
Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

36

Chapter Three

Central Processing

3.1 Introduction

Each complex task carried out by a computer needs to be broken down into a

sequence of simpler tasks and a binary machine instruction is needed for the

most primitive tasks. Consider a task that adds two numbers, held in memory

locations designated by B and C and stores the result in memory location

designated by A.

 Example 1: A = B + C

This assignment can be broken down (compiled) into a sequence of simpler

tasks or assembly instructions, e.g:

Assembly

Instruction

Effect

LOAD R2, B Copy the contents of memory location designated by B into Register 2

ADD R2, C Add the contents of the memory location designated by C to the contents of

Register 2 and put the result back into Register 2

STORE R2, A Copy the contents of Register 2 into the memory location designated by A.

Each of these assembly instructions needs to be encoded into binary for execution by

the Central Processing Unit (CPU). Each instruction is divided into a number of

instruction fields that encode a different piece of information; the OPCODE field

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

37

identifies the CPU operation required. We can represent the above Assembly

instruction using 16 bits word as below.

Field Name

 Field Width

OPCODE
4-bits

REG
2-bits

ADDRESS
10-bits

 l O A D R 2

In order to execute the program , its instructions and data needs to place within

main memory. We’ll place our 3-instruction program in memory starting at address

080H and we’ll place the variables A, B and C at memory words 200H, 201H, and

202H respectively. Such placement results in the following memory layout prior to

program execution.

Memory
Address

Memory Assembly Instruction

080 1A01 LOAD R2, [201H]
081 3A02 ADD R2, [202H]
082 2A00 STORE R2, [200H]

Etc Etc Etc

200 00 A = 0

201 09 B = 9

202 06 C = 6

Figure 1 Memory placement for example 1

3.2 CPU Organisation & Operation

The operations of CPU describes in terms of the Fetch-Execute cycle. Different CPU

organisation has the same behaviour when it comes to program execution; this

behaviour could be represented using flow charts (figure 1). CPU starts program

execution by fetching the instruction first (if there any) , then execute it , check if

there are any interrupts, and resume the fetch and execute cycle , if an interrupts

occurs then the control unit will halt the current program and transfer control to

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

38

interrupt handler (to execute the interrupt) . We will talk about interrupts in next

chapter.

Begin

Are there any

instruction

Fetch the next

instruction

Execute the

instruction

interrupt

requiring

Transfer control

to interrupt

handling program

Fetch Cycle

Execute Cycle

Yes

No

Yes

No

Figure 2 Overview of CPU behavior

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

39

3.3 Hardware Implementation

Registers consists of flip-flops, n bit register have n flip flops, these flip flops
numbered in sequence from 0 to n-1

To initial H/W we must chick following:

1. The set of register

2. The sequence of microoperation

3. The control that initiates the sequence of microoperation

Basic symbol for microoperation:

Symbol Description Example

Letters Denotes a register MAR, R1

() Part of register R1(0-7), R2(L)
 Transfer of information R2  R1

, Separate between to microoperation

Control : operation

X : R1 R2

Information transfer from one register to another denoted by R2 R1, If the transfer

is occur under predetermined control signal (suppose the signal is x) then we

designate it by x: R2R1 .

R1

Register

7 6 5 4 3 2 1 0

Individual bits inside register

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

40

Control circuits controls register operations, transferring R1R2 under a control

signal x, required microoperation called load which will load the content of R2

to R1 , thus the H.W implementation of this operation is :

 Block diagram for Hardware implementation of Register transfer

Q/ Suppose you have an addition of 2 register, what is the HW implementation

of t:R1  R1+R2

We need: an adder, R1, R2 Registers, specify where the result will be,
accordingly the h/w implementation is:

3.3.1 Bus and memory transfer

If we need to move data from and to multiple registers, problem arises. The

number of wires will be so large if separate lines are used to connect all

registers with each other. To completely connect n registers we need n(n-1)

X load

R2

R1

n
Control

Circuit
Clock

R1

R2

n-bit binary adder

 load
t

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

41

lines. So the cost is in order of O(n2). This is not a realistic approach to be used

in a large digital system. The solution is to use a common “Bus”.

Registers are connected using bus; the bus structure consists of a set of

common lines, one for each bit of a register, control signal used to determine

which register is selected by the bus during each transfer. One way of

constructing such a bus is by using multiplexers. For k-registers each with n-

bits we need n-line bus, which mean we need n multiplexer (one for each bit),

the size of each multiplexer must be k X 1. The number of selected lines

required is log2 k.

Bus: is a path (of a group of wires) over which information is transferred, from

any of several sources to any of several destinations.

e.g./ draw a bus system that connect 4-registers (4-bits each).

 Solution:

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

42

Another way of constructing a bus is by using buffers or 3-state gates. Three

state gates is a digital circuit that represent three states. Two of the states are

logic 0 and 1, the third state is high impedance state (behave as an open

circuits). The following figure represents three state gates.

Figure 3 Three State Gate

With control 1, the output (of the three state buffer gate) equals the normal input,

while in 0 controls the gate goes to a high-impedance state.

3.3.2 Microoperation:

Microoperations are the basic operations that can be performed by a system on data

stored in registers. Each microoperation describes a simple operation performed on

data in one or more registers. Such operation can be executed by one clock pulse.

There are four categories of the most common microoperations:

1- Register Transfer (BA, AX, …) : Transfer binary information from one

register to another.

2- Arithmetic Operation (A A-B, A A+B, …): perform arithmetic operation

on numeric data.

3- Logical Operation (compare, …): perform bit manipulation on numeric data.

4- Shift Micro-Operation: to shift the temporary data which are present in

register.

The basic Arithmetic microoperations are addition, subtraction, increment, decrement

and Arithmetic Shift. Multiply and divide are not included as microoperations.

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

43

Multiply implemented by a sequence of add and shift microoperations, while divide is

implemented as a sequence of subtract and shift.

Normally subtraction (R3R1-R2) implemented through 1’s complement, and then

adding 1 to 1’s complement produce 2’s complement, adding the number in R1 to 2’s

complement of R2 is equivalent to subtracting.

3.3.2.1 Implementation of microoperation

Internal hardware organization of a digital computer is best defined by:

 Registers it contains and their functions

 Sequence of micro operations performed on data inside registers

 Control that define the sequence of micro operations

3.3.2.2 Arithematic Microoperation

To implement add microperation we will review basic components needed which are:

a) A Binary adder is a digital circuit that generates the arithmetic sum of two binary

number of any length. (Remember A full adder adds two bits only and previous carry).

The binary adder consists of full adder circuits connected in cascade, accordingly to

build an n-bit binary adder we need n full-adders.

e.g Build digital Circuit that can perform the following operation

 A+B, A-B (assume both A & B are 4-bits size)

 Solution: First remember that we need binary adder to perform the adding operation

for 4-bits, figure 5 represent the required adder

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

44

Figure (5): 4-bits binary adder

The subtraction of A-B required three steps:

 A + B + 1

 implements 1’s complements for B,

 add 1 to get 2’s complements

 and finally add result to A.

The addition and subtraction operation could be combined into one common circuit

by including an XOR gate with each full adder. So the solution will be figure 6 below:

Figure 4: 4-bit binary Adder-Subtractor

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

45

b) Binary Incrementor: The binary incrementor always adds one to the number in a

register. To implement the increment microoperation we will use:

1) a binary counter. When clock transition arrives the count is incremented by one.

2) if the increment is to be performed independent of a particular register, then use

half adders connected in cascade.

3) An n-bit binary incrementor requires n half adder.

least significant adder always have one of its input as “1” while its carry is cascaded to

other half adders.

e.g.: Design an incremental for the number A (it is 4-bit number)

4-bit Binary incrementer

Ex: Give the H/W required for implementing the following micro-operations.

a) t : R1  R1 + R2

R1

R2

n-bit binary adder

 load
t

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

46

b) Arithmetic micro-operation with overflow detection.

1. Unsigned Binary Addition overflow

When the "Binary Addition Algorithm" is used with unsigned binary

integer representation: The result is CORRECT only if the CARRY

OUT of the high order column is ZERO. Unsigned overflow occurred

when carry out =1; For example:

1

 1101 0010 21010

 0110 1101 10910

 0011 1111 6310 The carry bit of 1 indicates overflow.

2. Signed Binary Addition overflow

There are many schemes for representing negative integers with patterns of

bits. Two's complement is one of many ways to represent negative integers

with bit patterns. With two's complement representation the result of

addition is correct if the carry into the high order column is the same as

the carry out of the high order column. Overflow is detected by

comparing these two bits. Here are some more examples:

No Overflow No Overflow Overflow Overflow

11111 111

 0011 1111 (6310)

 1101 0101 (-4310)

 0001 0100 (2010)

00000 011

 1100 0001 (-6310)

 0010 1011 (4310)

 1110 1100 (-2010)

01111 100

 0011 1111 (6310)

 0110 0100 (10010)

 1010 0011 (-9310)

10000 000

 1100 0001 (-6310)

 1001 1100 (-10010)

 0101 1101 (9310)

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

47

The truth table of tow's sign bits (Asign and Bsign bit) is shown below:

INPUTS OUTPUTS

Asign Bsign CARRY IN CARRY OUT SUMsign OVERFLOW

0 0 0 0 0 0

0 0 1 0 1 1

0 1 0 0 1 0

0 1 1 1 0 0

1 0 0 0 1 0

1 0 1 1 0 0

1 1 0 1 0 1

1 1 1 1 1 0

From the above truth table:

 Notice that overflow occurs only when: CARRYin ≠ CARRYout

 or simply: V = Cin XOR Cout ; where V is the overflow signal.

So that, the Arithmetic micro-operation with overflow detection can be design as:

t1X: ER1  R1+R2

t1X: ER1  R1+R2+1

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

48

Each of the arithmetic micro operations can be implemented in one composite

arithmetic circuit. This circuit comprised of:

 Parallel full adders and

 Multiplexers are used to choose between the different operations.

The multiplexer controls which data is fed into input of the adder (suppose B, A

represent that inputs). The output of the binary adder is computed from

D = A + B +Cin

 The B input can have one of 4 different values: B, ̅ , always “1”, or always “0”

Figure (7); below represent 4-bit arithmetic circuit.

S1 S2 Cin Input B D =A+B+Cin Operation

0 0 0 B A+B ADD

0 0 1 B A+B+1 ADD with carry

0 1 0 ̅ A+ ̅ Sub with borrow (1's comp)

0 1 1 ̅ A+ ̅+1 Sub in 2's comp.

1 0 0 0 A Transfer

1 0 1 0 A+1 Increment

1 1 0 1 A-1 Decrement

1 1 1 1 A Transfer

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

49

Figure 5 : 4-bit arithmetic circuit

3.3.2.3 Logical Microoperation

Logic micro operation specifies binary operations on the strings of bits in

registers. Logic micro operations are bit-wise operations, i.e., they work on the

individual bits of data. These are useful for bit manipulations on binary data and also

useful for making logical decisions based on the bit value. There are many different

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

50

logic functions that can be defined over two binary input variables. However, most

systems only implement four of these: AND, OR, XOR, Complement/NOT.

The others can be created from combination of these. The hardware implementation of

logic micro operation requires the insertion of the most important gates like AND,

OR, EXOR, and NOT for each bit or pair of bits in the registers.

Build a logical circuit to generate the four basic logic micro operations required:

 four gates (AND, OR, XOR, NOT) and

 a multiplexer.

The two selection lines of the multiplexer selects one of the four logic operations

available at one time. The circuit shows one stage for bit “i” but for logic circuit of n

bits the circuit should be repeated n times but with one remark; the selection pins will

be shared with all stages.

Figure 6 Simple Logic circuit

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

51

3.3.2.4 Shift Microoperations

 Shift micro-operations are used for serial transfer of data beside they are used in

conjunction with arithmetic, logic, and other data processing operations. There are 3

types of shift micro operations.

 Logical shift : Logical shift is one that transfers 0 through the serial input

 Circular shift : The circular shift rotates of the register around the two ends

without loss of information

 Arithmetic shift: Arithmetic shift is a micro-operation that shifts a signed

binary number to the left or right. Arithmetic shift must leave sign bit

unchanged.

We can implement Shift microoperation using:

 Use bidirectional shift register with parallel load, In that case we need two

clocks pulse one to load the value and another to shift.

 Another solution which is more efficient is to implement the shift operation

with combinational circuits (combinational circuit will construct using

multiplexers.)

Figure 9- below represents 4-bit combinational circuit shifter

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

52

Figure 7: 4-bit combinational circuit shifter

3.3.3 Arithmetic Logic Shift Unit

 Instead of having individual registers performing micro-operations directly, computer

systems employ a number of storage registers connected to a unit called Arithmetic

Logic Unit (ALU). This unit has 2 operands input ports and one output port and a

number of select lines to help in selecting different operations. The ALU is made of

combinational circuit so that the entire register transfer operation from the sources to

the destination is performed in one clock cycle. The arithmetic, logic, and shift

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

53

circuits (implemented previously) will be combined in one ALU with common

selection inputs. Simple stage (bit) of ALU with its table is shown blow (figure 10).

The arithmetic and logic units will select their operations simultaneously when S0 and

S1 are applied; while S2 and S3 will select one of those unit outputs or a shift left bit

stage or shift right bit stage. The circuit shown provides 8 arithmetic operations, 4

logic operations, and 2 shift operations.

One stage
of logic
circuit
(Fig.9)

Figure 8 simple Arithmetic and logic unit

One stage
of

arithmetic
circuit
(Fig.8)

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

54

Table 2 Function table for Arithmetic -Logical (AND SHIFT) Unit

3.4 Instruction Set

If m is the maximum number of explicit main memory addresses allowed in any

processor instruction, the processor may be called an m-address machine.

3.4.1 Op-code

The number of bits in the op-code filed in any computer can be choose into two

different ways

1- Select a constant number of bits (e.g. 4 bits make 2
4
 different instructions).

2- Choose variable length op-code size depends on the probability of instruction

(e.g. the frequency have large probability have less number of codes & vice-

versa).

Ex: Mors code; the shortest code; a single dot; is assigned to the most common

letter in English (e), while the largest code are assigned to the least frequently

occurring letters.

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

55

Ex: variable length based on instruction occurrence probability?

Instruction Probability of occurrence (pi) Op-code (ci)

I1 0.5 1

I2 0.3 01

I3 0.08 000

I4 0.06 0011

I5 0.06 0010

The codes in example above are generated on Huffman Coding Algorithm.

Elements Probability Huffman Tree Code

I1 0.5 1

I2 0.3 01

I3 0.08 000

I4 0.06 0011

I5 0.06 0010

Another Method

Instruction Probability Code

I1 0.5 1

I2 0.3 01

I3 0.08 000

I4 0.06 0011

I5 0.06 0010

1

0.2

0.12

0.5

0
1

0

0

1

1

1

1

0.06 0.06

I4

0.12

I5

0.2

I3

I2

0.5 I1

1

0.08

0.3

0.5

0

0

0

0

1

1

1

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

56

H.W

1) Find the Huffman code of:

Elements Probability Huffman Tree Code

A 40

B 20

C 14

D 10

E 06

F 05

G 03

H 02

2) Find the Huffman code of

Symbol Freq. Huffman Tree Code

A 45

B 13

C 12

D 16

E 9

F 5

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

57

3.5 Fundamental Concepts & Examples

3.5.1 CPU Organization According To Number of Buses

There are several components inside a CPU, namely, ALU, control unit, general

purpose register, Instruction registers etc. Now we will see how these components are

organized inside CPU. There are several ways to place these components and

interconnect them.

A. Single-Bus Organization

In this case, the arithmetic and logic unit (ALU), and all CPU registers are

connected via a single common bus. This bus is internal to CPU and this internal bus

is used to transfer the information between different components of the CPU. This

organization is termed as single bus organization, since only one internal bus is used

for transferring of information between different components of CPU. We have

external bus or buses to CPU also to connect the CPU with the memory module and

I/O devices. The external memory bus is also shown in the figure (A) connected to the

CPU via the memory data and address register MDR and MAR.

In this organization, two registers, namely Y and Z are used which are

transparent to the user. Programmer can not directly access these two registers. These

are used as input and output buffer to the ALU which will be used in ALU

operations. They will be used by CPU as temporary storage for some instructions.

Execution of an instruction requires the following three steps to perform by the

CPU:-

1- Fitch the contain of memory location pointed by the (PC) and store the

instruction code in (IR):

2- Increment the contain of (PC) by one:

3- Carry out the actions specified by the instruction stored in the (IR)

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

58

Figure (A): Single Bus Organization of the data path inside the CPU.

 Fetching a word into memory

Example1: assume that the address of the memory location to be accessed is

kept in register R1 and that the memory contents to be loaded into register R2.

This is done by the following sequence of operations:

1. MAR  (R1)

2. Read

3. The CPU waits for MFC (memory function complete) signal from memory.

4. R2  (MDR)

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

59

 Storing a word into memory

Example2: assumes that the data word to be stored in the memory is in

register R2 and that the memory address is in register R1. The memory write

operation requires the following sequence:

1. MAR  (R1)

2. MDR  (R2)

3. Write

4. Wait for MFC

 Register transfer operation

Register transfer operations enable data transfer between various blocks

connected to the common bus of CPU. We have several registers inside CPU

and it is needed to transfer information from one register another. As for

example during memory write operation data from appropriate register must

be moved to MDR.

Since the input output lines of all the register are connected to the common

internal bus, we need appropriate input output gating. The input and output

gates for register Ri are controlled by the signal Ri-in and Ri-out respectively.

Thus, when Ri-in set to 1 the data available in the common bus is loaded

into Ri . Similarly when, Ri-out is set to 1, the contents of the register Ri are

placed on the bus. To transfer data from one register to other register, we need

to generate the appropriate register gating signal.

Example: to transfer the contents of register R1 to register R2, the following

actions are needed:

 Enable the output gate of register R1 by setting R1out to 1.

-- This places the contents of R1 on the CPU bus.

 Enable the input gate of register R2 by setting R2 in to 1.

 -- This loads data from the CPU bus into the register R2.

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

60

 Arithmetic or logic operation

Generally ALU is used inside CPU to perform arithmetic and logic operation.

ALU is a combinational logic circuit which does not have any internal storage.

Therefore, to perform any arithmetic or logic operation (say binary operation)

both the input should be made available at the two inputs of the ALU

simultaneously. Once both the inputs are available then appropriate signal is

generated to perform the required operation. We may have to use temporary

storage (register) to carry out the operation in ALU.

 The sequence of operations that have to carry out to perform one ALU

operation depends on the organization of the CPU. Consider an organization in

which one of the operand of ALU is stored in some temporary register Y and

other operand is directly taken from CPU internal bus. The result of the

ALU operation is stored in another temporary register Z.

Ex: R3  R1 + R2

1. R1 out, Y in

2. R2 out, ADD, Z in

3. Z out, R3 in

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

61

B. Two -Bus Organization

It is an alternative structure, where two different internal buses are used in CPU.

All register outputs are connected to bus A, add all registered inputs are

connected to bus B. as shown in figure (B).

Figure (B): Two Bus Structure.

There is a special arrangement to transfer the data from one bus to the other bus.

The buses are connected through the bus tie G. When this tie is enabled data on

bus A is transfer to bus B. When G is disabled, the two buses are electrically

isolated.

Since two buses are used here the temporary register Z is not required here

which is used in single bus organization to store the result of ALU. Now result

can be directly transferred to bus B, since one of the inputs is in bus A. With the

bus tie disabled, the result can directly be transferred to destination register.

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

62

Ex: R3  R1 + R2

Step Action

1 R1 out, G enable, Y in

2 R2 out, ADD, ALU out, R3 in

C. Three – Bus Organization

In this organization each bus connected to only one output and number of

inputs. The elimination of the need for connecting more than one output to the

same bus leads to faster bus transfer and simple control. A simple three-bus

organization is shown in the figure (C).

Figure(C): Three Bus Structure.

A multiplexer is provided at the input to each of the two work registers A and

B, which allow them to be loaded from either the input data bus or the register

data bus.

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

63

Two separate input data buses are present – one is for external data transfer,

i.e. retrieving from memory and the second one is for internal data transfer

that is transferring data from general purpose register to other building block

inside the CPU.

We may use one bus tie G1 between input data bus and ALU output bus and

another bus tie G2 between register data bus and ALU output data bus.

3.6.2 Execute Of Complete Instruction

To execute a complete instruction we need to take help of the following basic

operations in some particular order to execute an instruction.

 Fetch information from memory to CPU

 Store information to CPU register to memory

 Transfer of data between CPU registers.

 Perform arithmetic or logic operation and store the result in CPU registers.

Ex: Give the control sequence for the execution "Add contain of memory

location addressed in memory direct mode to register R1"?

Execution of this instruction requires the following action:

1. Fetch instruction

2. Fetch first operand (Contents of memory location pointed at by the address

field of the instruction)

3. Perform addition

4. Load the result into R1.

Following sequence of control steps are required to implement the above

operation for the single-bus architecture that we have discussed in earlier

section.

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

64

Step Action

1 PC out, MAR in, Read, Clear Y, Set carry, ADD, Z in

2 Z out, PC in, Wait for MFC

3 MDR out, IR in

4 Address field of IR out, MAR in, Read

5 R1 out, Y in, wait for MFC

6 MDR out, ADD, Z in

7 Z out, R1 in

8 END
Instruction execution proceeds as follows:

In Step1:

The instruction fetch operation is initiated by loading the contents of the PC into the

MAR and sending a read request to memory.

To perform this task first of all the contents of PC have to be brought to internal bus

and then it is loaded to MAR. To perform this task control circuit has to generate the

PCout signal and MARin signal.

After issuing the read signal, CPU has to wait for some time to get the MFC signal.

During that time PC is updated by 1 through the use of the ALU. This is accomplished

by setting one of the inputs to the ALU (Register Y) to 0 and the other input is

available in bus which is current value of PC. At the same time, the carry-in to the

ALU is set to 1 and an add operation is specified.

In Step 2:

The updated value is moved from register Z back into the PC. Step 2 is initiated

immediately after issuing the memory Read request without waiting for completion of

memory function. This is possible, because step 2 does not use the memory bus and its

execution does not depend on the memory read operation.

In Step 3:

Step3 has been delayed until the MFC is received. Once MFC is received, the word

fetched from the memory is transferred to IR (Instruction Register), because it is an

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

65

instruction. Steps 1 through 3 constitute the instruction fetch phase of the control

sequence. The instruction fetch portion is same for all instructions. Next step onwards,

instruction execution phase takes place.

In Step 5:

The destination field of IR, which contains the address of the register R1, is used to

transfer the contents of register R1 to register Y and wait for Memory function

Complete. When the read operation is completed, the memory operand is available in

MDR.

In Step 6:

The result of addition operation is performed in this step.

In Step 7:

The result of addition operation is transfered from temporary register Z to the

destination register R1 in this step.

In step 8:

It indicates the end of the execution of the instruction by generating End signal. This

indicates completion of execution of the current instruction and causes a new fetch

cycle to be started by going back to step 1.

Branching

Branching is accomplished by replacing the current contents of the PC by the branch

address, that is, the address of the instruction to which branching is required. Consider

a branch instruction in which branch address is obtained by adding an offset X, which

is given in the address field of the branch instruction, to the current value of PC.

EX: Consider the following unconditional branch instruction: JUMP X

The control sequence that enables execution of an unconditional branch instruction

using the single – bus organization is as follows:

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

66

Step Action

1 PCout, MARin, Read, Clear Y, Set Carry-in to ALU, Add ,Zin

2 Zout, PCin, Wait for MFC

3 MDRout, IRin

4 PCout, Yin

5 Address field-of IRout, Add, Zin

6 Zout, PCin

7 End

Execution starts as usual with the fetch phase, ending with the instruction being

loaded into the IR in step 3.

To execute the branch instruction, the execution phase starts in step 4.

In Step 4: The contents of the PC are transferred to register Y.

In Step 5: The offset X of the instruction is gated to the bus and the addition

operation is performed.

In Step 6: The result of the addition, which represents the branch address, is loaded

into the PC.

In Step 7: It generates the End signal to indicate the end of execution of the current

instruction.

3.6.3 Design of Control Unit

 To execute an instruction, the control unit of the CPU must generate the

required control signal in the proper sequence. As for example, during the fetch phase,

CPU has to generate PCout signal along with other required signal in the first clock

pulse. In the second clock pulse CPU has to generate PCin signal along with other

required signals. So, during fetch phase, the proper sequence for generating the signal

to retrieve from and store to PC is PCout and PCin .

To generate the control signal in proper sequence, a wide variety of techniques

exist. Most of these techniques, however, fall into one of the two categories,

1- Hardwired Control

2- Microprogrammed Control

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

67

A. Hardwired Control

In this hardwired control techniques, the control signals are generated by

means of hardwired circuit. The main objective of control unit is to generate the

control signal in proper sequence.

The control sequence for execution of two instructions is different. Of

course, the fetch phase of all the instructions remains same. It is clear that

control signals depend on the instruction, i.e., the contents of the instruction

register. It is also observed that execution of some of the instructions depend on

the contents of condition code or status flag register, where the control sequence

depends in conditional branch instruction.

Hence, the required control signals are usually determined by the following

information:

- Contents of the control counter

- Contents of the instruction register

- Contents of the condition code and other status flags. These include the status

flags like carry, overflow, zero, etc.

Fig (3.15): Control Unit Organization.

Control Step Counter

Decoder /

Encoder

Cluck

IR

Status Flags

Condition

Control

Control Signals

Computer Architecture: Central Processing Unit BY: Dr. Wurood H. , Dr. Basim J. & Dr. Zied O.

68

The simplified view of the control unit is given in the figure (3.15) (Prev. page). The

decoder/encoder block is simply a combinational circuit that generates the required

control outputs depending on the state of all its input.

The decoder part of decoder/encoder part provides a separate signal line for each

control step, or time slot in the control sequence. Similarly, the output of the instructor

decoder consists of a separate line for each machine instruction loaded in the IR, one

of the output lines INS1 to INSm is set to 1 and all other lines are set to 0. The detailed

view of Control Unit organization is shown in the figure (3.16) below:

Figure (3.16): Detailed view of Control Unit organization.

T2

INS2

Control Step

Counter

Step Decoder

Clock

Encoder
Instruction

Decoder
IR

External

Inputs

Condition

Code

INS1

INSn

T1 Tn

Reset

End

