Enzyme Kinetics

Questions and answers

2nd year undergraduates- Biology 2018-2019

Vmax= maximum velocity

[S]= substrate concentration

Km= Michaelis constant= [S] when the velocity of the reaction is ½ V max

Q3 An enzyme hydrolyzed a substrate concentration of 0.03 mmol/L ,the initial velocity was 1.5x10⁻³ mmol/L.min⁻¹ and the maximum velocity was 4.5x10-3 mmol/L.min⁻¹ . Calculate the km value.

 $v_0 = \frac{V_{max}[S]}{K_m + [S]}$ $1.5*10^{-3} = 4.5*10^{-3} * 0.03$ Km + 0.03 $Km + 0.03 = 4.5*10^{-3} * 0.03$ $1.5*10^{-3}$ $\text{Km} + 0.03 = 0.135 \times 10^{-3} / 1.5 \times 10^{-3}$ Km + 0.03 = 0.09

S1= 0.03 V_{o1}= 1.5*10-3 Vmax= 4.5*10-3 Km =?

Km = 0.06

Q1 Urease enzyme hydrolyzed urea at [S]= 0.03 mmol/L with a *Km* value of around 0.06 mmol/L. The initial velocity observed was 1.5×10^{-3} mmol/L.min-1. Calculate the maximum velocity of the enzymatic reaction

Solution

$$v_{o} = \frac{V_{max}[S]}{K_{m} + [S]}$$

S1= 0.03 Km= 0.06 V_{o1} = 1.5*10-3 V_{max} =?

 $1.5*10^{-3} = Vmax*0.03$ 0.06+0.03

 $Vmax = 1.5*10^{-3}*3$

=4.5*10⁻³

Q2 An enzyme with a Km of 0.06 mmol/L hydrolyzed a substrate of a concentration 0.03 mmol/L. The initial velocity of the reaction was 0.0015 mmol/L.min⁻¹. Calculate the substrate concentration which gives an initial velocity of 0.003 mmol/L.min⁻¹.

S1 = 0.03

Solution	$v_0 = \frac{V_{max}[S]}{K_m + [S]}$	Km= 0.06 V_{o1} = 1.5*10-3 V_{02} = 3 *10-3
1.5*10 ⁻³ = Vmax* 0.03 0.06 + 0.03	$\frac{3*10^{-3}=4.5*10^{-3}*S_2}{0.06+S_2}$	S ₂ =?
Vmax = 1.5*10 ⁻³ * 3 =4.5*10 ⁻³	S2= 0.12 mmol/L	

Q1 Urease enzyme hydrolyzed urea at [S] = 0.03 mmol/L with a *Km* value of around 0.06 mmol/L. The initial velocity observed was $1.5 \times 10^{-3} \text{ mmol/L}$.min-1. Calculate the initial velocity of the enzymatic reaction when using [S] = 0.12 mmol/L.

Solution	$v_0 = \frac{V_{max}[S]}{K_m + [S]}$	S1= 0.03 Km= 0.06 V_{o1} = 1.5*10-3 S = 0.12
$1.5*10^{-3} = Vmax* 0.03$ 0.06 + 0.03	$V_{o2} = \frac{4.5*10^{-3}*0.12}{0.06+0.12}$	$V_{02} = ?$
Vmax = 1.5*10 ⁻³ * 3 =4.5*10 ⁻³	V ₀₂ = 3*10 ⁻³	

Q3 An enzyme hydrolyzed a substrate concentration of 0.03 mmol/L ,the initial velocity was 1.5×10^{-3} mmol/L.min⁻¹ and the maximum velocity was 4.5×10^{-3} mmol/L.min⁻¹. Calculate the substrate concentration that gives a velocity of 3×10^{-3} mmol/L.min⁻¹.

$$v_0 = \frac{V_{max}[S]}{K_m + [S]}$$

 $S_1 = 0.03$ $V_{o1} = 1.5*10-3$ $V_{max} = 4.5*10-3$ $V_{02} = 3*10-3$ $S_2 = ?$ 1. Use the Michaelis-Menton Equation to calculate the missing values of [S] given below if $V_{max} = 5 \text{ mmol/min}$. Plot [S] versus V. Draw line parallel to the x-axis at V_{max} and extend your plotted line to show its approach to V_{max} .

[S] (mM)	V (mmol/min)	
10	1.2	
[S] ₁	1.7	
$[S]_2$	2.1	
$[S]_3$	2.2	
$[S]_4$	2.5	
•		

