Examples with its solution

Q-1-(0.2) g of saline solution consisting of mixing (potassium chloride and potassium nitrate) was passed through a cationic exchanger and the collected solution from the column was calibrated against the potassium hydroxide base , If the flow volume of the burette was $(20) \mathrm{ml}$, calculate :

1. The weight of potassium chloride in the sample?
2. The weight of potassium nitrate in the sample?
3. The Normality concentration of the potassium hydroxide?
4. PPM for potassium nitrate in the solution (5 ml) ?
5. Write the equations for this question?

If you know the percentage of potassium chloride in the sample is 80%
And the Atomic weight for ($\mathrm{K}=39, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Cl}=35.5$)

$$
0.2
$$

$$
\frac{\omega t}{\text { eq. } \omega t}+\frac{\omega t}{0.16}+\frac{N \times V}{1000}+\frac{N \times 20}{1000} \Rightarrow N=0.12
$$

(4) PPM for $\mathrm{KNO}_{3}=N \times$ eq. $\omega+\times 1000$

$$
\begin{aligned}
& =\frac{\omega+}{\text { era/ }} \times \frac{1000}{V(m)} \times \frac{\text { ed.w }}{V\left(04 \times 10^{6}\right.} \\
& =\frac{0.04}{5}=800
\end{aligned}
$$

(5) $\mathrm{R}-\mathrm{H}^{+}+\mathrm{KCl} \rightleftharpoons \mathrm{R}-\mathrm{K}^{+}+\mathrm{HCl}$

$$
\mathrm{R}-\mathrm{H}^{+}+\mathrm{KNO}_{3} \rightleftharpoons \mathrm{R}-\mathrm{K}^{+}+\mathrm{HNO}_{3}
$$

Q-1 - A sample of sodium bromide weighing (0.1) g was dissolved in $(50) \mathrm{ml}$ of the distilled water, The saline solution was then passed on a cationic column (H^{+}Form), Then solution was collected from the column and calibrated with sodium hydroxide , If the volume of the sodium hydroxide was $(50) \mathrm{ml}$,

Calculate :
1- The resin capacity if the resin weight is $(0.5) \mathrm{g}$
2- The concentration of the sodium hydroxide in ppm.
3- Write the equation for this question $\Rightarrow \mathrm{R}-\mathrm{H}^{+}+\mathrm{NaBr} \rightleftharpoons \mathrm{R}-\mathrm{Na}^{+}+\mathrm{HBr}$
If you know the atomic weight of $\mathrm{Na}=23, \mathrm{O}=16, \mathrm{H}=1, \mathrm{Br}=80$
(1)
$T . C=\frac{N_{0} \cdot \circ \text { of Med of }\left(H^{+}\right)}{g \circ f \text { Resin }} \rightarrow=V_{1} d_{\text {dh io }}$ o
No. of $\mathrm{Meq} \mathrm{H}^{+}=$No. of Mel of NaBr

$$
\begin{aligned}
\text { of Meg H } & =N \times V \\
N \times V & =\frac{\omega t}{\text { eq. Wt }} \times \frac{1000}{V} \times V
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{w t}{4 . \omega . w x} \times \frac{0 .}{V} \times 1000 \Rightarrow \text { This No. of Mes H } \\
& =\frac{0.1}{103} \times 1
\end{aligned}
$$

$$
T_{\cdot c}=\frac{0.97}{0.5}=1.9 .94
$$

(2) $\mathrm{No} . \circ \mathrm{f}$ Meg of $\mathrm{H}^{+}=\mathrm{No}$. of May NaH

No. of Med of $\mathrm{NaBr}=\mathrm{N}_{0}$. of Med NaH

$$
\begin{aligned}
& 0.97=N \times 50 \\
& N=0.019
\end{aligned}
$$

Q-1- (0.2) g of saline solution consisting of mixing (sodium chloride and sodium nitrate) was passed through a cationic exchanger and the collected solution from the column was calibrated against the sodium hydroxide base ,If the flow volume of the burette was
(20) ml , calculate :

$$
\text { eq. } \omega t(\mathrm{NaCl})=
$$

$23+35.5$

1. The weight of sodium chloride in the sample?

2. The weight of sodium nitrate in the sample ?
3. The Normality concentration of the sodium hydroxide?
4. PPM for sodium nitrate in the solution (5 ml) ?
5. Write the equations for this question?

If you know the percentage of sodium chloride in the sample is 80%
And the Atomic weight for ($\mathrm{K}=39, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Cl}=35.5$)
(1) $\% \mathrm{Nacl}=\frac{\omega+(\mathrm{Nacl})}{\omega+\text { of Sample }} \times 100$
$\frac{80}{100}=\frac{\omega+(\mathrm{NaCl})}{0.2 \mathrm{gm}}=0.16 \mathrm{gm} w \mathrm{~g}^{2} \mathrm{NaCl}$
wt of $\mathrm{NaNO}_{3} \Longrightarrow \% 100-\% .80=20 \%$
(2) $\% \mathrm{NaNO}_{3}=\frac{\omega+\left(\mathrm{NaNO}_{3}\right)}{\omega+\text { of sample }} \times 100 \Rightarrow \frac{20}{100}=\frac{\omega t\left(\mathrm{NaNO}_{3}\right)}{0-2}$ $\Rightarrow 0.04 \mathrm{gm}$
(3) No. of $\mathrm{Meq}(\mathrm{NaCl})+\mathrm{No}$ of $\mathrm{Meq}(\mathrm{NaNO})=\mathrm{No}$ of $\mathrm{Meq}(\mathrm{NaOH})$ $\frac{\omega t}{\text { eq. } \omega t} \times 1000+\frac{\omega t}{\text { eq. } \omega t} \times 1000=N \times \mathrm{V}$
$\frac{0.16}{58.5}+\frac{0.04}{85}=\frac{N \times 20}{1000} \Rightarrow N=0.15$ for NaOH
(4) PPM for $\mathrm{NaNO}_{3}=N \times$ eq. $\omega+\times 1000$ $=\frac{\omega t}{e q .0 \mathrm{t}} \times$ ea/ wt $\times \frac{1000}{\mathrm{~V}} \times 1000$
$=\frac{0.04 \times 10}{5(\mathrm{ml})} \Rightarrow \underbrace{8000}$
5) $\mathrm{R}-\mathrm{H}^{+}+\mathrm{NaCl} \rightleftharpoons \mathrm{R}-\mathrm{Na}^{+}+\mathrm{HCl}$

$\mathrm{R}-\mathrm{H}^{+}+\mathrm{NaNO}_{3} \rightleftharpoons \mathrm{R}-\mathrm{Na}^{+}+\mathrm{HNO}_{3}$

Q-1- (0.5) g of the potassium chloride solution was transferred to the cationic exchanger ($\mathrm{H}+$ _Form), if The volume of the come down solution from the cationic exchanger was $(10) \mathrm{ml}$, which was calibrated with the sodium hydroxide, The volum of the sodium hydroxide was (12) ml ,

Calculate :
1- The concentration of sodium hydroxide in ppm
2- The pH of the acid that come down from lon exchange column
3- Write the equation for this question

$$
\begin{aligned}
& \text { from lon exchange column } \\
& \Rightarrow R-H^{+}+\mathrm{Kcl} \rightleftharpoons \mathrm{~K} \mathrm{~K}^{+}+\mathrm{HCl}
\end{aligned}
$$

If you know the atomic weight for $\mathrm{K}=39, \mathrm{Cl}=35.5, \mathrm{Na}=23, \mathrm{O}=16, \mathrm{H}=1$
12
No. of $\mathrm{Meq} \mathrm{Kcl}=\mathrm{No}_{0}$. of Med NaH $\frac{\omega+}{\text { eq. } \omega+} \times \frac{1000}{V} \times X=N \times V$
$\frac{0.5}{74.5}=\frac{N \times 12}{1000} \Rightarrow N=0.55$

Q-1- Answer the following questions:

$$
\begin{aligned}
& \text { 解 } 1-\mathrm{R}^{+}+\mathrm{Ha}_{2} \mathrm{CO}_{3}{ }^{2-} \rightleftarrows 2 \mathrm{Na}+\mathrm{H}_{2} \mathrm{CO}_{3} \\
& \mathrm{SO} \mathrm{O}_{-}^{2} 2-\mathrm{R}^{+} \mathrm{OH}+\mathrm{NaCl} \rightleftarrows \mathrm{R}_{-\mathrm{Cl}}+\mathrm{NaOH} \\
& \text { is, } 3-\mathrm{R}_{-}^{-} \mathrm{K}^{+}+\mathrm{NaOH} \rightleftarrows \mathrm{R}-\mathrm{Na}^{+}+\mathrm{KOH}
\end{aligned}
$$

Q-2- Sort the ions according to the speed of replacement:

(1) $\left.3 \mathrm{R}^{2} \mathrm{H}^{+}+\mathrm{Al}^{+3} \stackrel{(\mathrm{O}}{\square}\right)_{3-\mathrm{Al}^{+3}+3 \mathrm{H}^{+}}$
22) $2 \mathrm{R}_{2} \mathrm{H}^{+}+\mathrm{Ca}^{+2} \frac{(2)}{\Gamma}\left(\mathrm{R}_{-}\right)_{2} \mathrm{Ca}^{+2}+2 \mathrm{H}^{+}$
(3) $\mathrm{R}-\mathrm{H}^{+}+\mathrm{K}^{+}$(3) $\mathrm{R}-\mathrm{K}^{+}+\mathrm{H}^{+}$

