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Angular Momentum 

Angular momentum: is as important in classical mechanics as in quantum mechanics. It is 

particularly useful for studying the dynamics of systems that move under the influence of 

spherically symmetric, or central, potentials, 𝑉(𝑟) =  𝑉(𝑟), for the orbital angular momenta of 

these systems are conserved. 

One of the cornerstones of Bohr’s model of the hydrogen atom (where the electron moves in 

the proton’s Coulomb potential, a central potential) is based on the quantization of angular 

momentum.  

The total angular momentum,(𝐽), combines both the spin and orbital angular momentum of a 

particle (or a system), namely  𝐽 = �⃗⃗� + 𝑆. 

 where �⃗⃗� is orbital angular momentum, 𝑆 is spin angular momentum or just spin. 

Additionally, angular momentum plays a critical role in the description of molecular rotations, 

the motion of electrons in atoms, and the motion of nucleons in nuclei. 

I. Orbital angular momentum (L)  

A. General Formalism of angular momentum 

In classical physics the angular momentum of a particle with momentum �⃗� and position 𝑟 ⃗⃗⃗ is 

defined by 

�⃗⃗� = 𝑟 ⃗⃗ × �⃗� = −�⃗� × 𝑟 ⃗⃗  

�⃗⃗� = (𝑦𝑝
𝑧
− 𝑧𝑝

𝑦
)𝑖 ̂ + (𝑧𝑝

𝑥
− 𝑥𝑝

𝑧
)�̂� + (𝑥𝑝

𝑦
− 𝑦𝑝

𝑥
)�̂� 

The orbital angular momentum operator �̂⃗⃗� can be obtained at once by replacing 𝑟 and �⃗� by the 

corresponding operators in the position representation, �̂⃗⃗� and �̂⃗⃗� = −𝑖ℏ∇⃗⃗⃗=
ℏ

𝑖
∇⃗⃗⃗: 

�̂⃗⃗� = �̂⃗⃗� × �̂⃗⃗� = −𝑖ℏ(�̂⃗⃗� × ∇⃗⃗⃗) 

The Cartesian components of �̂⃗⃗� are 

�̂�𝑥 = �̂��̂�𝑧 − �̂��̂�𝑦 = −𝑖ℏ (�̂�
𝜕

𝜕𝑧
− �̂�

𝜕

𝜕𝑦
), 

�̂�𝑦 = �̂��̂�𝑥 − �̂��̂�𝑧 = −𝑖ℏ (�̂�
𝜕

𝜕𝑥
− �̂�

𝜕

𝜕𝑧
), 

�̂�𝑧 = �̂��̂�𝑦 − �̂��̂�𝑥 = −𝑖ℏ (�̂�
𝜕

𝜕𝑦
− �̂�

𝜕

𝜕𝑥
), 

Clearly, angular momentum does not exist in a one-dimensional space. We should mention that 

the components �̂�𝑥 , �̂�𝑦 , �̂�𝑧 , and the square of �̂⃗⃗�, 

�̂⃗⃗�2 = �̂�𝑥
2 + �̂�𝑦

2 + �̂�𝑧
2 

�̂⃗⃗�2 = 𝑟2𝑝2 − (𝑟 ∙ 𝑝)2 + 𝑖ℏ𝑟 ∙ 𝑝 

are all Hermitian. 

In quantum mechanics the classical vectors �̂⃗⃗�, �̂⃗⃗� and �̂⃗⃗� become operators. More precisely, they 

give us triplets of operators: 

�̂⃗⃗� → (�̂�, �̂�, �̂�),       �̂⃗⃗� → (�̂�𝑥, �̂�𝑦, �̂�𝑧),   �̂⃗⃗� → (�̂�𝑥, �̂�𝑦, �̂�𝑧)     
Commutators 

[𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴    
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B. Properties of Angular Momentum 

Since �̂� , �̂�, and �̂� mutually commute and so do �̂�𝑥 , �̂�𝑦 , and �̂�𝑧, and since 

  [�̂� , �̂�𝑥] = 𝑖ℏ,[�̂� , �̂�𝑦] = 𝑖ℏ, [�̂� , �̂�𝑧] = 𝑖ℏ, we have 

 [�̂�𝑥, �̂�𝑦] = [�̂��̂�𝑧 − �̂��̂�𝑦, �̂��̂�𝑥 − �̂��̂�𝑧] 

               =[�̂��̂�𝑧, �̂��̂�𝑥] − [�̂��̂�𝑧, �̂��̂�𝑧] − [�̂��̂�𝑦, �̂��̂�𝑥] + [�̂��̂�𝑦, �̂��̂�𝑧] 

               =�̂�[�̂�𝑧, �̂�]�̂�𝑥 + �̂�[�̂�, �̂�𝑧]�̂�𝑦 = 𝑖ℏ(�̂��̂�𝑦 − �̂��̂�𝑥) 

               = 𝑖ℏ�̂�𝑧  

Similar calculation yields the other two commutation relations; but it is much simpler to infer 

them from equation above by means of a cyclic permutation of the 𝑥𝑦𝑧 components, 𝑥 →  𝑦 →
 𝑧 →  𝑥: 

[�̂�𝑥, �̂�𝑦] = �̂�𝑥�̂�𝑦 − �̂�𝑦�̂�𝑥 =  𝑖ℏ�̂�𝑧 ,      

 [�̂�𝑦, �̂�𝑧] = �̂�𝑦�̂�𝑧 − �̂�𝑧�̂�𝑦 =  𝑖ℏ�̂�𝑥,        

                                              [�̂�𝑧 , �̂�𝑥] = �̂�𝑧�̂�𝑥 − �̂�𝑥�̂�𝑧 =  𝑖ℏ�̂�𝑦, 

The three equations are equivalent to the vectorial commutation relation: 

�̂� × �̂� =  𝑖ℏ�̂� , 
Note that this can only be true for operators; since, for regular vectors, �̂� × �̂� = 𝟎. 

It is easy to show that �̂⃗⃗�2 does commute with each of the three components: �̂�𝑥, �̂�𝑦 𝑜𝑟 �̂�𝑧 

For example (using [�̂�𝑥
2 , �̂�𝑥] = 0): 

[�̂⃗⃗�2, �̂�𝑥] = [�̂�𝑦
2 + �̂�𝑧

2 , �̂�𝑥] = [�̂�𝑦
2 , �̂�𝑥] + [�̂�𝑧

2 , �̂�𝑥] 

                                          = �̂�𝑦[�̂�𝑦, �̂�𝑥] + [�̂�𝑦 , �̂�𝑥]�̂�𝑦 + �̂�𝑧[�̂�𝑧, �̂�𝑥] + [�̂�𝑧 , �̂�𝑥]�̂�𝑧  

                                                           = −𝑖ℏ(�̂�𝑦�̂�𝑧 + �̂�𝑧�̂�𝑦) + 𝒊ℏ(�̂�𝑧�̂�𝑦 + �̂�𝑦�̂�𝑧)=0 

Similarly, 

[�̂⃗⃗�2, �̂�𝑦] = [�̂⃗⃗�
2, �̂�𝑧] = 0 

which can be summarized as 

[�⃗⃗�2, �⃗⃗�] = 0 

Physically, this means that one can find simultaneous eigenfunctions of �⃗⃗�2 and one of the 

components of �⃗⃗�, implying that both the magnitude of the angular momentum and one of its 

components can be precisely determined. Once these are known, they fully specify the angular 

momentum. 
 

Example: 

 

(a) Calculate the commutators: [�̂�, �̂�𝑥], [�̂�, �̂�𝑦], and [�̂�, �̂�𝑧]. 

(b) Calculate the commutators: [�̂�𝑥, �̂�𝑥], [�̂�𝑥, �̂�𝑦] and [�̂�𝑥, �̂�𝑧]. 

(c) Use the results of (a) and (b) to [𝑋,̂ �̂⃗⃗�2] and [�̂�𝑥, �̂⃗⃗�
2]. 
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Solution: 

(a) The only nonzero commutator which involves 𝑋,̂ and the various components of , �̂�𝑥       

, �̂�𝑦, �̂�𝑧 is [�̂�, �̂�𝑥] = 𝑖ℏ. Having stated this result, we can easily evaluate the needed 

commutators. 

First, since �̂�𝑥 = �̂��̂�𝑧 − �̂��̂�𝑦 involves no �̂� , the operator �̂� commutes separately with �̂�, �̂�𝑧  , 

�̂�, and �̂�𝑦 ; hence 

[�̂�, �̂�𝑥] = [𝑋,̂ �̂��̂�𝑧 − �̂��̂�𝑦 ] = 0 

The evaluation of the other two commutators is straightforward: 

[�̂�, �̂�𝑦] = [𝑋,̂ �̂��̂�𝑥 − �̂��̂�𝑧 ] = [𝑋,̂ �̂��̂�𝑥 ] = �̂�[𝑋,̂ �̂�𝑥 ] = 𝑖ℏ�̂�, 
                               [�̂�, �̂�𝑧] = [𝑋,̂ �̂��̂�𝑦 − �̂��̂�𝑥 ] = −[𝑋,̂ �̂��̂�𝑥 ] = −�̂�[𝑋,̂ �̂�𝑥 ] = −𝑖ℏ�̂�, 
(b) The only commutator between �̂�𝑥 and the components of �̂�𝑥 , �̂�𝑦 , �̂�𝑧 that survives is again 

       [�̂�𝑥, �̂�] = −𝑖ℏ. We may thus infer 

     [�̂�𝑥, �̂�𝑥] = [�̂�𝑥, �̂��̂�𝑧 − �̂��̂�𝑦] = 0, 

      [�̂�𝑥, �̂�𝑦] = [�̂�𝑥, �̂��̂�𝑥 − �̂��̂�𝑧] = −[�̂�𝑥, �̂��̂�𝑧] = −[�̂�𝑥, �̂�]�̂�𝑧 = 𝑖ℏ�̂�𝑧, 

      [�̂�𝑥, �̂�𝑧] = [�̂�𝑥, �̂��̂�𝑦 − �̂��̂�𝑥] = [�̂�𝑥, �̂��̂�𝑦] = [�̂�𝑥, �̂�]�̂�𝑦 = −𝑖ℏ�̂�𝑦, 

(c) Using the commutators derived in (a) and (b), we infer 

      [𝑋,̂ �̂⃗⃗�2] = [𝑋,̂ �̂�𝑥
2 ] + [𝑋,̂ �̂�𝑦

2 ] + [𝑋,̂ �̂�𝑧
2]  

                    = 0 + �̂�𝑦[𝑋,̂ �̂�𝑦] + [𝑋,̂ �̂�𝑦]�̂�𝑦 + �̂�𝑧[𝑋,̂ �̂�𝑧] + [𝑋,̂ �̂�𝑧]�̂�𝑧 

                    =  𝑖ℏ(�̂�𝑦�̂� + �̂��̂�𝑦 − �̂�𝑧�̂� − �̂��̂�𝑧) 

     [�̂�𝑥 , �̂⃗⃗�
2] = [�̂�𝑥, �̂�𝑥

2 ] + [�̂�𝑥, �̂�𝑦
2 ] + [�̂�𝑥, �̂�𝑧

2]  

                   = 0 + �̂�𝑦[�̂�𝑥, �̂�𝑦] + [�̂�𝑥, �̂�𝑦]�̂�𝑦 + �̂�𝑧[�̂�𝑥, �̂�𝑧] + [�̂�𝑥, �̂�𝑧]�̂�𝑧 

                   =  𝑖ℏ(�̂�𝑦�̂�𝑧 + �̂�𝑧�̂�𝑦 − �̂�𝑧�̂�𝑦 − �̂�𝑦�̂�𝑧) 

In order to obtain the eigenvalues of �⃗⃗�2 and one of the components of �⃗⃗� (typically, �̂�𝑧), it is 

convenient to express the angular momentum operators in spherical polar coordinates: 𝑟, 𝜃, 𝜙, 

rather than the Cartesian coordinates 𝑥, 𝑦, 𝑧. The spherical coordinates are related to the 

Cartesian ones via 

𝑥 = 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙; 
𝑦 = 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙; 
 𝑧 = 𝑟𝑐𝑜𝑠𝜃;           

After some algebra, one gets: 

�̂�𝑥 = 𝑖ℏ (𝑠𝑖𝑛𝜙
𝜕

𝜕𝜃
+ 𝑐𝑜𝑡𝜃𝑐𝑜𝑠𝜙

𝜕

𝜕𝜙
) 

                                              �̂�𝑦 = 𝑖ℏ (−𝑐𝑜𝑠𝜙
𝜕

𝜕𝜃
+ 𝑐𝑜𝑡𝜃𝑠𝑖𝑛𝜙

𝜕

𝜕𝜙
) 

                                              �̂�𝑧 = −𝑖ℏ
𝜕

𝜕𝜙
   

                  �⃗⃗�2 = −ℏ2 (
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
) +

1

𝑠𝑖𝑛2𝜃

𝜕2

𝜕∅2
) 
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We thus find that the operators �̂�𝑥, �̂�𝑦, �̂�𝑧  and �⃗⃗�2 depend on 𝜃 and 𝜙 only, that is they are 

independent on the radial coordinate 𝑟. All these operators therefore commute with any 

function of 𝑟, 

[�̂�𝑥, 𝑓(𝑟)] = [�̂�𝑦, 𝑓(𝑟)] = [�̂�𝑧 , 𝑓(𝑟)] = [�⃗⃗�
2, 𝑓(𝑟)] = 0 

Also, obviously, if a wavefunction depends only on 𝑟 (but not on 𝜃, 𝜙) it can be simultaneously 

an eigenfunction of �̂�𝑥, �̂�𝑦, �̂�𝑧  and �⃗⃗�2. In all cases, the corresponding eigenvalue will be 0. (This 

is the only exception to the rule that that eigenvalues of one component (e.g., �̂�𝑥) cannot be 

simultaneously eigenfunctions of the two other components of �̂�). 

 

Example: Derive equation of �̂�𝑧 in Spherical coordinates. 

 From relation of �̂�𝑧 in Cartesian coordinates 

�̂�𝑧 = 𝑖ℏ (−𝑥
𝜕

𝜕𝑦
+ 𝑦

𝜕

𝜕𝑥
) 

We can develop the desired partial differentials from the relation between azimuthal angle and 

position coordinates, or 

𝜙 = 𝑡𝑎𝑛−1(𝑦 𝑥⁄ )   ⇒ 𝑦 = 𝑥𝑡𝑎𝑛𝜙  

⇒
𝜕𝑦

𝜕𝜙
= 𝑥𝜕(𝑡𝑎𝑛𝜙) = 𝑥𝑠𝑒𝑐2𝜙 =

𝑥

𝑐𝑜𝑠2𝜙
  

⇒ 𝜕𝑦 =
𝑥𝜕𝜙

𝑐𝑜𝑠2𝜙
  

The same relation gives us 

𝑥 =
𝑦

𝑡𝑎𝑛𝜙
= 𝑦

𝑐𝑜𝑠𝜙

𝑠𝑖𝑛𝜙
= 𝑦𝑐𝑜𝑠𝜙𝑠𝑖𝑛−1𝜙 

⇒
𝜕𝑥

𝜕𝜙
= 𝑦(−𝑠𝑖𝑛𝑠𝜙𝑠𝑖𝑛−1𝜙 + 𝑐𝑜𝑠𝜙(−1)𝑠𝑖𝑛−2𝜙𝑐𝑜𝑠𝜙) 

                                    = 𝑦 (1 +
𝑐𝑜𝑠2𝜙

𝑠𝑖𝑛2𝜙
) = −𝑦 (

𝑠𝑖𝑛2𝜙+𝑐𝑜𝑠2𝜙

𝑠𝑖𝑛2𝜙
) =

−𝑦

𝑠𝑖𝑛2𝜙
 

⇒ 𝜕𝑥 =
−𝑦𝜕𝜙

𝑠𝑖𝑛2𝜙
 

Using the partial differentials in the Cartesian formulation for the 𝑧 component of angular 

momentum, 

�̂�𝑧 = 𝑖ℏ(−𝑥𝑐𝑜𝑠
2𝜙

𝜕

𝑥𝜕𝜙
+ 𝑦 (−𝑠𝑖𝑛2𝜙

𝜕𝑥

𝑦𝜕𝜙
)) 

                                     = −𝑖ℏ(𝑐𝑜𝑠2𝜙 + 𝑠𝑖𝑛2𝜙)
𝜕

𝜕𝜙
 

                                     = −𝑖ℏ
𝜕

𝜕𝜙
 

 

C. Eigenvalues and eigenfunctions of 𝑳𝟐 and 𝑳𝒛 
Let us find now the common eigenfunctions to 𝐿2 and 𝐿𝑧, for a single particle. The 

choice of 𝐿𝑧 (rather than, e.g., 𝐿𝑥) is motivated by the simpler expression. 

 

I. Eigenvalues of 𝑳𝒛 
Since, in spherical coordinates 𝐿𝑧 depends only on ∅, we can denote its eigenvalue by 

𝑚ℏ and the corresponding eigenfunctions by Φ𝑚(𝜙). We thus have: 

𝑳𝒛Φ𝑚(𝜙) =  𝑚ℏΦ𝑚(𝜙) 
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Namely 

−i
𝜕

𝜕∅
Φ𝑚(𝜙) = mΦ𝑚(𝜙) 

The solutions to this equation are 

Φ𝑚(𝜙) =
1

√2𝜋
𝒆𝒊𝒎∅ 

This is satisfied for any value of m; however, physically we require the wave function to be 

single valued (alternatively: continuous), namely Φ𝑚(2𝜋) = Φ𝑚(0), from which we find 

𝒆𝒊2𝜋𝒎∅ = 𝟎 

This equation is satisfied for 𝑚 =  0, ±1,±2, ±3, . . .. The eigenvalues of the operator 𝑳𝒛 are 

thus 𝑚ℏ, with m being integer (positive or negative) or zero. The number 𝑚 is called the 

magnetic quantum number, due to the role it plays in the motion of charged particles in 

magnetic fields. 

This means, that when measuring the z-component of an orbital angular momentum, 

one can only obtain 0,± ℏ,±2ℏ, .... Since the choice of the z direction was arbitrary, we see that 

the component of the orbital angular momentum about any axis is quantized. 

 

II. Simultaneous eigenvalues of 𝑳𝟐 and 𝑳𝒛 
The compatibility theorem tells us that 𝐿2 and 𝐿𝑧 thus have simultaneous eigenfunctions. These 

turn out to be the spherical harmonics, 𝑌𝑙
𝑚(𝜃, 𝜙). In particular, the eigenvalue equation for 𝐿2 

is 

𝐿2𝑌𝑙
𝑚(𝜃, 𝜙) = 𝑙(𝑙 + 1)ℏ2𝑌𝑙

𝑚(𝜃, 𝜙) 
Where 𝑙 = 0,1,2,3, … and as we know that 

Yl
m(θ,ϕ) = (−1) 𝑚 [

2𝑙 + 1

4𝜋

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
]
1 2⁄

𝑃𝐿
𝑚(cos θ)𝑒𝑖𝑚𝜙  

The eigenvalue 𝑙(𝑙 + 1)ℏ2 is degenerate; there exist (2𝑙 + 1) eigenfunctions corresponding to 

a given 𝑙 and they are distinguished by the label 𝑚 which can take any of the (2𝑙 + 1) values 

𝑚 = 𝑙, 𝑙 − 1, … , 𝑙 
In fact it is easy to show that m labels the eigenvalues of 𝐿𝑧. Since 

 𝑌𝑙
𝑚(𝜃, 𝜙) ∝ 𝑒𝑖𝑚𝜙 

We obtain directly that 

𝐿𝑧  𝑌𝑙
𝑚(𝜃, 𝜙) = −𝑖ℏ

𝜕

𝜕∅
 𝑌𝑙
𝑚(𝜃, 𝜙) = 𝑚ℏ𝑌𝑙

𝑚(𝜃, 𝜙) 

Confirming that the spherical harmonics are also eigenfunctions of𝐿𝑧 with eigenvalues 𝑚ℏ. 

 

D. Representation of Angular Momentum Operators 

We would like to have matrix operators for the angular momentum operators 𝑙𝑥, 𝑙𝑦, and 

𝑙𝑧. The idea is to find three 3 X 3 matrix operators that satisfy relations (Angular Momentum 

Commutation Relations), which are 

[𝑙𝑥, 𝑙𝑦] = 𝑖ℏ𝑙𝑧,    [𝑙𝑦, 𝑙𝑧] = 𝑖ℏ𝑙𝑥, [𝑙𝑧 , 𝑙𝑥] = 𝑖ℏ𝑙𝑦,   

One such group of objects is 

𝑙𝑥 =
1

√2
(
0 1 0
1 0 1
0 1 0

)ℏ,       𝑙𝑦 =
1

√2
(
0 −𝑖 0
𝑖 0 −𝑖
0 𝑖 0

)ℏ, 𝑙𝑧 = (
1 0 0
0 0 0
0 0 −1

)ℏ,      
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There are other ways to express these matrices in subspace 𝐶3of an infinite dimensional 

Hilbert space. Relations above are dominantly the most popular. Since the three operators do 

not commute, we arbitrarily have selected a basis for one of them, and then expressed the 

other two in that basis. Notice 𝑙𝑧 is diagonal. That means the basis selected is natural for 𝑙𝑧. 

The terminology usually used is the operators in equations above are in the 𝑙𝑧basis. 

Example: - Show [𝑙𝑥, 𝑙𝑦] = 𝑖ℏ𝑙𝑧,    using matrix operator relations 

[𝑙𝑥, 𝑙𝑦] =
1

√2
(
0 1 0
1 0 1
0 1 0

)ℏ
1

√2
(
0 −𝑖 0
𝑖 0 −𝑖
0 𝑖 0

) −
1

√2
(
0 −𝑖 0
𝑖 0 −𝑖
0 𝑖 0

)ℏ
1

√2
(
0 1 0
1 0 1
0 1 0

)ℏ  

        =
ℏ2

2
(
𝑖 0 −𝑖
0 −𝑖 + 𝑖 0
𝑖 0 −𝑖

) −
ℏ2

2
(
−𝑖 0 −𝑖
0 𝑖 − 𝑖 0
𝑖 0 𝑖

) =
ℏ2

2
(
𝑖 + 𝑖 0 −𝑖 + 𝑖
0 0 0
𝑖 − 𝑖 0 −𝑖 − 𝑖

) 

              =
ℏ2

2
(
2𝑖 0 0
0 0 0
0 0 −2𝑖

) = 𝑖ℏ(
1 0 0
0 0 0
0 0 −1

)ℏ 

            = 𝑖ℏ𝑙𝑧. 

Again, the other two relations can be calculated using similar procedures. 

Remember 𝑙 is comparable to a vector sum of the three component operators, so in 

vector/matrix notation would look like 

𝑙 = (

𝑙𝑥
𝑙𝑦
𝑙𝑧

) =

(

 
 
 
 
 
 

1

√2
(
0 1 0
1 0 1
0 1 0

)ℏ

1

√2
(
0 −𝑖 0
𝑖 0 −𝑖
0 𝑖 0

)ℏ

(
1 0 0
0 0 0
0 0 −1

)ℏ
)

 
 
 
 
 
 

 

Again, this operator will normally be denoted just 𝑙. The 𝑙  operator is a different sort of object 

than the component operators. It is a different object in a different space. Yet, we would like a 

way to address angular momentum with a 3 X 3 matrix which is in the same subspace asthe 

components. We can do this if we use 𝑙2. This operator is 

𝑙2 = 2ℏ2𝐼 = 2ℏ2 (
1 0 0
0 1 0
0 0 1

) 

Where I is the identity matrix. 
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Example: - Show that 𝑙2 = 2ℏ2𝐼 

𝑙2 = ⟨𝑙|𝑙⟩ = ⟨
1

√2
(
0 1 0
1 0 1
0 1 0

) ,
1

√2
(
0 −𝑖 0
𝑖 0 −𝑖
0 𝑖 0

)ℏ, (
1 0 0
0 0 0
0 0 −1

)ℏ,     

|

|

|

1

√2
(
0 1 0
1 0 1
0 1 0

)ℏ

1

√2
(
0 −𝑖 0
𝑖 0 −𝑖
0 𝑖 0

)ℏ

(
1 0 0
0 0 0
0 0 −1

)ℏ

⟩ 

 =
1

√2
(
0 1 0
1 0 1
0 1 0

)
1

√2
(
0 1 0
1 0 1
0 1 0

) +
1

√2
(
0 −𝑖 0
𝑖 0 𝑖
0 𝑖 0

)
1

√2
(
0 −𝑖 0
𝑖 0 𝑖
0 𝑖 0

) +

     (
1 0 0
0 0 0
0 0 −1

)ℏ(
1 0 0
0 0 0
0 0 −1

)ℏ 

  =
1

2
(
1 0 1
0 1 + 1 0
1 0 1

)ℏ2 +
1

2
(
1 0 −1
0 1 + 1 0
−1 0 1

)ℏ2 + (
1 0 0
0 0 0
0 0 1

)ℏ2 

  = (
1 2⁄ 0 1 2⁄
0 1 0
1 2⁄ 0 1 2⁄

)ℏ2 +
1

2
(
1 2⁄ 0 −1 2⁄
0 1 0

−1 2⁄ 0 1 2⁄
)ℏ2 + (

1 0 0
0 0 0
0 0 1

)ℏ2 

  = (
1 0 0
0 2 0
0 0 1

)ℏ2 + (
1 0 0
0 0 0
0 0 1

)ℏ2 = (
2 0 0
0 2 0
0 0 2

)ℏ2=2ℏ2𝐼 

 

 

E. Precurser to the Hydrogen Atom 

The Hamiltonian for a spherically symmetric potential commutes with 𝑙2 and the three 

component angular momentum operators.  So  𝐻; 𝑙2, and one of the three component angular 

momentum operators, congenitally Lz , is a complete set of commuting observables for a 

spherically symmetric potential. 

We will use a Hamiltonian with a Coulomb potential for the hydrogen atom. The Coulomb 

potential is rotationally invariant, or spherically symmetric. We have indicated 𝐻; 𝑙2, and 𝑙𝑧 
form a complete set of commuting observables for such a system. You may be familiar with 

the principal quantum number 𝑛, the angular momentum quantum number 𝑙, and the magnetic 

quantum number 𝑚. We will find there is a correspondence between these two sets of three 

quantities, which is n comes from application of 𝐻, 𝑙 comes from application of 𝑙2, and m 

comes from application of 𝑙𝑧.  
 

F. Ladder Operators for Angular Momentum 

As already mentioned, and since �̂�2 and �̂�𝑧 
 
commute, they share common eigenfunctions. We 

can point out the eigenvalues of �̂�2 and �̂�𝑧 
 
by 𝛼 and 𝛽, respectively so that:   

�̂�
2
𝑌𝛼
𝛽(𝜃, 𝜙) =  𝛼𝑌𝛼

𝛽(𝜃, 𝜙),     �̂�
2
𝑌𝛼
𝛽(𝜃, 𝜙) =  𝛽𝑌𝛼

𝛽(𝜃, 𝜙),      
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  It is convenient to define the raising and lowering operators (note the similarity to the 

Harmonic oscillator!):  

𝐿± = �̂�𝑥
 ± 𝑖�̂�𝑦

  

Which satisfy the commutation relations; 

[𝐿+, 𝐿−] = 2ℏ𝑙𝑧,     [𝐿𝑍, 𝐿±] = ±ℏ𝐿±,   [𝐿±, 𝑙
2] = 0, 

These relations are relatively easy to prove using the commutation relations we’ve already 

mentioned: 

[�̂�𝑥, �̂�𝑦] = 𝑖ℏ�̂�𝑧 , [�̂�𝑦, �̂�𝑧] = 𝑖ℏ�̂�𝑥, [�̂�𝑧 , �̂�𝑥] = 𝑖ℏ�̂�𝑦, [�̂�
2, �̂�𝑧] = 0  

For example:  

[�̂�𝑧, 𝐿±] = [�̂�𝑧 , �̂�𝑥] ± 𝑖[�̂�𝑧, �̂�𝑦] 

                                                            = 𝑖ℏ�̂�𝑦 ± 𝑖(−𝑖ℏ�̂�𝑥) = ±ℏ(�̂�𝑥 ± 𝑖�̂�𝑦) = ±ℏ𝐿± 

The raising and lowering operators have a peculiar effect on the eigenvalue of 𝑙𝑧 : 

�̂�𝑧(𝐿±𝑌𝛼
𝛽
) = ([�̂�𝑧, 𝐿±] + 𝐿±�̂�𝑧)𝑌𝛼

𝛽
= ( ±ℏ𝐿± + 𝐿±𝛽)𝑌𝛼

𝛽
= (𝛽 ±ℏ )(𝐿±𝑌𝛼

𝛽
) 

Thus, 𝐿+ (𝐿− ) raises (lowers) the eigenvalue of �̂�𝑧  by ℏ, hence the names. Since the raising and 

lowering operators commute with �̂�
2
 they do not change the value of 𝛼 and so we can write 

𝐿±𝑌𝛼
𝛽
∝ 𝑌𝛼

𝛽±ℏ
 

and so the eigenvalues of �̂�𝑧  are evenly spacedǃ 

What are the limits on this ladder of eigenvalues? Recall that for the harmonic oscillator, we 

found that there was a minimum eigenvalue and the eigenstates could be created by successive 

applications of the raising operator to the lowest state. There is also a minimum eigenvalue in 

this case. To see this, note that 

〈�̂�𝑥
2 + �̂�𝑦

2 〉 = 〈�̂�𝑥
2 〉 + 〈�̂�𝑦

2 〉 ≥ 0 

This result simply reflects the fact that if you take any observable operator and square it, you 

must get back a positive number. To get a negative value for the average value of �̂�𝑥
2

 or �̂�𝑦
2

 

would imply an imaginary eigenvalue of �̂�𝑥  or �̂�𝑦, which is impossible since these operators 

are Hermitian. Besides, what would an imaginary angular momentum mean? We now apply 

the above equation for the specific wavefunction 𝑌𝛼
𝛽  : 

∫  𝑌𝛼
𝛽∗
(�̂�𝑥
2
+ �̂�𝑦

2
)𝑌𝛼

𝛽 = ∫  𝑌𝛼
𝛽∗
(�̂�
2
− �̂�𝑧

2
)𝑌𝛼

𝛽 = ∫  𝑌𝛼
𝛽∗
(𝛼 − 𝛽2)𝑌𝛼

𝛽 = 𝛼 − 𝛽2 

Hence 𝛽2≤α and therefore − 𝛼 ≤ 𝛽 ≤  𝛼 . Which means that there are both maximum and 

minimum values that 𝛽 can take on for a given 𝛼. If we denote these values by 𝛽𝑚𝑎𝑥 and 𝛽𝑚𝑖𝑛, 

respectively, then it is clear that 

𝐿+𝑌𝛼
𝛽𝑚𝑎𝑥 = 0, 𝐿−𝑌𝛼

𝛽𝑚𝑖𝑛 = 0,  

 We can then use this knowledge and some algebra tricks trick to determine the relationship 

between 𝛼 and 𝛽𝑚𝑎𝑥 (or 𝛽𝑚𝑖𝑛). First note that: 

⇒ 𝐿+ 𝐿−𝑌𝛼
𝛽𝑚𝑎𝑥 = 0  𝐿− 𝐿+𝑌𝛼

𝛽𝑚𝑖𝑛 = 0 

We can expand this explicitly in terms of �̂�𝑥  and �̂�𝑦: 

⇒ (�̂�𝑥
2 + �̂�𝑦

2 − 𝑖(�̂�𝑦�̂�𝑥 − �̂�𝑥�̂�𝑦))𝑌𝛼
𝛽𝑚𝑎𝑥 = 0  (�̂�𝑥

2 + �̂�𝑦
2 + 𝑖(�̂�𝑦�̂�𝑥 − �̂�𝑥�̂�𝑦))𝑌𝛼

𝛽𝑚𝑖𝑛 = 0 
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However, this is not the most convenient form for the operators, because we don’t know what 

�̂�𝑥  or �̂�𝑦  gives when acting on 𝑌𝛼
𝛽  . However, we can rewrite the same expression in terms of 

𝑙2and �̂�𝑧 : 

�̂�𝑥
2 + �̂�𝑦

2
⏟    
�̂�2−�̂�𝑧

2

± 𝑖 (�̂�𝑦�̂�𝑥 − �̂�𝑥�̂�𝑦⏟        
−𝑖ℏ�̂�𝑧

) 

So then we have; 

⇒ (�̂�2 − �̂�𝑧
2 − ℏ�̂�𝑧)𝑌𝛼

𝛽𝑚𝑎𝑥 = 0                     (�̂�2 − �̂�𝑧
2 + ℏ�̂�𝑧)𝑌𝛼

𝛽𝑚𝑖𝑛 = 0 

⇒ (𝛼− 𝛽𝑚𝑎𝑥
2 − ℏ𝛽𝑚𝑎𝑥)𝑌𝛼

𝛽𝑚𝑎𝑥 = 0                     (𝛼− 𝛽𝑚𝑖𝑛
2 + ℏ𝛽𝑚𝑖𝑛)𝑌𝛼

𝛽𝑚𝑖𝑛 = 0 

⇒ 𝛼 = 𝛽𝑚𝑎𝑥(𝛽𝑚𝑎𝑥 + ℏ) = 𝛽𝑚𝑖𝑛(𝛽𝑚𝑖𝑛 − ℏ) 
𝛽𝑚𝑎𝑥 = −𝛽𝑚𝑖𝑛 = ℏ𝑙 

where in the last line we have simply defined a new variable, 𝑙, that is dimensionless (notice 

that ℏ has the units of angular momentum). So combining these minimum and maximum values 

we have that −ℏ𝑙 ≤ 𝛽 ≤  ℏ𝑙 . Further, since we can get from the lowest to the highest 

eigenvalue in increments of ℏ by successive applications of the raising operator, it is clear that 

the difference between the highest and lowest values       [ ℏ𝑗 − (−ℏ𝑗) =  2ℏ𝑙 ] must be an 

integer multiple of ℏ . Thus, 𝑙 itself must either be an integer or a half-integer.  

Putting all these facts together, we conclude (Define  𝑚 ≡ 𝛽 / ℏ ): 

 

 

 

 

 

 

 

where we have replaced 𝛼 with  𝑙 and 𝛽 with 𝑚 so that 𝑌𝛼
𝛽  becomes 𝑌𝑙

𝑚 . Also, in the first 

equation, we have noted that 0 ≤  〈�̂�2〉  =  ℏ2𝑙 (𝑙 + 1) implies  𝑙 ≥ 0  . These are the 

fundamental eigenvalue equations for all forms of angular momentum. 

 At first, you might think this means we made a mistake in our derivation above and that 𝑙 
should only be an integer and not a half integer. However, there is no error. The difference 

arises because our derivation above is valid for any kind of angular momentum. Thus, while 

certain values of 𝑙 may not appear for certain types of angular momentum, we will see later on 

that they can appear for other types of angular momentum. Most notably, electrons have an 

intrinsic spin angular momentum with  𝑙 =  
1

2
 . Thus, while individual systems may have 

additional restrictions on the allowed values of 𝑙, angular momentum states always obey the 

above eigenvalue relations. 

 

Important remark: 

The four angular momentum operators are related as 

�̂⃗⃗�2 = �̂�𝑥
2 + �̂�𝑦

2 + �̂�𝑧
2 ⇒ �̂⃗⃗�2 − �̂�𝑧

2 = �̂�𝑥
2 + �̂�𝑦

2  

The sum of the two components �̂�𝑥
2 + �̂�𝑦

2would appear to factor 

(�̂�𝑥
 + 𝑖�̂�𝑦

 )(�̂�𝑥
 − 𝑖�̂�𝑦

 ) 

�̂�2𝑌𝑙
𝑚 = ℏ2𝑙(𝑙 + 1)𝑌𝑙

𝑚     𝑙 = 0,
1

2
, 1,
3

2
, 2, …. 

And 

        �̂�𝑧𝑌𝑙
𝑚 = 𝑚ℏ𝑌𝑙

𝑚     𝑚 = −𝑙,−𝑙 + 1,… , 𝑙 − 1, 𝑙 
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and they would if the factors were scalars, but they are operators which do not commute, so 

this is not factoring. Just like the SHO, it is a good mnemonic, nevertheless. 

 

 

Example: Show �̂�𝑥
2 + �̂�𝑦

2 = (�̂�𝑥
 + 𝑖�̂�𝑦

 )(�̂�𝑥
 − 𝑖�̂�𝑦

 ) 

(�̂�𝑥
 + 𝑖�̂�𝑦

 )(�̂�𝑥
 − 𝑖�̂�𝑦

 ) = �̂�𝑥
2 − 𝑖�̂�𝑥

 �̂�𝑦
 + 𝑖�̂�𝑦

 �̂�𝑥
 + �̂�𝑦

2  

                                                                 = �̂�𝑥
2 + �̂�𝑦

2 − 𝑖(�̂�𝑥
 �̂�𝑦
 − �̂�𝑦

 �̂�𝑥
 ) 

                                                                 = �̂�𝑥
2 + �̂�𝑦

2 − 𝑖[�̂�𝑥
 , �̂�𝑦

 ] 

                                                                 = �̂�𝑥
2 + �̂�𝑦

2 − 𝑖(𝑖ℏ�̂�𝑧
 ) 

                                                                 = �̂�𝑥
2 + �̂�𝑦

2 + ℏ�̂�𝑧
  

                                                                 ≠ �̂�𝑥
2 + �̂�𝑦

2  

where the expression in the next to last line is a significant intermediate result, and we will 

have reason to refer to it. 

Like the SHO, the idea is to take advantage of the angular momentum commutation relations. 

We will use the notation 

𝐿+ = �̂�𝑥
 + 𝑖�̂�𝑦

  

𝐿− = �̂�𝑥
 − 𝑖�̂�𝑦

  

which together are often denoted  𝐿∓.We need commutators for 𝐿∓, which are 

[�̂⃗⃗�2, 𝐿∓] = 0 

                                                                 [�̂�𝑧
 , 𝐿∓] = ∓ℏ𝐿∓ 

Example: Show  [�̂⃗⃗�2, 𝐿+] = 0 

[�̂⃗⃗�2, 𝐿+] = [�̂⃗⃗�
2, �̂�𝑥

 + 𝑖�̂�𝑦
 ] = [�̂⃗⃗�2, �̂�𝑥

 ] + 𝑖 [�̂⃗⃗�2, �̂�𝑦
 ] = 0 + 𝑖(0) = 0 

 

Example: Show  [�̂�𝑧
 , 𝐿+] = ℏ𝐿+ 

[�̂�𝑧
 , 𝐿+] = [�̂�𝑧

 , �̂�𝑥
 + 𝑖�̂�𝑦

 ] = [�̂�𝑧
 , �̂�𝑥

 ] + 𝑖[�̂�𝑧
 , �̂�𝑦

 ] =  𝑖ℏ�̂�𝑦
 + 𝑖(−𝑖ℏ�̂�𝑥

 ) = ℏ(�̂�𝑥
 + 𝑖�̂�𝑦

 ) =  ℏ𝐿+ 

We will proceed essentially as we did the raising and lowering operators of the SHO. Since 

�̂⃗⃗�2and �̂�𝑧
  commute, they share a common eigenbasis. 

 

Example: Show  �̂⃗⃗�2and �̂�𝑧
  commute 

[�̂⃗⃗�2, 𝐿𝑧] = [�̂�𝑥
2 + �̂�𝑦

2 + �̂�𝑧
2 , 𝐿𝑧] = [�̂�𝑥

2 , 𝐿𝑧] + [�̂�𝑦
2 , 𝐿𝑧] + [�̂�𝑧

2 ,∕ 𝐿𝑧] 

                                      = [�̂�𝑥
 
�̂�𝑥
 
, 𝐿𝑧] + [�̂�𝑦

 
�̂�𝑦
 
, 𝐿𝑧] 

                                      = �̂�𝑥
 
[�̂�𝑥
 
, 𝐿𝑧] + [�̂�𝑥

 
, 𝐿𝑧]�̂�𝑥

 
+ �̂�𝑦

 
[�̂�𝑦
 
, 𝐿𝑧] + [�̂�𝑦

 
, 𝐿𝑧]�̂�𝑦

 
 

                                      = �̂�𝑥
 
(−𝑖ℏ𝐿𝑦) + (−𝑖ℏ𝐿𝑦)�̂�𝑥

 
+ �̂�𝑦

 
(𝑖ℏ𝐿𝑥) + (𝑖ℏ𝐿𝑥)�̂�𝑦

 
 

                                      = (−𝑖ℏ𝐿𝑥�̂�𝑦
 
+ 𝑖ℏ𝐿𝑥�̂�𝑦

 
) + (−𝑖ℏ𝐿𝑦�̂�𝑥

 
+ 𝑖ℏ𝐿𝑦�̂�𝑥

 
) 

                                      = 0 
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Example: Given the spherical coordinate representations of 𝐿𝑥 and 𝐿𝑦, show that, we can 

write the ladder operator of orbital angular momentum as;  

 𝐿± = ±ℏ𝑒
±𝑖𝜙 (

𝜕

𝜕𝜃
± 𝑖𝑐𝑜𝑡𝜃

𝜕

𝜕∅
)    Sherical coordinate, 

 𝐿± = �̂�𝑥
 + 𝑖�̂�𝑦

                            Cartesian coordinate,  

�̂�𝑥
 + 𝑖�̂�𝑦

 = 𝑖ℏ (𝑠𝑖𝑛𝜙
𝜕

𝜕𝜃
+ 𝑐𝑜𝑡𝜃𝑐𝑜𝑠𝜙

𝜕

𝜕𝜙
) + 𝑖 [𝑖ℏ (−𝑐𝑜𝑠𝜙

𝜕

𝜕𝜃
+ 𝑐𝑜𝑡𝜃𝑠𝑖𝑛𝜙

𝜕

𝜕𝜙
)] 

= ℏ [𝑖𝑠𝑖𝑛𝜙
𝜕

𝜕𝜃
+ 𝑖𝑐𝑜𝑠𝜙𝑐𝑜𝑡𝜃

𝜕

𝜕𝜙
+ 𝑐𝑜𝑠𝜙

𝜕

𝜕𝜃
− 𝑠𝑖𝑛𝜙𝑐𝑜𝑡𝜃

𝜕

𝜕𝜙
] 

                          = ℏ [(𝑐𝑜𝑠𝜙 + 𝑖𝑠𝑖𝑛𝜙)
𝜕

𝜕𝜃
+ 𝑖(𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛𝜙)𝑐𝑜𝑡𝜃

𝜕

𝜕𝜙
] 

                          = ℏ [(𝑐𝑜𝑠𝜙 + 𝑖𝑠𝑖𝑛𝜙)
𝜕

𝜕𝜃
+ 𝑖(𝑐𝑜𝑠𝜙 + 𝑖𝑠𝑖𝑛𝜙)𝑐𝑜𝑡𝜃

𝜕

𝜕𝜙
] 

                          = ℏ [(𝑒𝑖𝜙)
𝜕

𝜕𝜃
+ 𝑖(𝑒𝑖𝜙)𝑐𝑜𝑡𝜃

𝜕

𝜕𝜙
] 

                         = ℏ𝑒𝑖𝜙 [
𝜕

𝜕𝜃
+ 𝑖𝑐𝑜𝑡𝜃

𝜕

𝜕𝜙
] 

 

G. Geometrical Representation of Angular Momentum 

The relationship between the angular momentum and its z-component can be represented 

geometrically as follows. For a fixed value of 𝑙, the total angular momentum �̂⃗⃗� may be 

represented by a vector whose length, as displayed in Figure below, is given by √〈�̂⃗⃗�2〉 =

ℏ√𝑙(𝑙 + 1) and whose z-component is 〈�̂�𝑍
 〉 = 𝑚ℏ. Since �̂�𝑥

  and �̂�𝑦
  are separately undefined, 

only their sum �̂�𝑥
2 + �̂�𝑦

2 = �̂⃗⃗�2 − �̂�𝑧
2 , which lies within the xy plane, is well defined. 

 

Figure: Geometrical representation of the angular momentum �̂⃗⃗� : the vector �̂⃗⃗� rotates along the surface 

of a cone about its axis; the cone’s height is equal to 𝑚ℏ, the projection of �̂⃗⃗�on the cone’s axis. The tip 

of �̂⃗⃗� lies, within the �̂�𝑧
  𝐿𝑥𝑦

  plane, on a circle of radius ℏ√𝑙(𝑙 + 1). 

 

In classical terms, we can think of �̂⃗⃗�  as representable graphically by a vector, whose endpoint 

lies on a circle of radius ℏ√𝑙(𝑙 + 1), rotating along the surface of a cone of half-angle 

𝜃 = 𝑐𝑜𝑠−1 (
𝑚

√𝑙(𝑙 + 1)
)

 

 

such that its projection along the z-axis is always 𝑚ℏ. Notice that, as the values of the 

quantum number 𝑚 are limited to 𝑚 = −𝑙,−𝑙 + 1,… , 𝑙 − 1, 𝑙 , the angle 𝜃 is quantized; the 

only possible values of 𝜃 consist of a discrete set of 2𝑙 + 1 values: 
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𝜃 = 𝑐𝑜𝑠−1 (
−𝑙

√𝑙(𝑙 + 1)
) , 𝑐𝑜𝑠−1 (

−𝑙 + 1

√𝑙(𝑙 + 1)
) ,… , 𝑐𝑜𝑠−1 (

𝑙 − 1

√𝑙(𝑙 + 1)
) , 𝑐𝑜𝑠−1 (

𝑙

√𝑙(𝑙 + 1)
) .  

Since all orientations of �̂⃗⃗� on the surface of the cone are equally likely, the projection of �̂⃗⃗� on 

both the x and y axes average out to zero: 

〈�̂�𝑥
 〉 = 〈�̂�𝑦

 〉 = 0 

where 〈�̂�𝑥
 〉 stands for 〈𝑙, 𝑚|�̂�𝑥

 |𝑙, 𝑚〉. 

As an example, Figure below shows the graphical representation for the 𝑙 = 2 case. As 

specified in the equation 𝜃, 𝜃 takes only a discrete set of values. In this case where 𝑙 = 2  the 

angle 𝜃 takes only five values corresponding respectively to 𝑚 = −2,−1,0,1,2 ; they are given 

by; 

𝜃 = −35.26°, −65.91°, 90°, 35.26°, 65.91° 

 
Figure: Graphical representation of the angular momentum 𝑙 = 2 for the state |𝑠,𝑚⟩ with 𝑚 =

−2,−1,0,1,2. The radius of the circle is ℏ√2(2 + 1) = √6ℏ. 

 

 

II. Spin angular momentum (S)  

The spin operator, 𝑆, represents another type of angular momentum, associated with “intrinsic 

rotation” of a particle around an axis; Spin is an intrinsic property of a particle (nearly all 

elementary particles have spin), that is unrelated to its spatial motion. The existence of spin 

angular momentum is inferred from experiments, such as the Stern-Gerlach experiment, in 

which particles are observed to possess angular momentum that cannot be accounted for by 

orbital angular momentum alone. 

The spin angular momentum of a particle does not depend on its spatial degrees of freedom. 

The spin, an intrinsic degree of freedom, is a purely quantum mechanical concept with no 

classical analog. Unlike the orbital angular momentum, the spin cannot be described by a 

differential operator. 

Unlike the spatial coordinates, spin can only take a discrete set of values. Proportional 

to the spin angular momentum is a magnetic momentum, �⃗⃗⃗�𝑆  ∝  𝑆⃗⃗⃗.The proton also has spin of 

equal magnitude, but the magnetic momentum due to the proton spin is much smaller and can 

be neglected in the Stern-Gerlach experiment. The magnetic momentum due to the spin of the 

paired core electrons cancels. 

By analogy with the orbital angular momentum of a particle, which is characterized by two 

quantum numbers—the orbital number 𝑙 and the azimuthal number 𝑚 or same time write 𝑚𝑙 
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(𝑚 = −𝑙, −𝑙 + 1,… , 𝑙 − 1, 𝑙)—the spin angular momentum is also characterized by two quantum 

numbers, the spin 𝑠 and its projection 𝑚𝑠 on the z-axis (the direction of the magnetic field), 

where  (𝑚𝑠 = −𝑠, −𝑠 + 1, … , 𝑠 − 1, 𝑠). Since only two components were observed in the Stern–

Gerlach experiment,we must have 2𝑠 + 1 = 2. The quantum numbers for the electron must then 

be given by 𝑠 =
1

2
 and 𝑚𝑠 = ±

1

2
 . 

In nature it turns out that every fundamental particle has a specific spin. Some particles 

have integer spins 𝑠 = 0,1,2,3, .. (the pi mesons have spin 𝑠 = 0, the photons have spin 𝑠 = 1, 

and so on) and others have half-odd-integer spins 𝑠 =
1

2
,
3

2
,
5

2
,  (the electrons, protons, 

andneutrons have spin 𝑠 =
1

2
, the deltas have spin 𝑠 =

3

2
 and so on. 

 

A. General Theory of Spin 

The theory of spin is identical to the general theory of angular momentum. By analogy with 

the vector angular momentum �̂⃗⃗�  , the spin is also represented by a vector operator 

 𝑆⃗⃗⃗ whose components �̂�𝑥 , �̂�𝑦 , �̂�𝑧 obey the same commutation relations as �̂�𝑥
  , �̂�𝑥

  , �̂�𝑥
 : 

[�̂�𝑥, �̂�𝑦] = 𝑖ℏ�̂�𝑧 

[�̂�𝑦, �̂�𝑧] = 𝑖ℏ�̂�𝑥 

[�̂�𝑧, �̂�𝑥] = 𝑖ℏ�̂�𝑧 

and therefore, all the general relations for angular momentum are satisfied, in particular, �̂�2 

and �̂�𝑧commute; hence they have common eigenvalues  

�̂�2𝑌𝑙
𝑚 = ℏ2𝑠(𝑠 + 1)𝑌𝑙

𝑚 

                                                         �̂�𝑧𝑌𝑙
𝑚 = 𝑚𝑠ℏ𝑌𝑙

𝑚 

For a given value of 𝑠, we have 2𝑠 + 1 𝑚𝑠-values 

𝑚𝑠 = −𝑠,−𝑠 + 1,… , 𝑠 − 1, 𝑠 

Where             𝑠 =
𝑖𝑛𝑡𝑒𝑔𝑒𝑟

2
≥ 0        

There are no boundary conditions restricting the value of 𝑠, so we can have both integer and 

half-integer values.  
By another way, we can write; 

�̂�2|𝑠,𝑚𝑠⟩ = ℏ2𝑠(𝑠 + 1)|𝑠,𝑚𝑠⟩ 

�̂�𝑧|𝑠,𝑚𝑠⟩ = 𝑚𝑠ℏ|𝑠,𝑚𝑠⟩ 
Similarly, we have  

�̂�±|𝑠,𝑚𝑠⟩ = ℏ√𝑠(𝑠 + 1) − 𝑚𝑠(𝑚𝑠 ± 1)|𝑠,𝑚𝑠 ± 1⟩ 
Where �̂�± = �̂�𝑥 ± 𝑖�̂�𝑦, and  

〈�̂� 𝑥
2
〉 = 〈�̂� 𝑦

2
〉 =

1

2
(〈�̂�  

2
〉 − 〈�̂� 𝑧

2
〉) =

ℏ2

2
[𝑠(𝑠 + 1)−𝑚𝑠] 

The spin states form an orthonormal and complete basis 

∑ |𝑠,𝑚𝑠⟩ = 𝐼

𝑠

𝑚𝑠=−𝑠

 

where I is the unit matrix. 

Each elementary particle has a fixed magnitude of the spin vector, given by the quantum 

number 𝑠. However, the projection of the spin onto one axis, typically chosen to be the z-axis, 
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is needed in addition to the coordinates (or momenta) to fully specify the state of the particle. 

A complete description of spin requires relativistic Quantum Mechanics. 

 

B. Spin 1 2⁄  and the Pauli Matrices 

For a particle with spin 
1

2
 the quantum number 𝑚𝑠 takes only two values: 𝑚𝑠 = −

1

2
 and 

1

2
 . The 

particle can thus be found in either of the following two states: |𝑠,𝑚𝑠⟩ = |
1

2
,
1

2
⟩and |

1

2
, −

1

2
⟩ . 

The eigenvalues of �̂�2 and �̂�𝑧 are given by 

�̂�2 |
1

2
, ±
1

2
⟩ =

3

4
ℏ2 |

1

2
, ±
1

2
⟩,       �̂�𝑧 |

1

2
, ±
1

2
⟩ = ±

ℏ

2
|
1

2
,±
1

2
⟩ 

Hence the spin may be represented graphically, as shown in Figure below, by a vector of length 

|�̂�| = √3ℏ 2⁄  , whose endpoint lies on a circle of radius |�̂�| = √3ℏ 2⁄ , rotating along the 

surface of a cone with half-angle 

𝜃 = 𝑐𝑜𝑠−1 (
|𝑚𝑠|

√𝑠(𝑠 + 1)
) = 𝑐𝑜𝑠−1 (

ℏ 2⁄

√3ℏ 2⁄
) =  𝑐𝑜𝑠−1 (

1

√3
) = 54.73°

 

   

The projection of �̂� on the z-axis is restricted to two values only: ±
ℏ

2
 corresponding to spin up 

and spin-down. 

 
Figure: Graphical representation of spin 

1

2
 the tip of �̂� lies on a circle of radius |�̂�| = √3ℏ 2⁄  so that its 

projection on the z-axis takes only two values, ±
ℏ

2
, with 𝜃 = 54.73°. 

Let us now study the matrix representation of the spin  𝑠 =
1

2
. Using above we can represent 

the operators �̂�2  and �̂�𝑧  within the {|𝑠,𝑚𝑠⟩}basis by the following matrices: 
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�̂�2 = (
⟨
1
2 ,
1
2 |�̂�

2|
1
2 ,
1
2⟩ ⟨

1
2 ,
1
2 |�̂�

2|
1
2 , −

1
2⟩

⟨
1
2 ,−

1
2 |�̂�

2|
1
2 ,
1
2⟩ ⟨

1
2 ,−

1
2 |�̂�

2|
1
2 , −

1
2⟩
) =

3ℏ2

4
(
1 0
0 1

) 

 

(A) 

 
�̂�𝑧 =

ℏ

2
(
1 0
0 −1

) (B) 

The matrices �̂�+ and �̂�− of can be inferred from (A) 

�̂�+ = ℏ (
0 1
0 0

),     �̂�− = ℏ (
0 0
1 0

), (C) 

and since �̂�𝑥 =
ℏ

2
(�̂�+ + �̂�−) and �̂�𝑦 =

ℏ

2
(�̂�+ − �̂�−), we have 

�̂�𝑥 =
ℏ

2
(
0 1
1 0

),     �̂�𝑦 =
ℏ

2
(
0 −𝑖
𝑖 0

), (D) 

The joint eigenvectors of �̂�2 and �̂�𝑧 are expressed in terms of two-element column matrices, 

known as spinors: 

|
1

2
,
1

2
⟩ = (

1

0
),     |

1

2
, −

1

2
⟩ = (

0

1
), (E) 

It is easy to verify that these eigenvectors form a basis that is complete, 

∑ |
1

2
,𝑚𝑠⟩

1
2

𝑚𝑠=
1
2

⟨
1

2
,𝑚𝑠| = (

1

0
) (0 1) + (

1

0
) (1 0) = (

1 0
0 1

), (G) 

And orthonormal 

⟨
1
2 ,
1
2 |
1
2 ,
1
2⟩ = (

1

0
) (0 1) = 1 (H) 

⟨
1
2 , −

1
2 |
1
2 ,−

1
2⟩ =

(0 1) (
0

1
) = 1 (I) 

⟨
1
2 ,
1
2 |
1
2 , −

1
2⟩ = ⟨

1
2
, −
1
2
|
1
2
,
1
2
⟩ = 0 (J) 

Let us now find the eigenvectors of �̂�𝑥 and �̂�𝑦 . First, note that the basis vectors |𝑠,𝑚𝑠⟩ are 

eigenvectors of neither �̂�𝑥 nor �̂�𝑦 ; their eigenvectors can, however, be expressed in terms of 

|𝑠,𝑚𝑠⟩ as follows: 

|𝜓𝑥⟩± =
1

√2
[|
1

2
,
1

2
⟩ ± |

1

2
, −
1

2
⟩] = 0 (K) 

|𝜓𝑦⟩± =
1

√2
[|
1

2
,
1

2
⟩ ± 𝑖 |

1

2
, −
1

2
⟩] = 0 (L) 

The eigenvalue equations for �̂�𝑥 and �̂�𝑦 are thus given by 

�̂�𝑥 |𝜓𝑦⟩± =
ℏ

2
|𝜓𝑥⟩±,  �̂�𝑦 |𝜓𝑦⟩± =

ℏ

2
|𝜓𝑦⟩±, (M) 
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C. State vectors for electron spin 

A general state of electron spin can be represented by a linear combination of two basis states, 

one corresponding to the “spin-up” state, written as |↑⟩, |
1

2
,
1

2
⟩ or [

1
0
]and the other corresponding to a 

“spin-down” state, written as as |↓⟩, |
1

2
, −

1

2
⟩ or [

0
1
].The “up” and “down” refer to the z direction, 

conventionally, though any axis in space can be chosen. A general electron spin state can 

therefore be written as 

|𝑠⟩ = 𝑎1 2⁄ |
1

2
,
1

2
⟩ + 𝑎−1 2⁄ |

1

2
, −
1

2
⟩ = 𝑎1 2⁄ |↑⟩ + 𝑎−1 2⁄ |↓⟩ = [

𝑎1 2⁄

𝑎−1 2⁄
] 

 

D. Spin operators 

By analogy with orbital angular momentum operators, spin operators �̂�𝑥 , �̂�𝑦 , and �̂�𝑧 can be 

defined with analogous commutation relations. More commonly, the operators 

�̂�𝑥=2�̂�𝑥 ℏ⁄ , �̂�𝑦=2�̂�𝑦 ℏ⁄ , �̂�𝑧=2�̂�𝑧 ℏ⁄ , 

are used, with commutation relations 

[�̂�𝑥, �̂�𝑦] = 2𝑖�̂�𝑧 

[�̂�𝑦, �̂�𝑧] = 2𝑖�̂�𝑥 

[�̂�𝑧 , �̂�𝑥] = 2𝑖�̂�𝑦 

These operators can be written as the Pauli spin matrices 

�̂�𝑥 = [
0 1
1 0

],   �̂�𝑦 = [
0 −𝑖
𝑖 0

],  �̂�𝑧 = [
1 0
0 −1

], 

The vector spin operator 

�̂� = 𝑖�̂�𝑥 + 𝑗�̂�𝑦+𝑘�̂�𝑧 = 𝑖 [
0 1
1 0

] + 𝑗 [
0 −𝑖
𝑖 0

] + 𝑘 [
1 0
0 −1

] 

Spinor 

A spinor is a vector in the direct product space of the spatial (or space and time) and spin basis 

functions, and corresponds to a vector with a possibly different spatial (or space and time) 

function for each spin direction, i.e., 

|Ψ⟩ = [
𝜓↑(𝑟, 𝑡)

𝜓↓(𝑟, 𝑡)
] = 𝜓↑(𝑟, 𝑡) [

1

0
] + 𝜓↓(𝑟, 𝑡) [

0

1
] 

A spinor can represent any possible state of a single electron, including spin. 

Example: Show that [�̂�𝑥 , �̂�𝑦] = 𝑖ℏ�̂�𝑧 

[�̂�𝑥, �̂�𝑦] = {
ℏ

2
(
0 1
1 0

)
ℏ

2
(
0 −𝑖
𝑖 0

) −
ℏ

2
(
0 −𝑖
𝑖 0

)
ℏ

2
(
0 1
1 0

)} 

                                          =
ℏ2

4
{(
0 1
1 0

) (
0 −𝑖
𝑖 0

) − (
0 −𝑖
𝑖 0

) (
0 1
1 0

)} 

                                          =
ℏ2

4
{(
𝑖 0
0 −𝑖

) − (
−𝑖 0
0 𝑖

)} =
ℏ2

2
{(
𝑖 0
0 −𝑖

)}       

                                          = 𝑖ℏ
ℏ

2
{(
1 0
0 1

)} = 𝑖ℏ�̂�𝑧 

In the same manner 
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[�̂�𝑦, �̂�𝑧] = 𝑖ℏ�̂�𝑥 

[�̂�𝑧, �̂�𝑥] = 𝑖ℏ�̂�𝑦 

Example: Show that  

(i) �̂�𝑥
2 = 𝐼 and (ii) the commutator [�̂�𝑥, �̂�𝑦] = 2𝑖�̂�𝑧  

(i) �̂�𝑥
2 = [

0 1
1 0

] [
0 1
1 0

] = [
1 0
0 1

] = 𝐼, 

 (ii) [�̂�𝑥, �̂�𝑦] = [
0 1
1 0

] [
0 −𝑖
𝑖 0

] − [
0 −𝑖
𝑖 0

] [
0 1
1 0

] 

                       =  [
𝑖 0
0 −𝑖

] − [
−𝑖 0
0 𝑖

] = [
2𝑖 0
0 −2𝑖

] = 2𝑖 [
1 0
0 −1

] = 2𝑖 �̂�𝑧   

 

 


