The Course of Meteorological Instrumentation and Observations

MUSTANSIRIYAH UNIVERSITY COLLEGE OF SCIENCES ATMOSPHERIC SCIENCES DEPARTMENT **2018-2019** Dr. Ali al-hafiz **SECOND STAGE**

Welcome Students! 🙂

TO LECTURE ONE

Principles of Measurement and Instrumentation What are covered in this course?

- 1. Introduction to Met Instruments 6. Wind measurement
- 2. Observing System
- 3. Temperature and Moisture measurement
 - Basic principles Sensor types Response time
- 4. Precipitation measurement Rain gauges Radars for precipitation
- 5. Pressure measurement Basic principles Sensors

- . Wind measurement Mechanical method Electrical method
- 8. Clouds measurement
- 9. Upper atmosphere measurement
- 7. Radiation Basic principles Sensors
- 10. Weather radar
- 11. Satellite observations

12. Weather Maps and how to represent Weather Phenomena

Meteorological observations are made for a variety of reasons:

- for the real-time preparation of weather analyses, forecasts and severe weather warnings,
 for the study of climate,
- ☐ for local weather dependent operations (for example, local aerodrome flying operations,
- construction work on land and at sea),

□ for research in meteorology and climatology.

OBSERVING PARAMETERS

PARAMETER	SENSOR	UNIT	MEASURING RANGE
Wind speed	Anemometer	m/sec, knot	075 m/sec
Wind direction	Wind vane	Degree	0360 o
Air temperature	Thermometer	o C	-60 o C+60 o C
Wet bulb temp.	Thermometer	o C	0+40 o C
Dew point	Thermometer	o C	-60 o C+50 o C
Rel. Humidity	Hygrometer	%	0%100%
Soil Terre. Temp.	Thermometer	o C	-60 o C+70 o C
Soil temp.	Thermometer	o C	-50 o C+70 o C
Soil moisture	Moisture sensor	% H2O	Undefined

OBSERVING PARAMETERS

PARAMETER	SENSOR	UNIT	MEASURING RANGE
Pressure	Barometer	hPa	6001100 hPa
Precipitation	Pluviometer	mm	Unlimited
Snow depth	Depth sensor	cm	01000 cm
Evaporation	Evap. Pool	mm	0100 mm/day
Global radiation	Pyranometer	Watt/m2	01500 W/m2
Direct radiation	Pyrheliometer	Watt/m2	01500 W/m2
Diffuse radiation	Pyranometer	Watt/m2	01500 W/m2
Net radiation	Pyranometer	Watt/m2	Undefined
Sunshine duration	Heliometer	Hour	120 W/m2
			(threshold)

OBSERVING PARAMETERS

PARAMETER	SENSOR	UNIT	MEASURING RANGE
Leaf wetness	Wetness sensor	Kg/m2, capacity%	Undefined
Soil heat flux	Flux sensor	Watt/m2	Undefined
Lightning	Lightning Detector	Count	099999
Cloud height	Ceilometer	M, feet	3025.000 m
Visibility	Transmissometer Forward scatt.	M, km	2550.000 m
Present weather	Pre. Weat. Sen.	Phenomen a code	

A <u>measurement</u> is a quantity that has both a <u>number</u> and a <u>unit</u>.

2.3<u>4</u> g 36.<u>1</u> mL 996 hPa

Measurements are <u>fundamental</u> to the experimental sciences. For that reason, it is important to be able to <u>MAKE measurements</u> and to <u>decide</u> whether a measurement is <u>CORRECT</u>.

We can make these observations in two ways:

In situ measurement

- measurements obtained through direct contact with the respective object (basically you take measurements of the parameters right were you are)
- they measure the parameters from where they are located at that moment, Surface (stations, ships, or, buoys), or upperair(rockets; balloons, and aircrafts)

acquisition of information of an object or phenomenon, by the use of either recording or real-time sensing devices that are wireless, not in physical or intimate contact with the object.

Remote sensing measurement

• It has two types: active and passive remote sensing

<u>Active remote Sensing</u>: Makes use of sensors that detect reflected responses from objects that are irradiated from artificially-generated energy sources, such as radar(send out radiation, hoping to get it back to analyze it).

Active remote sensor

Passive Remote Sensing:

Makes use of sensors that detect the reflected or emitted electromagnetic radiation from natural sources (wait for radiation to come to them so that they can analyze the data)

Passive remote sensor

Steps needed to make measurements for a specific application:

- 1. Define and research the problem (literature review is advised).
- What parameters are required and what must be measured.
- What is the frequency of the observations that will be required?
- How long will the observations be made?
- What level of error is acceptable?

2. Know and understand the instruments that will be used (consider cost, durability, and availability).

3. Apply instruments and data processing (consider deployment, and data collection).

4. Analyze the data (apply computational tools, statistics, etc..).

Instruments and measurement systems

Closely related is the need to <u>evaluate</u> how well the quantity has been measured, <u>to provide an assessment of the associated</u> <u>uncertainty.</u>

- The sensor responds to the specific parameter measured.
- (In some cases, energy exchange by a <u>transducer</u> may also be required, to convert the sensor's response into something which can be more conveniently measured.)
- An <u>amplifier</u> is used to increase the magnitude of the changes produced by the sensor. Amplifiers operate on a variety of principles, for example mechanical, chemical, optical or electronic. As well as increasing the signal, an amplifier usually increases other random variations (noise) present as well.
- The <u>meter</u> provides the final readout in terms of a magnitude, and can be digital or analogue.
- A <u>recording</u> device of some form may be attached to the meter, such as a chart recorder, a computerized logging system or, more simply, an observer with a notebook.

Term	Explanation
Parameter	The variable physical quantity to be measured, such as pressure, temperature, speed, time.
Sensor	A device which responds directly in some way to changes in the parameter to be measured. For example, the rotating cups on a cup anemometer.
Transducer	An energy transfer device to convert the response of a sensor into another quantity, which can be more conveniently measured (e.g. to an electrical signal) or recorded. In some instruments, such as a photovoltaic light meter, the functions of sensor and transducer are combined.
Amplifier	This magnifies a small change, for example turning a small voltage change into a larger voltage change; amplifiers are, however, not necessarily electronic.
Gain	The ratio of the output signal amplitude to the input signal amplitude of an amplifier stage.
Meter	This measures and displays the output from a transducer or sensor (meters are often electrical, in that they display a voltage, but may also be mechanical).
Recorder	A device employing a retrieval method (paper, film, electronic etc.) by which a series of successive meter readings can be preserved.

Descriptions of parts of an instrument