

1

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

CHAPTER1: Introduction to Java

OBJECTIVES

After studying this chapter, the student will be able to

■ To describe the relationship between Java and the World Wide Web

■ To understand the meaning of Java language specification, API, JDK and IDE

■ To write a simple Java program.

■ To display output on the console.

■ To explain the basic syntax of a Java program.

■ To create, compile, and run Java programs.

■ To use sound Java programming style and document programs properly.

■ To explain the differences between syntax errors, runtime errors and logic errors.

■ To develop Java programs using Eclipse.

1.1 What is programming?

The term programming means to create (or develop) software, which is also

called a program. In basic terms, software contains the instructions that tell a

computer—or a computerized device—what to do. Software is all around you, even

in devices that you might not think would need it. Of course, you expect to find and

use software on a personal computer, but software also plays a role in running

airplanes, cars, cell phones, and even toasters. On a personal computer, you use word

processors to write documents, Web browsers to explore the Internet, and e-mail

programs to send and receive messages. These programs are all examples of

software. Software developers create software with the help of powerful tools called

programming languages.

2

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

This course teaches you how to create programs by using the Java programming

language. There are many programming languages, some of which are decades old.

Each language was invented for a specific purpose—to build on the strengths of a

previous language, for example, or to give the programmer a new and unique set of

tools. Knowing that there are so many programming languages available, it would

be natural for you to wonder which one is best. But, in truth, there is no “best”

language. Each one has its own strengths and weaknesses. Experienced

programmers know that one language might work well in some situations, whereas

a different language may be more appropriate in other situations. For this reason,

seasoned programmers try to master as many different programming languages as

they can, giving them access to a vast arsenal of software-development tools.

If you learn to program using one language, you should find it easy to pick up

other languages. The key is to learn how to solve problems using a programming

approach. That is the main theme of this course.

1.2 Programming Languages

Computer programs, known as software, are instructions that tell a computer

what to do. Computers do not understand human languages, so programs must be

written in a language a computer can use. There are hundreds of programming

languages, and they were developed to make the programming process easier for

people. However, all programs must be converted into the instructions the computer

can execute.

1.2.1 Machine Language

A computer’s native language, which differs among different types of

computers, is its machine language—a set of built-in primitive instructions. These

instructions are in the form of binary code, so if you want to give a computer an

instruction in its native language, you have to enter the instruction as binary code.

3

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

For example, to add two numbers, you might have to write an instruction in binary

code, like this:

1101101010011010

1.2.2 Assembly Language

Programming in machine language is a tedious process. Moreover, programs

written in machine language are very difficult to read and modify. For this reason,

assembly language was created in the early days of computing as an alternative to

machine languages. Assembly language uses a short descriptive word, known as a

mnemonic, to represent each of the machine-language instructions. For example, the

mnemonic add typically means to add numbers and sub means to subtract numbers.

To add the numbers 2 and 3 and get the result, you might write an instruction in

assembly code like this:

add 2, 3, result

Assembly languages were developed to make programming easier. However,

because the computer cannot execute assembly language, another program—called

an assembler—is used to translate assembly-language programs into machine code,

as shown in Figure 1.1.

Figure 1.1: An assembler translates assembly-language instructions into machine code.

Writing code in assembly language is easier than in machine language. However,

it is still tedious to write code in assembly language. An instruction in assembly

language essentially corresponds to an instruction in machine code. Writing in

4

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

assembly requires that you know how the CPU works. Assembly language is

referred to as a low-level language, because assembly language is close in nature to

machine language and is machine dependent.

1.2.3 High-Level Language

In the 1950s, a new generation of programming languages known as high-level

languages emerged. They are platform independent, which means that you can write

a program in a high-level language and run it in different types of machines. High-

level languages are English-like and easy to learn and use. The instructions in a high-

level programming language are called statements. Here, for example, is a high-

level language statement that computes the area of a circle with a radius of 5:

area = 5 * 5 * 3.14159;

There are many high-level programming languages, and each was designed for

a specific purpose. Table 1.1 lists some popular ones.

5

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

A program written in a high-level language is called a source program or source

code. Because a computer cannot execute a source program, a source program must

be translated into machine code for execution. The translation can be done using

another programming tool called an interpreter or a compiler.

■ An interpreter reads one statement from the source code, translates it to the

machine code or virtual machine code, and then executes it right away, as shown in

Figure 1.2a. Note that a statement from the source code may be translated into

several machine instructions.

■ A compiler translates the entire source code into a machine-code file, and the

machine-code file is then executed, as shown in Figure 1.2b.

Figure 1.2: (a) An interpreter translates and executes a program one statement at a

time. (b) A compiler translates the entire source program into a machine-language

file for execution.

6

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

1.3 Java, the World Wide Web, and Beyond

Java is a powerful and versatile programming language for developing software

running on mobile devices, desktop computers, and servers. Java was developed by

a team led by James Gosling at Sun Microsystems. Sun Microsystems was purchased

by Oracle in 2010. Originally called Oak, Java was designed in 1991 for use in

embedded chips in consumer electronic appliances. In 1995, renamed Java, it was

redesigned for developing Web applications.

Java has become enormously popular. Its rapid rise and wide acceptance can be

traced to its design characteristics, particularly its promise that you can write a

program once and run it anywhere. As stated by its designer, Java is simple, object

oriented, distributed, interpreted, robust, secure, architecture neutral, portable,

high performance, multithreaded, and dynamic.

Java is a full-featured, general-purpose programming language that can be used

to develop robust mission-critical applications. Today, it is employed not only for

Web programming but also for developing standalone applications across platforms

on servers, desktop computers, and mobile devices. It was used to develop the code

to communicate with and control the robotic rover on Mars. Many companies that

once considered Java to be more hype than substance are now using it to create

distributed applications accessed by customers and partners across the Internet. For

every new project being developed today, companies are asking how they can use

Java to make their work easier.

The World Wide Web is an electronic information repository that can be

accessed on the Internet from anywhere in the world. The Internet, the Web’s

infrastructure, has been around for more than forty years. The colorful World Wide

Web and sophisticated Web browsers are the major reason for the Internet’s

popularity.

7

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

Java initially became attractive because Java programs can be run from a Web

browser. Such programs are called applets. Applets employ a modern graphical

interface with buttons, text fields, text areas, radio buttons, and so on, to interact with

users on the Web and process their requests. Applets make the Web responsive,

interactive, and fun to use. Applets are embedded in an HTML file. HTML

(Hypertext Markup Language) is a simple scripting language for laying out

documents, linking documents on the Internet, and bringing images, sound, and

video alive on the Web. Today, you can use Java to develop rich Internet

applications. A rich Internet application (RIA) is a Web application designed to

deliver the same features and functions normally associated with desktop

applications.

Java is now very popular for developing applications on Web servers. These

applications process data, perform computations, and generate dynamic Web pages.

Many commercial Websites are developed using Java on the backend.

Java is a versatile programming language: you can use it to develop applications

for desktop computers, servers, and small handheld devices. The software for

Android cell phones is developed using Java.

1.4 The Java Language Specification, API, JDK, and IDE

Computer languages have strict rules of usage. If you do not follow the rules

when writing a program, the computer will not be able to understand it. The Java

language specification and the Java API define the Java standards.

The Java language specification is a technical definition of the Java

programming language’s syntax and semantics.

The application program interface (API), also known as library, contains

predefined classes and interfaces for developing Java programs. The API is still

expanding.

8

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

Java is a full-fledged and powerful language that can be used in many ways. It

comes in three editions:

■ Java Standard Edition (Java SE) to develop client-side applications. The

applications can run standalone or as applets running from a Web browser.

■ Java Enterprise Edition (Java EE) to develop server-side applications, such as

Java servlets, JavaServer Pages (JSP), and JavaServer Faces (JSF).

■ Java Micro Edition (Java ME) to develop applications for mobile devices, such

as cell phones.

This course uses Java SE to introduce Java programming. Java SE is the

foundation upon which all other Java technology is based. There are many versions

of Java SE. Oracle releases each version with a Java Development Toolkit (JDK).

For example, for Java SE 8, the Java Development Toolkit is called JDK 1.8 (also

known as Java 8 or JDK 8).

The JDK consists of a set of separate programs, each invoked from a command

line, for developing and testing Java programs. Instead of using the JDK, you can

use a Java development tool (e.g. Eclipse, NetBeans and TextPad)—software that

provides an integrated development environment (IDE) for developing Java

programs quickly. Editing, compiling, building, debugging, and online help are

integrated in one graphical user interface. You simply enter source code in one

window or open an existing file in a window, and then click a button or menu item

or press a function key to compile and run the program.

To sum up, Java syntax is defined in the Java language specification, and the

Java library is defined in the Java API. The JDK is the software for developing and

running Java programs. An IDE is an integrated development environment for

rapidly developing programs.

9

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

1.5 A Simple Java Program

Let us begin with a simple Java program that displays the message Welcome to

Java! on the console. (The word console is an old computer term that refers to the

text entry and display device of a computer. Console input means to receive input

from the keyboard, and console output means to display output on the monitor.) The

program is shown in Listing 1.1.

Note that the line numbers are for reference purposes only; they are not part of

the program. So, do not type line numbers in your program.

Line 1 defines a class. Every Java program must have at least one class. Each

class has a name. By convention, class names start with an uppercase letter. In this

example, the class name is Welcome.

Line 2 defines the main method. The program is executed from the main method.

A class may contain several methods. The main method is the entry point where the

program begins execution.

A method is a construct that contains statements. The main method in this

program contains the System.out.println statement. This statement displays the

string Welcome to Java! on the console (line 4). String is a programming term

meaning a sequence of characters. A string must be enclosed in double quotation

marks. Every statement in Java ends with a semicolon (;), known as the statement

terminator.

10

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

Reserved words, or keywords, have a specific meaning to the compiler and cannot

be used for other purposes in the program. For example, when the compiler sees the

word class, it understands that the word after class is the name for the class. Other

reserved words in this program are public, static, and void.

Line 3 is a comment that documents what the program is and how it is

constructed. Comments help programmers to communicate and understand the

program. They are not programming statements and thus are ignored by the

compiler. In Java, comments are preceded by two slashes (//) on a line, called a line

comment, or enclosed between /* and */ on one or several lines, called a block

comment or paragraph comment. When the compiler sees //, it ignores all text after

// on the same line. When it sees /*, it scans for the next */ and ignores any text

between /* and */. Here are examples of comments:

// This application program displays Welcome to Java!

/* This application program displays Welcome to Java! */

/* This application program

displays Welcome to Java! */

A pair of curly braces in a program forms a block that groups the program’s

components. In Java, each block begins with an opening brace ({) and ends with a

closing brace (}). Every class has a class block that groups the data and methods of

the class. Similarly, every method has a method block that groups the statements in

the method. Blocks can be nested, meaning that one block can be placed within

another, as shown in the following code.

11

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

You have seen several special characters (e.g., { }, //, ;) in the program. They are

used in almost every program. Table 1.2 summarizes their uses.

The most common errors you will make as you learn to program will be syntax

errors. Like any programming language, Java has its own syntax, and you need to

write code that conforms to the syntax rules. If your program violates a rule—for

example, if the semicolon is missing, a brace is missing, a quotation mark is missing,

or a word is misspelled—the Java compiler will report syntax errors. Try to compile

the program with these errors and see what the compiler reports.

The program in Listing 1.1 displays one message. Once you understand the

program, it is easy to extend it to display more messages. For example, you can

rewrite the program to display three messages, as shown in Listing 1.2.

12

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

Further, you can perform mathematical computations and display the result on

the console. Listing 1.3 gives an example of evaluating:

1.6 Creating, Compiling, and Executing a Java Program

You save a Java program in a .java file and compile it into a .class file. The .class

file is executed by the Java Virtual Machine.

You have to create your program and compile it before it can be executed. This

process is repetitive, as shown in Figure 1.3. If your program has compile errors,

you have to modify the program to fix them, and then recompile it. If your program

has runtime errors or does not produce the correct result, you have to modify the

program, recompile it, and execute it again.

13

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

Figure 1.3: The Java program-development process consists of repeatedly

creating/modifying source code, compiling and executing programs.

You can use any text editor or IDE to create and edit a Java source-code file. A

Java compiler translates a Java source file into a Java bytecode file.

If there are not any syntax errors, the compiler generates a bytecode file with a

.class extension. Thus, the preceding command generates a file named

Welcome.class, as shown in Figure 1.4a.

14

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

The Java language is a high-level language, but Java bytecode is a low-level

language. The bytecode is similar to machine instructions but is architecture neutral

and can run on any platform that has a Java Virtual Machine (JVM), as shown in

Figure 1.4b. Rather than a physical machine, the virtual machine is a program that

interprets Java bytecode. This is one of Java’s primary advantages: Java bytecode

can run on a variety of hardware platforms and operating systems. Java source code

is compiled into Java bytecode and Java bytecode is interpreted by the JVM. Your

Java code may use the code in the Java library. The JVM executes your code along

with the code in the library.

To execute a Java program is to run the program’s bytecode. You can execute

the bytecode on any platform with a JVM, which is an interpreter. It translates the

individual instructions in the bytecode into the target machine language code one at

a time rather than the whole program as a single unit. Each step is executed

immediately after it is translated.

Figure 1.4: (a) Java source code is translated into bytecode. (b) Java bytecode can

be executed on any computer with a Java Virtual Machine.

1.7 Programming Style and Documentation

Good programming style and proper documentation make a program easy to read

and help programmers prevent errors. Programming style deals with what programs

look like. A program can compile and run properly even if written on only one line,

15

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

but writing it all on one line would be bad programming style because it would be

hard to read. Documentation is the body of explanatory remarks and comments

pertaining to a program. Programming style and documentation are as important as

coding. Good programming style and appropriate documentation reduce the chance

of errors and make programs easy to read.

1.7.1 Appropriate Comments and Comment Styles

Include a summary at the beginning of the program that explains what the

program does, its key features, and any unique techniques it uses. In a long program,

you should also include comments that introduce each major step and explain

anything that is difficult to read. It is important to make comments concise so that

they do not crowd the program or make it difficult to read.

1.7.2 Proper Indentation and Spacing

A consistent indentation style makes programs clear and easy to read, debug, and

maintain. Indentation is used to illustrate the structural relationships between a

program’s components or statements. Java can read the program even if all of the

statements are on the same long line, but humans find it easier to read and maintain

code that is aligned properly. Indent each subcomponent or statement at least two

spaces more than the construct within which it is nested.

A single space should be added on both sides of a binary operator, as shown in

the following statement:

1.7.3 Block Styles

A block is a group of statements surrounded by braces. There are two popular

styles, next-line style and end-of-line style, as shown below.

16

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

The next-line style aligns braces vertically and makes programs easy to read,

whereas the end-of-line style saves space and may help avoid some subtle

programming errors. Both are acceptable block styles. The choice depends on

personal or organizational preference. You should use a block style consistently—

mixing styles is not recommended. This course uses the end-of-line style to be

consistent with the Java API source code.

1.8 Programming Errors

Programming errors can be categorized into three types: syntax errors, runtime

errors, and logic errors.

1.8.1 Syntax Errors

Errors that are detected by the compiler are called syntax errors or compile

errors. Syntax errors result from errors in code construction, such as mistyping a

keyword, omitting some necessary punctuation, or using an opening brace without

a corresponding closing brace.

These errors are usually easy to detect because the compiler tells you where they

are and what caused them. For example, consider the program in Listing 1.4:

Two errors can be noticed:

■ The keyword void is missing before main in line 2.

17

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

■ The string Welcome to Java should be closed with a closing quotation mark in

line 3.

Since a single error will often display many lines of compile errors, it is a good

practice to fix errors from the top line and work downward. Fixing errors that occur

earlier in the program may also fix additional errors that occur later.

1.8.2 Runtime Errors

Runtime errors are errors that cause a program to terminate abnormally. They

occur while a program is running if the environment detects an operation that is

impossible to carry out. Input mistakes typically cause runtime errors. An input error

occurs when the program is waiting for the user to enter a value, but the user enters

a value that the program cannot handle. For instance, if the program expects to read

in a number, but instead the user enters a string, this causes data-type errors to occur

in the program.

Another example of runtime errors is division by zero. This happens when the

divisor is zero for integer divisions. For instance, the program in Listing 1.5 would

cause a runtime error.

1.8.3 Logic Errors

Logic errors occur when a program does not perform the way it was intended to.

Errors of this kind occur for many different reasons. For example, suppose you wrote

the program in Listing 1.6 to convert Celsius 35 degrees to a Fahrenheit degree:

18

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

You will get Fahrenheit 67 degrees, which is wrong. It should be 95.0. In Java,

the division for integers is the quotient—the fractional part is truncated—so in Java

9 / 5 is 1. To get the correct result, you need to use 9.0 / 5, which results in 1.8.

In general, syntax errors are easy to find and easy to correct because the compiler

gives indications as to where the errors came from and why they are wrong. Runtime

errors are not difficult to find, either, since the reasons and locations for the errors

are displayed on the console when the program aborts. Finding logic errors, on the

other hand, can be very challenging.

1.8.4 Common Errors

Missing a closing brace, missing a semicolon, missing quotation marks for

strings, and misspelling names are common errors for new programmers.

Common Error 1: Missing Braces

The braces are used to denote a block in the program. Each opening brace must

be matched by a closing brace. A common error is missing the closing brace. To

avoid this error, type a closing brace whenever an opening brace is typed, as shown

in the following example.

19

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

If you use an IDE such as Eclipse, the IDE automatically inserts a closing brace for

each opening brace typed.

Common Error 2: Missing Semicolons

Each statement ends with a statement terminator (;). Often, a new programmer

forgets to place a statement terminator for the last statement in a block, as shown in

the following example.

Common Error 3: Missing Quotation Marks

A string must be placed inside the quotation marks. Often, a new programmer

forgets to place a quotation mark at the end of a string, as shown in the following

example.

If you use an IDE such as Eclipse, the IDE automatically inserts a closing

quotation mark for each opening quotation mark typed.

Common Error 4: Misspelling Names

Java is case sensitive. Misspelling names is a common error for new

programmers. For example, the word main is misspelled as Main and String is

misspelled as string in the following code.

20

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

1.9 Developing Java Programs Using Eclipse

You can edit, compile, run, and debug Java Programs using Eclipse. This section

gives the essential instructions to guide new users to create a project, create a class,

and compile/run a class in Eclipse.

1.9.1 Creating a Java Project

Before creating Java programs in Eclipse, you need first to create a project to

hold all files.

Here are the steps to create a Java project in Eclipse:

1. Choose File, New, Java Project to display the New Project wizard, as shown

in Figure 1.5.

2. Type demo in the Project name field. As you type, the Location field is

automatically set by default. You may customize the location for your project.

3. Make sure that you selected the options Use project folder as root for sources

and class files so that the .java and .class files are in the same folder for easy

access.

4. Click Finish to create the project, as shown in Figure 1.6.

21

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

Figure 1.5: The New Java Project dialog is for specifying a project name and properties.

Figure 1.6: A New Java project named demo is created.

22

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

1.9.2 Creating a Java Class

After a project is created, you can create Java programs in the project using the

following steps:

1. Choose File, New, Class to display the New Java Class wizard.

2. Type Welcome in the Name field.

3. Check the option public static void main(String[] args).

4. Click Finish to generate the template for the source code Welcome.java, as

shown in Figure 1.7.

Figure 1.7: The New Java Class dialog box is used to create a new Java class.

23

Integrative Programming Prepared by: Dr. Muhanad Tahrir Younis (2019-2020)

1.9.3 Compiling and Running a Class

To run the program, right-click the class in the project to display a context menu.

Choose Run, Java Application in the context menu to run the class. The output is

displayed in the Console pane, as shown in Figure 1.8.

 Figure 1.8: You can edit a program and run it in Eclipse.

