Linear Differential Equations

31 INTRODUCTION

In this chapter we study linear differential equations. As we have already
seen in Chapters 1 and 2, such equations arise naturally as mathematical
models for some physical systems. Students familiar with linear algebra can
proceed directly to Chapter 4, where more general results are obtained.

We shall concentrate on second-order equations of the form

ao(t) y" +a, (1) y +a;(t) y=f (1) (3.1)

where a,. a,, a,, [ are given functions continuous on some interval /; the
interval / may be open, closed, or open at one end and closed at the other.
We shall see that all the results concerning (3.1) can readily be extended
to linear equations of order higher than 2.

Equations of the form (3.1) occur in many applications. For example,
the simplest (and least accurate) mathematical model for the simple
pendulum is of the form of Eq. (3.1) with ao(f)=1, a,()=0, a,(t)=4g/L,
7()=0 (see Eq. 2.11, Section 2.2). Many physical problems, such as the
motion of a pendulum, a “mass—spring’ system, and the oscillations in the
shaft of an electric motor, have equations such as (3.1) as their crudest
mathematical models. By this we mean that in most instances the
mathematical model may well be more complicated ; for example, in the case
of the simple pendulum, the derivation originally led to a nonlinear
differential equation (Eq. 2.8, Section 2.2). In such cases one naturally tries
to see whether the relevant equation may be simplified in such a way that the
new approximating equation can actually be solved. This process usually
involves “linearizing” the equation. In the case of the pendulum equation,
we accomplish this by replacing sin 0 by 0 in the equation. Naturally we
hope that for “small oscillations’ this approximation is good enough to

predict the nature of the motion.
.
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order equations (Theorem |, Section 2.5; sé¢ also Exercise 3, Section 2.5),
we can state the following result.

Theorem I. Let ag, ay, . [ be functions continuous on some interval I, and
let ag(t)#0 for all 1 in I. Then for cach 1, in 1, there exists one and only ane
solution (1) of the equation (3.1) satisfying arbitrary prescribed initial con-
ditions $(to)=yo. b’ (10)=70- This solution & (1) exists on the whole interval 1.

The fact that the solution ¢{r) of the linear equation (3.1) exists on the
entire interval / does not follow from Theorem 1, Section 2.5, but can be
proved separately (see, for example, Exercise 1, Section 8.5). In this chapter,
we shall assume the validity of Theorem I as stated. We may formulate this
in another way. For a lincar second-order differential equation & solution
with a given initial displacement and slope exists and is unique for as long
as the coefficients are continuous und the coeflicient of the leading term (a, (1)
in (3.1)) is not zero.

dulum this means replacing
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Example I. Consider the differential equation 1" +(cos) y' +[1=1/(r+ 1)) y=21.
Discuss existence and uniqueness of solutions. -

Here ag{)=t, ay{t)=cos 1, ay(f)=1-1/(t+1), f{t)=2r are continuous for all ¢
except a,t). which is discontinuous at 1=—1; also a,(0)=0. Thus we must dis-
tinguish three cascs for the initial time 1y Case (i): t,< =1; Case (if): —1<t,<0;
Case (iif): 15>0. We do not take 1,=0 or 1;=— I {why?). In case (i), by Thmr,_-lm |
given any 7,< =1, there exists one and only one solution ¢ of the given cqu:mm;
satislying the initial conditions ¢{to)=rg, ¢'(r5)=2,. where v, =, are arbitrary given
real numbers; this solution ¢ exists on the interval — :::: i &4 \
statement in Theorem 1. S B
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Exercises
l. Discussin g similar woy the ex;
¥ the existence and yn; s [
it Sraly nd uniqueness problem for cases (i) and (iii)

2. Discuss the existence and uniqueness problem for real solutions of the equation

(141 + 20" +(log Ir)) y=cost.
3. Do the same for the equation -

ag)" +a,) + azy=f(1)

where ag, Qy. @y are constants and J11) is continuous on — x << @,
Example 2. Consider

ao{1) ¥ +a,(1) ¥ +a, (1) v=0, (3.2)
1. @y are continuous on some interval J and a,(1)#0 on /. Show that
®(1)=0 is the only solution satisfying the initial conditions $(1o)=0, ¢'(to)=0, where
fgisinJ

It 1s readily verified that the function ¢ defined by @(t)=0 for ull 1 in ! is a solution

of this initial value problem Therefore, by Theorem | (here f(r)=0), M(1)=0 is the only

solution on Eq. (32) on I satisfying the initial conditions $(to)=0. ¢'(rg)=0 for any
(ML

where a,,

Exercises
4. Show that, if solutions ¢ of Eq. (3.2) arc represented us curves in the (1. v} plane, no
solution of (3.2) except ¢ (1) =0 can be tangent to the 1 uxis at any point of /. [ Hint:
Study Example 2.]
3. For each of the following differential equations,

determine the largest intervals on
which a unique solution

s certain 1o exist by application of Theorem L. In cach case,
it is assumed that you are given mitial conditions of the form Plto)=ro. ¢'{to)=2,

with 1, arbitrary. Note that the interval 10 be determined may depend on the
choice of ¢,

a) " +y=rp*

"

b) P(r=3)y" +)" =0
c) y'+,_.f_r_r-l.'l. d) (1 +2%) y ="+ 1y =coss |
e V' =(sing) y' +y=p Ny ~(log |r]) y=0

For the linear differential equation of order n
ag (1) ¥ +ay (1) ¥~V 4 - a,_ () ¥ +ay(0) y= [ (1), (3.3)

the following analog of Theorem |, partly a consequence of Theorem 2,
Section 2.5, is valid.

Theorem 2. Let ay, ay, ..., a,, [ be continuous Junctions on some interval I
and suppose ay(t)#0 for all 1 in 1. Then, for each to in I, there exists one and

only one solution ¢ (1) of Eq. (3.3) which satisfies arbitrary prescribed initial
conditions
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¢ (to)=1: ¢'(to)=22: ¢ (to) =23 - ¢ V(o) =a,.
The solution ¢ (1) exists on

As for Theorem I, the fac
does not follow from Theorem

the entire interval 1.
| that solutions exist on the whole intervy)
2. Section 2.5 (see Exercise 2, Section 8.5,

Exercise
3 1o determine the largest intervals on which the existence of ,

6. Apply Theorem . -
unF;E:e solution @ (/) 15 qssumed when nitial conditions of the form
lto)=21+ @' (fo) =220 ¢~ Dto) =2,

are given; distinguish different values of fo il necessary.
a) ¥ +(cos 1) y'+(1 —f)y=¢ b) " +{cos 1) y4{l=r)y=tan¢
) '+ y=e" +cos ! d) n*'+y=sect

3.2 LINEARITY
To develop the theory of linear differential equations, sun:.h as (3.1), it is
convenient to introduce the operator L defined by the relation

L(y) () =ao(t) ' (0)+a, () y () +a2(0) ¥ (0)

which we denote briefly by L{y), where L(y)=ag)"+a,y' +a,y. Here we
think of L(y)(f) as the value of the function L(y) al the point 1. Noticing
that L(y) is precisely the lefi-hand side of Eq. (3.1), we may write the

equation simply as

(34)

Liy)=s (3.5)
where it is understood that all functions are functions of 7.
An operator is, roughly speaking, a function applied to functions. In the
present case, the operator L is a rule which assigns to each twice differentiable
function y on some interval / the function L(y), where L(y) (1)=ao (1) y"(1)
+a, (1) y' (1) +a: (1) p(1).
: The operator L is a particular example of a class of operators called
' linear operators: An operator T defined on a collection S of functions is said
to be linear if and only if for any two functions y, and y, in the collection S and

for any constants ¢, and ¢, one has
Tleyytep)=c T(n)+eT(v,).

It is easy (o verify. that our operator L defined by (3.4) is linear. To see this,
let S be the collection of twice differentiable functions defined on the interval
I. Then if y, and y, are any two functions in § and ¢, and ¢, are any

two constants, L(c,yy+c;y:)=a(c1y +e2ps) +4, (e + caya) +aa(c
L
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+er)=c L)+ caL(y;) by elementary facts about differentiation (which
ones?).

Exercises

1. Show that the operator T defined by T'(y)(r)=fLr(s) ds, for any function y con-

linuous on a<1<h, is a lincar operaitor.
2. Give other examples of linear operators.

3. Show that the operator T defined by T{y)=(y")% for any function y differentiable
one some interval /, is not lincar.

We shall need some more terminology before proceeding Lo the theory
of linear differential equations. If the function f#0 on /. we say that
Eqg. (3.5) is nonhomogeneous (with nonhomogeneous term f). With every
nonhomogeneous linear differential equation of the form (3.5) we associate
the hontogencous (or reduced) linear differential equation L(y)=0 obtained
from (3.5) by replacing f/ by the zero function. _

We now give two basic properties of solutions of lincar differential

equations these are immediate consequences of the linearity of the operator
L.

i) If ¢, and ¢, are any two solutions of the homogeneous linear differential
equation L(y)=0 on some interval I, then for-any constants ¢, and ¢, the
function ¢, + ¢, (called a linear combination of ¢, and ¢,) is also a solution
of L(»)=00n I. : =

To see this we merely compute: L{c,$, +capz)=c,L(d,)+c2L(¢2), by
the linearity of L. Since ¢, and ¢, are solutions of L(y)=0 on I,

L(¢,)=L(¢,)=0 for every 1 on [, and therefore L(c,d,+ca¢,)=0.
Thus ¢, ¢, +¢;¢, is a solution of L(y)=0.1

Exercise

4. Use mathematical induction and the above result to establish the analog of
property (i) for m solutions ¢, (1),..., p.(7) of L{y)=0: that is, show that if
. by, ..., B, are m solutions of L(¥)=0 on [ and if ¢,, ¢;. .., €, are any con-
stants, then ¢, + ¢3¢, 4 -+ + ., is a solution of L{y)=0on I.

This result is usually expressed by saying that any linear combination
of solutions of L(y)=0 is again a solution of L(y)=0. It is sometimes called
the principle of superposition of solutions. Our object in the next section
will be to show that the problem of solving the equation L(y)=0 can be
reduced to the problem of finding certain special solutions of L({y)=0 and

obtaining all other solutions as linear combinations of these special so-
lutrons.

Another important consequence of the linearity of the operator L is the
following,
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Excrcises )
Jon some interval

& Given that u s a solution OI'LI‘T:I? iiﬂ;j Ti‘: Tlulion of L{y)=
? +r 5 a solunon of LLVI= :
I. show that w+r s a solu oz that is. f()=/1,(1)

he sum of m functions Ji : _ .
. SJTTT : ':n' blflﬂgtjnmﬁs:::rz interval J. Suppose that 1, 15 a solution of the

lincar equstion L(y)=/. & is a solution of the linear equation L(¥)=/3, and in

eeneral 4 is 3 solution of the lincar equation L(y)=/; on Ifori=1.....m. Show
that the function w=u, +us+ -+l is 4 solution of L{r)=/ on 1. (This result,

also called the principle of superposition, enables us 1o decompose the problem of

solvine L (r}=/ mto simpler problems in certain cases.)

Before closing this section we repeat that the only property of the oper-
ator L is used above is lincarity. Therefore our rr;su!ls are much more
general than appears to be the case. In particular, if we define the linear
differential operator L, of order n by the relation

Lo(3) () =ao(t) ¥ (1), (1) ¥~ ()4 a0 ¥ () + (1) ¥(0)

N\ where y is any function which is n times differentiable on some interval [,
>« and the functions a,(j=0. I..... n) are continuous on /, a(¢)#0 on /, then

; all results stated in Section 3.2 hold.

L_—-""'.--_-

Exercise

7. Formulate and venfy the analogs of the linearity properties (i) and (i) for the
equation L (y}=/for a=1,3.4. and » an arbitrary positive integer.

33 LINEAR HOMOGENEOUS EQUATIONS

In this section we go far beyond the result established above, that any
lincar combination of solutions of the linear homogeneous differential
cquation L{y)=0 is again 2 solution of L(y)=0. We will show that
esery solution of L(3)=0 is a linear combination of certain special solu-
uons Then m Section 3.7 we will show how to use the special solutions

—
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to find every sowution of the
the lincarily property ii) estab);

Belore we can do this we g
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nnnhlnm{:gcn:ous equation L(y)=/, using
shed m.lhc previous section.
ced the important concepl of hinear depend-

Definition. We say that m functipns a,,

- o : H2: .. m are lincarly dependent
on an interval Iif and only if there exist consiants by, by, ..., b,. not all zero,
such that -

D191 (1) +bagy (1) + - + bg,. (1) =0

Jor every ton . We say further that the m Junctions are linearly independent on
I'if they are not linearly dependent on |

Example 1. Show that the functions sin®r, cos?s. | are lincarly dependent on any
interval. ;
Since sin® 1 +c0s* 1~ 1 =0 for every 1, we merely put ¢, (f)='sn*1. g,(r)=cos*1.

dalt)=1.by=by=1,by=—1 in the above definition. This proves the linear dependence
of the given functions.

Example 2. Show that the functions ¢, &, where ry. ry are real conslants, are
linearly independent on any interval [ provided that r, #ry.

To see this, we suppose that there exist constants b,. b, such that b, + b, =0
for all ¢ in f. Multiplying by e™"" we obtain b, +5,e"~"""=0 for all 1 in /, and
differentiating both sides of this equation with respect to ¢, we obtain bylry—r )=
=0forall7in /. Since ry =r, and €**~"* is never zero, this implies that b, must be zero.
However, then b,¢"" + b, =0 for all ¢ in /, implies &,¢"* =0 for all ¢ in I, and hence
b, must also be zero. Since b, and b, are both zero, £ and ¢* must be linearly
independent.

Exercises

1. Establish the linear independence of the following sets of functions on the intervals
indicated.

a) sin{, cosf on any interval /. \ ,P.

b) ¢V, &, & on any interval 7 if r,, r,, r, are all different.
¢) ¢V, 1" on any interval /.

d) 1,1, ¢, £ on any interval /.

e) ¢, it on —1<r<1 but nor on 0<r<1.

e o ) The fumionsf;{f}.mdn —l<t<]1, where ({V‘
=3 A= T (-1r e

1. Prove that the functions f, g are linearly dependent on [ if and only if there exists a /
constant ¢ such that either f{r)=cg(s) or g{f)=cf{r) for every rin L

3. Decide which of the following sets of functions are linearly d:pcndﬂ_n and which
are linearly independent on the given interval. Justify your answer in each case.
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"1 i {f":‘r
a) &,(0=¢" ¢:(0=¢ :“:
b o ()=et. ¢:l0=¢+ %
<< X

o) & (1)=yt.  $:(0="" <<

- (N=¢. ¢'3[ﬂ"’”-"
d) ¢, (=1, @0  pepgl]

2 = sinl.
e) &, (1)=1". ¢:(1) nnil-_{'l’] {u [;cﬂ] __.I.{J-r:-l
r.z‘/ N en=1. \fa‘:l"]*"{I (120 $(N= I:I:JEH}
0(<0 _gpo<t<®

ﬂ =
g ¢, (=1, ¢2{']={?E;ﬂ;‘ ¢3|:ﬂ {I‘J[tzmn
éyl)=1"" ¢q.':f]"='|' »

owing result, which W

~Jj<r=l
iflhe A ill be useful on
More generally, we have the foll
several occasions later.
Lemma 1. The n functions
[t
g e,

I‘L-. t,flr’
peey .tl_l-l f'r':l1

ki=1 {_,fll

P (O

L% |ty e,

where k,+ky+...+k,=n and where ry, ry,.... T, are distinct numbers, are

linearly independent on every interval I.

Since the proof of this theorem is technically rather complicated, the
reader is advised not to get involved in the details. He should be sure he under-
stands the statement of the Lemma. Note that Example 2 is a special case

withk,=k,=1l.n=2.
Proof. The proof is an extension of the argument used in Example 2 above.

Suppose the n functions are linearly dependent on some interval /. Then
there exist n constants a,, i=1,2,....5j=0,1,....k—1, not all zero

such that

ol Fi
ﬂlul:-‘r +”I|!l,“+-ll+:lla:|1—1'r 1 l{’r”‘i"u;utfﬂ'*‘ﬂllft'"[-l-'--
1= 1 o
g a7 ET g R agte b g, e =()
LRt

or, more compactly,
]

" L N
1{ o€ Faple” + +ﬂhl|-l*" IH"’]:[}
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for all 7in I, We may define (he polynomials

Pl{'!]=ﬂ“}"|' I'.f“f+ e ‘l'ﬂ‘ i IIh"l

| | | [n‘:l.,...-"]
lo write this condition in the form

PO+ Py e . 4 p ) e =
for all 1 in I Since, by assumption. the ¢
least one of the polynomials P{1) is not i

to assume that P,(1}#0; we can always arrange this by a suitable labehng
of the numbers ry,r;.....r,. Now we divide Eq. (3.6) by ¢ and differ-

entiate at most k, times until the first term drops out. Note that all terms
in (3.6) can be differentiated as often as we wis

Fihe form h. Then we have an equation
0

(3.6)

onslants a;; are not all zero, at
dentically zero. It is convenient

Q:“] Elr: = +Q3tf} t.lr:c—rs,ll_l_ s Q,[f} e:r,-r." =0 {lﬂ
for every ¢ in /. The term Q,(f) &”*~"" in (3.7) is obtained by differentiating
Py e "M (i=2, ... 5). as often as necessary to remove the first term P, (r).
Note that differentiation of a polynomial multiplied by an exponential gives
a polynomial of the same degree multiplied by the same exponential (think
of the rule for differentiation of products). Thus the polynomial Q, in
(3.7) has the same degree as P, and does not vanish identically. We continue
this procedure, dividing by the exponential in the first term and then differ-

entiating often enough to remove the first term, until we are left with only
one term. Then we have an equation of the form

R (1) e =re-i=g

in which the polynomial R, has the same degree as P, and does not vanish
identically. However, the exponential term in this equation does not vanish,
and we have a contradiction. This shows that all the constants a;; must

be zero, and therefore that the n given functions are linearly independent
onl |

Exercise

4. To which of the sets of functions in Exercises | and 3 could you apply Lemmua 1 to
deduce either linear dependence or linear independence?

The above discussion of linear dependence and independence of func-
tions has not been, up to this point, related to the differential equation
L(y)=0. Before continuing. review Theorem | and the notion of linearity
as given in Section 3.2. Using these, we now establish one of the key results
of the theory of lincar differential equations.



74 Limcar Miffervmtial Fquarions

SO interval 1 and

he panchions CORTIRNOUS on

e dlﬂm"ﬂlm.’ equalton

(1) ¥ +|tgtl'] L] =0

b dsonl Moreover. i @ 15 any
1 -

10 find @ unique pair of constanis ¢y, €,

Thcorem |. Let ag. @y, 92
let aq(1)= 0 for all t on 1. Them 1

Llr]!#ﬁl” vy
hay two lmearh m,._kmh: sofunons
solation of L(v)=0on I then it is passible
such that for every t on 1

#'{”""‘lﬁl
interval 1. By

(1)+ cs¢:(0)-

Proof Let 1, be any point of the s L
there exists a:.lniqut ;anrf‘;iﬂn ¢, on Jof L(v)=0 mm,ryi"g Lhe st:?';““;;!
conditions @, (fo)=1. #;{te)=0. Similariy. there ceh e :

lution , of L(y)=0 such that &:(to)=0- &, (1) =1 We sclect 1hesc PEP
e Gt e ol D A0 prOvEL OB they are linearly in-
dependent on /. You will see later, after studying the proof, that many
other choices are possible (sec Exercises 7 and § ly independent

We claim first that the solutions @ and ¢, are linear
uch that

on /. Supposc there exist constants by. by s
by, ()+:6:()=0 184

¢, are solutions of L(y)=0
) we have also

on /. they are dif-

for everv 1 on [. Since @,.
ferentiable on / and hence from (3.8
b, (1)+b293(1)=0 (39)
for every 1 on I. In particular, putting /=lo in (3.8) and (3.9), we obtain
respectively from the chosen initial conditions
b:l ﬂ+b;| =ﬂ'-.
ws that the solutions
heir

h: i i +b:'ﬂ=n.

=b,=0, which sho

and we therefore conclude that b,
[ and therefore this proves 1

¢,. ¢, cannot be linearly dependent on

linear independence on /.
To complete the proof of the theorem, let ¢ be any solution of L{y)=0
. (That is, we evaluate $(r) and ¢'(1)

on [ and calculate ¢(ry)=2. ¢'(lo)=
at 1=1, and call the values at /o, 2 and B, respectively.) If there are 10 exisl

constants ¢, and ¢, such that g{1)= ¢y, (1) + 202 (1) for all rin /, this relation
must hold in particular at /o, and we musl have
I=¢f'ul-'=f|¢|':fu)+":¢:“a]=fl A4y 0=cy,

fi= ¢ (1a)=019 [10]-1-;-24;'2{;0]_-:{’ D+ 1=0;.

nction ¥ by the relation yr(1)y=ad, (1) + P, (r) for tin 1. Clearly

Define the fu
on 3.2). ¢ is a solution of L{y)=0on /;

(by the lincarity property (1), Secti

moreover,



T

R
Linear Homogeneous Equatioms 75

W (ty) =ad,(1,)+ by (1
W (to)=ad (1,) + A

et r‘!'!'a'r“{! oo bnth solutions of L(y)=0 on f which satisfy the
same pair o initial conditions ay fo. Since, by Th e y
there is only one such solution, w E eorem |, Section 3.1,

on I, which completes the Pfﬂore conclude that (N =y (1) =2, (1)+ Bby (1)

ﬂ':l'“:'!' | +ﬂ'ﬂ=-jr
n]z'ﬁ‘n-l-ﬂ' I=§.

Exercises

5. Why are the constants ¢,, €2 in the statement of the theorem unique?
6. Ca_rry Pm lhclpll‘tzluf of T|I1|I_:nn:Tn | by using the solutions ¥, and y; of (3.5) on /
satis(ying the initial conditions Vilto)=2, ¥ (te)= —1 and Walte)= — 1. ¥ (1) = |

in place of the solutions ¢, and #1. [Hint: Begin by showi )
i y : owing that the soluti
Wi W2 o (3.5) are lincarly independent on 1] by ng solutions

7. Let wy and w, be solutions of L(y)=0 on / satisfying the initial conditions

wy(to)=a, wWilte)=§: wa(ta)=y, Wi (tg)=6

respectively. Under what conditions on 2,

s e f. 7. d will the solutions w,, w, be lincarly
independent on f7

8. Assuming the condition found in Exercise 7 1o be satisfied. use the solutions w,
and w; to complete the proof of Theorem |

Example 3. Find that solution ¢ of y"+y=0 such that $(0)=1, ¢'(0)= —1. using
the fact that cost and sinf are both solutions.

It is easily shown that cost and sinr are linearly independent solutions of
»"+y=0 on any interval / (see Exercise 1a).) To find the desired solution we apply
Theorem 1, letting ¢, (r)=cos t, ¢,(f)=sin 1. and observing that ¢,(0)=1, ¢,(0)=0,
h2(0)=0. ¢5(0)= | asin the above proof. By Theorem | we know that there exist unique
constants ¢, €3 such that ¢(r)=¢, cos 1+ c, sin ; as we saw in the proof we may deter-
mine ¢, and ¢, by imposing the initial conditions. Thus we obtain

¢{ﬂ]=i=fj' l +l:1'ﬂ
$'(0)==1=—c,;"0+c,'1

Therefore ¢, =1, ¢;=—1 and the desired solution ¢ is ¢(r)=cos r—sin .
Exercise

L]
9. State and prove a theorem analogous to Theorem | for the linear third-order
differential equation

Ly(v)=ao(t) " +a,(1) y" =a,(t) ¥ +a,(1) y=0,

where ag, a,, a,, @y are continuous on some interval / and a,(1)#0 on I. [ Hine:
For any 1, on I let ¢, be that solution of Ly(y)=0 for which ,(to)=1.
¢ (te)=0, ¢ (1o)=0, let ¢, be that solution of Ly(v)=0 for which ¢,(t5)=0.
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g (y)=0 for which §3(te)=0:
ol o ¢ of Theorem 1]

1 solutio
tha y the pro@

dilig)=1. ¢3(10)=0. let &y B¢ =
6:01)=0. ¢-(t,)=1 and now proceed 35 s
- - ial equations

['r} V't dy [!}

f order .
.o differen

For the general case of linear diftere =0,
"= Y 1 - ’

L ()= ao(f) ¥ +ay (1) 7 e

come interval 1,

Theorem | has the following analog: : s
ous functior )=0hasn linearfy

-rhfﬂrfﬂ'l 2- L{'.f da, -ﬂl...-1 ﬂ. bt' ["‘ﬂ'””ﬂu : L {‘

- Y fom L\, :
and suppose aq(1)# 0 on I. Then H'mdgffrff""“‘;";::;wl if ¢ is a solution of
independent solutions ¢,. ¢s..... Pa OF I;f{-mrm-"ﬂf"f constants €y Caveeo Ca

L.(¥)=0 on I, then there exist uniguely
such rhar

‘ib'[‘]'=f'|¢'1':f]+fz¢:|:'}+"‘+f;¢nm
Jor every tin I.

Exercise
10. Prove Theorem 2.
In practice it is undesirable to restrict ourselves to SGIEIEUZLS {‘f’l};‘%z
which satisfy special initial conditions such as ¢, (1o)= l'l‘f’l (to)= f‘tl 2 5” eciai
@3(to)=1 at some ¢, in 1. We shall show shortly that mstca.d 9 ;EL {]JJ 3
solutions ¢,, ¢, used, any two linearly independent solutions I? Jl}l_ ;
on / will serve the purpose just as well. To see this we can use the resu Ut
Exercises 7 and 8. Alternatively, it is convenient (o introduce the concep

of the Wranskian, which. as we shall see, also serves another purpose.

Definition. Let [,. f,. be any two differentiable functions on some interval 1.
Then the determinant

wu..ﬁ}=]j,f:. B 5= it

is called the Wronskian of f, and [5. Its value at any t in I will be denoted by
W(/,. f2) (1). More generally, if f,. .... f, are n functions which are n— times
differentiable on I, then the nth-order determinant

1 /s .
A fi ol

j{n—lb f;f'_” JI’;""“

is called the Wronskian of f,, ..., .
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Exercise

11. Evaluate the Wronskijan of the rnnuwing lunct
nctions

a) fil)=sint. fi{t)=cos,

b) /i (t)=¢', Silh=et (-w<raqy
c) Liln=r, f(0)=114), (~m<i<o)
d) filn=1. Li0=1, =g (- <rcam)

(~w<i< w)
The Wronskian of two solytjo

; ns of i ; .
following simple test of their Jines of L(y)=0 on ; provides us with the

r independcnc:,

Theorem 3. Let ay, a,, a, be given funcy; :
liong continious o ]
and let ag()#0 for all { on | Fhon i o n some interval T,

ons ¢, ¢, of
L(y)=ay(r) V4o () y +a,() y=0

are linearly independent on I if and only if W(,, ¢,) (N#0 forall t on I

Before proving this result we give an illustration,

Example 4. Show thal cosr and siny are

linearly independent solutions of )+ y=0
for — oo <i<co.

The fupclians "’tt’ (/)=cos t, ¢, (f)=sin 1 are solutions of )"+ y=0o0n — o <i<w.
To test their linear independence we compute their Wronskian

Cost  sint

Wicost, sinf)=|
—sint  cost

=l, —-wm<i<m.

Therefore. by Theorem 3, ¢, (r)=cos 1, ¢,(r)=sin t are linearly independent solutions
of y"+y=00on —®<I<w. Of course, we already know this result from having applied
the definition of linear independence directly. However, when dealing with solutions of a

hnear homogeneous equation L(y)=0, the theorem is often easier to use than the
definition.

Warning. Do not apply Theorem 3 when the functions being tested for linear
independence are not known to be solutions of a linear homogeneous equation
L{y)=0. To see why, consider the functions f; (f)= 1%, f;(f)=¢|t] and take for
I the interval — | <1< 1. Then as we saw in Exercise 11 (c), the functions f,, /5
are linearly independent on [ and yet W(f,,f;)()=0 for every t on
=gt

Proof of Theorem 3. The proof consists of two parts. Suppose first that
the solutions ¢, (1), ¢ (f) of L(y)=0 are such that W(g,, ¢,) (1}#0 for all
1 on [ and yet ¢,, ¢, are linearly dependent on /. Then by the definition of
linear dependence there exist constants &;, b, not both zero such that

b, (1)+ bzr,b;{:};':} for all ton [ (3.10)
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and also (3.11)

for all ron I (why?)
ogeneous algebraic
[ their cocfficients

by (1) +bad(r)=0

For cach fixed  on /, Eqs. (3.10) and (3.1 1) are lincar h;“:.l

equations satisfied by b, and b, and the dﬂFm“;:rm ¢,) (1#0 at any

is precisely W(é,. ¢,) (1) Since. by HSS!Iltrnpt:oﬂ;‘mus Sl}'rstezms of algebraic
: - of i mo

z.ont £ i Tollaws oy Iheshoney oL If wh%:h contradicts the assumed

equations (sec Appendix 1) that b, =b:= : el
linear dependence of the solutions ¢,. ¢, 00 [ This shows that1

kian of two solutions of L(y)=0 is different from zero on I, then these so-

lutions are linearly independent on /. :

o Prﬂ\l':: :ﬁ; 3’; n_-{mgepﬂ“ of the theorem, assume that the Eﬂlhl.lllm‘fs
é,. ¢ of L(y)=0 are linearly independent on / and assume that there is
at least one 7 on / such that W(¢,. ¢;) (/)=0. (1f "h_ere iS50 ghch Sithiere
is nothing to prove!) Now look again at the algebraic system (340}, (311}
for r=7. It follows, again from the theory of lincar homogencous systems
of algebraic equations (see Appendix 1) that, because W(dy. ¢2) [F'}:ﬂ_' the
system of algebraic equations

by, (()+b:0,()=0. by (i)+b2¢3({)=0

has at least one solution b,. b,. where b, and b, are not both zero. Tocomplete

the proof define the function y(f)=5,@, +b.®: (/). where b,, b, are taken
as any solution of (3.12). First observe that y is a solution of L(y)=0(why?).
Because of (3.12) the solution y satisfies the initial conditions W (7)=0,
¥'(7)=0. Therefore. by Theorem | and Example 2. Section 3.1, w(7)=0 for
every  on /. This means that we have found constants b,, b, not both zero
such that b, ¢, (1)+ b0, (1)=0 for every 1 on I. This contradicts the assurqed
linear independence of the solutions ¢@,. ¢, on /. Therefore the assumption
W(,.¢.) (1)=0 is false; that is, no such i exists and W(¢,. ¢,) (1)#0 for

every ¢ in /. This completes the proof of Theorem 3. |

(3.12)

F

Exercises = |
12. Show that &', ¢~ *' are linearly independent solutions of y" —dy=00n —w<r<w.
13. Show that ¢™*~ cosl,, 3 )1 et sin[\.-i_ij.' are linearly independent solutions

of 3"+ y' +y=00n —xZ<i<x.
I4. Show that ¢ '. re”" are linearly independent solutions of ¥ +2y"+y=0 on
—_— A f O

I5. Show that sin r*, cos* are linearly independent solutions of 1y" — "+ 4y =0 on
O<r<= or —x <r<0. Show that W (sin r*, cos r*) (0)=0. Why does this fact
not contradict Theorem 37

16. Staie the analog of Theorem 3 for the nth-order equation L (v)=a,(r) ™™

~ayft) V=t g, (1) 3 +a,(r) y=0.
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We can now establish g resy|
and ¢; of a linear homogeneq
coefficients, the Wronskian is ¢

t which says that for
us seco :
“: » “d,":'rd“ €quation with continuous

€7 identically zero or neyer equal to zero.
Theorem 4. Let the hypothesis ,

f Theore . _
Let ¢y. &3 be_ two solutions of L(y)=( ::ijb{'}":‘::;ufii on :ome interval I,
Wi, ¢3) {f} 15 zero for every | jn : ither th

The proof of Theorem 4

any two solutions o,

- eir Wronskian
or it is different from zero forevery tinl.

15 outlined in the following three exercises.
Exercises

17. Let ¢, tb; be 1wo solutions on some inte

=0, where ag, a,.a; are continuous o
Wronskian W (g, ¢,) (1)

rval [ of L{¥)=ay(n) Y ta () y'+ay(n)y
: n / and ay(1)#0 on /. Show that the
satisfies the first-order linear differential equation

‘=———W, (tinl). (*)

[Hint: W'(9,, ¢=Hr1=|$.:}ﬂ ﬁ;}jﬂftm-¢1¢J=¢t¢;-¢1¢;.

Now use the fact that ¢, &, are solutions of L{y)=0on [0 replace & ¢ by terms
involving ¢,, ¢\. 2. ¢5. Collect terms to obtain (*).]

18. By solving (*) in Exercise 17, derive Abel's formula

Wig1, 62) ()=W(¢,. ¢:) (1) HP(*I:::]} ds)-

Lo
19. Use the result of Exercise 18 to prove Theorem 4.

20. State and prove the analog of Theorem 4 for the linear third-order differential
equation

21. Show that ¢, cos ¢, sin 1 are linearly independent solutions of the differential equa-

1ion
YV —y+y—y=0 on —w<I<wm.

22. Theorem 4, combined with Theorem 3, provides a convenient method for testing
solutions of linear differential equations for linear independence on some interval.
For, according to these results, it is enough to evaluate the Wronskian at some
conveniently chosen point. Thus, for example, show that

=

r!-
M““*Z 2-3-5-6-(3m—1) (3m)

[J-+I
¢ ()=t +Z 3-4-6-7---{3m) (3m+ 1)

m=1
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lhh‘ ]Htfn.iﬂ —_ 0 a0,

i and ¢, are

nearly independé ons. o ¥~ hat ¢
1 ent solutions A% . .y shown th
t;: . v ":}n':.u asyme that it bas already ;:;\:Ih'l“ﬂ

: e =0, butl how coukd you veni ool
sotunions of 1 = =1, e il ssbiiation of

s 3 . 1 ‘_ [h ; 5 L
Rl O e B m;p:_nn We have raised the question:
: s
solutions of L(y)=0, s agamn a S0l

: mbination of
1ed as a lincar co 1
“Can every solution of L(y)=0 be gener partially in Theorem | using a

Spec jon™" We ans this
S special solution”” We answered ; ’ i Tsarsd
znr:fm!ar pair of lincarly independent s-:-luuf}nsh With the help
We can now answer the question completely.

uncti ] n some interval I, and
cfns cORINMUONS 0 :
ool 16, b nwo fincarly independent solutions

let ag(1)#0 forall tin 1. If ¢, and ¢, are any
of | -
L(y)=ap(t) v +a,(1) v +ay (r) y=0

. very
on I (not necessarily the two special solutions ,. ¢, of Theorem | ). then ever)
solution ¢ of L(v)=0 on I can be written in the form

‘ﬁ" Some uﬂiq‘ut‘ Ehﬂffi ﬂ]dfﬂmfdﬂﬂ ':1" (2.

From a practical point of view. the theorem tells us ti?al knowledge
(possibly by guessing) of any two linearly independent solutions ¢,, ¢, of
L(¥)=0 on I enables us to express every solution by means of Eq. (3.13) by
choosing the constants ¢, ¢, suitably. For this reason, we call the 1func1mn
defined by (3.13) the general solution of L(y)=0 on /, and we sometimes say
that the linearly independent solutions form a fundamental set.

Proof of Theorem 5. Let ¢ be any a solution of L(1)=0 on [ and let , be
any point in /. Compute ¢(1g)=1. ¢'(1,)=p. Because ¢, and ¢, are linearly
independent solutions of L(v)=0, Theorem 4 tells us that W(dy. ¢;) ()0
for all r on I; in particular Wid,. @) (rg)#0. If the representation (3.13)
holds for all 1 in 7. it will have to hold at =1y To see if this is possible, we

impose the conditions ¢ (1) =1, ¢'(1o)=p and obtain the system of algebraic
cguations

€191 (te) + 21 (1g) =2, flﬁ“ﬂ]*‘ﬁ‘i’i[’ﬂ}":ﬁ

with determinant of cocfficients ¥ (g, 2) (o) #0. Therefore by the theory
ol lincar nonhomogeneous systems of algebraic equations (see Appendix )
this algebraic system can be solved uniquely for €1, €2, and we obtain

¢, =200 =Bbalte) B (15)—ag(r,)
1 H"léb ¢J”fn:i » (:=wiai—_ |:3.|4]

This choice of ¢, ¢y makes (3.13) hold a1 = fo- To see whether this chojce of




1]

L
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s the job for all ¢ :
e does the ) n 1, we define the function

'.!"{f}"-'*'l‘-'ﬁl ':']'!‘{'z‘i’:“}-

- are the numbers g

gigte Cys Ba AT given by (3.14). w
T: p(1): 1 [f]: ¢, (1)) 1s a solution of L{y)=0 0: :brb:zf::atl y sl
e need only show that /(1) = (1) for every rin 1. gy “5ing{3p-|?; the prr;gl’
- = “'fs.cct t

u &

Therefore ¢ and r[b_arz: both solutions of L(y)=p
same initial condl_tmns at =ty By uniquene
and ¥ are identical and this establishes The
Theorem 5 extends easily to higher-

qs follows:

on / and they satisfy the
85 (Theorem 1, Section 31)
orem 5. |

order linear differential equations

Tﬁgﬂl‘fﬂ‘l 6. Let dg. ... @ be fuﬂflfﬂm CONtinLous on some interval |

and lef ag(1)#0 on I'. Let 6. ¢s..... ¢, be any set of n linearly independent
solutions of the equation

L.(3)=ao(t) ¥ +a (1) Y V- +a,_ (1) ¥ +a,(1) y=0,

on I. Then every solution ¢ of L,(y)=0 on I can be written as a unique linear
combination

(t)=c @y (1) + - +c,d,(0)

for t on I of the given solutions ¢, @, ..., ¢, (1.e., there exist unique constants
€12 €2y o en Cp SUCH that

¢(t)=c @y (1) +car )+ +c, (1)

Exercise
23. Prove Theorem 6 if n=3.

Remark (for students acquainted with linear algebra). The theory developed

in Sections 3.2 and 3.3 shows that the solutions of a linear homogeneous

differential equation L(y)=0 with continuous coefficients on some interval /
and with nonvanishing leading coefficient on /, forma vector space I over the
real or complex numbers (see property (i), Section 3.2). Theorem 1 shows
that the dimension of ¥ is 2 if L is a linear differential operator of order ’_‘ by
exhibiting a basis for ¥ consisting of the special linearly independent su!uuons
¢, and ¢, constructed in the theorem. Theorem 5 shows thatany two linearly
independent solutions of L{y)=0also [orma basis for V, pmﬁrded the order
of Lis 2. We can derive this more simply using knowledge of lincar algebra.
Once we know, by Theorem 1, that V" has dimension 2, i._t follows lmmedlatc::f
that any two linearly independent vectors in ¥ (that is. solutions) spa;"- v
Theorem 1 for a homogeneous linear differential equation of order i shaw
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Eacd {I} Ir'_.’_,ﬂ; [F} ".'-_'f'-‘l:l':l.
on some interval I, holds lor
s remains (rue even il ag,

fically applies to exislence

f=l."]=ﬂullh
where a,. @y ay and £ At real I‘u_uclinns qchnc;il
complex-valued s0 ; ual;ql}s ‘ ::
o i e T‘tbrrzfcpcndence and independence

). There is no change needed

and uniqueness of such sol
7 1 including e
of such solutions (including Tecessary 10 bear in i
be complex-valued,

in any of the statements an

" : : coussion ma
that the funclipns which enter €2 jscussion may

Exercises
4. Show that the functions
P S 131,
ﬂ,p(._.—_-]l--‘l and €XP 2
for all real 1.

satisfy the differential equation N + =01
m |. Section 3.3. 10 the case that the coeficients aglt). @y (1), a2 (1)
od functions o0 an interval / and 715 real,

We now present a result on complex-valued svnluliﬂnshof real linear
differential equations which is of great importance in applications. Note
that this result 1s not restricted 10 equations wilth constant coefficients.
s any complex-valued function defined in a real interval

d let #f denote the imaginary part;

he real part of / an

&, Reprove Theore
are continuous com plex-valu

Suppose that f1
7. Let #/ denote 1
e.g.. if f(r)=exp it we have
(&) (r)=cos 2t and (S S)()=sin 2.
I. Letpbea complex-valued solution of the differential equation
L(y)=aolt) '+ (1) 0200 y=0

are given real functions o
lves (reaf) solutions of L

Theorem
on some interval 1. where ag. ;. 4z n 1. Then the
real functions =R =S¢ are themse {y)=0

onl.

Proof. Since ¢ is a solution of L(y)=0on /. we have

aglt) " (1) +a, (1) ¢'(1) + a2 (1) (1) =0

for every 7 on /. (The fact that ¢ may be complex valued does not change
aln}rthmg:.} S:Incc ¢ =u+iv, we have, from the definition of derivative
¢ (r)=u'(1)+ir" (1), &"(1)=u"(f)+iv"(¢). Therefore

(1) [ () 16 (] + @y () [ 1) + 0" ()] + 1 (0) [ule) -0 (1)] =0

rating the lefi-hand side into real and imaginary parts, we obtain

Sepa
(remember that ag, a, a, are real) for all 1 on [




34

ao(0) 1 O+ ()W (1) +ay

Note: This also shows that L($) =L ()

L is a linear differential ope, ':‘]"“:i‘”ll this is true i genera) if
relution hc‘ﬁ’*‘ for every 1 op ! coeffy -] Since the |y
only if bothits real and imagin :

I 1S zero if and
Te zero, we have, for all n /-

Hnd HincE .
dry paris g
L{)=aq(0) " (1) 4 4, W)+ a,(1) ()<
and
L(v)=a,(1) v"(6)+a, (1)
which shows that u=%¢ and -
and completes the proof, |

u'f£]+ﬁ2{r]u[;]={]

F are both solutions of L(¥)=0on |

Exercise

6. Let ¢ be a solution on some interval 7 of the differential cquation
L{y)=ao() y"+a, () y +a,(t) y=h{r)

where ag. @, a5 are real and b js complex. Show th

al =2
L(y)=3b and prove an analogous

¢ satisfies the equation
result for p=#¢.

Example 2. Use the solutions

=), gpec(~1500)

-

of the differential equation p” + 4 + y=0and Theorem | to find the general solution in
real form on — oo <r<oo. They are linearly independent on — 0 <I<a0, since, by
Theorem 3, Section 3.3, interpreted for complex-valued solutions,

of2500) {2

X - e 1 X =i Al B
.—_I+T§_I cxp( 1+ d j‘) \/_ Exp(-__\"_. I

3 ¥ 2

Wi, ¢2) (1)=

=—,/3ie7"#0, -—cwo<i<w.

Therelore, by Theorem 5, Section 3.3, interpreted for complex-valued solutions, every
solution ¢ (possibly complex valued) of v"+y'+y=0 on — B <U<L has the ,f.ﬂml
¢()=c,¢,(1)+ca, (1) for some unique choice of t%m (possibly n::-:n'nph.m)1 i;on:-.L:th
¢y. ¢3. By Theorem | (applicable because the coefficients are real) the real function

uy ()= A, ()=exp(—1/2) cos(y/3/2) 1

£~
Cltf{'\f-
and

0, (=S, () =exp(—1/2)sin(\/3/2)

oS
LG - aa v

G
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applies to
solutions of y*+y'+y=0 for —x <<% The same statement app

are 1.%0
\’})3 uy () =R, (1) =exp(—1/2) cos{\ﬁfzj !

-, \nnd |
7*\ vs(t) =S 3 (1)= —exp(—1/2) sinf\/3f21 .
<1<, Therefore, by Theorem 5,

You can easily check that IW(u,, v,)(r)#0 on — % has the form

A Section 3.3, again, every solution ¢ of )"+ )" +y=00n —0 <f<@
e \- { \ﬁ i sin _‘L/—i !
.Q/ plt)=a, exp ~3 cos--z—H-u, exp . 3

for some unique choice of the (possibly complex) constants ay, . 5“"5:"9_ with the
complex form of the solution ¢, we may also arrive al the “real form™ as follows,
Using Euler's Formula (sec Appendix 3) and collecting terms, we have

Plt)=c 9, (1) 42, (1)
=y cxp( —%) (n:os %—3 f.+ i sin 5{3 f)

3 /3
+¢5 cxp(hg) (cosi_,: 1= sin~" r)

/3 ! /3
=(cy +cy) HP(—%) cos -"2— t+ife —nlc:p( -—2) sin 5;— [

If we now define a, = ¢, +c,, ay = i(c, = ¢y), we obtain the desired form. It is clear from
this that the solution ¢(r) of the equution y*+y'+y=0 will be real if and only if
c2=¢; (the complex conjugate of ¢,). In this case, of course, a, and a, arc both reul.

We now return 1o the general equation L(y)=0, where p and ¢ are
are real constants, and summarize what we have learned up to this point.
Theorem 2. Every solution ¢ of the differential equation

Vitpy +qy=0 (3.15)

where p, q are real constants with p* #4q is defined on — o0 << o and
has the form

pl)=c\ e+,  -w<i<w (3.17)

The mumbers z\, =, are the distinct roots of the characteristic cquation

::+p:+q={] (J.Iﬁj

b
and ¢y, ¢, are constants. If p*>>4q, 2, and =, are real
the roots zy, z, are complex conjugates. In this case
solution ¢ may be expressed in the form

and distinct. If p* <4q
fzy=a+if(a g real) the

¢(0)=c"(a, cos ft+a, sin fir) (3.18)

"-hlfrlf al" ﬂl are conslants, Ud’ J..f r['a!. ﬂl {HH!“: are r’.lu!



