

Mustansiriyah University

College of Science

Physics Department

Lecture (1) for PhD

Edited by:

- Prof. Ali .A. Al-Zuky
- Bahaa Jawad
- Saif Mohamed
- Sanaa Thamir

Wave equation

The general formula of differential wave equation given by:

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial t^{2}}=V^{2} \frac{\partial^{2} \psi}{\partial x^{2}} . \tag{1}
\end{equation*}
$$

Or

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}=\frac{1}{V^{2}} \frac{\partial^{2} \psi}{\partial t^{2}} . \tag{2}
\end{equation*}
$$

When $\psi(x, t)$ wave equation for wave travel in speed (V). Use partial differential equation to solve eq.(1) or (2):

Suppose:

$$
\begin{equation*}
\psi=Q(x) R(t) \tag{3}
\end{equation*}
$$

So eq.(1) becomes:

$$
\begin{equation*}
\frac{1}{R} \frac{\partial^{2} R}{\partial t^{2}}=\frac{V^{2}}{Q} \frac{\partial^{2} Q}{\partial x^{2}}=A=\text { separation constan } \tag{4}
\end{equation*}
$$

So get:

$$
\begin{array}{r}
\frac{1}{R} \frac{\partial^{2} R}{\partial t^{2}}=A \\
\frac{\partial^{2} R}{\partial t^{2}}=A R(t) \ldots \ldots \ldots \ldots \\
\frac{\partial^{2} Q}{\partial x^{2}}=\frac{A}{V^{2}} Q(x) \ldots \ldots \ldots . . \tag{6}
\end{array}
$$

Now need to solve eq. (5) \& (6):
Case (1): when A=0

$$
\begin{array}{ll}
\therefore & \frac{\partial^{2} R}{\partial t^{2}}=0 \\
\frac{\partial R}{\partial t}=a=\text { constant }
\end{array}
$$

$$
\begin{equation*}
R=a t+b . \tag{7}
\end{equation*}
$$

\&

$$
\frac{\partial^{2} Q}{\partial x^{2}}=0
$$

$$
\begin{equation*}
\frac{\partial Q}{\partial x}=c=\text { constant } \tag{8}
\end{equation*}
$$

$Q=C x+d$.
When $\mathrm{a}, \mathrm{b}, \mathrm{c} \& \mathrm{~d}$ are constant.

$$
\begin{array}{r}
\therefore \quad \psi=Q \cdot R=(\mathrm{at}+\mathrm{b})(\mathrm{cx}+\mathrm{d}) \\
 \tag{9}\\
\\
\psi=a_{1}+b_{1} x+c_{1} t+d_{1} x t
\end{array}
$$

Case (2): when $\mathrm{A}=\omega^{2}>0$ get:

$$
\begin{equation*}
\frac{\partial^{2} R}{\partial t^{2}}=A R(t)=\omega^{2} R(t) \tag{10}
\end{equation*}
$$

\&

$$
\begin{equation*}
\frac{\partial^{2} Q}{\partial x^{2}}=\left(\frac{\omega}{V}\right)^{2} Q \tag{11}
\end{equation*}
$$

- H.W (1): find $\psi(x, t)$

Case (3): when $\mathrm{A}=-\omega^{2}<0$: H.W(2) find $\psi(x, t)$?!

- H.W (3) : Solve the following wave eq.

$$
\begin{array}{cc}
9 \frac{\partial^{2} \psi}{\partial x^{2}}=\frac{\partial^{2} \psi}{\partial t^{2}} \quad & 0<x<\pi \\
t>0
\end{array}
$$

$$
\begin{align*}
& \psi(0, t)=0 \quad, \quad \psi(\pi, t)=0 \quad t>0 \\
& \psi(x, 0)=\mathrm{f}(\mathrm{x}) \quad, \quad \psi(x, 0)=0 \quad 0 \leq x \leq \pi \\
& \mathrm{F}(\mathrm{x})=\left[\begin{array}{lll}
\mathrm{x} & 0 \leq x & \leq \frac{\pi}{2} \\
\pi-x & \frac{\pi}{2} \leq x & \leq \pi
\end{array}\right. \\
& \frac{\partial^{2} \psi}{\partial t^{2}}=V^{2} \frac{\partial^{2} \psi}{\partial x^{2}} . \tag{1}
\end{align*}
$$

Let:
$\psi(x, t)=f\left(x-v_{p} t\right)$

$$
\begin{equation*}
\therefore \quad \frac{\partial^{2} f}{\partial t^{2}}=v_{p}^{2} \frac{\partial^{2} f}{\partial x^{2}} . \tag{2}
\end{equation*}
$$

When:
v_{p} : phase velocity, $f\left(x-v_{p} t\right)$: wave equation.
You can also show that any function $f\left(k x_{-}^{+} \omega t\right)$ gives the same result, when ($\omega=v_{p} k$).

$$
\left(x-v_{p} t\right)
$$

$\left(x-v_{p} t\right)$

What is moving?

This work for any wave shape.
Example/ Wave equations are linear: this means that a linear combination of solution is a solution.

This case different from stationary string: the energy stored in the string.

4-

If we have a string with different thicknesses (i.e. different densities (ρ_{L}) \& tensions (T)):

v_{1}
v_{2}

Assuming that the tension (T) is uniform:

$$
v_{1}=\sqrt{\frac{T}{\rho L}} \quad \& \quad v_{2}=\sqrt{\frac{T}{4 \rho L}}=\frac{1}{2} v_{1}
$$

The velocity of a wave v_{2} in a denser string (4ρ) for example, is slower than v_{1} by half. The wave will moving through this string as:

Reflected wave
When a wave moves from one medium to another, the wavelength will be changed but the frequency will be constant.

$$
\begin{array}{cc}
R=\frac{v_{2}-v_{1}}{v_{2}+v_{1}} & \text { Reflected (R) } \\
\mathrm{T}=\frac{2 v_{2}}{v_{2}+v_{1}} & \text { Transmitted }(\mathrm{T})
\end{array}
$$

$v_{2}=\frac{v_{1}}{2}, \quad \& \quad k \alpha v^{-1}$

$$
\begin{gathered}
\therefore \quad R=-\frac{1}{3}, \text { the phase change by }(\pi) \\
\\
T=\frac{2}{3}, \text { no phase change. }
\end{gathered}
$$

Impedance:

$$
Z_{1}=\frac{\text { Tension }}{v_{1}} \quad \& \quad Z_{2}=\frac{\text { Tension }}{v_{2}}
$$

The amplitude of the transmitted and reflected wave is determine by the properties of the two media (systems).

Consider two extreme cases:
1- String attached a wall:

ρ_{L}
$R=-1$

In a sense, the (ρ_{L}) of the wall is very big, infinite in fact.
Therefore, $\left(v_{2} \rightarrow 0\right)$, $(\mathrm{R}=-1)$ and $(\mathrm{T}=0)$. The amplitude changes sign but not magnitude, and there is no transmitted wave.

2- There is air on the other side: the $\left(\rho_{L}\right)$ of the air is zero, therefore, $\left(v_{2} \rightarrow \infty\right),(\mathrm{R}=1) \&(\mathrm{~T}=2)$.

EM (Electromagnetic) waves:

Maxwell's equations: differential form

$$
\begin{array}{ll}
\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\epsilon_{0}} & \text { Gauss' Law } \\
\vec{\nabla} \cdot \vec{B}=0 & \text { Gauss' Law for magnetism } \\
\vec{\nabla} \times \vec{E}=-\frac{\partial B}{\partial t} & \text { Faraday's Law } \\
\vec{\nabla} \times \vec{B}=\mu_{0}\left(\vec{J}+\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}\right) & \text { Ampere's \& Maxwell's Law }
\end{array}
$$

: In vacuum

$$
\rho=0 \& \mathrm{~J}=0 \quad \text { and we get }
$$

$\vec{\nabla} \cdot \vec{E}=0$
$\vec{\nabla} \cdot \vec{B}=0$
$\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
$\vec{\nabla} \times \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}$

When in the last two equation see the change in magnetic field generate as electric field and changing electric field product a magnetic field

To solve these equations need to use the identity

$$
\begin{aligned}
& \vec{\nabla} \times(\vec{\nabla} \times \vec{A})=\vec{\nabla}(\vec{\nabla} \cdot \vec{A})-(\vec{\nabla} \cdot \vec{\nabla}) \vec{A} \quad \text { When } \\
& \vec{\nabla} \cdot \vec{\nabla}=\vec{\nabla}^{2} \quad \text { is the Laplace operator }
\end{aligned}
$$

In vacuum

$$
\begin{gathered}
\vec{\nabla} \times(\vec{\nabla} \times \vec{E})=\vec{\nabla} \times\left(-\frac{\partial \vec{B}}{\partial t}\right) \\
\vec{\nabla}(\vec{\nabla} \cdot \vec{E})-\vec{\nabla}^{2} \vec{E}=\vec{\nabla} \times\left(-\frac{\partial \vec{B}}{\partial t}\right) \\
\vec{\nabla}^{2} \vec{E}=-\frac{\partial}{\partial t}(\vec{\nabla} \times \vec{B})=-\frac{\partial}{\partial t}\left(\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}\right) \\
\vec{\nabla}^{2} \vec{E}=\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}
\end{gathered}
$$

Where

$$
\begin{gathered}
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \\
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \vec{E}=\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}
\end{gathered}
$$

These equations changed the world . Maxwell is the first one who recognized it because of the term he put in. it was represent a wave equation with speed:

$$
\mathrm{C}=\frac{1}{\sqrt{\mu_{o} \epsilon_{o}}}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Also for B field get:

$$
\nabla^{2} \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial^{2} B}{\partial t^{2}}
$$

It is very important that the associated magnetic field also satisfies the wave equation. So from Maxwell's equations E crate B and B create E .

Therefore, they cannot exist without each other
1638 Golilo speed of light is very large
1676 Romer speed of light $2.2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
1724 James Bradley speed of light $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
EMW= Oscillation in fields (E \& B).
Scalar fields: every position in the space gets a number
Vector Files: Instead of a number or scalar every point gets a vector

$$
A_{(x, y, z)}=A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{k}
$$

The electric and magnetic fields are a vector filed.

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

Divergence: using the definition for above vector:

$$
\vec{\nabla} \cdot \vec{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}
$$

$\vec{\nabla} \cdot \vec{A}=\operatorname{Div} A \quad$ Divergence of vector \vec{A}

The divergence is a measure of how much the vector spreads out (diverges) from a point:

The divergence of this vector field (B) positive

The divergence of this vector field (B) zero

Curl : (rotate)

$$
\begin{gathered}
\vec{\nabla} \times \vec{A}=\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\partial x & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array} \\
=\hat{i}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\hat{j}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\hat{k}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)
\end{gathered}
$$

What exactly does Curl mean:
Curl is mean measure of how much the vector \vec{A} (Curl around) a point

This vector field has a large Curl

This vector field has no Curl

Example

Check if a plan wave satisfying wave equations

$$
\begin{gather*}
\vec{E}=E_{\circ} e^{i(k z-w t)} \ldots \ldots \ldots(1) \quad \text { take only real part } \\
\vec{E}=\left(E_{\circ} \cos (\mathrm{kz}-\mathrm{wt}), 0,0\right) \ldots \ldots \text { (2) and find } \vec{B} \tag{1}
\end{gather*}
$$

Solution:

$$
\begin{gather*}
\nabla^{2} \mathrm{E}=\mu_{0} \epsilon_{0} \frac{\partial^{2} E}{\partial t^{2}} \ldots \ldots \ldots(3) \\
-E \circ k^{2} \cos (\mathrm{kz}-\mathrm{wt})=-\mu_{0} \epsilon_{0} E_{\circ} \cos (k z-w t) \tag{4}\\
\frac{w}{k}=\frac{1}{\sqrt{\mu_{o} €_{o}}}=c
\end{gather*}
$$

condition needed to satisfy the wave equation
Then we can fined \vec{B} field

$$
\begin{equation*}
(\vec{\nabla} \times \vec{E})=-\frac{\partial \vec{B}}{\partial t} \ldots \tag{6}
\end{equation*}
$$

$$
\text { R.H.S }=\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
E_{x} & 0 & 0
\end{array}=\left(\frac{\partial E_{X}}{\partial z} \hat{\jmath}-\frac{\partial E_{z}}{\partial y} \hat{k}\right)=-E_{\circ} \hat{\jmath} k \sin (\mathrm{kz}-\mathrm{wt})
$$

So eq(6) become

$$
\begin{aligned}
\frac{\partial \vec{B}}{\partial t} & =\hat{\jmath} E_{\circ} k \sin (\mathrm{kz}-\mathrm{wt}) \ldots(7) \\
\vec{B} & =\hat{\jmath} k E_{\circ} \int \sin (k z-w t) d t
\end{aligned}
$$

$$
\begin{align*}
\vec{B} & =\hat{\jmath} \frac{K E_{\circ}}{W} \cos (\mathrm{kz}-\mathrm{wt}) \ldots \tag{8}\\
\vec{B} & =\hat{\jmath} \frac{E_{\circ}}{c} \cos (\mathrm{kz}-\mathrm{wt}) \ldots \tag{9}
\end{align*}
$$

Here can be concluding
1- The \vec{E} field must come with \vec{B} field, the two fields are perpendicular and they are in phase . if \hat{k} is the direction of propagation then

$$
\vec{B}=\frac{1}{c} K_{u} \times \vec{E} \ldots
$$

The amplitude of the magnetic field is equal to the amplitude field divided by the speed of light.

2- The EMW is non-dispersive that mean the speed of light (c) is independent of the wave number (k)

$$
c=\frac{w}{k} \frac{1}{\sqrt{\mu_{o} €_{o}}}
$$

3- The direction of propagation of EM is in same direction of $(\vec{E} \times \vec{B})$.

$$
\vec{B}=\frac{1}{c} K_{u} \times \vec{E}
$$

K_{u} unit vector in direction of propagation or in \vec{k} direction

Example

$$
\begin{gathered}
\vec{K}=\frac{2 \pi}{\lambda}\left(\frac{\hat{\imath}}{\sqrt{2}}+\frac{\hat{\jmath}}{\sqrt{2}}\right), \quad \overrightarrow{E_{\circ}}=-\frac{E_{\circ}}{\sqrt{2}} \hat{\imath}+\frac{E_{\circ}}{\sqrt{2}} \hat{\jmath} \\
r=x \hat{\imath}+y \hat{\jmath}+z \hat{k} \\
\vec{k} \cdot \vec{r}=\frac{2 \pi}{\lambda \sqrt{2}}(x+y) \\
\vec{E}=E_{\circ}\left(-\frac{\hat{\imath}}{\sqrt{2}}+\frac{\hat{\jmath}}{\sqrt{2}}\right) \cos \left(\frac{\sqrt{2} \pi}{\lambda}(x+y)-w t\right) \\
\vec{B}=\frac{1}{c} K_{u} \times \vec{E} \\
=\frac{E_{\circ}}{c} \hat{k} \cos \left(\frac{\sqrt{2} \pi}{\lambda}(x+y)-w t\right)
\end{gathered}
$$

If there is no other material , the EMW will travel forever

Now let put a perfect conductor and the EMW incident to this conductor

Incident wave

$$
\begin{aligned}
\vec{E}_{I} & =\frac{E_{\circ}}{2} \cos (k z-w t) \hat{\imath} \\
\vec{B}_{I} & =\frac{E_{\circ}}{2 c} \cos (k z-w t) \hat{\jmath}
\end{aligned}
$$

To satisfy the boundary condition

$$
\vec{E}_{1}=0 \text { and } z=0
$$

We need only a reflected wave:

$$
\vec{E}_{R}=-\frac{E_{\circ}}{2} \cos (-k z-w t) \hat{\imath}
$$

$$
\begin{gathered}
\vec{B}_{R}=-\frac{E_{\circ}}{2 c} \cos (-k z-w t) \hat{\jmath} \\
\vec{E}=\vec{E}_{I}+\vec{E}_{R}=\hat{\imath} \frac{E_{\circ}}{2}\{\cos (k z-w t)-\cos (-k z-w t)\} \\
\vec{E}=E_{\circ} \sin (2 w t) \sin (2 k z) \hat{\imath} \\
\vec{B}=\vec{B}_{I}+\vec{B}_{R}=\hat{\jmath} \frac{E_{\circ}}{2}\{\cos (k z-w t)+\cos (-k z-w t)\} \\
\vec{B}=\frac{E_{\circ}}{c} \cos (2 w t) \cos (2 k z)
\end{gathered}
$$

Standing wave $\vec{B} \& E$ field not in phase

$$
\begin{aligned}
U_{E} & =\frac{1}{2} \varepsilon_{\circ} E^{2}=\frac{\varepsilon_{\circ}}{2} E_{\circ}^{2} \sin ^{2} w t+\sin ^{2} k z \\
U_{B} & =\frac{1}{2} \frac{B^{2}}{\mu_{0}}=\frac{\varepsilon_{\circ}}{2} E_{\circ}^{2} \cos ^{2} w t+\cos ^{2} k z
\end{aligned}
$$

Poynting vector : directional energy flux, or the rate of energy transfer per unit area

$$
\begin{gathered}
S=\frac{\overrightarrow{\mathrm{E}} \times \vec{B}}{\mu_{0}} \\
S=\frac{1}{\mu_{0}} E_{x} B_{y} \hat{k} \\
S=\frac{E_{\circ}^{2}}{c \mu_{0}} \sin w t \cos w t \sin k z \cos k z \\
S=\frac{E_{0}^{2}}{4 c \mu_{0}} \sin (2 w t) \cos (2 k z)
\end{gathered}
$$

This is how a microwave oven work. The EMW are bounced inside the oven .EMW increase the vibration of the molecules in the oven and increase the temperature of the food.

Example

A plane em wave $E=100 \cos \left(6 \times 10^{8} t+4 x\right) \mathrm{V} / \mathrm{m}$ propagates in a medium. What is the dielectric constant of the medium?

$$
\begin{align*}
& E_{z}=100 \cos \left(6 \times 10^{8} t+4 x\right)(\text { by problem }) \tag{1}\\
& E_{z}=A \cos (\omega t+k x) \quad \text { (standard equation) } \tag{2}
\end{align*}
$$

Comparison of (1) and (2) shows that
$\omega=6 \times 10^{8}$ and $k=4$
$v=\frac{\omega}{k}=\frac{6 \times 10^{8}}{4}=1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Dielectric constant, $K=\frac{c}{v}=\frac{3 \times 10^{8}}{1.5 \times 10^{8}}=2.0$

Example

Show that for a magnetic field B the wave equation has the form $\nabla^{2} B=$ $\mu_{0} \varepsilon_{0} \frac{\partial^{2} B}{\partial t^{2}}$
Maxwell's equations in vacuum are

$$
\begin{align*}
\nabla \cdot \boldsymbol{E} & =0 \tag{1}\\
\nabla \cdot \boldsymbol{B} & =0 \tag{2}\\
\nabla \times \boldsymbol{E} & =-\frac{\partial \boldsymbol{B}}{\partial t} \tag{3}\\
\nabla \times \boldsymbol{B} & =\mu_{0} \varepsilon_{0} \frac{\partial \boldsymbol{E}}{\partial t} \tag{4}
\end{align*}
$$

Use the vector identify

$$
\begin{aligned}
& \nabla \times(\nabla \times \boldsymbol{B})=\nabla(\nabla \cdot \boldsymbol{B})-\nabla^{2} \boldsymbol{B} \\
& \therefore \quad \nabla \times\left(\mu_{0} \varepsilon_{0} \frac{\partial E}{\partial t}\right)=-\nabla^{2} B \quad(\because \nabla \cdot \boldsymbol{B}=0 \quad \text { by }(2) \\
& \therefore \quad \mu_{0} \varepsilon_{0} \frac{\partial}{\partial t}(\nabla \times \boldsymbol{E})=-\mu_{0} \varepsilon_{0} \frac{\partial}{\partial t} \frac{\partial \boldsymbol{B}}{\partial t}=-\nabla^{2} \boldsymbol{B} \\
& \therefore \quad \nabla^{2} \boldsymbol{B}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \boldsymbol{B}}{\partial t^{2}}
\end{aligned}
$$

Example

Use Maxwell's equation to show that $\nabla \cdot\left(j+\frac{1}{\varepsilon_{0}} \frac{\partial E}{\partial t}\right)=0$.
$\nabla \times \boldsymbol{B}=\mu_{0} \boldsymbol{j} \quad$ (Ampere's law)
Use the vector identity $A \cdot(A \times B)=0$. Put $A=\nabla$.
$\therefore \quad \nabla \cdot(\nabla \times B)=0$
$\therefore \quad \nabla \cdot j=0$
More generally, $\boldsymbol{\nabla} \cdot \boldsymbol{j}+\frac{\partial \rho}{\partial t}=0$ (continuity equation)
and $\quad \nabla \cdot \boldsymbol{E}=\varepsilon_{0} \rho \quad$ (Gauss' law)
Combining (3) and (4)
$\nabla \cdot\left(j+\frac{1}{\varepsilon_{0}} \frac{\partial E}{\partial t}\right)=0$

Example

The free-space wave equation for a medium without absorption is

$$
\nabla^{2} \boldsymbol{E}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}=0
$$

Show that this equation predicts that electromagnetic waves are propagated with velocity of light given by $c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$.

$$
\nabla^{2} \boldsymbol{B}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \boldsymbol{B}}{\partial t^{2}} \quad \text { (free-space wave equation) }
$$

Compare with the standard three-dimensional wave equation

$$
\begin{aligned}
\nabla^{2} \Psi & =\frac{1}{v^{2}} \frac{\partial^{2} \Psi}{\partial t^{2}} \\
\therefore \quad v & =\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=\frac{1}{\sqrt{\left(4 \pi \times 10^{-7}\right)\left(8.854 \times 10^{-12}\right)}} \\
& =2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}=\mathrm{c}
\end{aligned}
$$

Example

Show that at any point in the electromagnetic field the energy density stored in the electric field is equal to that stored in the magnetic field.
$u_{\mathrm{E}}=\frac{1}{2} \varepsilon_{0} E^{2} \quad($ energy density in E-field $)$
$u_{\mathrm{B}}=\frac{1}{2} \frac{B^{2}}{\mu_{0}} \quad($ energy density in B-field $)$
The fields for the plane wave are
$E=E_{\mathrm{m}} \sin (k x-\omega t)$
$B=B_{\mathrm{m}} \sin (k x-\omega t)$
Substituting (3) in (1) and (4) in (2)
$u_{\mathrm{E}}=\frac{1}{2} \varepsilon_{0} E_{\mathrm{m}}^{2} \sin ^{2}(k x-\omega t)$
$u_{\mathrm{B}}=\frac{1}{2} \frac{B_{\mathrm{m}}^{2}}{\mu_{0}} \sin ^{2}(k x-\omega t)$
Dividing (5) by (6)
$\frac{u_{\mathrm{E}}}{u_{\mathrm{B}}}=\frac{\varepsilon_{0} \mu_{0} E_{\mathrm{m}}^{2}}{B_{\mathrm{m}}^{2}}$
But $\varepsilon_{0} \mu_{0}=\frac{1}{c^{2}} \quad$ and $\quad E_{\mathrm{m}}=c B_{\mathrm{m}}$
$\therefore \quad \frac{u_{\mathrm{E}}}{u_{\mathrm{B}}}=1$ or $u_{\mathrm{E}}=u_{\mathrm{B}}$

References

1- 1000 Solved Problems in Classical Physics. Ahmad A. Kamal. 2011.

2- Jackson, John D. (1998). Classical Electrodynamics (3rd $e d$.$) Wiley$

