
Basic Cumulus Dynamics

Clouds that occur when air becomes highly buoyant and
accelerates upward in a localized region (�0.1–10 km hor-
izontal extent) are referred to as convective or cumuliform
clouds. Their vertical air motions are much stronger, and
they condense and precipitate water more intensely.

They all have the appearance of rapidly bubbling or
“soaring” upward as they develop.

Cumuliform clouds exhibit a spectrum of forms, which

include:

l Fair weather cumulus, which are �1 km in both hori-

zontal and vertical scale (e.g., the cumulus humilis;

l Cumulus congestus (towering cumulus), which attain
widths and depths of several kilometers as aggregates 
of discrete smaller buoyant bubbles within the cloud rise 
one after the other reaching successively greater 
heights ;

l Individual cumulonimbus, which can at times produce

severe weather in the form of heavy rain, hail, lightning, 
thunder, strong outflow winds, and tornadoes. These 
clouds, occurring either alone or in lines, have widths 
on the order of tens of kilometers and typically extend 
vertically to near the tropopause, where their tops spread 
out and form the characteristic anvil, or “thunderhead”;

l Mesoscale convective systems, which have cloud tops

that extend over regions on the order of hundreds of

kilometers in scale, produce large amounts of rain,

contain stratiform precipitation that forms in connection

with the cumulonimbus, and can develop mesoscale

circulation patterns in addition to convective-scale air 
motions.

These different forms and degrees of convective cloud phe-

nomena have several common dynamical characteristics.

Fundamentally, they all arise from buoyancy; i.e., their air
motions always originate in the form of vertical accelerations

that occur when moist air becomes locally less dense than air

in the surrounding larger scale environment. The buoyant

accelerations lead to vertical air speeds �1–10s of meters

per second and to several important dynamical and physical

phenomena that are associated with rapid local ascent and

descent of air. The mass field in and around a convective

cloud must adjust to the cloud’s penetrative vertical motion,

and a distinctive buoyancy pressure-perturbation field

results to accommodate this adjustment. The rapidly moving

air in convective clouds is turbulent, which leads to

entrainment of surrounding environmental air. Entrainment

in turn modifies the cloud dynamics and microphysics.

Finally, the air motions in the cloud develop rotation, which
can enhance entrainment and produce dynamic pressure-
perturbations that can change the cloud’s structure.

1 BUOYANCY

Since all convective clouds owe their existence to the fact 
that air becomes buoyant on a local scale (less than about 
10 km), we begin by briefly recalling the nature of the 
buoyancy B, which appears as a contribution to vertical 
acceleration in the equation of motion. In the absence of 
friction, the vertical component of the momentum 
equation is:

Dw

Dt
¼� 1

ρo

@p�

@z
þB (1)

where w is the vertical velocity, ρo 
the reference-state 

density, and p
� the deviation of the pressure
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7.2 THE PRESSURE-PERTURBATION FIELD
ASSOCIATED WITH BUOYANCY

It can be anticipated intuitively that buoyancy cannot exist

without a simultaneous disruption of the pressure field. If a

parcel of air of finite width and depth is less dense than the

air in a surrounding horizontally uniform and otherwise

undisturbed atmosphere, then at the height of the base of

the parcel, the pressure is lower in the parcel than in the

environment. The horizontal gradient of pressure accel-

erates environmental air toward the base of the buoyant

parcel. This inward acceleration, moreover, is consistent

with the need to replace the buoyant air at the level that

would otherwise be vacated by the upward moving parcel.

A complete, internally consistent picture of mass,

pressure, and momentum fields required to exist in associ-

ation with a region of buoyant air is, of course, implied by

the basic equations. We can obtain this picture by com-

bining the horizontal and vertical equations of motion with

the continuity equation. If friction and Coriolis forces are

ignored, the equation of motion (2.47) can be written in

Eulerian form as

@v

@t
¼� 1

ρo
rp� þBk�v�rv (7.2)

If we take the three-dimensional divergence of this

equation after first multiplying it by ρo, we obtain

@

@t
r�ρovð Þ¼�r2p� þ @

@z
ρoBð Þ�r� ρov�rvð Þ (7.3)

Making the anelastic approximation by assuming that

mass continuity obeys (2.54), then the three-dimensional

mass divergence in the anelastic system and hence the

left-hand side of (7.3) is zero, and a diagnostic equation

for the pressure perturbation is obtained:

r2p� ¼FBþFD (7.4)

where

FB � @

@z
ρoBð Þ (7.5)

and

FD ��r� ρov�rvð Þ (7.6)

Thus, the Laplacian of the pressure-perturbation field in

an anelastic fluid must be consistent with the vertical gra-

dient of buoyancy FB and the three-dimensional divergence

of the advection field FD. FB is called the buoyancy source
and FD the dynamic source. The pressure perturbation may

be thought of as the sum of two partial pressures p�B and p�D
such that

p� ¼ p�Bþp�D (7.7)

r2p�B ¼FB (7.8)

r2p�D ¼FD (7.9)

In those relatively rare cases, p�D dominates in certain 
parts of the cloud. In most convective cloud situations, 
however, the pressure perturbation p�B determined, 
according to (7.5), by the vertical gradient of buoyancy 
dominates p�.

To determine the nature of p�B, we note that (7.8) is anal-
ogous to Poisson’s equation in electrostatics, where �FB

plays the role of a charge density, p�B is like the electrostatic
potential, and �rp�B is equivalent to the electric field. For

simple spatial arrangements of buoyancy, we can thus use

known mathematical solutions of Poisson’s equations to

find the vector field �ρo
�1rp�B. We will call this field,

which is analogous to an electric field produced by a par-

ticular spatial arrangement of charge density, the buoyancy
pressure-gradient acceleration (BPGA) field.

This solution is illustrated qualitatively in Figure 1 for a 
uniformly buoyant parcel of finite dimensions. The plus

FIGURE 1 Vector field of buoyancy pressure-gradient force for a uni-
formly buoyant parcel of finite dimensions in the x–z plane. The plus and
minus signs indicate the sign of the buoyancy forcing function�@ ρoBð Þ=@z
along the top and bottom of the parcel.



and minus signs in the figure indicate the sign of �FB

along the top and bottom of the parcel. Where �FB > 0,

the BPGA field (i.e., �ρo
�1rp�B) diverges according to

(7.8), and where �FB < 0 the BPGA field converges.

Everywhere except the top and bottom of the parcel,

FB ¼ 0. The lines of the BPGA field are shown as stream-

lines, like lines of electric field for finite horizontal parallel

plates of opposite charge density. Within the parcel, the

lines of the BPGA field are downward. There is a diver-

gence of the BPGA field at the top of the parcel and conver-

gence at the bottom. Outside the parcel, lines of force are up

above the parcel, downward in the regions to the sides of the

parcel, and upward just below the parcel. These lines

indicate the directions of forces acting to produce the com-

pensating motions in the environment that are required to

satisfy mass continuity when the buoyant parcel moves

upward.

The downward lines of force shown inside the parcel in

Figure 7.1 imply that the upward acceleration of buoyancy

is counteracted to some degree by a downward BPGA. This

counteraction must occur because some of the buoyancy of

the parcel has to be used to move environmental air out of

the way in order to preserve mass continuity while the

parcel rises. The only way that downward BPGA could

be absent would be to have the parcel’s width shrink to

zero—a nonsensical case, but nonetheless illustrative of

the fact that a given amount of buoyancy produces a larger
upward acceleration the narrower the parcel. In cumulus

and cumulonimbus clouds, the distribution of B is such that

BPGA is often the same order of magnitude as B. The
BPGA can be especially important near the tops of growing

clouds, where rising towers are actively pushing environ-

mental air out of the way.

The maximum magnitude is achieved by the BPGA

when it exactly balances B. If we let B�
o¼ 0, then

B¼ 1

ρo

@p�

@z
¼�BPGA (7.10)

which is the case of hydrostatic balance (Section 2.2.4). In

the strict mathematical sense, this case occurs at the limit

where the horizontal dimension of a buoyant element as

in Figure 7.1 becomes infinite in horizontal extent. This fact

can be seen by multiplying (7.10) by ρo, taking @/@z of both
sides of the equation, and rearranging to obtain

@ρoB

@z
¼ p�zz (7.11)

Then (7.4), (7.5), and (7.11) imply that

r2
Hp

� ¼ 0 (7.12)

where rH is the horizontal gradient operator. Thus, if the

horizontal gradient of p� is flat in at least one place, there

is no horizontal variation of p�. The counterpart of

Figure 7.1 for the hydrostatic case is shown in Figure 7.2,

which shows the lines of force for a uniformly buoyant

parcel of infinite horizontal extent.

3 ENTRAINMENT AND DETRAINMENT

3.1 General Considerations
Another important property common to all forms of con-
vective clouds is that they are highly turbulent. Within con-
vective clouds, buoyancy and gradients of velocity 
components are both strong. Hence, conversion from shear 
C and the buoyancy generation B in (2.86) are important 
sources of turbulent kinetic energy. The intensity of the tur-
bulence in the cloud is much greater than in the surrounding 
environment.

The incorporation of environmental air into a cloud is

called entrainment, while the ingestion of cloudy air into

the laminar environment is referred to as detrainment. In
the case of cumulus clouds, entrainment and detrainment

are due not just to the turbulent mixing across boundaries

but also to advection across the cloud boundaries required

to satisfy mass continuity. In addition, air may be drawn

into cumulus clouds as a result of internal cloud motions

taking the form of organized overturning and rotation on

the scale of the cloud itself.

In this section, we investigate the entrainment and

detrainment processes that affect convective clouds. First,

FIGURE 7.2 Vector field of buoyancy pressure-gradient force for a uni-

formly buoyant parcel of infinite horizontal dimensions. The plus and

minus signs indicate the sign of the buoyancy forcing function

�@ ρoBð Þ=@z along the top and bottom of the parcel.
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we examine some early ideas about how to approximate the

mixing at cloud boundaries. These traditional views regard

the mixing as continuous in time and homogeneous in

space. Then we will proceed to a more realistic view, which

recognizes that the mixing is intermittent in time and inho-

mogeneous in space.

3.2 Early Views of Mixing with the Cloud’s
Environment

In the late 1940s, Henry Stommel, an oceanographer, sug-

gested1 that the turbulent exchange of mass between a cloud

and its environment could be roughly approximated by con-

sidering a rising cloud element interacting with its envi-

ronment as shown in Figure 7.3. At time t, the rising

element is considered to have mass m. Between t and

tþΔt, a mass of air Δmð Þε is entrained from the envi-

ronment and a mass of air Δmð Þδ is detrained to the envi-

ronment. Consider some quantity A , which has units of

energy, mass, or momentum per unit mass of air. The value

ofA in the rising cloud element is represented byA c and

in the environment by A e. It is assumed that we are

dealing with horizontal averages for the in-cloud and out

of cloud regions and that:

l the entrained air is brought in from the sides (i.e.,

laterally),
l the entrained air is mixed instantaneously and thor-

oughly across the cloud element,

l and the process occurs continuously as the element rises.

These assumptions are the foundation of the concept of con-

tinuous, homogeneous entrainment. With these assump-

tions, the conservation of A in the cloud parcel can be

written as

wþ Δmð Þε� Δmð Þδ
� �

A cþΔA cð Þ
¼mA cþA e Δmð Þε�A c Δmð Þδþ

ΔA c

Δt

� �
S

mΔt

(7.13)

where ΔA c=Δtð ÞS is the rate of change ofA c that would

be present even if the parcel was not exchanging mass with

the environment. Rearrangement of terms in (7.13) and

taking the limit as Δt! 0 leads to

DA c

Dt
¼ DA c

Dt

� �
S

þ 1

m

Dm

Dt

� �
ε

A e�A cð Þ (7.14)

where the notation D=Dt, as usual [see (2.2)], indicates a

derivative following a parcel of fluid. The detrainment

terms in (7.13) cancel and do not appear in (7.14) since

detrainment of mass in no way affects the mass averaged
values of variables in the cloud.2 It is only entrainment that

affects the in-cloud averages since it dilutes the parcel with

environmental fluid.

As we will see in Sections 7.3.3–7.3.6, modern observa-

tions show that the entrainment and detrainment processes

in cumulus clouds are not continuous, instantaneous, or
thorough. A completely accurate representation of the

process must ultimately take these facts into account. None-

theless, the above simple view has considerable value in

providing a simple and tractable first approximation to

cumulus dynamics.

The role of entrainment in the First Law of Thermody-

namics may be seen by applying (7.14) to the moist static
energy

h� cpTþLqvþgz (7.15)

In the absence of entrainment and diabatic processes

other than release of latent heat in condensation or evapo-

ration (ignoring ice-phase processes), the First Law is given

by (2.12). If the pressure change following a parcel is to a

first approximation hydrostatic, then taking D(7.15)/Dt,
with substitution from (2.12) and (2.38), yields

FIG 3 Idealization of a rising cloud element interacting with its 
environment.
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Dhc
Dt

� �
S

¼ 0 (7.16)

In this case, (7.14) becomes

Dhc
Dt

¼ 1

m

Dm

Dt

� �
ε

he� hcð Þ (7.17)

when h is substituted forA . Using the definition (7.15), we

may rewrite (7.17) as

DTc

Dt
¼ � g

cp
wc� L

cp

Dqv
Dt

þ 1

m

Dm

Dt

� �
ε

Te�Tcð Þþ L

cp
qve�qvcð Þ

� �
ið Þ iið Þ iiið Þ

(7.18)

where the terms on the right are recognized to be (i) the dry

adiabatic cooling, (ii) the latent heating, and (iii) the effects

of mixing.

Equations of the form (7.14) may also be written with

A replaced by the vertical velocity or the water-continuity

variables in a cumulus cloud. In the case of vertical

velocity, the source term in (7.14) (i.e., the change in w that

would occur whether or not entrainment takes place)

becomes Dwc=Dtð ÞS, which is given by the right-hand side

of (7.1). Thus, (7.14) becomes

Dwc

Dt
¼� 1

ρe

@p�

@z
þB� 1

m

Dm

Dt

� �
ε

wc (7.19)

which is equivalent to adding the entrainment term to (7.1).

The reference-state density has been taken to be that of the

environment, whose conditions can be obtained from radio-

sonde data. The vertical velocity in the environment does

not appear in the entrainment term because it is assumed

to be small compared to the vertical velocity in the cloud.

When A is replaced by the water substance mixing

ratios, the change in the mixing ratio that would occur in

the absence of entrainment Dqic=Dtð ÞS is given by the

sources and sinks represented by Si on the right-hand side

of the water-continuity equations (2.21). The water-

continuity equations then take the form

Dqvc
Dt

¼�Cþ 1

m

Dm

Dt

� �
ε

qve�qvcð Þ (7.20)

and

Dqic
Dt

¼ Siþ 1

m

Dm

Dt

� �
ε

qie�qicð Þ, i¼ 1, . . . ,k (7.21)

whereC, representing the net condensation (or evaporation)
rate, is the sink (or source) term for the water-vapor mixing

ratio, k is the number of subdivisions of the hydrometeor

content, and the source and sink terms for these mixing

ratios depend upon the type of water-continuity model

assumed and are therefore left in symbolic form as Si.

Equations (7.18)–(7.21) would constitute a way to cal-

culate the properties Tc,wc, qvc, and qic of a rising parcel

in a cumulus cloud, if ways of determining the pressure per-

turbation p� and the entrainment rate m�1 Dm=Dtð Þε were
available. This set of equations is the basis of the one-
dimensional Lagrangian cumulus model. Often, this model

is expressed with z rather than t as the coordinate. The ver-
tical velocity w¼Dz=Dt is used as the basis for the coor-

dinate transformation. By substituting wD=Dz for D=Dt
in (7.18)–(7.21) and dividing all the equations by

w (assumed to be finite and positive for a rising mass of

fluid), we obtain

DTc

Dz
¼� g

cp
� L

cp

Dqvc
Dz

þΛ Te�Tcð Þþ L

cp
qve�qvcð Þ

� �
(7.22)

D

Dz

1

2
w2
c

� �
¼� 1

ρe

@p�

@z
þB�Λw2

c (7.23)

Dqvc
Dz

¼� C

wc
þΛ qve�qvcð Þ (7.24)

and

Dqic
Dz

¼ Si
wc

þΛ qie�qicð Þ, i¼ 1, . . . ,k (7.25)

where

Λ� 1

m

Dm

Dz

� �
ε

(7.26)

It should be noted that the values of Tc,wc,qvc, and qic,
obtained as solutions of (7.22)–(7.25), are values of these

variables at various points along the path of a cloud element

that is either rising or sinking. These solutions are not

instantaneous in-cloud profiles except in the special case

of a steady state cloud in which similar parcels continually

follow each other upward.

Equation (7.22) can be thought of in terms of a thermo-

dynamic diagram. The left-hand side gives the temperature

change of the parcel with height. The first two terms on

the right describe the temperature change with height of

the parcel in the presence of condensation but in the absence

of entrainment. The negative of this temperature change

with height is the moist adiabatic lapse rate. If entrainment

is active, the lapse rate of a parcel (�DTc=Dz) lies some-

where between the moist adiabatic and environmental lapse

rate as a result of mixing environmental air of different tem-

perature and humidity into the parcel. If the entrainment

effect is strong, the parcel’s temperature differs only

slightly from the environmental temperature. Thus, this

simple view seems to explain qualitatively the observations

that Stommel was concerned about (see earlier footnote).

To close the one-dimensional Lagrangian cumulus

model, some way has to be found to express the entrainment
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Λ and the pressure perturbation p�. The traditional approach
is to invoke some form of mass continuity, while consid-

ering the cumulus cloud to be analogous to certain

laboratory phenomena. For this purpose, three types of

laboratory phenomena are considered: the jet, the thermal,
and the starting plume.

In the jet model, the updraft is considered to behave, to a

first approximation, like a steady state, mechanically driven

jet (Figure 7.4). In such a jet, environmental fluid is

entrained and, since the environment is relatively laminar,

there is no detrainment from the jet (i.e., the environment

does not entrain air from the jet). Consider an arbitrary

parcel of mass m between heights z and zþΔz in the ide-

alized steady state jet depicted in Figure 7.5. In time Δt,
the original massm is replaced by an equal mass. Therefore,

m¼ μfΔt (7.27)

where μf is the vertical mass flux (in kg s�1) in the jet at

height z. Also in time Δt, the original parcel entrains mass

Δmð Þε ¼ Δμf
� 	

ε
Δt (7.28)

It follows from (7.27) and (7.28) that, for a steady state

jet

1

m
Δmð Þε ¼

1

μf
Δμf
� 	

ε
(7.29)

The entrainment rate Λ defined by (7.26) is then

obtained for the steady state jet by dividing (7.29) by Δz
and taking the limit as Δz! 0; the result is:

Λ¼ 1

μf

dμf
dz

� �
ε

(7.30)

where we have made use of the fact that in the special case

of a steady state jet the vertical derivative following the

parcel D=Dz and the vertical derivative with respect to

height at an instant of time within the steady state jet

d=dz are equivalent.

The mean flow in laboratory jets is approximately

steady state, incompressible, and circularly symmetric.

Under these conditions the mean-variable form of the

Boussinesq mass continuity equation (2.55) applies. In

cylindrical coordinates centered on the jet, which is

assumed to be circularly symmetric about the central axis,

this equation becomes

1

r

@ ruð Þ
@r

þ@w

@z
¼ 0 (7.31)

where r is the radial coordinate and u is the radial velocity.

Bars indicate time averages. Laboratory experiments with

this type of jet show that

w¼W zð Þe� r=R̂ð Þ2 (7.32)

FIGURE 7.4 Streamlines of the flow associated with a mechanically 
driven fluid jet. The cross sectional area of the jet expands downstream 
from its source as fluid is entrained from the environment.

FIGURE 7.5 Idealization of a steady state updraft jet inside a cumulus

cloud.
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where R̂ is a constant.3 Other dynamical variables have

similar radial profiles. For mathematical simplicity, this

Gaussian profile is often replaced by a “top hat” profile:

w¼ wc zð Þ, 0< r< b
we zð Þ, r> b



(7.33)

Substituting this profile into (7.31) and integrating over

radius from 0 to b, we obtain

d

dz
wcb

2
� 	¼�2bu bð Þ (7.34)

Thus, an increase in mass flux with height is matched by

horizontal inflow.

In early experiments with laboratory jets, it was hypoth-

esized4 and verified experimentally that the horizontal

inflow at a given altitude was proportional to the rate of

upward motion at that level, that is:

�ujr¼R̂ ¼ αεW (7.35)

where αε stands for a constant determined from laboratory

experiments. If for the top hat approximation we associate R̂
with b, we infer from (7.34) and (7.35) that

d

dz
wcb

2
� 	¼ 2αεbwc (7.36)

Sincewcb
2 is proportional to the vertical mass flux in the

jet (μf ), (7.36) can be rewritten as

1

μf

dμf
dz

¼ 2αε
b

(7.37)

Recalling (7.30), and the fact that the laboratory jets do

not detrain, we see that (7.37) gives us an expression for the

entrainment rate.

Λ¼ 1

μf

dμf
dz

� �
ε

¼ 2αε
b

(7.38)

The shape of the jet implied by (7.36) is given by

db

dz
¼�1

2
b
d ln wc

dz
þαε (7.39)

Laboratory data show that αε has a value of about 0.1.

The laboratory jets to which (7.38) applies are incom-

pressible. The analogy between the cumulus clouds and

the laboratory jet is based on the similarity of the incom-

pressible and anelastic continuity equations. The incom-

pressible equation is identical to the Boussinesq equation

(2.55). The anelastic continuity equation (2.54) differs only

in the inclusion of the density-weighting factor ρo, which
we set equal here to the environmental density ρe. For the

steady state cylindrical geometry of the jet, the anelastic

continuity equation is then

1

r

@ ρeruð Þ
@r

þ@ ρewð Þ
@z

¼ 0 (7.40)

which is similar to (7.31) except for the density factor. By

analogy to the incompressible case, the equivalent to (7.39)

is found to be

Db

Dz
¼�1

2
b
D

Dz
ln ρewcð Þþαε (7.41)

where we have replaced the notation d=dz with D=Dz to

emphasize that this equation can be solved simultaneously

with (7.22)–(7.25) in the case of the steady state jet.

To complete the jet-analogy version of the one-

dimensional Lagrangian cumulus equations, it is assumed

that the pressure perturbation is zero, and a laboratory

derived empirical value of αε ¼ 0:1 is usually used in

(7.38) and (7.41). The vertical equation of motion (7.23)

then becomes

wc
Dwc

Dz
¼B�0:2

b
w2
c (7.42)

It is evident from Section 7.2 that the assumption of zero

pressure perturbation (or that its vertical gradient is zero)

violates mass continuity. The assumption in this case can

be partially justified since once a steady state jet is estab-

lished, a rising parcel inside the jet does not have to domuch

work to push the fluid ahead of the parcel out of the way

since the parcel lying in its path is already in motion. Hence,

the vertical pressure-gradient acceleration is not large. The

steady state jet analog model of cumulus convection is then

constituted by the equations (7.22), (7.24), (7.25), (7.38),

(7.41), and (7.42) in the variables Tc, wc, qvc, qic, Λ,
and b. The source and sink terms C and Si are expressed

in terms of these variables to close the set of equations.

Various objections were raised to the jet analogy as a

model of cumulus convection. This model in particular does

not appear to account for the non-steady aspects of many

convective clouds. These objections led to the bubble
model,5 in which a cumulus cloud is envisioned as a series

of rising bubbles of buoyant air. As each bubble rises, envi-

ronmental air is pushed around the bubble and mixes into a

turbulent wake behind the bubble. As the environmental air

moves around the bubble, it continually erodes the surface

layer of the bubble until the entire bubble disappears. A new

bubble may rise through the wake of a previous bubble.

Since the wake contains more water vapor than the sur-

rounding environment, the new bubble is exposed to suc-

cessively less erosion and can therefore attain a greater

altitude than its predecessor. A cumulus cloud is envisioned

as consisting of new bubbles rising through the wakes of old
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bubbles. The top of the cloud consists of the upper cap of the

most highly ascending bubble in the cloud (Figure 7.6).

The bubble model has qualitative appeal in that it seems

to retain the character of what many cumulus clouds look

like as they grow.

A quantitative formulation of the bubble model6

assumes that the rising bubbles are spherical and preserve

their shape while diminishing in size. The vertical

momentum equation (7.23) is then written as

wc
Dwc

Dz
¼�DRþB (7.43)

where �DR is a parameterization of the vertical pressure-

gradient acceleration term.7 According to this model,

Λ¼ 0. That is, the buoyant elements do not entrain. They

only detrain as they are eroded. The erosion rate may be

related, according to a prescribed scheme, to the thermody-

namic properties of the environment. The environmental air

is, however, not mixed into the remaining non-eroded core,

and entrainment terms do not appear in any equations.

Thus, buoyancy is counteracted in the vertical motion

equation (7.43) entirely by the pressure-gradient acceler-

ation, not by diluting the buoyancy by entrainment of envi-

ronmental air. This characteristic of the bubble model

appears to be in contradiction to the observations of diluted

air in cumulus—such as those discussed by Stommel. For

this reason, the bubble model was disregarded for many 
years.

When elements of salt solution were released into water, 
it was found that these (negatively) buoyant ele-ments were 
not eroded, but rather expanded (Figure 7.7). Thus, it was 
discovered that bubbles are not simply eroded; they also 
entrain. These entraining buoyant bubbles are referred to 
as thermals. The laboratory experiments showed that 
erosion (detrainment) occurred only in a stratified 
stable environment. In the atmosphere, evaporative cooling 
around the edges of rising cloud elements can contribute to 
the tendency of mixtures to be left behind, enhancing 
bubble model tendencies.

Laboratory thermals in a neutral environment were

observed to expand along a similar cone for which the

radius of a thermal was given by

b¼ αε z (7.44)

where z is the height of the center of the thermal and αε ¼ 0:2.
Since the thermal does not detrain, its entrainment rate is

                FIG 6 Bubble model of convection.

FIGURE 7.7 Successive outlines of laboratory thermals traced from pho-
tographs. The thermals, produced by dropping elements of salt solution 
into water, were negatively buoyant. The picture is inverted to indicate 
the analogous ascent of a positively buoyant element.
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m
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� �
ε

¼ 1

4=3ð Þπb3
D

Dt
4=3ð Þπb3� �

(7.45)

Substituting from (7.44) and dividing by wc, we obtain

Λ¼ 1

m

Dm

Dz

� �
ε

¼ 3αε
b

(7.46)

where αε ¼ 0:2. Comparing (7.38) and (7.46), we note that

the entrainment rates for jets and thermals are both

inversely proportional to the radius of the region of rising

fluid, but the entrainment rate for the thermal is 3� larger

than for the jet.

Making use of (7.46) and the empirical value of

αε ¼ 0:2, we may write the vertical momentum

equation (7.23) in the case of the thermal as

wc
Dwc

Dz
¼�DRþB�0:6

b
w2
c (7.47)

This relation has similarities to the momentum equa-

tions for both the jet (7.42) and the bubble (7.43). Like

the jet equation, it has an entrainment term. The rate of

entrainment, however, is now proportional to 0:6=b, which
is triple the rate of dilution in the jet. Moreover, the

buoyancy B is much weaker since the temperature and

mixing ratio equations also contain entrainment terms

diluting the in-cloud thermodynamic properties—at a rate

of 0:6=b. In addition, a parameterized pressure-gradient

acceleration is again included, since, like the bubble, the

thermal must push the environmental air out of the way.

Thus, the thermal has both high entrainment and pressure

drag slowing it down, and low buoyancy.

The laboratory experiments such as those illustrated in

Figure 7.7 reveal not only that the thermal entrains, but they

also indicate the mechanism of entrainment in these phe-

nomena. It was found that the internal circulation in labo-

ratory thermals is similar to that of a Hill’s vortex

(cf. Figures 7.8 and7.9a).Hill vortex theory9 has been used10

to derive an analytic expression for the observed internal cir-

culation in a risingcumulus-cloud element.According to this

model, the upper portion of the cloud element consists of a

Hill’s vortex with a turbulent wake located somewhere

below the center of the cloud element (Figure 7.9b). The

upward circulation in the center of the element described

by the Hill’s vortex is the mechanism of entrainment. This

upward influx into the element is assumed to come from

the wake and thus to be composed of an arbitrary mixture

of environmental and undiluted cloud air.

A relationship between jets and thermals was discovered 
as the laboratory experiments continued into the early 
1960s. Specifically, it was found that as a laboratory

FIG 8 The distribution of velocity in a laboratory thermal. The outline 
of the buoyant fluid is shaded. The values of the vertical velocities (solid 
lines) and radial velocities (dashed lines) are expressed as multiples of the 
vertical velocity of the thermal cap.

(a) (b)

FIG 9 (a) Theoretical “Hill’s vortex.” Stream function lines both inside 
and outside the vortex are shown. (b) Idealization of the internal cir-
culation in a rising cumulus-cloud element. The upper portion consists of 
Hill’s vortex. The lower portion, located below the center of the cloud 
element, is a turbulent wake.
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jet becomes established, it is capped by a thermal

(Figure 7.10). This entity is called the starting plume. It is
modeled by assuming that the cap behaves like a thermal,

except that the fluid just below the cap is characterized

by the solution of the steady state jet equations. That is,

fluid drawn up into the cap comes from the jet and is thus

already a mixture of cloud and environmental air. The cap

should therefore be diluted more slowly than an isolated

thermal of the same size under similar environmental con-

ditions. The vertical velocity in the jet, which has the

Gaussian profile (7.32), almost exactly matches the analytic

expression for the vertical velocity profile in the spherical

vortex (Figure 7.11). This coincidence allows one to derive

a set of equations for the plume cap taking into account the

influx of air from the Gaussian plume at the base of the

cap.12 The entrainment rate predicted by these equations

is inversely proportional to the cap radius. Laboratory

experiments verified this relation and showed the propor-

tionality constant was 0.2, that is:

Λ¼ 1

m

Dm

Dz

� �
ε

¼ 0:2

b
(7.48)

for the starting plume cap. The equation for the vertical

velocity of the cap can then be written as

wc
Dwc

Dz
¼�DRþB�0:2

b
w2
c (7.49)

which has the form of (7.47), the equation for the thermal,

but with an entrainment rate equal to that of the steady state

jet [recall (7.38)].

During the mid- to late 1960s, the one-dimensional 
Lagrangian model was tested extensively in the field as a 
way to predict the maximum height reached by a convective 
cloud. In these tests, the cloud element radius b was treated 
as an observed quantity provided by visual observation 
from research aircraft flying near the clouds. For simplicity, 
b was assumed to be a constant for a particular cloud. The 
thermodynamic structure of the environment was provided 
by radiosonde data taken in the vicinity of the clouds. It was 
found that the most accurate cloud-top heights were calcu-
lated for an entrainment rate of approximately 0:2=b, which 
corresponds to both the jet and the starting plume analogy.13 

Cloud-top height, however, is not an especially good test of 
the cloud dynamics since it is basically the stability of the 
environment that controls cloud height rather than any 
assumed model properties. Extensive experimentation has 
shown that one-dimensional Lagrangian models are inca-
pable of simultaneously predicting cloud-top height and 
liquid water content.

FIG 10 The “starting plume,” which occurs as a turbulent jet begins. 

FIG 11 Matching of the vertical velocity in the lower jet (dots) and the 
upper spherical vortex (solid line) of a starting plume.
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