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10. Convergence
 (10.1) Definition: Let  be a sequence in a metric space . We said that  is a convergent in , if .
   or      where 
This means  where .
(10.2)Theorem: If  is a convergent in , then the convergence point is a unique.
Proof: let    and    such that  .
Let      
Since 
Since 
Put  max .
, but this is a contradiction .
(10.3)Example: Let  be a sequence in , since  is a convergent
    
Let 
Since  is usual metric space 


This means  is convergent in , if  with the center.
(10.4)Theorem: Let  is a subset in , then    in .
(10.5) Definition: Let  be a sequence in a metric space . We said that  is Cauchy sequence in , if .
(10.6)Theorem: Every convergent sequence  in a metric space  be Cauchy sequence.
Proof: let  be a convergent sequence in 
Let , since 
If 

 is Cauchy sequence.
(10.7)Note: Not necessary that every Cauchy sequence in a metric space  is a convergent, for example.
(10.8)Example: Let , a function  defined by .
Solution: Let , we note that  is a metric space and   be Cauchy sequence in , but does not convergent to .
(10.9)Theorem: Let  a metric space and  in , then .
Proof: 
.
(10.10)Example: Let  is discrete metric space and   in . Prove that .
Proof: let .
Since .
(10.11)Definition: We said that  is complete, if for all Cauchy sequence is a convergent.

(10.12)Example: Euclidean space  be complete metric space.
Solution: let  

Let   be Cauchy sequence in .

Let 
  Cauchy sequence in  
Since  is complete field 
Put 
[bookmark: _GoBack]So,   be convergent in .
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