ingredients
between Scenes and Applications.

Properties Editor — The author sets the properties of Presentable In-
gredients via an input form that is specific to each object class. The
author does not need to type a value directly, since the system adopts
a menu-based input interface that aims to minimize errors and in-
consistencies.

Layout Editor — A Scene’s layout can be set by interactively adjusting
the position and size of the bounding box for every Visible Ingredient.

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE357

Fle Edit Seaich View Debug Opiions ‘window Hep
e e [= 1 = 4 = . v = [2

X Hierarchy Editor - woild_app. mh5 I [=] B

=
3C_main.|

I/ﬁn

e (e BN T T B VR e [M e e

sc_mainmhs OnStartlp B3| ideo clip t spa
sc_mainmh5 OnCloseDaown video clip 2 <- Run
sc_main.rnhf is running

Figure 10.19: MediaTouch MHEG Authoring Tool
(Hierarchy and Links Editor windows)

An Ingredient’s content data, when available, is also displayed within
its bounding box to make the layout match the actual presentation.

Links Editor — This function lets authors add, modify, and delete links
and actions to Application and Scene objects. The author sets the
link conditions, actions, and referenced objects via a menu. Links and
actions can also be copied between different scenes and applications.

Figure 10.19) shows a screen shot from MediaTouch where an Application
composed of two Scenes and one shared Text is open within the Hierarchy
Editor window. One of these Scenes shows its Presentable Ingredients,
and the author is editing its Links. The author can then launch the RTE
from within MediaTouch to check the outcome of his work.

MHEG Authoring Tool: MHEGDitor — MHEGDitor is an MHEG-5 au-
thoring tool based on Macromedia Director. MHEGDitor is composed of
an Authoring extra to edit applications and of a Converter Extra to con-
vert resulting movies into MHEG-5 applications. The two MHEGDitor
extras work separately. With MHEGDitor Authoring Extra, create and
edit your application within Macromedia Director 6. It opens a window to
set preferences and links a specific external script castLib to your movie for
you to create specific MHEG behaviours rapidly. You can test your appli-
cation on the spot within Director, as if it were played by MHEGPIlayer,
the MHEG interpreter companion of MHEGDitor. With MHEGDitor
Converter Extra, convert Macromedia Director 6 movies (edited with
MHEGDitor Authoring Extra) into a folder containing all necessary items

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE358

for an MHEG-5 application. Associated with Macromedia Director 6,
MHEGDitor is the easiest way to author multimedia applications for In-
teractive TV for both Macintosh and Windows. This tool makes it pos-
sible for all system operators or content providers to deliver developed
interactive programs to the widest range of potential users.

The Current Release is 1.4 which performs the following:

e Director 6.5 to MHEG-5
e Available on both Macintosh and Windows 95/NT platforms

e Advanced dynamic lists support, new Converter Extra settings (text
data exported as external data...), converted applications optimisa-
tion, and more.

MHEG writing tool:MHEG Write — An editor to create and manipulate
MHEG-5 applications by hand This editor is based on the free software
"VIM”, which is available via Internet from various sites for virtually all
operating systems, including DOS, Windows, UNIX, etc. The MHEG-
Write extension supports only the MHEG-5 textual notation. MHEG-
Write provides macros for object templates, syntax highlighting and syn-
tax error detection. Using MHEGWrite enables you to access every MHEG-
5 features to edit your applications, since this editor is able to read native
MHEG-5 code. It also gives good support for detailed examination, profile
adaptation, and error correction of MHEG-5 applications produced with
arbitrary other tools. By purchasing MHEGWrite, the MHEG Centre will
also provide you with a set of MHEG-5 application samples, illustrating
several MHEG-5 features, such as ListGroup together with cloning, using
variables, sharing objects, etc.

Playing MHEG files — There are a few ways to play MHEG files:

e MHEGPlayer is an MHEG-5 interpreter which is able to execute
MHEG-5 applications developed with MHEGDitor or any other au-
thoring tool. It implements the MHEG-5 International Standard
according to the additional requirements of the DAVIC application
domain. The available content types are aligned with the underly-
ing operating system. MHEGPIlayer consists of a core interpreter
with presentation system for Windows 95/NT. It is pre-configured
to utilise the local file system to access MHEG objects and content
data.

Supported Formats include:
— Bitmap: PNG, BMP, TIFF, JPEG, PSD
— Video: MPEG-1, AVI, Quicktime (via MCI)
— Audio: Wave, AIFF_C (via MCI)
— MHEG-5: ASN.1 (DER) or Textual Notation

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE359

o MHEG Java Engine — Java Source code exists to compile a platform-
independent MHEG player (http://enterprise.prz.tu-berlin.de/imw/)

e MHEG plug-ins for Netscape Browsers and Internet Explorer have
been developed,

10.6.16 MHEG Future

Several companies and research institutes are currently developing MHEG tools
and applications and conducting interoperability experiments for international
projects and consortia. The MHEG Support Center is a European project that
hopes to implement and operate an MHEG support and conformance testing
environment for developers of multimedia systems and applications. Its part-
ners include CCETT, Cril Ingenierie (France), De teBerkom, and GMD Fokus
(Germany). IPA, the Information-technology Promotion Agency of Japan, is
developing an MHEG-5 system with an authoring tool and viewer. The project
members consist of ASCII, KDD, NEC, NTT Soft-ware, the Oki Electric Indus-
try, Pioneer, Sony, and Toppan Printing. The purpose of this project is to do a
profiling study and conduct interoperability testing of MHEG-5 systems.
Also, the following European achievements are worth mentioning:

e a Java implementation of an MHEG-5 engine, available from Phillips; (See
below)

e MhegDitor by CCETT, an authoring tool based on Macromedia Director;
and

e the results of the Jupiter project that addresses usability, performance,
and interoperability of Davic-compliant services.

At CSELT, a partner of Jupiter, we’re making more complete versions of
MediaTouch and Armi**-da. We’ve demonstrated these systems at a number
of events on behalf of Telecom Italia and showed such applications as movies-
on-demand, news-on-demand, tourist information, and interactive TV.

A list containing the above applications and other initiatives is maintained
by the MHEG Users Group (MUG), an unofficial forum begun by people from
the standardization body to disseminate information and enable discussion on
MHEG (see http://www.fokus.gmd.de/ovma/mug).

It’s evident that the initial interest in MHEG-1 and MHEG-3 has recently
decreased due to the incoming ITV/VoD profile, which is based on MHEG-5
and MHEG-6. The specification of this complete solution, urged and endorsed
by Davic, was finalized by April 1998 when MHEG-6 is scheduled to become an
International Standard. Further efforts will be devoted to MHEG-7, which is
expected to provide the final specification of conformance and interoperability
aspects for MHEG-5 by January 1999.

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE360

10.6.17 Further Reading/Information

The above notes on MHEG are base largely on an article MHEG-5 — Aim, Con-
cepts, and Implementation Issues, by M. Echiffre, C. Marchisio, P. Marchisio,
P. Panicciari and S. Del Rossi, IEEE Multimedia, Winter 1998, pp 84-91. Also
available at URL: http://www.fokus.gmd.de/ovma/mug/archives/doc/ul084.pdf

Other good reference on MHEG and related multimedia standards are:

e T. Meyer-Boudnik and W. Effelsberg, MHEG Explained, IEEE Multime-
dia, Spring 1995, Vol. 2, No. 1, pp. 26-38.

e ISO 13522-5, Information TechnologyCoding of Multimedia and Hyperme-
dia Information, Part 5: Support for Base-Level Interactive Applications,
Int’l Org. for Standardization/Int’l Electronics Comm., Geneva, 1996.

e ISO Draft International Standard 13522-6, Information TechnologyCod-
ing of Multimedia and Hypermedia Information, Part 6: Support for En-
hanced Interactive Applications, Int’l Org. for Standardization/ Int’l Elec-
tronics Comm., Geneva, 1997.

e Davic 1.0 Specifications, Revision 5.0, Imprimeries de Versoix, Versoix,
Switzerland, Dec. 1995.

e ETSI 300 468 2d ed.: Digital Broadcasting Systems for Television, Sound,
and Data Services, Specification for Service Information (SI) in Digital
Video Broadcasting (DVB) Systems, ETSI publications dept., Sophia An-
tipolis, France, 1997, http://www.etsi.fr.

e ISO 13818-6, Information TechnologyGeneric Coding of Moving Pictures
and Associated Audio Information, Part 6: Digital Storage Media Com-
mand and Control, Int’l Org. for Standardization/Int’] Electronics Comm.,
Geneva, 1996.

e S. Dal Lago et al., Armida: Multimedia Applications Across ATM-Based
Networks Accessed via Internet Navigation, Multimedia Tools and Appli-
cations, Vol. 5, No. 2, Sept. 1997.

Resources on the Web include:

The MHEG Centre — hitp://www.mhegcentre.com/: Info on MHEGDitor,
MHEGWrite and more.

MHEG-5 User Group — www.fokus.gmd.de/ovma/mug
MHEG and the WWW — htitp://www.prz.tu-berlin.de/ joe/mheg/mheg_intro.html

Java MHEG Engine — http://thunder.informatik.uni-kl.de:8080/MHEG5Engine/,
http://enterprise.prz.tu-berlin.de/imw/ (Java Source).

CHAPTER 10. MULTIMEDIA INTEGRATION, INTERACTION AND INTERCHANGE361

MediaTouch — http://drogo.cselt.stet.it/ufv/mediatouch/index.htm
MediaTouch RTE (Free) — http://drogo.cselt.stet.it/ufv/mediatouch/rte.htm
GL-NET — http://www.mheg5.de/: MHEG Editor, Engine for Windows NT.

Moving Pictures Expert Group — www.cselt.it/mpeg, www.mpeg.org
Digital Audio Visual Council — www.davic.org

Digital Video Broadcasting — www.dvb.org

CSELT, Multimedia and Video Services — www.cselt.it/ufv

Digital TV Group UK — http://www.dtg.org.uk/

MHEG 5 UK — http://www.dtg.org.uk/reference/mheg/_mheg_index.html

Example MHEG Applications — http://drogo.cselt.stet.it /ufv/mediatouch/applications.htm

