
1

Fortran ─ Loops

There may be a situation, when you need to execute a block of code several number of

times. In general, statements are executed sequentially : The first statement in a

function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more

complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple times

and following is the general form of a loop statement in most of the programming

languages:

Fortran provides the following types of loop constructs to handle looping requirements.
Click the following links to check their detail.

Loop Type Description

do loop This construct enables a statement, or a series of statements, to be

 carried out iteratively, while a given condition is true.

do while loop Repeats a statement or group of statements while a given condition is

 true. It tests the condition before executing the loop body.

nested loops You can use one or more loop construct inside any other loop

 construct.

2

do Loop

The do loop construct enables a statement, or a series of statements, to be carried out

iteratively, while a given condition is true.

Syntax

The general form of the do loop is:

do var = start, stop [,step]

! statement(s)

…

end do

Where,

 the loop variable var should be an integer

 start is initial value

 stop is the final value

 step is the increment, if this is omitted, then the variable var is increased by
unity

For example:

! compute factorials

do n = 1, 10

nfact = nfact * n

! printing the value of n and its factorial

print*, n, " ", nfact

end do

Flow Diagram

Here is the flow of control for the do loop construct:

 The initial step is executed first, and only once. This step allows you to declare

and initialize any loop control variables. In our case, the variable var is initialised

with the value start.

 Next, the condition is evaluated. If it is true, the body of the loop is executed. If it

is false, the body of the loop does not execute and flow of control jumps to the

next statement just after the loop. In our case, the condition is that the variable

var reaches its final value stop.

 After the body of the loop executes, the flow of control jumps back up to the

increment statement. This statement allows you to update the loop control

variable var.

 The condition is now evaluated again. If it is true, the loop executes and the

process repeats itself (body of loop, then increment step, and then again

condition). After the condition becomes false, the loop terminates.

3

Example 1

This example prints the numbers 11 to 20:

program printNum

implicit none

! define variables

integer :: n

do n = 11, 20

! printing the value of n

print*, n

end do

end program printNum

4

When the above code is compiled and executed, it produces the following result:

11

12

13

14

15

16

17

18

19

20

Example 2

This program calculates the factorials of numbers 1 to 10:

program factorial

implicit none

! define variables

integer :: nfact = 1

integer :: n

! compute factorials

do n = 1, 10

nfact = nfact * n

! print values

print*, n, " ", nfact

end do

end program factorial

When the above code is compiled and executed, it produces the following result:

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 3628800

5

do-while Loop
It repeats a statement or a group of statements while a given condition is true. It tests

the condition before executing the loop body.

Syntax

do while (logical expr)

statements

end do

Flow Diagram

Example

program factorial

implicit none

! define variables

integer :: nfact = 1

integer :: n = 1

! compute factorials

do while (n <= 10)

nfact = nfact * n

n = n + 1

print*, n, " ", nfact

end do

end program factorial

6

When the above code is compiled and executed, it produces the following result:

2 1

3 2

4 6

5 24

6 120

7 720

8 5040

9 40320

10 362880

11 3628800

Nested Loops
You can use one or more loop construct inside any another loop construct. You can also

put labels on loops.

Syntax

iloop: do i = 1, 3

print*, "i: ", i

jloop: do j = 1, 3

print*, "j: ", j

kloop: do k = 1, 3

print*, "k: ", k

end do kloop

end do jloop

end do iloop

Example

program nestedLoop

implicit none

integer:: i, j, k

iloop: do i = 1, 3

jloop: do j = 1, 3

kloop: do k = 1, 3

print*, "(i, j, k): ", i, j, k

end do kloop

end do jloop

end do iloop

end program nestedLoop

7

When the above code is compiled and executed, it produces the following result:

(i, j, k): 1 1 1

(i, j, k): 1 1 2

(i, j, k): 1 1 3

(i, j, k): 1 2 1

(i, j, k): 1 2 2

(i, j, k): 1 2 3

(i, j, k): 1 3 1

(i, j, k): 1 3 2

(i, j, k): 1 3 3

(i, j, k): 2 1 1

(i, j, k): 2 1 2

(i, j, k): 2 1 3

(i, j, k): 2 2 1

(i, j, k): 2 2 2

(i, j, k): 2 2 3

(i, j, k): 2 3 1

(i, j, k): 2 3 2

(i, j, k): 2 3 3

(i, j, k): 3 1 1

(i, j, k): 3 1 2

(i, j, k): 3 1 3

(i, j, k): 3 2 1

(i, j, k): 3 2 2

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution

leaves a scope, all automatic objects that were created in that scope are destroyed.

Fortran supports the following control statements. Click the following links to check their

detail.

8

Control Description
Statement

exit If the exit statement is executed, the loop is exited, and the

execution of the program continues at the first executable statement

after the end do statement.

cycle If a cycle statement is executed, the program continues at the start

of the next iteration.

stop If you wish execution of your program to stop, you can insert a stop

statement

Exit Statement

Exit statement terminates the loop or select case statement, and transfers execution to

the statement immediately following the loop or select.

Flow Diagram

9

Example

program nestedLoop

implicit none

integer:: i, j, k

iloop: do i = 1, 3

jloop: do j = 1, 3

kloop: do k = 1, 3

print*, "(i, j, k): ", i, j, k
if (k==2) then

exit jloop

end if

end do kloop

end do jloop

end do iloop

end program nestedLoop

When the above code is compiled and executed, it produces the following result:

(i, j, k): 1 1 1

(i, j, k): 1 1 2

(i, j, k): 2 1 1

(i, j, k): 2 1 2

(i, j, k): 3 1 1

(i, j, k): 3 1 2

Cycle Statement

The cycle statement causes the loop to skip the remainder of its body, and immediately

retest its condition prior to reiterating.

Flow diagram

10

Example

program cycle_example

implicit none

integer :: i

do i = 1, 20

if (i == 5) then

cycle

end if

print*, i

end do

end program cycle_example

When the above code is compiled and executed, it produces the following result:

1

2

3

4

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

11

Stop Statement

If you wish execution of your program to cease, you can insert a stop statement.

Example

program stop_example

implicit none

integer :: i

do i = 1, 20

if (i == 5) then

stop

end if

print*, i

end do

end program stop_example

When the above code is compiled and executed, it produces the following result:

1

2

3

4

