Intelligent Agents

An active line on a walk, moving freely without a goal. A walk for a walk’s
sake. The agent is a point that shifts position.

—Paul Klee, Pedagogical Sketchbook

My team had written a number of programs to control swarms of agents.
These programs were modeled on behavior of bees. The programs had many
useful characteristics. Because swarms were composed of many agents, the
swarm could respond to the environment in a robust way. Faced with new and
unexpected conditions, the swarm programs didn’t crash; they just sort of
flowed around the obstacles, and kept going.

—Michael Crichton, Prey

For I also am a man set under authority, having under me soldiers, and I say
unto one, Go, and he goeth; and to another, Come, and he cometh; and to my
servant, Do this, and he doeth it.

—The Gospel according to St Luke, Chapter 7, Verse 8

19.1 Introduction

An agent is an entity that is able to carry out some task, usually to help a
human user. Agents can be biologic (people or animals, for example),
robotic, or computational. This chapter is primarily concerned with the
latter type, in particular with software agents. A software agent is a com-
puter program designed to carry out some task on behalf of a user.

X

CHAPTER 19

Intelligent Agents

As we will see, there are a number of ways in which software agents can be
built and a number of properties that they can have. One property with
which we are particularly concerned is intelligence. We will discuss in
more detail what is meant by intelligence, in the context of agents, in Sec-
tion 19.2.1.

This chapter also introduces other important properties that agents may or
may not have, including autonomy, benevolence, the ability to collaborate
(with other agents, for example), and the ability to learn.

A number of architectures that can be used to build agents are discussed.

This chapter also introduces a number of types of agents, such as reactive
agents, interface agents, information agents, and multiagent systems,
which use a number of agents together to solve a single problem.

Finally, the chapter briefly introduces the ideas behind robotic agents and
discusses a particular type of robot, known as a Braitenberg vehicle, which is
used to discuss the nature of intelligence and our interpretation of behavior.

In many ways, the field of Artificial Intelligence as a whole can be seen as
the study of methods that can be used to build intelligent agents. For exam-
ple, the techniques discussed in Chapters 3 through 6 can be thought of as
methods that intelligent agents can use to enable them to search or to play
games. Each of the methods explained in this book can be used by an intel-
ligent agent or to build intelligent agent systems.

19.2 Properties of Agents

19.2.1 Intelligence

An agent is a tool that carries out some task or tasks on behalf of a human. For
example, a simple agent might be set up to buy a particular stock when its
price fell below a particular level. A simple Internet search agent might be
designed to send queries to a number of search engines and collate the results.

Intelligent agents have additional domain knowledge that enables them to
carry out their tasks even when the parameters of the task change or when
unexpected situations arise. For example, an intelligent agent might be
designed to buy books for a user on the Internet at the lowest possible
price. The agent would need to be able to interact with a set of online book-
stores but would also need to be able to learn how to deal with new book-
stores or with individuals who were offering secondhand books. These

19.2 Properties of Agents

kinds of agents that perform tasks on behalf of people are called interface
agents, which are discussed in Section 19.5.

Many intelligent agents are able to learn, from their own performance,
from other agents, from the user, or from the environment in which they
are situated. The ways in which agents can learn have been covered in some
detail in Part 4 of this book, and the way in which some of these ideas can
be applied by intelligent agents are introduced in Section 19.12.

19.2.2 Autonomy

In addition to intelligence, an important feature of many intelligent agents
is autonomy—the ability to act and make decisions independently of the
programmer or user of the agent. For example, an intelligent buying agent
that is designed to buy goods on behalf of a user needs to be able to make
decisions about what items to purchase without checking back with the
user. This autonomy is what sets intelligent agents aside from many other
Artificial Intelligence techniques.

19.2.3 Ability to Learn

Many agents have an ability to learn. In other words, when presented with
new information, such an agent is able to store that new information in a
useful form. For example, agents can learn from a user by observing actions
or by being given instruction. We see how interface agents use these kinds
of learning in Section 19.5. Agents can also learn from other agents in mul-
tiagent systems, which are described in Section 19.8.

Learning allows agents to improve their performance at carrying out a par-
ticular task over time. If a human user tells an agent that it has carried out
a task poorly, it is useful for that agent to be able to learn from this experi-
ence to avoid making the same mistakes in the future.

19.2.4 Cooperation

In multiagent systems, agents usually cooperate with each other. This coop-
eration implies some form of social interaction between agents. For exam-
ple, a buying agent may negotiate with selling agents to make purchases. As
has been mentioned, agents can also learn from each other. To use the buy-
ing agent example again, a buying agent may be informed by another buy-
ing agent of a new shopping portal that the agent may find useful.

I 546

CHAPTER 19

Intelligent Agents

Of course, it is also useful for agents to cooperate with the humans who use
them. Although in most agent systems, this cooperation is in the form of
simple inputs and instructions, the manner in which agents cooperate with
people can be very important, as we see in Section 19.5 when we discuss
interface agents.

19.2.5 OtherAgent Properties

Agents can have a number of other properties. A versatile agent is one that
is able to carry out many different tasks. Most agents are benevolent, but
some can be competitive or nonhelpful. Similarly, agents may be altruistic
or antagonistic. Some agents can have the ability to lie to other agents, or
to users, whereas other agents are always truthful (this property is known as
veracity).

Other properties of agents include the extent to which they can be trusted
with delegated tasks and whether or not they degrade gracefully (i.e.,
when the agent encounters a new problem that it is unable to solve, does it
fail completely, or is it able to make some progress?).

An agent’s mobility is defined by its ability to move about on the Internet
or another network.

19.3 Agent Classifications

As has been discussed in Section 19.2, agents can be classified according to
a number of parameters. We will now discuss a variety of types of agents
that are classified according to these, and other, parameters.

The types of agents that we will look at are not mutually exclusive: an interface
agent can be reactive or utility based. It can also be versatile or nonversatile.

The main classes of agents are defined as follows:

= reactive agents

» collaborative agents
» interface agents

= mobile agents

» information-gathering agents

19.4 Reactive Agents

We also look at the difference between reactive agents and goal-based and
utility-based agents, which are defined by the ways in which they are moti-
vated. Reactive agents simply respond to inputs they receive, whereas goal-
based and utility-based agents have an ability to reason about their
positions and make decisions on the basis of that reasoning.

Some agents are hybrids, which exhibit properties of more than one of the
categories listed above. The eventual aim of most intelligent agent research
is to develop smart agents, which would be fully autonomous and able to
learn and cooperate with other agents. Smart agents do not yet exist and are
not covered by this book.

19.4 Reactive Agents

A simple reactive agent (also known as a reflex agent) is a production sys-
tem where inputs from the environment are compared with rules to deter-
mine which actions to carry out. In other words, reactive agents simply
react to events in their environment according to predetermined rules.

A simple example of a reactive agent is the automatic mail filter that many
e-mail systems now possess. This mail filter examines each e-mail as it
arrives and compares it against a set of rules, or templates, and classifies it
accordingly. A common use for such systems is to reject so-called “junk
mail” or “spam.” More complex systems are used to route e-mails within an
organization, so that a consumer can send an e-mail to a central mail
address, and the system will determine to which department within the
company to send the mail, based on its contents.

In the case of the e-mail-filtering agent, the environment is simply an e-
mail inbox and the contents of that inbox.

A reactive agent does not tend to perform well when its environment
changes or when something happens that it has not been told about. For
example, an e-mail-filtering system might have problems when it receives
an e-mail that is entirely in Chinese. New rules can of course be written to
deal with such situations, but it might be more desirable to have an agent
that can learn to adapt to new situations.

A more complex reactive agent can be developed that combines inputs
from its environment with information about the state of the world and
information about how its actions affect the world.

I 548

CHAPTER 19

Intelligent Agents

Hence, a scheduling system might be based on the e-mail-filtering agent
system, which assigns tasks to employees based on the content of e-mails as
they arrive.

For example, when an e-mail arrives from a customer, reporting a bug in
the company’s software system, the agent might assign a task to the engi-
neering department to fix the bug. The agent would then wait for further
information from the engineering department. If it did not receive assur-
ance that the bug had been fixed within a reasonable amount of time, it
might contact the engineering department again. The agent’s ability to do
this derives from the fact that it is able to store information about the state
of the world (such as “engineering department working to fix bug number
36,234,120”) and about how its actions affect the state of the world (such as
“when I send this e-mail to engineering, they will start to work on fixing
the bug”).

If a subsequent e-mail arrives from a different customer, reporting the
same bug, the agent would not need to report the bug again because it
knows that it has already reported it. Instead, it might reply to the customer
saying something like

Thank you for your email—we are already aware of this problem, and
our engineers are working to fix it now.

19.4.1 Goal-based Agents

Goal-based agents are more complex than reactive agents. Rather than fol-
lowing a predetermined set of rules, a goal-based agent acts to try to
achieve a goal. This is often done by using search (see Part 2) or planning
(see Part 5).

A goal-based agent might, for example, be given the goal of finding pages
on the Internet that are of interest to an Artificial Intelligence researcher.
The agent will be designed so that it is capable of carrying out actions (such
as loading a web page, examining it, and following links from one web page
to another). It is also able to identify when it has reached a goal (for exam-
ple, by matching the pages it finds against a set of keywords whose presence
indicates relevance to Artificial Intelligence).

This goal based agent would search the Internet looking for pages that
matched its criteria and would presumably report those pages to its owner
or to a client. This kind of agent does not take into account how efficiently

19.4 Reactive Agents

it is searching or how relevant the pages are that it is finding. In other
words, its aim is simply to satisfy its goal; it does not take into account how
well it has satisfied the goal or how efficiently. Utility-based agents, which
are described in the next section, use these concepts to attempt to provide
better results and in a more efficient manner.

19.4.2 Utility-based Agents

A utility-based agent is similar to a goal-based agent, but in addition to
attempting to achieve a set of goals, the utility-based agent is also trying to
maximize some utility value. The utility value can be thought of as the
happiness of the agent, or how successful it is being. It may also take into
account how much work the agent needs to do to achieve its goals.

Let us return to our example from the previous section of an agent that
searches for pages on the Internet that are of interest to Artificial Intelli-
gence researchers.

The utility-based agent can use knowledge about the Internet to follow the
most worthwhile paths from one page to another. In other words, it can use
heuristic-based search techniques to minimize the amount of time it
spends examining pages that are not of interest and to maximize the likeli-
hood that if an interesting page exists, it will be found (this combines
search concepts from Chapters 4 and 5 with information retrieval tech-
niques, which are discussed in Chapter 20).

The techniques we saw in Chapter 6 for game-playing systems can also be
used as part of a utility-based agent. In this case, the agent’s utility function
is based on how successful it is at playing the game, and its goal is to maxi-
mize this utility function by winning the game.

19.4.3 Utility Functions

A utility function maps a set of states to the set of real numbers. In other
words, given a particular state of the world, an agent is able to use its utility
function to derive a score, or utility value, that tells it how “happy” it is in
that state or how successful it has been if it reaches that state.

The static board evaluators that we saw in Chapter 6 are an example of
a utility function that is used to evaluate a single position in a board
game.

I 550

CHAPTER 19

Intelligent Agents

By searching through a tree of possible future states, based on available
actions, and selecting a path that maximizes the utility function through-
out the tree, a utility-based agent is able to achieve its goals effectively and
efficiently.

For example, our Artificial Intelligence research agent might assign a high
utility value to pages that are written in English and that appear to be writ-
ten by a reliable source.

The idea of utility is closely related to the idea of rationality. An agent that
behaves rationally is one that attempts to maximize its utility function. This
utility function may not seem rational to all observers, although a rational
agent might be programmed to lose at chess as spectacularly as possible. By
losing a game, this agent maximizes its utility function and so, contrary to
appearance, it is behaving rationally.

This model of utility is based on economics theory. One utility function for
people is money. In general, people tend to prefer to have more money
rather than less money. It is not as simple as this though. We might assume
that the utility function for a human relating to money (ignoring other
aspects of life) is simply based on the amount of money that that person
had. This is contradicted by an experiment carried out in 1982 by psychol-
ogists, Tversky and Kahneman. In their experiment, they offered subjects
two consecutive choices:

1. AorB:
A = 80% chance of winning $4000
B =100% chance of winning $3000
2. CorD:
C=20% chance of winning $4000
D = 25% chance of winning $3000

Most subjects choose A, rather than B; and C, rather than D. Let us consider
the utility of these choices. In the choice between A and B, we have an 80%
chance of winning $4000 or a 100% chance of winning $3000. The
expected values of these two choices are

E(A) = 0.8 X 4000 = 3200
E(B) = 1.0 X 3000 = 3000

19.5 Interface Agents

Hence, the most rational choice, using a simple utility function, would be to
select A rather than B. For the choice between Cand D, the expected values are

E(C) = 0.2 X 4000 = 800
E(D) =0.25 X 3000 = 750

So in this choice, most people make the more rational decision on the basis
of the simple utility function. What this experiment tells us is that people
have much more complex utility functions than we might assume.

Similarly, utility-based intelligent agents usually need sophisticated utility
functions. In the case of a chess playing agent, for example, a utility func-
tion based solely on the number of pieces each player has would not be suf-
ficient. A utility function based on which player wins is fine, but as we saw
in Chapter 6, this does not help the agent to play the game because the
search tree is usually too large for the agent to reach a position where one
player has won.

19.5 Interface Agents

An interface agent can be thought of as a personal assistant. Interface
agents are typically autonomous agents, capable of learning in order to
carry out tasks on behalf of a human user. Typically, interface agents col-
laborate with the user, but do not need to collaborate with other agents;
although in some cases, interface agents can learn by seeking advice from
other agents.

A typical example of an interface agent is a tool that is used to help a user
learn to use a new software package. Such an agent has the ability to observe
what the user does and make suggestions for better ways to perform those
tasks. It is also able to assist the user in carrying out complex tasks, possibly
learning as it does so. Interface agents can thus take instructions from users
and can also learn from feedback from users about whether they are doing a
good job or not, in order to perform better in future.

It is often useful for repetitive tasks to be delegated to an interface agent.
The interface agent can learn how to carry out the task by observing the
user and then is able to repeat the task as required.

Kozierok and Maes (1993) describe an interface agent that is able to assist a
user with scheduling meetings on a calendar. The agent is able to arrange
meetings with other people and is also able to accept, reject, and rearrange

I 552

CHAPTER 19

Intelligent Agents

meetings on behalf of the user. By observing the user’s behavior, it is able to
learn, for example, that the user does not like to book meetings on Friday
afternoons and so is able to avoid such meetings.

A number of tools exist that filter Usenet postings and new articles for a
user. These tools can typically be trained by example: a user can show
examples of interesting articles, and examples of uninteresting articles and
the agent can learn to identify interesting articles and present those to the
user, while avoiding uninteresting ones.

19.6 Mobile Agents

Mobile agents are those capable of “moving” from one place to another. In
the case of mobile robots, this literally means moving in physical space. In
the case of mobile software agents, this mobility usually refers to the Inter-
net or other network. An agent that is not mobile is static.

Mobile agents travel from one computer to another, gathering information
and performing actions as needed on the basis of that information. A com-
puter virus can be thought of as a form of mobile agent, although most
viruses are not intelligent, merely autonomous. That is, they are able to act
without being given direct instruction from a human, but they do not
adapt intelligently to their surroundings—they simply follow a fixed set of
rules that tells them how to infect a computer and how to reproduce.

For mobile agents to run on remote computers, a suitable environment
must of course be provided that allows the agent to run on that machine.
An example of a system that provides such an environment is Telescript,
developed by General Magic. The Java programming language, developed
by Sun, can also be used for developing mobile agents.

The idea that a mobile agent can be sent from one computer across the
Internet to run on another computer raises many security questions.

The main advantages of mobile agents are in efficiency. An agent that has to
communicate with a number of remote servers and request large quantities
of information in order to make a decision uses a large amount of band-
width, which can be avoided if the agent is able to physically move to the
remote server and query it locally.

19.7 Information Agents

Similarly, the mobile agent may be able to take advantage of superior com-
puting power or the existence of particular functional abilities at the
remote machine that are not present locally.

In this way, mobile agents can be used to generate a distributed computing
architecture, where computation takes place on multiple computers at
arbitrary locations.

A further advantage of mobile agents is that they can carry out their tasks
asynchronously: the user can set a mobile agent off on a particular task and
can then get on with other work, or maybe even switch the computer off.
When the user is ready to receive the results, the agent can be recalled.

19.7 Information Agents

Information agents, also known as information-gathering agents, are
usually used on the Internet and so are also sometimes called Internet
agents. An information agent is used to help a user find, filter, and classify
information from the vast array of sources available on the Internet.

Information agents may be static or mobile. Some information agents are
capable of learning, whereas the behavior of others is fixed. Additionally,
information agents can be collaborative or can work independently of
other agents. The distinctive feature of an information agent is the function
that it provides, rather than the way it works.

There is an overlap between information agents and other kinds of agents
described in this chapter. The interface agents described in Section 19.5,
which monitor Usenet postings or online news articles, are examples of
information agents.

Information agents know how to search the Internet, usually using a num-
ber of search tools. In this way, they are able to cover as much content as
possible and thus maximize their recall (see Chapter 20). The real chal-
lenge is usually precision. This is heavily dependent on the ability of the
agent to receive input instructions from the user. Some agents learn by
example: the user shows the agent examples of pages that are relevant and
pages that are not relevant, and the system learns to differentiate the two
groups. Other agents are directed by keywords or more sophisticated infor-
mation retrieval techniques (see Chapter 20) to identify relevant material
for the user.

I 55

CHAPTER 19

Intelligent Agents

The Internet provides some unique challenges to these agents. Internet data
is very dirty: most of the information on the Internet is not organized in
any way; much of it includes misspellings, incorrect grammar, and incor-
rect facts. Additionally, the Internet is global in nature, and so material is
available in almost every language.

The sheer quantity of the data and the dirty nature of the data make it very
difficult for many information agent systems to provide adequate precision
in identifying relevant documents.

Of course, this is one of the reasons that information agents are so useful. It
is even harder for humans to locate the data they want than it is for the
agents. Agents have the advantage of speed and of being able to examine
pages asynchronously, delivering results to a user, perhaps by e-mail, once
they are available.

More sophisticated information agents are able to monitor the browsing
habits of users to identify the kinds of material they are interested in and to
use that information to improve the performance of future searches.

19.8 Multiagent Systems

In many situations, simple reactive agents are sufficient. The fact that they
do not have the ability to learn means that they are not suited to operating
in complex, dynamic environments. Also, because such an agent is based
on a set of rules, the number of tasks and situations that it can deal with is
limited by the number of rules it has. In fact, most agents do not exist in
isolation.

Multiagent systems are a common way of exploiting the potential power of
agents by combining many agents in one system. Each agent in a multiagent
system has incomplete information and is incapable of solving the entire
problem on its own, but combined together, the agents form a system that
has sufficient information and ability to solve the problem. The system does
not have a centralized control mechanism for solving the problem.

An example of how many simple agents can combine together to produce
complex behavior can be seen by examining the way that ant colonies func-
tion. Each ant has very little intelligence and very little ability to learn.
Taken as a whole, however, the ant colony is able to deal with complex situ-
ations and in some ways behaves as a single living entity.

19.8 Multiagent Systems

In much the same way, many “dumb” agents can be combined together to
produce a more intelligent system. For example, the legs of a robot might
be controlled by a set of agents. Each leg is controlled by a simple reactive
robot that has instructions for how to move the leg according to what the
leg encounters.

Communication and collaboration are desirable properties of multiagent
systems. Communication means, for example, that agents can inform each
other of changes in the environment or of new discoveries they have made.
Collaboration means that agents can work together to solve a common goal.

In fact, multiagent systems often involve relatively simple interactions
between agents, and as we have seen with systems like Reynolds’ Boids (Chap-
ter 13), the system as a whole is able to solve complex problems without the
individual agents necessarily knowing anything about the overall problem.
Such emergent behavior is a valuable property of multiagent systems.

Multiagent systems can be given the ability to learn to solve new problems
using genetic algorithms (see Chapter 14). In this way, robots have been
successfully developed whose limbs are controlled by individual agents,
each of which has been developed using a genetic algorithm. The robots are
able to walk in a way that mimics the locomotion of insects (Gary Parker
1997, 1998).

Agents in a multiagent system can be collaborative or competitive. Agents
designed to play chess against other agents would clearly be competitive,
whereas agents that traverse the Internet searching for specific material
may find it advantageous to cooperate with other similar agents.

An agent team is a group of agents that collaborate together to achieve
some common goal. It is often the case that an agent team consists of
agents that operate in different ways and have different goals to accomplish.
For example, a team of agents might be used to arrange travel for a busi-
nessman: one agent might book flights, another agent arranges hotel
accommodation, a third agent arranges meetings with business associates,
while a fourth agent arranges meals and entertainments.

In some situations, these agents will be competing with other agents, bid-
ding for purchases, but the agents within the team will cooperate with each
other (e.g., the meal-booking agent will inform the meeting booking agent
if it changes its restaurant bookings, which might affect a meeting that has
been arranged in that restaurant).

I 556

CHAPTER 19

Intelligent Agents

19.9 Collaborative Agents

Collaborative agent systems are multiagent systems in which the agents
collaborate with each other to accomplish goals. This property, of cooper-
ating to achieve a common goal, is known as benevolence.

Collaborative agents typically do not have the ability to learn, although
some have simple learning abilities. As with multiagent systems, the idea is
that a combination of many simple agents can solve a problem that each
agent individually would not be able to solve.

Collaborative agent systems are able to take advantage of their parallel
nature in order to solve problems faster than would otherwise be possible.
They are also more reliable than traditional systems because additional
agents can be added to provide redundancy: if one agent fails, or provides
incorrect information, this will not affect the overall performance of the
system because other agents will provide corrective information.

19.10 Agent Architectures

In this section, we will look at a number of architectures that can be used to
build intelligent agents. The architecture of an agent is the way in which its
various processing modules are connected together and the way in which
those modules are connected to the environment in which the agent operates.

19.10.1 Subsumption Architecture

There are a number of architectures suitable for reactive agents. One of the
most commonly used is Brooks’ subsumption architecture (Brooks 1985).
The subsumption architecture is a layered architecture that was designed
for implementing physical robots, which does not involve any centralized
intelligence or control mechanism.

The agent in this architecture has a set of inputs, a possible set of actions,
and a layered set of modules, each of which is designed to control some
aspect of the agent’s behavior. Each layer is able to inhibit the behavior of
layers below it.

The modules are augmented finite state machines (AFSMs), which are
similar to the finite state automata we saw in Chapter 13. AFSMs are often
based on production rules, as used by expert systems, which take the form

input — action

19.10 Agent Architectures

s > | 7O pcters >

s > | "= laciers~ >
|]|:| AVOID OBSTACLES |]|:|

These rules are called situated action rules or situation action rules
because they map situations to actions. An agent that uses such rules is said
to be situated, in that it is affected by where it is in its environment.

An AFSM is triggered when its inputs exceed a threshold. Each AFSM also
has inhibitor inputs that can prevent it from triggering.

Rather than having a centralized representation, the subsumption architec-
ture relies on lower-level modules that combine together. From these com-
bined modules emerges intelligent behavior.

A simple subsumption architecture is shown in Figure 19.1.

This architecture was proposed by Brooks as a control mechanism for a
robot. Each layer in the architecture is designed to handle one type of behav-
ior: exploring, wandering, or avoiding obstacles. The modules act asynchro-
nously, but each module can affect the behavior of the other modules.

The WANDER module will take into account the instructions generated by
the AVOID OBSTACLES module, but it is also able to suppress the instruc-
tions generated by the AVOID OBSTACLES module, in order to ensure that
while avoiding collisions, the robot still wanders around. This is to ensure
that the robot does not simply focus on avoiding obstacles to the exclusion
of everything else.

More important than wandering, for this robot, is exploration. Hence, the
EXPLORE module is able to suppress instructions from the WANDER
module to ensure that the robot continues to explore new territory, rather
than simply wandering aimlessly.

Further layers can be added to the architecture to generate more sophisti-
cated behavior—for example, Brooks describes a system that is able to
wander around among desks in an office, looking for empty drink cans.
This system has an architecture with additional layers for identifying drink
cans, identifying desks, and so on (Brooks 1993).

Figure 19.1

A three-layer subsumption
architecture

I 553

CHAPTER 19

Intelligent Agents

19.10.2 BDI Architectures

BDI architectures, or Belief Desire Intention architectures, are based on
the three concepts of belief, desire, and intention. A belief is a statement
about the environment that the agent considers to be true. BDI agents have
a set of beliefs that are similar to the set of facts contained in a rule-based
production system. A desire is a goal state that the agent would like to
reach, and the agent’s intentions are the plans it has for how to behave in
order to achieve its desires.

An agent can have an intention to carry out a particular action, in which
case it will probably do so. Alternatively, an agent can have an intention to
bring about a particular state.

When an agent commits to carrying out a particular action, or achieving a
particular goal, it ‘promises’ that it will do so. Hence, a BDI agent has a set
of beliefs that lead it to establish a set of desires. To achieve its desires, the
BDI agent considers a number of options and commits to one or more of
them. These options now become the agent’s intentions.

Intentions persist until the goals are achieved, or until it becomes unrea-
sonable to continue to attempt to achieve them (e.g., if it becomes obvious
that the goals can never be achieved or if new beliefs are developed that
lead the agent to change its desires).

A bold agent is one that establishes a set of intentions and then aims to
carry them out without ever stopping to consider whether it should change
its intentions. A cautious agent is one that considers its intentions continu-
ally. Kinny and Georgeft (1991) found that bold agents perform better than
cautious agents in worlds where the environment does not change very fre-
quently and that cautious agents perform better than bold agents in worlds
that change quickly.

19.10.3 Other Architectures

A number of other agent architectures exist. Logic-based agents apply rules
of logical deduction to a symbolic representation of their environment.
The state of such an agent is usually represented using first-order predi-
cates, and its behavior is determined by a set of deduction rules, usually
expressed in first-order predicate logic.

19.10 Agent Architectures

T Outputs and

actions
> Layern Layern
Inle > Layer 2 Outputs and Layer 2
> Layer 1 actions Layer 1
Tlnputs
Horizontal Architecture Vertical Architecture

In contrast to logic-based architectures, purely reactive agents do not per-
form any symbol manipulation and rely on a simple mapping from inputs
to actions.

A number of layered architectures exist other than the subsumption archi-
tecture. The subsumption architecture is an example of a horizontal lay-
ered architecture, where each layer receives inputs and contributes to the
actions and outputs of the agent. In a vertical layered architecture, input is
passed to one layer, which then passes information on to a further layer.
Actions and outputs are eventually produced by the final layer. These two
architecture types are illustrated in Figure 19.2.

TouringMachines is an example of a horizontal architecture, which is
based on three layers:

= Reactive layer: This layer uses situation rules to react to changes in
the agent’s environment.

» Planning layer: This layer uses a library of plans (called schemas)
to determine the behavior of the agent, in order to achieve particu-
lar goals. In most situations, this is the layer that decides the main
behavior of the agent.

s Modeling layer: This layer contains a model of the agent and any other
agents in the world, in order to avoid conflicts with other agents.

InteRRaP is an example of a vertical layered architecture, which has three
layers with very similar functions to the layers of the TouringMachines
architecture. Each layer in the InteRRap architecture has a database of rele-
vant knowledge: the reactive layer has a database of knowledge about the
world the agent inhabits; the planning layer has a database of planning

Figure 19.2
Horizontal and vertical
agent architectures
compared

I 5¢0

CHAPTER 19

Intelligent Agents

knowledge that contains information about the agent’s plans; the coopera-
tion layer (similar to the modeling layer in TouringMachines) has social
knowledge about the other agents and their interactions.

In the TouringMachines architecture, each layer interacts with the environ-
ment, directly receiving inputs and producing actions and outputs. In the
InteRRap architecture, only the bottom layer (the reactive, behavior layer)
interacts directly with the world. If it is unable to deal with a particular sit-
uation, it passes the information on to the next layer, the planning layer.
Similarly, if this layer cannot deal with the current situation, it passes the
information on to the final layer, the cooperation layer. Outputs are passed
back to the behavior layer, which turns them into actions or outputs.

19.11 Accessibility

When playing a game such as chess, each player knows what position he
will be in after making any given move. What he does not usually know is
what move his opponent will make and, thus, what position he will reach
after his opponent’s move.

In some cases an agent’s state after carrying out a particular action can be
deterministically predicted. In many situations, however, this is not the
case, and the outcome is unpredictable, or stochastic. Given that an agent
usually has a certain degree of knowledge about the world and the way its
actions affect its state, we can make certain predictions. For example, an
agent can say that if it is in state S; and it takes action A, then it will move
into state S, with probability p. These probabilities are contained within a
transition model, which enables the agent to make predictions about what
effect its actions will have on it and its environment.

If an agent is able to determine all relevant facts about the environment in
which it operates, then that environment is described as being accessible. If
it is inaccessible, then certain facts are hidden from the agent, although it
may be able to deduce them by maintaining internal information about the
state of the environment. For example, if an agent is in an environment in
which it is unable to determine the temperature, it may have a rule that says
“if you turn up the heating, the temperature will increase.”

We could consider two types of agents that play chess. One agent might have
the ability to examine the board at each move of the game and make deci-
sions about what move to make from that point. The agent does not have the

19.12 Learning Agents

ability to remember moves that have been made in the past, and thus the
only way it can determine the current position is by examining the board.

This agent acts in an accessible environment because, at any given point, it
has access to all the information it needs to be able to play the game. If we
imagine that this agent is playing a game where half of the board is covered
up, and it is unable to see what happens there, then we can see that the
agent would have great difficulties because it would have no way of deter-
mining what was happening on that side of the board apart from a few lim-
ited facts it could deduce, such as “my king is on this side of the board, so I
know I do not have a king on the other side of the board.”

A different type of agent might play the game without any direct access to
the board at all. This agent stores information about the moves that have
been made in the past and is able to use this information to determine the
current position of the board. This agent would play equally well whether
the board were entirely visible or entirely covered up.

This agent operates in an inaccessible environment, but, in fact, because the
environment it operates in is entirely deterministic, it is able to derive com-
plete knowledge about the board at all times.

An agent that played a game such as poker would need to be able to act in
an inaccessible, stochastic environment because the cards the opponent has
are neither visible nor deterministically allocated.

In an accessible, stochastic environment, agents use Markov decision
processes (MDPs) to determine the best course of action. In an inaccessi-
ble, stochastic environment, agents use partially observable Markov deci-
sion processes (POMDPs). Clearly, POMDPs must operate with far less
information and so tend to be more complex than MDPs.

19.12 Learning Agents

Machine learning is covered in more detail in Part 4 of this book. An agent
that is capable of learning (a learning agent) is able to acquire new knowl-
edge and skills and is able to use the new knowledge and skills to improve
its performance.

One common way to provide agents with the ability to learn is to use neu-
ral networks, which are covered in more detail in Chapter 11. A neural net-
work is designed to learn in a similar manner to the way a human brain

I 562

CHAPTER 19

Intelligent Agents

learns. Another method for enabling agents to learn is to use genetic algo-
rithms. One way to use genetic algorithms in this way is to have the genetic
algorithm breed populations of agents, with the aim of breeding a highly
successful agent. Another way is to have each agent use a genetic algorithm
to develop suitable strategies for dealing with particular problems.

19.12.1 Multiagent Learning

Multiagent systems are often required to solve problems in dynamic and
unpredictable environments. In these circumstances, a learning ability is
particularly important because the environment can change too quickly for
predetermined behaviors to be effective.

Multiagent learning can in many ways be more impressive than the learn-
ing carried out by individual agents. Each agent in a learning multiagent
system can learn independently of the other agents and can also learn from
the other agents.

In this way, the agents can explore multiple potential strategies in parallel,
and when one agent discovers a particularly effective strategy, it can pass
this knowledge on to other agents. For this reason, when the environment
changes, multiagent learning systems are able to adapt much more quickly
than nonlearning systems, or even individual learning agents.

In centralized learning, the agents learn on an individual and distinct
basis, whereas in decentralized learning, the actions of the individual
agents lead to the whole system learning. The classifier systems described in
Chapter 13 are an example of a decentralized multiagent learning system,
where each rule can be thought of as a separate agent, and where the whole
system learns by experience how best to solve a problem.

19.13 RoboticAgents

The agents described in this chapter so far have been software agents—they
exist only in a virtual world. Robotic agents, or robots, are artificial agents
that exist physically in the real world.

Mobile robotic agents controlled by Brooks’ subsumption architecture
have been briefly described in Section 19.10.1.

Robotic agents operate in an inaccessible, stochastic environment. The real
world has many properties that make the tasks of robotic agents much

19.14 Braitenberg Vehicles

harder than those of many software agents. An ability to deal with uncer-
tainty is clearly important, as is robustness in the face of extremely unpre-
dictable and potentially dangerous environments.

Robots have been designed that build cars, using robotic arms and con-
veyer belts.

More sophisticated are the robots that are designed to explore other planets
and collect samples for scientific analysis. Such robots, of course, require
autonomy: they cannot be controlled directly by human input because they
would be too far away from the earth. One important aspect of such robots
is their ability to walk: this involves not just knowing how to move legs in
such a way as to move forward, but also how to navigate over hills and
rocks, around pot-holes and through valleys. Agents such as Atilla and
Genghis, designed by the MIT Mobot Lab (Mobot means “mobile robot”),
have these abilities and are modeled on insects.

Genghis has six legs and a number of sensors that enable it to determine
certain facts about its inaccessible environment. The interesting thing
about Genghis is that nobody ever told it how to walk or steer around
obstacles. Its brain consists of 57 augmented finite state machines, each of
which is responsible for a simple piece of behavior, such as lifting a leg or
wandering. Using these AFSMs and feedback from its sensors, Genghis was
able to learn to walk from the experience of trying and failing to do so.

19.14 Braitenberg Vehicles

Braitenberg vehicles were invented by a neuroscientist, Valentino Braiten-
berg, in the 1980s. Braitenberg vehicles are imaginary robots used by Brait-
enberg in thought experiments on the nature of intelligence. There are 14
different classes of vehicles, ranging from extremely simple to fairly com-
plex. We will consider just the six simplest types.

Even the simplest of his vehicles can exhibit interesting behaviors and tell
us a great deal about our assumptions concerning intelligence and thought.

The simplest type of Braitenberg vehicle, known as vehicle 1, simply has
one motor and a sensor. The sensor is wired directly to the motor, such that
the more of whatever the sensor is designed to sense there is, the faster the
motor turns. For example, if the sensor were a light sensor, then the motor
would turn faster when the sensor could detect more light.

I 564 CHAPTER19 Intelligent Agents

Figure 19.3

Two varieties of Braiten-
berg vehidles type 2, seen
from above

The behavior of this vehicle is very simple: the more light there is, the faster
it moves. It would normally move in a straight line, although imperfections
in its environment (such as friction and obstacles) might cause it to deviate.

The second type of Braitenberg vehicle has two sensors and two motors.
The motors and sensors are placed symmetrically around the vehicle, as
shown in Figure 19.3.

In the first vehicle shown in Figure 19.3, the left-hand sensor (the sensors
are on the front of the vehicle) is connected to the left-hand motor, and the
right-hand sensor to the right-hand motor. In the second vehicle shown,
the sensors and motors are connected the other way around. The first vehi-
cle will tend to move away from the source that its sensors detect, whereas
the second vehicle will move toward it.

These vehicles can be thought of as timid (the one that moves away from
the source) and bold (the one that moves toward the source).

Let us now consider a type of the timid vehicle, which has a sensor for
proximity and where its motors have a built-in tendency to move even
without any stimulation to the sensors. When placed in a simple maze, this
vehicle will navigate through the maze without bumping into the walls.
Clearly, apparently complex behavior can emerge from very simple con-
cepts. This timid vehicle was certainly not designed to traverse a maze, and
it does not have any knowledge of mazes or the world. An observer who did
not know how the vehicle worked might conclude that it relied on a very
sophisticated form of Artificial Intelligence.

It is interesting to note at this point some of the words that we have been
using to describe agents: timid, bold, cautious, and so on. There is a ten-
dency to anthropomorphize the behaviors of agents, which is at least partly
due to the impression that agents can give of having almost human-like
intelligence.

The third type of vehicle is similar to the second type except that the sen-
sors are wired in such a way that they inhibit the motors: the more stimula-

19.15 Chapter Summary

tion they receive, the slower the motors turn. These types of vehicles will
tend to move toward a source of stimulation but will end up near the
source, either facing it or turned away from it, depending on which way its
sensors are wired to the motors.

Braitenberg vehicles can have more than one type of sensor—for example,
a vehicle might have light sensors and proximity detectors for objects.
These sensors can be connected to motors in different ways, producing
more and more complex behaviors.

The fourth type of Braitenberg vehicle has a nonlinear relationship
between input to the sensors and the speed of the motors. For example,
one of these vehicles might move slowly toward a light source and
speed up as it gets closer, then slow down again as it gets very close to
the source.

The fifth type of vehicle has a primitive memory that can be used to store
information about events that happened in the past.

The sixth type of Braitenberg vehicle is evolved using artificial evolution, as
described in Chapters 13 and 14.

Braitenberg vehicles teach us the following principle, which Braitenberg
called the principle of “Uphill Analysis and Downhill Invention™: It is easier
to invent something than to analyze it. Fully functioning Braitenberg vehicles
can be built using easily available components, and yet their behavior can be
extremely complex and, in some cases, impossible to analyze or explain.

19.15 Chapter Summary
= Anagent is an entity that carries out a task on behalf of a human user.
» A software agent is an agent that exists solely as a computer program.

= Intelligent agents have more knowledge or understanding of their
environment than simple agents and are able to use this intelli-
gence to carry out their tasks more effectively.

= Autonomous agents are able to carry out their tasks without direct
input from a human.

= Some agents are able to learn from their user, from other agents,
from the environment, or by observing the consequences of their
own actions.

I 566

CHAPTER 19

Intelligent Agents

19.16
19.1

19.2

19.3

Reactive agents simply react to the environment they are in, using
situated action rules, which provide an action for each situation.

Goal-based agents seek to achieve some goal, whereas utility-based
agents seek to maximize some utility function.

Interface agents are automated personal assistants.
Mobile agents are able to travel over a network, such as the Internet.

An information agent collects information (often from the Inter-
net) on behalf of its owner.

Multiagent systems use a number of agents that usually collaborate
together to achieve some common goal.

The subsumption architecture is an example of a vertically layered
architecture for controlling robots.

BDI architectures use beliefs, desires, and intentions to control agents.

An accessible environment is one in which all necessary facts are
available to the agent. Many agents must be able to operate in inac-
cessible environments and often in stochastic ones, where the
changes in the environment are unpredictable.

Robotic agents operate in the real world.

Review Questions

“A computer virus is a kind of intelligent agent.” Discuss this state-
ment. Consider the various agent properties that have been dis-
cussed in this chapter. Which of these properties do computer
viruses have?

Explain what is meant by the following terms in the context of agents:

= intelligence

= autonomy

» learning

= collaboration

= utility

Explain the idea behind the BDI architecture. Why do you think
this architecture is particularly appealing to human researchers?

19.4

19.5

19.6

19.7

19.17
19.1

19.2

19.18

19.18 Further Reading

Explain the nature of the first six types of Braitenberg vehicles.
Discuss how these vehicles can help us to understand the nature of
intelligence.

Think of a real-world interface agent. Discuss to what extent this
agent has autonomy, learning abilities, and intelligence.

What do Braitenberg vehicles teach us about intelligence? Do you
think the intelligence given to Braitenberg vehicles could be put to
some practical use?

In Michael Crichton’s novel, Prey, he postulates a multiagent system
consisting of millions of tiny robotic agents. The system evolves over
a period of days to develop human-like intelligence, and a belligerent
desire to destroy life. Discuss how plausible you think this idea is, in
the context of the subjects introduced in this chapter.

Exercises

Implement an intelligent agent system to carry out a simple task
for you in the programming language of your choice.

Investigate a software agent that comes with your computer, or
find one that you can download for free. Explore its limitations
and its capabilities. To what extent would you describe it as “intel-
ligent”? What simple improvements would you suggest for the
agent? Which of the following properties does the agent exhibit:

= intelligence

= autonomy

ability to learn

= cooperation

= benevolence

= veracity

To what extent would it still be useful if it did not have the proper-

ties that it does have? Which of the above properties might be given
to the agent to improve it? How would it be improved?

Further Reading

Several texts cover the subject of Artificial Intelligence from the perspective
of Artificial Agents—in particular, Russell and Norvig (1995) and Pfeifer

I 56

CHAPTER 19

Intelligent Agents

and Scheier (1999). Weiss (1999) provides an excellent exploration of mul-
tiagent systems.

Brooks’ subsumption architecture was introduced in A Robust Layered
Control System For a Mobile Robot (from IEEE Journal of Robotics and
Automation, RA-2, April, pp. 14-23), and was also published as MIT Al
Memo 864 (1985).

Braitenberg (1986) provides a fascinating description of his vehicles, as well
as providing an absorbing philosophical argument. A good practical expla-
nation of Braitenberg’s vehicles is also found in Pfeifer and Scheier (2000)

Behavior-Based Robotics, by Ronald C. Arkin (1998 — MIT Press)
Software Agents, edited by Jeffrey M. Bradshaw (1997 — AAAI Press)

Vehicles: Experiments in Synthetic Psychology, by Valentino Braitenberg
(1986 — MIT Press)

Intelligent Agents for Mobile and Virtual Media, edited by Rae Earnshaw,
John Vince, and Margaret A. Arden (2002 — Springer Verlag)

Commitment and Effectiveness of Situated Agents, by D. Kinny and M.
Georgeff (1991 — in Proceedings of the Twelfth International Joint Conference
on Artificial Intelligence, pp. 82—88)

Braitenberg Creatures, by David W. Hogg, Fred Martin, and Mitchel Resnick
(1991 — originally published as Epistemnology and Learning Memo #13)

A Learning Interface Agent for Scheduling Meetings, by R. Kozierok and P.
Maes (1993 — in Proceedings of the ACM-SIGCHI International Workshop on
Intelligent User Interfaces)

Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Orga-
nizing Machines, by Stefano Nolfi and Dario Floreano (2000 — MIT Press)

Evolving Hexapod Gaits Using a Cyclic Genetic Algorithm, by Gary Parker
(1997 — in Proceedings of the IASTED International Conference on Artificial
Intelligence and Soft Computing, pp. 141-144)

Generating Arachnid Robot Gaits with Cyclic Genetic Algorithms, by Gary
Parker (1998 - in Genetic Programming III, pp. 576-583)

Metachronal Wave Gait Generation for Hexapod Robots, by Gary Parker
(1998 — in Proceedings of the Seventh International Symposium on Robotics
with Applications)

19.18 Further Reading

Understanding Intelligence, by Rolf Pfeifer and Christian Scheier (2000 —
MIT Press)

Layered Learning in Multiagent Systems: A Winning Approach to Robotic
Soccer, by Peter Stone (2000 — MIT Press)

Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence,
edited by Gerhard Weiss (1999 — MIT Press)

Introduction to MultiAgent Systems, by Michael Wooldridge (2002 — John
Wiley & Sons)

Strategic Negotiation in Multiagent Environments, by Sarit Kraus (2001 —
MIT Press)

Intelligent Information Agents: The Agentlink Perspective (Lecture Notes in
Computer Science, 2586), edited by Matthias Klusch, Sonia Bergamaschi,
and Pete Edwards (2003 — Springer Verlag)

An Introduction to AI Robotics, by Robin R. Murphy (2000 — MIT Press)
Real-Time and Multi-Agent Systems, by Ammar Attoui (2000 — Springer Verlag)

Understanding Agent Systems, edited by Mark D’Inverno and Michael Luck
(2001 — Springer Verlag)

Agent Technology: Foundations, Applications, and Markets, edited by
Nicholas R. Jennings and Michael J. Wooldridge (1998 — Springer Verlag)

Socially Intelligent Agents - Creating Relationships with Computers and
Robots, edited by Kerstin Dautenhahn, Alan H. Bond, Lola Canamero, and
Bruce Edmonds (2002 — Kluwer Academic Publishers)

This page intentionally left blank

