

Mustansiriayah University / College of Science

Physics Department

Subject: Advance Optics
Lecture (4) for Ph.D.

EMW Propagation in dielectrics and conductors

Edited by:

- Prof. Dr. Ali A. Al-Zuky
- Nisreen Khalid Fahad
- Haneen Ali Jasim
- Ban Faisal Rasheed
$\vec{\nabla} \times \overrightarrow{\mathrm{E}}=-\mathrm{j} \omega \mu \overrightarrow{\mathrm{H}}$
$\vec{\nabla} \cdot \overrightarrow{\mathrm{E}}=\frac{\rho}{\epsilon}$
$\vec{\nabla} \cdot \vec{B}=0$
$\vec{\nabla} \times \overrightarrow{\mathrm{H}}=(\sigma+\mathrm{j} \omega \epsilon) \overrightarrow{\mathrm{E}}=\mathrm{j} \omega \epsilon_{\mathrm{c}} \overrightarrow{\mathrm{E}}$
$\epsilon_{\mathrm{c}}=\epsilon-\mathrm{j} \frac{\sigma}{\omega}=\epsilon^{\prime}-\mathrm{j} \epsilon^{\prime \prime} \quad$ including damping \&ohmic losses
Loss tangent $\tan \theta=\frac{\sigma}{\epsilon \mathrm{W}}=\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}$

$\sigma \gg \epsilon \omega$	good conductor
$\sigma \ll \epsilon \omega$	good insulator

$$
\sigma=0 \quad \text { lossless }
$$

Wave propagation in low-loss dielectrics:

$\tan \theta=\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}=\frac{\sigma}{\epsilon \omega} \ll 10^{-2}$ dielectric
For a low-loss dielectric (like ordinary imperfect insulators)

$$
\begin{aligned}
& \frac{\sigma}{\epsilon \omega} \ll 1 \quad, \epsilon^{\prime \prime} \ll \epsilon^{\prime} \quad \varepsilon_{c}=\epsilon^{\prime}-\mathrm{j} \epsilon^{\prime \prime}=\epsilon-\mathrm{j} \frac{\sigma}{\omega} \\
& \gamma=\alpha+\mathrm{j} \beta=\mathrm{j} \omega \sqrt{\mu \epsilon^{\prime}}\left(1-\mathrm{j} \frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)^{1 / 2} \\
& \gamma=\mathrm{j} \omega \sqrt{\mu \epsilon^{\prime}}\left(1-\mathrm{j} \frac{\epsilon^{\prime \prime}}{2 \epsilon^{\prime}}+\frac{1}{8}\left(\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)^{2}\right) \\
& \alpha=\frac{\omega \epsilon^{\prime \prime}}{2} \sqrt{\frac{\mu}{\epsilon^{\prime}}}=\frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}} \quad \mathrm{NP} / \mathrm{m} \\
& \beta=\omega \sqrt{\left(\mu \epsilon^{\prime}\right.}\left(1+\frac{1}{8}\left(\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)^{2}\right)=\omega \sqrt{(\mu \epsilon}\left(1+\frac{1}{8}\left(\frac{\sigma}{\epsilon \omega}\right)^{2}\right) \\
& \eta_{c}=\sqrt{\frac{\mu}{\epsilon^{\prime}}}\left(1+\mathrm{j} \frac{\epsilon^{\prime \prime}}{2 \epsilon^{\prime}}\right)=\sqrt{\frac{\mu}{\epsilon}}\left(1+\mathrm{j} \frac{\sigma}{2 \epsilon \omega}\right)
\end{aligned}
$$

Phase velocity

$$
v_{\mathrm{p}}=\frac{\omega}{\beta}=\frac{1}{\sqrt{\left(\mu \epsilon^{\prime}\right.}\left(1+\frac{1}{8}\left(\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)^{2}\right)}
$$

Wave propagation in good conductors:

$\tan \theta=\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}=\frac{\sigma}{\epsilon \omega} \gg 10^{2} \quad$ Perfect conductor
Good conductor $\quad \frac{\sigma}{\epsilon \omega} \gg 1 \& \epsilon^{\prime \prime} \gg \epsilon^{\prime}$
$\gamma=\alpha+\mathrm{j} \beta=\omega \sqrt{\mu \epsilon}\left(1-\mathrm{j} \frac{\sigma}{\epsilon \omega}\right)^{1 / 2}$
$\gamma=\sqrt{\mathrm{j}} \sqrt{\omega \mu \sigma}=\frac{1+\mathrm{j}}{\sqrt{2}} \sqrt{\omega \mu \sigma}$
$\gamma=(1+\mathrm{j}) \sqrt{\pi f \mu \sigma}$

$\alpha=\beta \cong \sqrt{\pi f \mu \sigma} \quad$ good conductor
$\eta_{c}=\sqrt{\frac{\mu}{\epsilon^{\prime}}}\left(1-j \frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)^{-1 / 2}=\sqrt{\frac{j \omega \mu}{\sigma}}=(1+j) \sqrt{\frac{\pi f \mu}{\sigma}}$
$\eta_{c}=(1+\mathrm{j}) \frac{\alpha}{\sigma}$
$\overrightarrow{\mathrm{E}}=\hat{\mathrm{I}} \mathrm{E}_{0} \mathrm{e}^{-\alpha \mathrm{z}} \mathrm{e}^{-\mathrm{j} \beta \mathrm{z}}$
$\overrightarrow{\mathrm{H}}=\frac{E}{\eta_{\mathrm{c}}}=\hat{\jmath} \frac{\mathrm{E}_{0}}{\eta_{\mathrm{c}}} \mathrm{e}^{-\alpha \mathrm{z}} \mathrm{e}^{-\mathrm{j} \beta \mathrm{z}}=\hat{\jmath} \frac{\mathrm{E}_{0}}{\sqrt{\frac{\mathrm{j} \omega \mu}{\sigma}}} \mathrm{e}^{-\alpha \mathrm{z}} \mathrm{e}^{-\mathrm{j} \beta \mathrm{z}}$
$\overrightarrow{\mathrm{H}}=\hat{\jmath} \frac{\mathrm{E}_{0}}{\sqrt{\frac{\omega \mu}{\sigma}}} \mathrm{e}^{-\alpha \mathrm{z}} \mathrm{e}^{-\mathrm{j}\left(\beta+\frac{\pi}{4}\right)}$
$H(z)$ lags behind $E(z)$ by $\frac{\pi}{4}$
Phase velocity

$$
\begin{aligned}
& v_{\mathrm{p}}=\frac{\omega}{\beta}=\sqrt{\frac{2 \omega}{\mu \sigma}} \ll c \\
& v_{\mathrm{p}} \downarrow \equiv \sigma \uparrow
\end{aligned}
$$

Example 1: For copper (cu) with $\sigma=5.8 \times 10^{7} \mathrm{~S} / \mathrm{m}$, and phase velocity ($v_{p}=720 \mathrm{~m} / \boldsymbol{s}$) at $\boldsymbol{f}=\mathbf{3} \mathbf{M H z}: \mu=\mu_{0}=4 \pi^{*} 10^{-7} \mathrm{H} / \mathrm{m}$.

Wavelength:

$$
\lambda=\frac{2 \pi}{\beta}=\frac{v_{p}}{f}=2 \sqrt{\frac{\pi}{f \mu \sigma}}=0.24 \mathrm{~mm}
$$

$\lambda \downarrow=\sigma \uparrow$
For $\lambda=0.24 \mathrm{~mm} \ll 100 \mathrm{~m} \quad$ in air at $f=3 \mathrm{MHz}$. Where $\lambda=\frac{c}{f}=100 \mathrm{~m}$
Skin depth $\boldsymbol{\delta}=$ Depth of penetration of a good conductor
$=$ Distance thru which the wave amplitude decrease by $\left(e^{-1}\right)$
For $\overrightarrow{\mathrm{E}}=\hat{\mathrm{i}} \mathrm{E}_{0} \mathrm{e}^{-\gamma \mathrm{z}}=\hat{\mathrm{i}} \mathrm{E}_{0} \mathrm{e}^{-\alpha \mathrm{z}} \mathrm{e}^{-\mathrm{j} \beta \mathrm{z}}$

$\delta=\frac{1}{\alpha}=\frac{1}{\sqrt{\pi f \mu \sigma}}$
$\delta=\frac{1}{\beta}=\frac{\lambda}{2 \pi}$
$\delta \downarrow$ as $\sigma \uparrow$ and/or $\mathrm{f} \uparrow$
$\mathrm{Cu} \quad \delta=0.038 \mathrm{~mm}$ at $f=3 \mathrm{MHz}$

$$
\delta=0.66 \mu \mathrm{~m} \quad \text { at } \quad f=10 \mathrm{GHz}
$$

$$
\delta=\frac{1}{\alpha}=\frac{1}{\sqrt{\pi f \mu \sigma}}=\frac{1}{\left(\pi * 50 * 4 \pi * 10^{-7} * 5.8 * 10^{-7}\right)^{\frac{1}{2}}}=? ? \mathrm{~m} \quad \text { at } f=50 \mathrm{~Hz}
$$

Example 2: A LP plane wave $\vec{E}=\hat{\boldsymbol{i}} \mathrm{E}(z, t)$ propagating along $+z$-direction in seawater $\left(\epsilon_{r}=72, \mu_{r}=1, \sigma=4 S / m\right)$ with $E_{0}=\hat{\imath} 100 \cos \left(10^{7} \pi t\right)$ V / m at $z=0$. Find
a) $\alpha, \beta, \eta_{c}, v_{p}, \lambda \& \delta$
b) Z_{1} when $E_{1}=0.01 E_{0}$
c) $E(0.8, t) \& H(0.8, t)$

Solutions:

$\omega=10^{7} \pi$
$f=\frac{\omega}{2 \pi}=5 \times 10^{6} \mathrm{~Hz}$
$\tan \theta=\frac{\sigma}{\epsilon \omega}=200 \gg 1 \quad$ good conductor
a) $\alpha=\beta=\sqrt{\pi f \mu \sigma}=8.89 \mathrm{rad} / \mathrm{m}$

$$
\begin{aligned}
& \mathrm{\eta}_{c}=(1+j) \sqrt{\frac{\pi f \mu}{\sigma}}=\pi e^{\frac{j \pi}{4}} \\
& v_{p}=\frac{\omega}{\beta}=3.53 \times 10^{6} \mathrm{~m} / \mathrm{s} \\
& \lambda=\frac{2 \pi}{\beta}=0.707 \mathrm{~m} \\
& \delta=\frac{1}{\alpha}=0.112 \mathrm{~m}
\end{aligned}
$$

b) $\mathrm{E}_{1}=0.01 \mathrm{E}_{0}$

$$
\begin{aligned}
& E_{1}=\mathrm{E}_{0} \mathrm{e}^{-\alpha \mathrm{z}_{1}} \\
& 0.01 \mathrm{E}_{0}=\mathrm{E}_{0} \mathrm{e}^{-\alpha \mathrm{z}_{1}} \\
& -\alpha \mathrm{z}_{1}=\ln (0.01)
\end{aligned}
$$

$$
\mathrm{z}_{1}=\frac{-\ln (0.01)}{\alpha}=0.518 \mathrm{~m}
$$

c) $\mathrm{E}(\mathrm{z})=\hat{1} 100 \mathrm{e}^{-\alpha \mathrm{z}} \mathrm{e}^{-\mathrm{j} \beta \mathrm{z}} \quad$ in the phasor domain

$$
E(z, t)=R_{e}\left(E(z) e^{j \omega t}\right)=\hat{\imath} 100 e^{-\alpha z} \cos (\omega t-\beta z)
$$

$$
\therefore \mathrm{E}(0.8, \mathrm{t})=\hat{\imath} 0.082 \cos \left(10^{7} \pi \mathrm{t}-7.11\right)
$$

$$
\mathrm{H}(\mathrm{z}, \mathrm{t})=\mathrm{R}_{\mathrm{e}}\left(\hat{\jmath} \frac{\mathrm{E}(\mathrm{z})}{\mathrm{n}_{\mathrm{c}}} \mathrm{e}^{\mathrm{j} \omega \mathrm{t}}\right)=\mathrm{R}_{\mathrm{e}}\left(\hat{J} \frac{100 \mathrm{e}^{-\alpha \mathrm{z}} \mathrm{e}^{-\mathrm{j} \beta \mathrm{z}}}{\pi e^{\frac{j \pi}{4}}} \mathrm{e}^{\mathrm{j} \omega \mathrm{t}}\right)
$$

$$
H(z, t)=R_{e}\left(\hat{\jmath} \frac{100}{\pi} \mathrm{e}^{-\alpha \mathrm{z}} \mathrm{e}^{\mathrm{j}\left(\omega \mathrm{t}-\beta \mathrm{z}-\frac{\pi}{4}\right)}\right)
$$

$$
H(z, t)=\hat{\jmath}\left(\frac{100}{\pi} e^{-\alpha z} \cos \left(\omega t-\beta z-\frac{\pi}{4}\right)\right.
$$

$$
H(0.8, t)=\hat{\jmath}\left(\frac{100}{\pi} e^{-0.8 \alpha} \cos \left(\omega t-0.8 \beta-\frac{\pi}{4}\right) \quad \text { ignoring } \omega\right. \text { t term }
$$

$$
H(0.8, t)=\hat{\jmath} 0.026 \cos \left(10^{7} \pi t-7.89\right)
$$

$$
H(0.8, t)=\hat{\jmath} 0.026 \cos \left(10^{7} \pi t-2 \pi-1.61\right)
$$

$$
H(0.8, t)=\hat{\jmath} 0.026 \cos \left(10^{7} \pi t-1.61\right) \quad A / m
$$

$$
\text { Note: } \quad H=\frac{E}{\eta_{c}}, \quad \eta_{c}=\frac{E}{H}
$$

EMW-Propagation states:

* Free space $\quad \sigma=0, \epsilon=\epsilon_{0}, \mu=\mu_{0}$
$\alpha=\omega \sqrt{\frac{\mu \epsilon}{2}\left(\sqrt{\left(1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}\right.}-1\right)}$
$\alpha=0$
$\beta=\omega \sqrt{\epsilon_{0} \mu_{0}}=\frac{\omega}{c}$
$\eta=\sqrt{\frac{\mathrm{j} \omega \mu}{\sigma+\mathrm{j} \omega \epsilon}}$
$\eta=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}$
$v_{p}=\frac{\omega}{\beta}=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}=c$
E \& H in phase \& amplitude does not decay

Lossless dielectric medium

$$
\sigma=0, \epsilon \& \mu
$$

$\alpha=0$
$\beta=\omega \sqrt{\epsilon \mu}=\frac{\omega}{v}$
$\eta=\sqrt{\frac{\mu}{\epsilon}}=\sqrt{\frac{\mu_{0} \mu_{\mathrm{r}}}{\epsilon_{0} \epsilon_{\mathrm{r}}}}=\eta_{0} \sqrt{\frac{\mu_{\mathrm{r}}}{\epsilon_{\mathrm{r}}}}$
$v=\frac{\omega}{\beta}=\frac{\omega}{\omega \sqrt{\mu \epsilon}}=\frac{1}{\sqrt{\mu \epsilon}}=\frac{1}{\sqrt{\mu_{0} \mu_{\mathrm{r}} \epsilon_{0} \epsilon_{\mathrm{r}}}}$
$v=\frac{c}{\sqrt{\mu_{\mathrm{r}} \epsilon_{\mathrm{r}}}}$
E \& H in phase \& amplitude still does not decay

* Lossy media: $(\sigma \neq 0)$
$\alpha=\omega \sqrt{\frac{\mu \epsilon}{2}\left(\sqrt{\left(1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}\right.}-1\right)}$
$\beta=\omega \sqrt{\frac{\mu \epsilon}{2}\left(\sqrt{\left(1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}\right.}-1\right)}$
$\eta=\sqrt{\frac{j \omega \mu}{\sigma+j \omega \epsilon}}$
$v=\frac{\omega}{\beta}=\frac{1}{\sqrt{\frac{\mu \epsilon}{2}\left(\sqrt{\left(1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}\right.}-1\right)}}$
$v=\sqrt{\frac{2}{\mu \epsilon\left(\sqrt{\left(1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}\right.}-1\right)}}$
E \& H out of phase \& amplitude decay
* Good conductor $\quad \sigma \gg \omega \epsilon, \quad$ Skin depth $\left(\delta=\frac{1}{\alpha}\right)$

Strong attenuation $\quad \alpha=\beta=\sqrt{\frac{\omega \mu \sigma}{2}}=\sqrt{\pi f \mu \sigma}$
$\eta=\sqrt{\frac{j \omega \mu}{\sigma}}$
$|\eta|=\sqrt{\frac{\omega \mu}{\sigma}}$
$\arg (\eta)=\frac{\pi}{4}$
$\mathrm{E} \& \mathrm{H}$ are out of phase

Very strong attenuation, wave tend to reflect from good conductor so often do not experience the loss \& E leads H by $\frac{\pi}{4}$.

Refractive index (dielectric):

The refractive index of dielectric medium given by:
$\mathrm{n}=\sqrt{\mu_{r} \epsilon_{r}}$.

$$
\begin{equation*}
n=\frac{C}{V} \tag{1}
\end{equation*}
$$

$\mathrm{n}>1 \quad \& \quad \mathrm{v}<\mathrm{c}$
For non-magnetic material ($\mu_{r}=1$)
$\eta=\sqrt{\epsilon_{r}}$.

Power flow \& energy density:

$$
\begin{aligned}
& \frac{\mathrm{U}_{\mathrm{e}}}{\mathrm{U}_{\mathrm{m}}}=\frac{\frac{1}{2} \epsilon \mathrm{E}^{2}}{\frac{1}{2} \mu \mathrm{H}^{2}}=\frac{\epsilon \mathrm{E}^{2}}{\mu \mathrm{H}^{2}}=\frac{\epsilon}{\mu} \eta^{2} \quad \text { where } \eta=\sqrt{\frac{\mu}{\epsilon}} \\
& \frac{\mathrm{U}_{\mathrm{e}}}{\mathrm{U}_{\mathrm{m}}}=\frac{\epsilon}{\mu} \cdot \frac{\mu}{\epsilon}=1 \quad \longrightarrow \mathrm{U}_{\mathrm{e}}=\mathrm{U}_{\mathrm{m}} \\
& \langle\mathrm{~s}\rangle=\frac{E_{r m s}^{2}}{\eta} \quad \text { Energy flow }
\end{aligned}
$$

$\underline{\text { Refraction of } \boldsymbol{E} \& \boldsymbol{\mu} \text { fields: }}$

To determine the refraction of E-field across the interface between two mediums, used boundary conditions (B. C. S)

B.C.S.

$E_{t 1}=E_{t 2}$
$D_{n 1}=D_{n 2}$
$E_{1} \sin \theta_{1}=E_{2} \sin \theta_{2}$
$D_{1} \operatorname{Cos} \theta_{1}=D_{2} \operatorname{Cos} \theta_{2}$
$\epsilon_{1} E_{1} \cos \theta_{1}=\epsilon_{2} E_{2} \cos \theta_{2}$
From eq (5) \& eq (3) get

$$
\frac{\tan \theta_{1}}{\tan \theta_{2}}=\frac{\epsilon_{r 1}}{\epsilon_{r 2}}
$$

Law of refraction of the E-field at the boundary free of charge ($\rho=0$)

Now used B.C.S to determine the refraction of H - field a cross the interface between two mediums.

B.C.S

$\mathrm{H}_{\mathrm{tl}}=\mathrm{H}_{12} \ldots \ldots \ldots$.
$\mathrm{B}_{\mathrm{U} 1}=\mathrm{B}_{\mathrm{U} 2} \ldots \ldots \ldots$. (2)
$\mathrm{B}_{1} \operatorname{Cos} \theta_{1}=\mathrm{B}_{2} \operatorname{Cos} \theta_{2}$
$H_{1} \sin \theta_{1}=H_{2} \sin \theta_{2}$
$\frac{B_{1}}{\mu_{1}} \sin \theta_{1}=\frac{B_{2}}{\mu_{2}} \sin \theta_{2}$
From eq. (5) \& eq. (3) get

$$
\frac{\tan \theta_{1}}{\tan \theta_{2}}=\frac{\mu_{1}}{\mu_{2}}=\frac{\mu_{r 1}}{\mu_{r 2}}
$$

Law of refraction of the magnetic flux lines of the boundary with no current density flow $(\mathrm{J}=0$)

The relation between $\overrightarrow{\boldsymbol{E}} \boldsymbol{\&} \overrightarrow{\boldsymbol{H}}$:

$\widehat{u_{E}}:$ unit vector along $\overrightarrow{\mathrm{E}}$
$\widehat{u_{H}}$: unit vector along $\overrightarrow{\mathrm{H}}$
$\overrightarrow{\mathrm{E}} \times \mathrm{H}=\overrightarrow{\mathrm{S}} \quad$ Pointing vector
Pointing vector is the same direction of propagation $\left(\widehat{u_{\mathrm{S}}}\right)$ or $\left(\widehat{u_{\mathrm{K}}}\right)$:

$$
\begin{equation*}
\widehat{u_{E}} \times \widehat{u_{\mathrm{H}}}=\widehat{u_{\mathrm{S}}}=\widehat{u_{\mathrm{K}}} \tag{1}
\end{equation*}
$$

$\widehat{u_{\mathrm{K}}} \times \widehat{u_{\mathrm{H}}}=-\widehat{u_{\mathrm{E}}}$
$\widehat{u_{\mathrm{K}}} \times \widehat{u_{\mathrm{E}}}=\widehat{u_{\mathrm{H}}}$
$\overrightarrow{\mathrm{H}}=\frac{1}{\mathrm{\eta}} \widehat{\mathrm{u}_{\mathrm{K}}} \times \overrightarrow{\mathrm{E}}$
$\overrightarrow{\mathrm{E}}=-\eta \widehat{\mathrm{u}_{\mathrm{K}}} \times \overrightarrow{\mathrm{H}}$
If a uniform plan wave travel in the +z -direction may have x - \& y compounds:

$$
\begin{equation*}
\overrightarrow{\mathrm{E}}_{(z)}=\hat{\imath} \overrightarrow{\mathrm{E}}_{x}^{+}(\mathrm{z})+\hat{\jmath} \overrightarrow{\mathrm{E}}_{y}^{+}(\mathrm{z}) . \tag{6}
\end{equation*}
$$

The associated H - field is

$$
\begin{equation*}
\overrightarrow{\mathrm{H}}_{(\mathrm{z})}=\hat{\imath} \overrightarrow{\mathrm{H}}_{x}^{+}(\mathrm{z})+\hat{\jmath}_{y}^{+}(\mathrm{z}) \tag{7}
\end{equation*}
$$

The exact expression of magnetic field in terms of electrical field will be:
$\overrightarrow{\mathrm{H}}_{(z)}=\frac{1}{\eta} \hat{k} \times \overrightarrow{\mathrm{E}}_{(z)}=-\hat{\imath} \frac{\overrightarrow{\mathrm{E}}_{y}^{+}(\mathrm{z})}{\eta}+\hat{\jmath} \frac{\overrightarrow{\mathrm{E}}_{x}^{+}(\mathrm{z})}{\eta}$

$$
\overrightarrow{\mathrm{H}}_{\mathrm{x}}^{+}(\mathrm{z})=-\frac{\stackrel{\rightharpoonup}{\mathrm{E}}_{y}^{+}(\mathrm{z})}{\eta}
$$

$\overrightarrow{\mathrm{H}}_{\mathrm{x}}^{+}(\mathrm{z})=\frac{\stackrel{\rightharpoonup}{\mathrm{E}}_{x}^{+}(\mathrm{z})}{\eta}$
Where $\widehat{u_{\mathrm{S}}}=\widehat{u_{\mathrm{K}}}=\hat{k}$

Summary:

	Any medium	Lossless medium $\sigma=0$	Low- loss medium $\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}} \ll 1$	Good conductor $\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}} \gg 1$	Unit
$\alpha=$	$\omega \sqrt{\frac{\mu \epsilon^{\prime}}{2}\left(\sqrt{\left(1+\left(\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)^{2}\right.}-1\right)}$	0	$\frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}$	$\sqrt{\pi f \mu \sigma}$	$\frac{N p}{m}$
$\beta=$	$\omega \sqrt{\frac{\mu \epsilon^{\prime}}{2}\left(\sqrt{\left(1+\left(\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)^{2}\right.}-1\right)}$	$\omega \sqrt{\mu \epsilon}$	$\omega \sqrt{\mu \epsilon}$	$\sqrt{\pi f \mu \sigma}$	$\frac{\mathrm{rad}}{\mathrm{m}}$
$\eta_{c}=$	$\sqrt{\frac{\mu}{\epsilon^{\prime}}}\left(1-\mathrm{j} \frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)^{-1 / 2}$	$\sqrt{\frac{\mu}{\epsilon}}$	$\sqrt{\frac{\mu}{\epsilon}}$	$(1+j) \frac{\alpha}{\sigma}$	Ω
$v_{\mathrm{p}}=$	$\frac{\omega}{\beta}$	$\frac{1}{\sqrt{\mu \epsilon}}$	$\frac{1}{\sqrt{\mu \epsilon}}$	$\sqrt{\frac{2 \pi f}{\mu \sigma}}$	$\frac{m}{s}$
$\lambda=$	$\frac{2 \pi}{\beta}=\frac{v_{\mathrm{p}}}{f}$	$\frac{v_{\mathrm{p}}}{f}$	$\frac{v_{\mathrm{p}}}{f}$	$\frac{v_{\mathrm{p}}}{f}$	m

Notes:

$\epsilon^{\prime}=\epsilon \quad \& \quad \epsilon^{\prime \prime}=\frac{\sigma}{\omega}$
$\epsilon^{\prime}=\frac{\beta^{2}-\alpha^{2}}{\omega^{2} \mu}$
$\epsilon^{\prime \prime}=\frac{2 \alpha \beta}{\omega^{2} \mu}$
In free space $\epsilon=\epsilon_{0}, \mu=\mu_{0}$
Low-loss medium $\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}=\frac{\sigma}{\omega \epsilon}<0.01$
Good conductor $\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}=\frac{\sigma}{\omega \epsilon}>100$
Loss tangent $\tan \theta=\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}=\frac{\sigma}{\epsilon \omega}$
In general $\eta_{c}=\sqrt{\frac{\mu}{\epsilon^{\prime}}}(1-j \tan \theta)^{-1 / 2}$

dB scale

Power intensity ratio in \log scales not a unit:

$$
\mathrm{dB}=10 \log \left(\frac{I}{I_{0}}\right)=10 \log \left(\frac{P}{P_{0}}\right)=20 \log \left(\frac{V}{V_{0}}\right)>0 \text { gain }
$$

Attenuation:

$$
\begin{aligned}
& \mathrm{E}_{(\mathrm{Z})}=\mathrm{E}_{0} e^{-\gamma z}=E_{0} e^{-\alpha z} e^{-j \beta z} \\
& \left.\mathrm{~A}_{(\mathrm{Z})}=20 \log \left(\frac{E_{(2)}}{E_{(0)}}\right)=20 \log \right\rvert\, e^{-\alpha z}
\end{aligned}
$$

$$
\mathrm{A}(\mathrm{z})=\frac{-20 \alpha z}{\ln (10)} d B
$$

Example3: If E-field intensity going through a medium attenuates at a rate of ($0.4 \mathrm{~dB} / \mathrm{m}$) what is α.

Solution:

$-0.4=-8.686 \alpha+\operatorname{lm}$

$$
\alpha=\frac{0.4}{8.686}=0.046 \frac{\text { nepers }}{m}
$$

Note: α positive number for attention.

Example4: The sinusoidal electric field with $E_{0}=250 \mathrm{v} / \mathrm{m}$ and frequency $f=1 \mathrm{GHz}$ exists in a lossy dielectric medium with $E_{r}=2.5$ and loss tangent of 0.001. Find the average power dissipated in the medium per cubic meter.

Solution:

$\tan \theta=0.001=\frac{\sigma}{\omega \epsilon}=\frac{\sigma}{\omega \epsilon_{0} \epsilon_{r}}=\frac{\sigma}{2 \pi \times 2 \times 10^{9} \frac{10^{-9}}{36 \pi} \times 2.5}$
$\therefore \sigma=1.39 \times 10^{-4 ~ S} / \mathrm{m}$
The average power $\mathrm{P}_{\text {ave }}$ dissipated per unit volume V :

$$
\frac{P_{\text {ave }}}{V}=\frac{1}{2} \vec{J} \cdot \vec{E}=\frac{1}{2} \sigma E^{2}=\frac{1}{2}\left(1.39 \times 10^{-4}\right) \times(250)^{2}
$$

$=4.34 \mathrm{w} / \mathrm{m}^{2}$
Note:

$$
P_{\text {ave }}=\frac{1}{2} \frac{v^{2}}{R}=\frac{1}{2} \frac{(E l)^{2}}{2 \rho l / A}=\frac{1}{2} \sigma E^{2}(l A)
$$

$v:$ volt , R: electrical resistance of the uniform specimen
$l:$ length of the specimen
A: Area cros - section of the specimen
ρ : electrical resistivity

Skin depth:

$\delta=\frac{1}{\alpha} \sqrt{\frac{2}{\mu \sigma \omega}}$
$\mathrm{E}(\mathrm{z})=\mathrm{E}_{0} e^{-\alpha z} e^{-j \beta z}$
At $\mathrm{z}=\delta \Longrightarrow|\mathrm{E}|$ decreases to $\left(\frac{1}{e}\right)$ or $(0.63$ drop $)$
$\mathrm{A}(\mathrm{z})=20 \log \left|\frac{E(z)}{E(0)}\right|=20 \log \left|e^{-\alpha z}\right|$
$\mathrm{A}(\mathrm{z})=-8.686 \propto \mathrm{z} \quad \mathrm{dB}$ at $\mathrm{z}=\delta,|\mathrm{E}|$ decrease by $(-8.7) \mathrm{dB}$ at $\mathrm{z}=2 \delta,|\mathrm{E}|$ decrease by $(-17.3) \mathrm{dB}$.

Example5: The skin depth or non-magnetic conducting medium is ($2 \mu \mathrm{~m}$) at $f=5 \mathrm{GHz}$, Find phase velocity v_{p} in this medium, then find the attenuation in $d B$, when the wave penetrates ($10 \mu \mathrm{~m}$) into the material?

Solution:

$$
v_{\mathrm{p}}=\frac{\omega}{\beta}
$$

For conductor $\alpha=\beta=\frac{1}{\delta}$

$$
v_{\mathrm{p}}=\omega \delta=2 \pi \times 5 \times 10^{9} \times 2 \times 10^{-6}=6.28 \times 10^{4} \mathrm{~m} / \mathrm{s}
$$

$\mathrm{A}(\mathrm{z})=20 \log \left|\frac{E(\mathrm{z})}{E(0)}\right|=20 \log \left|e^{-\alpha z}\right|=-8.686 \propto_{\mathrm{z}}$
$\mathrm{A}(\mathrm{z})=-8.686 \mathrm{z} / \delta=-8.686 \cdot \frac{10}{2}=-43.4 \mathrm{~dB} \quad$ high loss
There are only surface current on conductors.

Example6:

a) Calculate the diclectric loss (in dB) of an_EM ware propagating through (100 m) of teflon at $f=(\mathrm{MHz})$
b) at $f=10 \mathrm{GHz} . \quad \epsilon_{r} r=2.08, \tan \theta=0.0004$ at $25 c^{0}$ assuming frequency independeue

Solution:

a) $\tan \theta=\frac{\sigma}{\omega \epsilon}$
$\sigma=\omega \epsilon_{0} \boldsymbol{\epsilon}_{r} \tan \theta=2 \pi \times 10^{6} \times \frac{10^{-9}}{36 \pi} 2.08 \times 0.0004$
$\sigma=4.6 \times 10^{-8} \mathrm{~s} / \mathrm{m}$
$\propto=\frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}=\frac{\sigma \eta_{\circ}}{2 \sqrt{\epsilon_{r}}}=\frac{4.6 \times 10^{-8} \times 377}{2 \times \sqrt{2.08}}$
$\alpha=6.04 \times 10^{-6} \mathrm{~Np} / \mathrm{m}$
$\mathrm{A}(\mathrm{z})=-8.686 \propto \mathrm{z}$
$=-8.686 \times 6.04 \times 6.04 \times 10^{-6} \times 100=-0.005 \mathrm{~dB}$
b) $\sigma=\omega \epsilon_{0} \epsilon \mathrm{r} \tan \theta=4.6 \times 10^{-4} \mathrm{~s} / \mathrm{m}$

$$
\alpha=\frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}=\frac{\sigma \eta^{\circ}}{2 \sqrt{\epsilon_{r}}}=6.04 \times 10^{-2} \mathrm{~Np} / \mathrm{m}
$$

A $(\mathrm{z})=-8.68 \propto \mathrm{z}=-8.68 \times 6.04 \times 10^{-2} \times 100$

$$
=-50 \mathrm{~dB}
$$

Coaxial cable works well at low frequency (Tv to antenna) but not so well at high frequency.

Example7: In a non - magnetic , lossy, dielectric medium a plane was of frequency $f=30 \mathrm{MHZ}$ characterized by the magnetic field phasor:
$H=(\hat{\imath}-j 4 \hat{k}) e^{-2 y} e^{-j g_{y}} A / m$. Determine the time domain expressions for the electric and magntic field vectors .

Solution:

$$
\begin{aligned}
& \mathrm{H}(\mathrm{r}, \mathrm{t})=\mathrm{R}_{\mathrm{e}}(\hat{\imath}-\mathrm{j} 4 \hat{k}) \mathrm{e}^{-2 \mathrm{y}} \cdot \mathrm{e}^{\mathrm{j}(\mathrm{wt-9y)}} \mathrm{H} \cdot \\
& \mathrm{H}(\mathrm{r}, \mathrm{t})=\hat{\imath} \mathrm{e}^{-2 \mathrm{y}} \cos (\omega \mathrm{t}-9 \mathrm{y})+\hat{k} 4 \mathrm{e}^{-2 \mathrm{y}} \sin (\mathrm{wt}-9 \mathrm{y}) \\
& \alpha=2, \& \beta=9 \\
& -\omega^{2} \mu \bar{\epsilon}=\alpha^{2}-\beta^{2} \\
& \omega^{2} \mu \overline{\bar{\epsilon}}=2 \propto \beta \\
& \overline{\bar{\epsilon}}=\frac{2 \alpha \beta}{\bar{\epsilon}}=\frac{2 \times 2 \times 9}{\beta 2-\alpha^{2}}=\frac{9^{2}-2^{2}}{}=0.468=\tan \theta \\
& \epsilon_{\mathrm{r}}=\frac{\bar{\epsilon}}{\epsilon_{0}}=\frac{\beta^{2}-\alpha^{2}}{\omega^{2} \mu_{0} \epsilon_{0}}=\frac{77 C^{2}}{\omega^{2}}=\frac{\left.77 X\left(3 \times 10^{8}\right)\right)^{2}}{\left.\left(2 \times 300 \times 10^{6}\right)^{2}\right)} \\
& \epsilon_{\mathrm{r}}=1.95 \\
& \eta_{\mathrm{c}}=\sqrt{\frac{\mu}{\bar{\epsilon}}}(1-\mathrm{j} \tan \theta)^{-1 / 2}=\frac{\eta_{0}}{\sqrt{\epsilon_{r}}}(1-\mathrm{j} \tan \theta)^{-1 / 2} \\
& \eta_{\mathrm{c}}=\frac{377}{\sqrt{1.95}}(1-\mathrm{j} 0.468)^{-1 / 2}=257 e^{j 0.22} \\
& \mathbf{E}=\hat{k} \eta_{\mathrm{c}} \cos (\omega \mathrm{t}-9 \mathrm{y})-\hat{\imath} 4 \eta_{\mathrm{c}} \mathrm{e}^{-2 \mathrm{y}} \sin (\omega \mathrm{t}-9 \mathrm{y}) \\
& =\hat{k} 257 \mathrm{e}^{-2 \mathrm{y}} \cos (\omega \mathrm{t}-9 \mathrm{y}+0.22)-\hat{\imath} 1028 \mathrm{e}^{-2 \mathrm{y}} \sin (\omega \mathrm{t}-9 \mathrm{y}+0.22) .
\end{aligned}
$$

Example8:

A uniform plane wave propagate in a lossless dielectric in the ${ }^{+} \mathrm{z}$ direction. The electric field is given by: $\overrightarrow{E(z, t)}=377 \operatorname{Cos}\left(\omega t-\frac{4 \pi}{3} z+\frac{\pi}{6}\right) \hat{l} \mathrm{~V} / \mathrm{m}$
The average power density measured was $377 \mathrm{~W} / \mathrm{m}^{2}$, Find:
(i) Dielectric constant of the material if $\mu=\mu_{0}$
(ii) Wave frequency
(iii) Magnetic field equation

Solution:

(i) Average power:

$$
\begin{aligned}
& P_{\text {ave }}=\frac{1}{2} \frac{E^{2}}{\eta}=377 \\
& \\
& \quad \frac{1}{2} \frac{(377)^{2}}{\eta}=377 \\
& \quad \rightarrow \eta=377 / 2=188.5 \Omega
\end{aligned}
$$

For lossless dielectric:

$$
\begin{aligned}
\eta & =\sqrt{\frac{\mu}{\varepsilon}}=\sqrt{\frac{\mu_{0}}{\varepsilon_{r} \varepsilon_{0}}} \\
& \sqrt{\varepsilon_{r}}=\frac{1}{\eta} \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=1.9986 \\
& \rightarrow \varepsilon_{r}=4.0
\end{aligned}
$$

(ii) Wave frequency:

$$
\begin{aligned}
& \beta=4 \pi / 3=\omega \sqrt{\mu_{0} \varepsilon} \\
& \omega=\frac{4 \pi}{3 \sqrt{\mu_{0} \varepsilon}} \\
& 2 \pi f=3.9946 \times 10^{16} \\
& \rightarrow f=99.93 \times 10^{6} \approx(100 \mathrm{MHz})
\end{aligned}
$$

iii) Magnetic field equation:
$\overrightarrow{\boldsymbol{H}}(z, t)=\frac{377}{\eta} \boldsymbol{C o s}\left(\omega t-\frac{4 \pi}{3} \mathrm{z}+\frac{\pi}{6}\right) \hat{\boldsymbol{j}}=2 \operatorname{Cos}\left(\omega t-\frac{4 \pi}{3} \mathrm{z}+\frac{\pi}{6}\right) \hat{\boldsymbol{j}}$
Example9:
In a lossless medium for which $\eta=60 \pi, \mu_{\mathrm{r}}=1$ and $\mathbf{H}=-0.1 \cos (\omega t-z) \mathbf{a}_{\mathrm{x}}+0.5 \sin (\omega t-z) \mathbf{a}_{\mathrm{y}} \mathrm{A} / \mathrm{m}$, calculate ε_{r}, ω, and E.

Solution:

In this case, $\sigma=0, \alpha=0$, and $\beta=1$, so

$$
\begin{aligned}
& \eta=\sqrt{\mu / \varepsilon}=\sqrt{\frac{\mu_{o}}{\varepsilon_{o}}} \sqrt{\frac{\mu_{r}}{\varepsilon_{r}}}=\frac{120 \pi}{\sqrt{\varepsilon_{r}}} \text { or } \sqrt{\varepsilon_{r}}=\frac{120 \pi}{\eta}=\frac{120 \pi}{60 \pi}=2 \rightarrow \varepsilon_{r}=4 \\
& \beta=\omega \sqrt{\mu \varepsilon}=\omega \sqrt{\mu_{o} \varepsilon_{o}} \sqrt{\mu_{r} \varepsilon_{r}}=\frac{\omega}{c} \sqrt{4}=\frac{2 \omega}{c} \\
& \text { or } \quad \omega=\frac{\beta c}{2}=\frac{1\left(3 \times 10^{8}\right)}{2}=1.5 \times 10^{8} \mathrm{rad} / \mathrm{s} \\
& \quad \nabla \times \mathbf{H}=\sigma \mathbf{E}+\varepsilon \frac{\partial \mathbf{E}}{\partial t} \rightarrow \mathbf{E}=\frac{1}{\varepsilon} \int \nabla \times \mathbf{H} d t
\end{aligned}
$$

where $\sigma=0$.
But $\quad \nabla \times \mathbf{H}=\left|\begin{array}{lcc}a_{x} & a_{y} & a_{z} \\ \frac{\partial}{\partial \boldsymbol{x}} & \frac{\partial}{\partial \boldsymbol{x}} & \frac{\partial}{\partial z} \\ \mathbf{H}_{x}(z) & \mathbf{H}_{x}(z) & 0\end{array}\right|=-\frac{\partial \mathbf{H}_{y}}{\partial z} \mathbf{a}_{x}+\frac{\partial \mathbf{H}_{x}}{\partial z} \mathbf{a}_{y}$

$$
=0.5 \cos (\omega t-z) \mathbf{a}_{\mathrm{x}}-0.1 \sin (\omega \mathrm{t}-\mathrm{z}) \mathbf{a}_{\mathrm{y}}
$$

Hence
$\mathbf{E}=\frac{1}{\varepsilon} \int \nabla \times \mathbf{H} d t=\frac{0.5}{\varepsilon \omega} \sin (\omega \mathrm{t}-\mathrm{z}) \mathbf{a}_{\mathrm{x}}+\frac{0.1}{\varepsilon \omega} \sin (\omega \mathrm{t}-\mathrm{z}) \mathbf{a}_{\mathrm{y}}$

$$
=94.25 \sin (\omega t-z) \mathbf{a}_{x}+18.85 \cos (\omega t-z) \mathbf{a}_{y} \mathrm{~V} / \mathrm{m}
$$

Example10:

A uniform plane wave propagating in a medium has
$\mathrm{E}=2 \mathrm{e}^{-\alpha z} \sin \left(10^{8} t-\beta z\right) \mathbf{a}_{\mathrm{y}} \mathrm{V} / \mathrm{m}$. If the medium is characterized by
$\varepsilon_{\mathrm{r}}=1, \mu_{\mathrm{r}}=20$, and $\sigma=3 \mathrm{mhos} / \mathrm{m}, \quad$ find α, β, and \mathbf{H}.

Solution:

We need to determine the loss tangent to be able to tell whether the medium is a lossy dielectric or a good conductor.

$$
\frac{\sigma}{\omega \varepsilon}=\frac{3}{10^{8} \times 1 \times \frac{10^{-9}}{36 \pi}}=3393 \gg 1
$$

showing that the medium may be regarded as a good conductor at the frequency
of operation. Hence, $\alpha=\beta=\sqrt{\frac{\mu \omega \sigma}{2}}=\left[\frac{4 \pi \times 10^{-7} \times 20\left(10^{8}\right)(3)}{2}\right]^{1 / 2}=61.4$

$$
\alpha=61.4 \mathrm{~Np} / \mathrm{m} \quad, \beta=61.4 \mathrm{rad} / \mathrm{m}
$$

Also, $|\eta|=\sqrt{\frac{\mu \omega}{\sigma}}=\left[\frac{4 \pi \times 10^{-7} \times 20\left(10^{8}\right)}{3}\right]^{1 / 2}=\sqrt{\frac{800 \pi}{2}}$
$\tan 2 \theta_{\eta}=\frac{\sigma}{\omega \varepsilon}=3393 \rightarrow \theta_{\eta}=45^{\circ}=\frac{\pi}{4}$
Hence

$$
\mathbf{H}=H_{o} \mathrm{e}^{-\alpha z} \sin \left(\omega t-\beta z-\frac{\pi}{4}\right) \mathbf{a}_{H}
$$

$\mathbf{a}_{H}=\mathbf{a}_{k} \times \mathbf{a}_{E}=\mathbf{a}_{z} \times \mathbf{a}_{y}=-\mathbf{a}_{x}$
and
$H_{o}=\frac{E_{o}}{|\eta|}=2 \sqrt{\frac{3}{800 \pi}}=69.1 \times 10^{-3}$
Thus $\quad \mathbf{H}=-69.1 \times 10^{-3} e^{-61.4 z} \sin \left(10^{8} t-61.42 z-\frac{\pi}{4}\right) \mathbf{a}_{x} \mathrm{~mA} / \mathrm{m}$

Example11:

Power of electricity generated $=63.2 \mathrm{~mW}$

References:

1. Justin Peatross, \& Michael Ware, Physics of Light and Optics, Brigham Young University, Edition July 20, 2015, Justin Peatross and Michael Ware optics.byu.edu. 2015
2. 1000 Solved Problems in Classical Physics. Ahmad A. Kamal. 2011.
3. Justin Peatross, \& Michael Ware, Physics of Light and Optics, Brigham Young University, Edition July 20, 2015, Justin Peatross and Michael Ware optics.byu.edu. 2015
