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Proof. We have already proved all of Theorem 2 except for Eq. (3.18).
To prove (3.18). we proceed exactly as in Exercise 5 above: namely. we
know from Theorem | that & cosfr. ¢* sinfit are solutions of _r'_‘+py'+
+qy=0, where a+if is a root of =*+pz+¢=0. Since thesc solutions are
linearly independent on — oo <r< x, Eq. (3.18) is a direct cons2quence of
Theorem 5, Section 3.3. |

Exercises

Ts

Show that ¢ cos fir, € sin fir are linearly independent solutions on — 0 <r<wx of
(3.15) when p? <dq.

Proceeding as in Example 2. show that a,. ¢ in (3.18) are given in tcrms of 4
and ¢, by the formulas a, =¢, +c,, ay=i{c, = c,), where ¢,. c; arc the constants in
(3.17)

Find the solution ¢ satisfying the initial conditions ¢(0)=¢'(0) = | of cach of the
following differential equations:

a) '+ r=0 b) y" =4+ 1 3y=0 '1

c) v 44 =0 d) ¥V'+23 +2¥=0

In Eq. (3.15) with p, ¢ nonncgative, find conditions on the constants which lead to
complex roots of the characteristic equation and investigate the behavior of the
solutions for various choices of these constants as - + w0,

Theorem 2 enables us to solve Eq. (3.15) completely when the characteris-

tic equation (3.16) has distinct roots.

We now turn to the case of equal roots of the characteristic equation.

This occurs if p* =4q, and the characteristic equation

iy 2 +pz4q=0

then has the double root == —p/2: therefore exp[( - p/2) f] is a solution of

Y 4py +4qy=0 (3.15)

on —x <t<x if p* =44. The theory tells us that in all cases, (3.15) should
have two linearly independent solutions. We now employ a useful trick to
find (guess) a second linearly independent solution. Knowing that exp

[(—p/2) 1] is a solution of (3.15). we try to determine a nonconstant function
w such that

w{r}=c1p(-—§ .r) w(r) (3.19)

will also be a solution of (3.15). Now ¢ will be a solution of (3.15) on
—x <t< o if and only if

W0+ () + (=0 ok )

or equivalently, using (3.19). if and only if £ Wl o)



W0 | imesr [NBcrental bgustios

. ‘ P: g - ) (0
ﬂr‘l-ff)!'l”-rf‘l‘ _;;)nup i t\P( :l. wi
- . rf)n'{l'}]-“fc‘p(—fl) w(t)=0

. r[ = f"-‘\r( -2 “'“"*“P( i
or if and only of

“FL"f’)[*'HH(-;—T)“'(ﬂ]'-‘{'- —0<I<®.
i —p/ )] v (1)=0.

e atisfy  the oquation exp(( g i
S Ry, W SR SMESh he a solution of (3.15) only if

—p ] = s (319) will
?u:hc;r“[;mfni ]Sl.l:"];l ‘::‘:1 -'{(f]=n (-x<t<x) Thus w(1)=c, -'1;{«2:
where ¢, ¢, arc constants. We therefore have v (r)=(c, +c2f) exp [{—p,f.__] r]
as a candidate for the solution of (3.15). Direct substitution shows that it Is.
Now exp [(=p 2)¢] = a solunon of vapt+qr=0 il ;1f=4q. and 1
exp[(—=p 2) 7] 1s another solution on — X <I<X (verify!). Since they are
hnearh independent solutions on — x <7< a (verify!). Theorem 5. Section
3.3 tells us that we have proved the following result.

Theorem 3. Let p and g be constants such that p*=4q. Then every solution
Son —x < I<x 0f

V4 py +qr=0 (3.15)

has the form

¢IfI=|rt+c:r]cn;p(—£r). -—0<I<®

where ¢, and ¢ . are constants.

There 1» an alternauve and instructive way to establish the fact that
if p7=4g. then 7 exp[(—p 2) 1] 15 also a solution of (3.135). We give this
mecthod also because 1t s useful for solving higher-order equations. We
know that exp[(—p2)1] is a solution of L(¥)=1"+py +(p/4) y=0.
Thss mecans that

- | » :
Lie)| =r='(:‘+p:+£;—)

Since
é _ ¢ & B P:'- s 2
‘__'__ILIF""=: [fﬂ(: R s 3)]=‘F(T+P:+%)+t'f'(2:+p]

| i

we soc by substituting == - p'2 that also

L)

I& —p2



AR |inear Homogeoeons Ditferential Equations 91

Note that 2z + p is the derivative of = +p= 4 p*/2 and both these vanish at
the double root == —p/2 (This is a general result about muluple roots
see Appendix 2)) As you may venify,

d (e 0 (t’f" ( (r"r" ¢ (:‘f’")
- - — . : e Jm g ] -~ :
oz\ ) M\ @z dz\ &1t ] a\ éz

% p %

so that (¢/02) (L(€) = L(¢/¢z) (¢”'). Therefore

{1
L( 4 e") l ~ L{1e")
ez s=-pi2

This shows that re' 72" is also a solution of y" +py +qv=01if g=p> 4

=(0.

= =p/l

Exercises

11. Find the general solution of cach of the following equations. If the equation 15
real, express the solution in real form. Note that Theorem 3 s true if p and ¢ are
complex. and thus equations with complex coefficients can be solved

a) V49 =0 b) v' =51 +6y=0
c) v+ 10y +25v=0 d) vV +2y +y=0
¢) H'=yv=0 N v +5"+10v=0

g o'+ +y=0, O<e<l h) & "+ +y=0

*12. In Eq. (3.15) with p* =44, investigate the behavior of the solutions as t— + < for
vanous values of the constants.

*13. Recall the Definition: A function [ is said to be bounded on some interval 1o and
only if there exists a constant M >0 such rhat |f(1)l < M for all t on [. For exampie,
sin 4, ¢os 1 are bounded on any interval, 17 is bounded on [ 1, 2] but not oa (0, x )
¢" 15 bounded on [ -5, x) but not on (- x, —5].

a) Determine which differential equations in Exercise | have all their solutions
bounded on [0, «).
b) Repeat part (a) for the interval (-, =)

*14. Show that the solutions of the differentind equation v* + py' + ¢y =0, where pand g
are positive constants, are oscillations with amphtudes which decrease ex-
ponentially when p? <4g (light damping) and that they decrease exponentially
without oscillating if p*>4g (overdamping). How do they behave if p~ =4y
(critical damping)?

The Phase Plane

Let ¢ be a real solution on 0< 1< o of the linear second-order differennial
equation L(y)=0, where L has real constant coefficients. Let v, =¢(1).
vy=¢'(f). where we now think of 7 as a parameter, ranging over the
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16, 1) Write the general solution of the cquation ™ + 2 -0 in the “amplitude-phase

ol form &

B Determine the amplitude. period, phase shill of that solution @ of 3" +9y=0

which sanshies (0} =1, ' (0)= 2

¢) Sketeh and idennify several typical positive se
the equation v+ 9y =0 in the phase plane. What happens if
the interval v« =0 (negative semi-orbit)? Indicate the
motion along each curve s 1 mcreases

17. Sketch a few typical positive semiorbits in the phase plane fore
differential equations, Consider also the negative semiorbits. Indicate
tion of the motion along cach curve as 1 increases.

a) v+ 2+ 2r=0
b) v —1=0

I8. Suppose we had a pendulum for which a crude mathematical model would give
rise¢ cither to the equation in Exercise 16a) or I 7a) above. Can you give a physical
interpretation of the semiorbits in the phase plane in cach case”

19. Consider two solutions ¢(r)=c, cosr+c, sins and y(1)=d, cos(+d; sint of the
equation v 4 y=0, where ¢} + ¢3 =d} +d3. Show that these solutions both give nse
to the same positive semiorbit in the phase plane, even though the solution & need
not be the same as the solution .

Exercise 19 shows that, although only one orbit passes through each
point of the phase plane, cach orbit corresponds to many solutions with
different phase shifts.

miorbits (that is, let 0 <1< 1) of
we let f range on
direction of the

ach of the following
the direc-

3.5 LINEAR HOMOGENEOUS EQUATIONS OF ARBITRARY ORDER
WITH CONSTANT COEFFICIENTS

We can easily generalize the results of Section 3.4 for second-order linear
differential equations with constant coefficients to equations of arbitrary
order. Consider the linear homogeneous equation of order n with constant

coefficients a,, a,, ..., a,

L,(y)=y"+agyp" Ve tay yotay=0 (3.20)
and look for a solution of the form ¢** as before. Note that Eq. (3.20) reduces
to (3.15) when n=2, witha, =p, a,=q¢. Since L,(¢*')=p,(2) €', where

2)=2"+a,; 2" '+ +a,-,z2+4,
Py

is a polynomial of degree n, called the characteristic polynomial, we see
that the analogs of Theorems 2 and 3, Section 3.4, (although rather more
involved) may be stated as follows:

Theorem 1. Let z,, 25, ..., 2, Where S<n, be the distinct roots of the char-

vy gy

acteristic equation (of degree n)
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Pale) ="+ . (g Fmiz ek =n).

. T T r” A "-__:- I- LR
and suppose the rool =, has mudtiplicity
Then the n functions vl
LSl (r:l T
‘-.r':.:-' il
"-‘ - t i

e~ Ve

. and (i) linearly independent
general solution of

e e, ..

’ i oo <
are (i) solutions of L,(y)=0 on — o <I<* 3.3, the
on — o <i<o. Hence by Theorem 6, Section 3.7.
(3.20) is a linear combination of these n function

Of course, Theorem 1. Section 3.4, holds without Changlc r{-Jr hclﬁ'hzri?;ict;
equations, and if the coefficients a;..... a,l,;;e real each solution ™ b
can be expressed in real form exactly as before. - E
We do not prove Theorem | except to rcm_ark lh;fl lfo.,-.hl SLssisa
root of multiplicity m, of the polynomial equation P(2)=0. then

Pa(2)=0, p;(z)=0. ..., g™~ "(z)=0
but p™(z,)#0 (see Appendix 3). This observation enables us to prove

the rc;ull much as was done in Theorem 3, Section 3.4 (alternative approach).

The linear independence of these solutions has been proved in Lemma 1, Sec-

tion 3.3.

Example 1. Find the general solution of the equation y**'+ 16r=0. _
Since this equation has order 4. is homogeneous. and has constant coefficients,

Theorem 1 is applicable. The characteristic equation is =*+ 16=0. To solve this equa-

lion, we write

H=_16= 16e'=*2)  p— +1L.4+2....
or. letting = =r¢"

ret=|6et"+ 20m n=0,+1, +2.....

Hence r*=16 and !?in.’4+ (n/2)m (n=0, +1, 2. ...), and the distinct roots are

2 =..-2 exp [i(z/d)]=\/2 (1 +i), Z2=2exp [3:'[::;4]]=\f'5 (=1+4i),2,=2 exp [ —i(n/4)]
=V 2(1=i).zs=2exp [ - 3i(n/4)] = V2(=1=i) corresponding ton=0, n= |, p= — |
n=—2. respectively. It is clear that the choices = +2 . e
the roots =, -,, =, Z; already listed. Since n=4 and since th
has four distinet roots, every solution ¢ of the €quation 4%
(here n=4. =, =my=m,=1) the form '

¢ characteristic equation
+16r=0 has by Theorem |

d(t)=c, exp[,/2(1 +i) t]+c, exp[y/2(1-i) 1]
+ Cy cxp[\l-’ff—,"[ -1 +f} f] +C4 exp[ﬁ{ [ f) I]

« £3,.... lead us back 10 one of

W~
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for some unique choice of the constants ¢y. €. €y Cy- This may be written in the real
form

. - - e . r’
;f,{;):cxp[\/lf} (ay coﬂ‘/}.‘f +i "i“vrz'] +exp[—/2] (o, cos /21 +a, siny/21)
for some unique choice of constants a,. a;. dy. ds.

Example 2. Find the general solution of the equation ™ + 3" + 3y +y=0.

Again Theorem 1 is applicable and the characteristic cquation is S43z243:-410
=(z41)*=0. Thus == — | isa triple root and e~". te™". e " are by Theorem | hincarly
independent solutions on — o <7< o. Hence every solution ¢ has the form

d()=c""(c, 4t +cyt?)

for some unique choice of the constants cy. 3. €.

Exercises

1. Find the general solutions of the following differential cquations.

a) y"=27y=0 b) v'*'—16y=0
c) M+ +r=0 d) 'l'l;:'i- S5¢"+4r=0
¢) 194 y=0

2. Find that solution & of **'+ 16y=0 for which ¢(0)=1. ¢'(0)=0. $"(0)=0. %7 (0)
=0. (See Example | above.)
3. Given equation y**'+iy=0, where 7 is a constant. find the general solution (in
real form) in each case: (a) 2=0, (b) 2>0, () 2<0.
* 4. Which of the equations in Exercise | have the property that (a) all their solutions
tend to zero as — + 0. (b) all their solutions are bounded on 0 <r <. (c) all their
solutions are bounded on —xc <r<w?

In closing this section we emphasize that the methods of solution which
we have developed are applicable only when the coefficients are constant
and the equation is linear! The analog of the phase plane (n=2) is n-
dimensional phase space and again solutions ¢ of Eq. (3.20) can be
pictured as curves in this space. However, we shall not pursue this topic
further at this point.

3.6 REDUCTION OF ORDER

The methods of Sections 3.4 and 3.5 do not apply to linear equations
with variable coefficients. Thus even though our theory tells us that there
are two linearly independent solutions of a second-order linear homogeneous
equation, it may not be possible to find them. Sometimes it is possible to
guess or by some other means find one solution ¢, of the lincar equation

L(y)=ao(t) y"+a, (1) ¥ +aa(t) y=0

on some interval / where ag. a,, a, arecontinuous on / and ay(r)#0on /. Then
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- 9) in the case

3.4 (sec Eq. 3.19) 0
. i Theorem 3, Sectton ST - ation will enable
;Tmi?:;rigwt:ﬂ:; equal roots ofthe auuhm-lcjg:::! by reducing

i anon.

the problem o one of solving a firt-order QOREL ) b, (1) T Why
y

Assuming that we know a “:1“:0:’}::’}1%).:0 for every ron /.

to find a nonconstant function
should w he nonconstant 7) Since

Grmwe, 4wd.  GImw + 2+

we sec that
L{dhs)=apt w" +(2a00, +a19) W'+ wL(¢y).

)=0. Therefore L(¢,)=0 for all

But [ (¢,)=0. since ¢, is a soluton of L)
t on [ 1f and onlv if w sausfies the equation
(3.21)

ag 1) &, (1) w” + [2ao(1) & (1) +a, (1) ¢y ()] w'=0

1) is a first-order lincar equation in w', and is

for all 1 on I. Note thar (3.
= and assume that ¢#0: then (3.21)

readily solved as follows. Let »

becomes
r'+(2 _¢!+u£) r=0,

@, dp

Separating variables and using properties of the logarithm and ex-
ponential function, we obtain the solution

[ [{,¢ils_als
0-e0] f( Froeial

r

mp[-: Ios'ﬁs(’):.ﬂ - [u% "‘]

=exp ('ing[q:,(rl] —log[¢,(10)]” ") cxp(——f :' Ej d's)

o

R _ e
[¢,(0])° cxp( '[“o(’j dﬁ)‘
where ¢ 1s the constant [¢, (10)°. Then, for 1, and 1 in 1, using w'=p, we have
ay (s) _
J.au[sj (IS) dﬂ' %

nlr]:j’ g (
[¢,(@)] P\~
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and therefore

-

' | (s)
¢1“] =c¢: “}J’[tﬁl{dflj Clp( - J-‘::;i:] d") de . (3‘22'

Py

The reader should verify by direct substitution that L(¢;)=0. This leads us
to the following result.

Theorem 1. If &, is a solution of L(y)=0 on I. where a,.a,. a, are
continuous on I and ay(1)#0 on I, and if & ,(1)#0. then the function ¢, given
by (3.21) is also a solution of L(y)=0 on I. Moreover, the solutions &, ¢ are
linearly independent on I hence every solution ¢ of L(y)=0 on I has the form
d=c,P, +cyb, for some unmique choice of ¢,. ¢;.

We have only to prove the linear independence of the solutions @y. P2 0n
I. This is done by computing W(¢,. ¢,) and using Theorem 3, Section 3.3.

Exercise

1. Carry out the proof of lincar independence of ¢,. ¢, on [

Example 1. One solution of y' 41y’ —y=0 is ¢,(1)=¢. Find a second lincarly
independent solution ¢,.

We could, of course, apply Eq. (3.21). Rather than try to remember such a com-
plicated formula, we proceed directly by putting ¢, = rw and forming L(¢:)= Lirw)
Since ¢y =1w'+w and ="+ 2w’ we have L(¢,)=w" + 2w’ + 1*w’ Thus L(o:)=0
il and only if v =w' satislies

w+2+%) e=0.
Separating variables, we obtain

o] [

L

Thus, I”{:!rJ t#£0. v(t)y=cle "3/, w()=cfiole *3/s%) ds, (t,#0). and @z
=ctfiole " /s?) ds, (15 #0, 1#0), where ¢ is a constant, which we may take 1o be |
To establish the linear independence of ¢, and §,, we form their Wronskian

t ,“"’J_i;j ds l

L

Wign )= ‘
e~V e V2
| -+j il

=e >3 120

Since this Wronskian is different from zero, ¢, and ¢,

_ are lincarly independent on any
interval not containing the onigin.
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Exercise
2. Given one solution .. in each case find a socond linearly independent solution
1= - -t

@2 on the intenval indicated
-5

2) V== y=0 é,(n="r> O<i<x
e

b) iy 4 (47 =2) y =0 é, (=2 —0<I<®

=)y =2uy+2=0 & ()=t 0<r<l

d) 5" —(t+1) v +r=0 é,(1)=¢" 1>0.

In general if ‘-‘."1 é.. where & <n. are lim:ar])' indcpcndcm solutions
On some interval 7 of the lincar equation of nth order

L (")=ao(r) ¥ +a, (1) Y~V +---+a,_, (1) ¥ +4a,() y=0.

where a,..... a, are continuous on / and a,(f)#0 on /. one uRSince (e
problem successively 10 a linear equation of order n—k. We illustrate this
with the following exercises.

Exercises
3. Supposc &,. ¢, are linearly independent solutions on an interval [ of the
differential equation
Ly(v)=)"+a, (1) y"+a,(t) ¥ +a,y(r) y=0

(we are taking a,(r)=1). _
a) Let ¢=w¢, and compute the linear equation of order two which must be
satisfied by w” in order that L,(¢)=0.

b) Show that (¢,/@,)" is a solution of the equation of order two found in part a).

¢) Use the result of pant b) to reduce the second-order equation to one which is
linear and of first order.

4. Two solutions of

2y =31y +3y=0, >0

are ¢,(1)=1. ¢,(t)=r>. Use this and Exercise 3 10 find the general solution of
the given equation for 1> 0.

5. a) One solution of the equation

L(0)=ao(1) Y™ +a,()) ' Vvt (1) ' +a, (1) y=0.
is 1~ %% sin 1. Find the general solution for 1> 0,

b) Repeat part a) for the equation

2y +(1 —4r) Y+(2=1)y=0,

given that & is one solution of the homogeneous equation,

TP
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. Make the change of variably y =u(r) c(s) in the equation

y' 4plt) y +q(1) y=0

and choose the function o(r) to make the coefficient of « in the resulting equation
for u equal to zero. Show that the equation for v then becomes

u” =4 {[p(0) +2p (1) =44 (1)} u=0.
. Apply the change of variable suggested in Exercise 6 to the cquation

2y +1y +(F=n?) y=0
and find the resulting equation.

. a) Show that the change of variably y=u’/g(r) u reduces the nonlinear first-order
cquation

Y +p(t) y+q(1) y* =r(1),

known as the Riccati equation. to the second-order linear equation

'+(p(t}—q (l )) u' —r(r) g(r) u=0.
b) Apply this procedure to solve the equation
By +y+yi=1.
3.7 LINEAR NONHOMOGENEOUS EQUATIONS
We now turn to the nonhomogeneous second-order linear equation

LUy)=ao(t) " +a, (1) ' +ax(t) y=f(1) (3.23)
and, more generally, the nth-order linear equation

L ()=ao(t) ¥ +a, (1) Y "+ +a,(t) y=1 (1) (3.24)

where throughout a4, a,, .... a,, and fare given functions continuous on some
interval /, and a4 (f)#0 on I. In ph sical problems having (3.23) or (3.24) for
a mathematical model, the nonhomoy?m‘gm term f(¢) represents an external
force acting on the system. For cmmple if the dampcd linear mass-spring

system considered in Section 2.1 is subjected Lo a given periodic external
force A coswi, then the equation of motion is

v , kA
Y'+by +— y=—coswt. (
m

1.25)
m

(sec Eq. 2.4, Section 2.1). Initial conditions are imposed as before. We
remark that the equation for the current in an electrical circuit having
resistance, inductance and capacitance in series and a periodic impressed
voltage also has the form (3.25) under the appropriate physical assumptions.
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he following fundamental resuly

' - is based on {
The entire dev clop:\C?: ;al"“’ particular solution ﬂ:f If{'ﬂ =f I"" I, and
T.&mm?t :’-r SMPP;-“'M: n;-a linearly independent solutions of L(y)=0 op
;f;:'{:]::'rfr:?xuﬁ:r}nn:y{r of L(¥)= fon I has the form
| y=c¢ +":¢z+l}"p
which can be determined uniquely.

Since every solution of (3.23) has the form (3.26). we refer to (3.26). as
the general solution of (3.23). According tﬂ.Thw"’m I “’Iﬁ“.d any solutiop
of (3_33), we need only find two lincarly independent sotulions ¢, fﬁ_z of
L(¥)=0 and some particular solution ¥, of L(y)=/, and then use the given
initial conditions to determine ¢, and ¢,
Proof of Theorem 1. Since ¥, is a solution of (3.23} on /, we have L!l,bp} =¥
for all 1 on /. Since ¥ is also to be a solution of (3.23) on [, we have, using the

(3.26)

where c,. ¢, are constanis

linearity of L,
Ly -y,)=LW)-LW,)=f-/=0.
This shows that i —y,, is a solution of the homogeneous equation L(y)=0

on /. (Recall that this much of the proof was already established in Section
3.2 property ii). Therefore, by Theorem 5, Section 3.3, there exist unique

constants ¢,, ¢, such that
U—=y,=c ¢, +20; forallton [

which completes the proof. |

The nth-order linear nonhomogeneous equation (3.24) can be treated
in the same way, and Theorem | has the following analog.

Theorem 2. Suppose ), is some particular solution of L,(v)=f on I, and
suppose that ¢y, ¢,. ..., ¢, aren linearly independent solutions of L, (y)=0on .

Then every solution  of L,(y)=f on I has the form
Ip:fl'd’l +r2¢2 s +fu¢n+¢p

where c,, c,, ..., c, are constants which can be determined uniguely.

Exercises

1. Prove Theorem 2.

2. Compare Theorem 2 in the case n=1| with (he results of Section 1.4, in
particular with Theorem 1, Section | 4.

We shall now study some methods for finding a particular solution of the
equation L(y)=/for L,(y)=/.
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The Method of Variation of Constants

This general method for finding a particular solution is applicable whenever

onc knows the general solution of the associated homogencous equation
L(»)=0 or of LH{J’)=Q on /. We begin with the second-order case.

LeL gy, be two lincarly independent solutions of L(y)=0 on /. (These
may cither be given (o us or in some instances we can find them by one of

the methods already studied.) The method consists of finding functions u,. u,
such that the function

Vo=t +uyd, (3.27)

will be forced to satisfy the equation L(y)=f for all 1 on I. It is remark-
able that such a simple device works, because when u, and u, are constants
the function (3.27) satisfies L(y)=0 and thus cannot be a solution of L(y)=/
for f#0. It 1s of course not obvious that such functions u,, u, can be found.
We first argue in reverse; suppose we have found functions u,. u, such that
(3.27) satisfies L(y)=/on /. Then we have, for all 7 on /,

(1) +uaghs) =1, ) +uypy + i, +ureh,,
(100, +1028:) =y 8+ 103 + 20,8, + 2063 + i b, + 130
and using L(¢,)=L(¢,)=0 we obtain

L(uygy +uydy)=u L) +uy L)+ ao(d e +¢au)
+2a0 (@4} + Pyus) +a, (P 1) + Piu0a)
=ag[(f 1] + daus) + 2(P) 1) + Pou)]

+ay(p,uy +dus)=f
for all r on I. We would now like to obtain two relations from which to
determine the two functions u,. u,. We note that if ¢,u| +¢,u5=0 for all
on [ then also (¢,u)+¢,us) =0 for all t on I. But (¢,u) + 1) = u}
+ hous + 1y + Pius. Therefore, if we assume

) + Pyt =0 (3-28)

for all 1 on /, then the requirement

ag [(@ 1] + @au3)+ 2y + Poun)] +a, (1) +oua) =/

implies, on using (3.28) and the equation obtained by differentiating (3.28).
that we must also have, since (3.28) implies that ¢ uy+d,u; +dju;
+ ¢psu; =0, ]

¢uy + ¢, =£ (3.29)

do
for all r on /. Thus the assumption of the existence of a solution of the
form (3.27) of the equation L(y)=/ has led us to the two equations (3.28),

(3.29) from which we hope to determine u), u, and then the functions
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Uy, wy 1o sausfy equalions 13--5]' (
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i find two funetions
=1y Fitathy will

. that if weed
iy But now reversing the argument We 3¢

3.29), then indeed ¥,

satisfy L(v)=fon [ : : )= f. we may thereflore

To ﬁll:ld.};l particular solution of the equitlio™ Ild'l:r‘:t;j'!rl':‘l'E':hmig equations
concentrate on equations (3.28). (3.29) s aIm‘rl;:~c:n:::f\’{u:i+;:nls is Wipy. &,).
for the quantities u} . w; and the determinant of thel is linearly independent
Since the solutions ¢, : ¢, of L(y)=0are by hypothesis ine

. : 1 (Theorem 2. Section 31.3)
on /. it follows that W (¢é,. ) (1)#0 for all r-.::lntht{tl'ffﬂl'ﬂ e ulways solved

and the system ((3.28). (3.29)) of E‘-?I“ﬂi“f“ £ 3 =
{in fact uniquely) for the qum““icﬁ iy "::n By E;:;m;r s rule mPPEHdII ).
the solution of the algebraic equations (3.28). (3.29)1

L =i u',=~—-:'r¢—-—-—' ~ronl.
"ﬂnw—{‘i’h{bz]‘ 2 ”u“’[d}:-‘?‘:]

i
Thus a possible choice for u. 1y 15

" 9 sl NG
th}:_J. AGLH ds n:{f}—‘[ﬂﬂ[s] w{rp,.:p:]{s]d

dols) W (. d2)(5)

i
o L

for any 1y, ¢ in /. where we have taken the constant of integration to be
zero. Substituting in (3.27), we find that

. :_i'- (s) [¢2 (1) &5} - ¢, (1) ¢ (s1] ofi 3.30
me_.l. ap(s) Wiy, ) (5) ‘ =9

Io
is a solution of L{y)=f on I, as may be verified by direct substitution. We
have thus sketched the derivation ol the following important result,

Theorem 3. Let &, ¢y be any nwa linearly independent solutions of the equa-
lion

L{y)=ao(t) )" +a, (1) ¥’ +a, (1) y=0,

where ag. a,. a, are continuous functions on some interval L and ag(1)#0on 1.
Then a particular solwtion  of L(y)= /. where fis continnous on 1, is given by
Eqg. (3.30),

Equation (3.30) 15 usuvally called the variation-of-constams formmla,
The reason for this name 1s clear from the method. Although the condition
expressed by Eq. (3.28) is artificial, the fact that we can solve the problem
using it justifies i, and this is actually the essence of the method. This
method of finding a particular solution of L{y)= fcan be used whenever the
coeflicients dg, ay. @y in L and the function fare continuous on f and iy #
on 7, and whenever one knows the general solution of the associnted homo-
gencous cquation. Itis not restricted to equations with constant cocflicients.

e T

e gy i T S T B 3
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Excreise

3. Prove Theorem 3 by di

g irect sy
L{¥)=[on I [ Hing: Write ¥y in the form the Tunction ¥, wiven by (3,30} into

dr,{rlza:-,{r]I T é,(s) '

e pre— f B — :
a9(3) W($,. 63 ) "’""[ e s

In
L]
before beginning the ﬁiﬂ'crcnliuliun.]

Example 1. Find the genera) solution of the equation ¥
¥ +y=tany, ~<i<s
FeisE

Since, by Section 3.4, b, (1) =cos 1, &

- 3 alth=sin 1 are lincarly i .
¥"+y=0on any interval, they are i arly indcpendent solutions of

nearly independent on —%/2 <1< n/2: in fact

Wig, o) (1)=|""" ‘“"I\E..

—&in | cos

Instead of memorizing Theorem 3. it is simpler to remember the key sieps of the
method. By what we have just seen. y,=u, cosr+u, sins will be u solution of

Yit+y=tanton —n/2<t<=z/2 if and only if the functions u, and u, arc such that
uy. ity salisly Eqs. (3.28), (3.29), that is, if and only if

uy cosf+uysint=0 "
.o ——<I<=
— Uy sinf+u; cost=lant 2 £
Thus
; : sinfr 1 —cos*t
ty )= —tanit sint = - =— =Cosl—secl
cos ! cos!
: X x
Wy(f)=cosrlanr=sint,  —s<t<3,

and we may take

My [zjsj (cosr—sect) di, u:{r]:l sint dr
o v

or b

R
wy (1) =sint —log lsect+tantl,  wgl)=—cost,  —F=i=s.

; l

Therefore, by Theorem 1, every solution of "+
plt)=c, cosi+e; sint —cost log Jsect +tant]

i " i i“'ld- (ST
for some unique choice of the constants ¢
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1 i: ) . pLanE.
Exercises ¢ ihe following differential cquit i
R

4, Find the general solution of cacl
al p A r=secs, - P T T
b) " dy + Ay - cos N _ erval
: - : j% any continuous function on s0ME n
y d) _I'"‘-'-ll-_-|-‘+4_'l':l= i eyt aand o “}: fisa 3ﬂ1ll|'il:'lr| af the
A oS, given LRl st W
&) vo+{1/4r2) o= fi), (1= 0} fcontind
homogeneous cquation, i
. 1 i e p e 0
. Given that & is a solution of the ":"'-tl.il-"“':"“ ! +ﬂ " o, show that ¢4
siant different from zero and fis CONMINIGLS for 0= .

be chosen o that
1
2 3i L sinkir= s
dr]=¢, mﬂ;u%‘ sm.ﬂ-r+; j sin kit =5} (5]
2

where & is a real con-
;|.n1_‘| 3 Gl

[ i ; 11 =et af solutions of the
for 0<t<m, (Use cos &r and sin ik as 3 fundamen i
s i formula in the cise k=10

homopeneous equation.) Find an anilogous

6. Given the equalion
¥+ Sy -y S,

use the variation-af-constants formula and Theorem [ 10 prove that:
hal is, there exists a constnt Af =0 such that [f{r)

a) If fis bounded on 0=<r< o (1 :
'l £ Sy +dp=flr) is hounded on

< M on 0<¢<oo), then every selution ©

D<o,
b} If alsa f{1)=0 as r—oo, then cvery sojution ¢ of ¥"+ 50" +4r

a[#)— 0 as -0,
* 7. Can vou formulate Exercise 6 [or the general equation

il :ﬂ: conslant

= fl1) satishes

¥y +agy=fth

with a,. @, suitably restricled?

The method of variation of constants and Theorem 2 are applicable
to the ath-order equation L, (v)=fwith coefficients ap, a,,... a,, feonlinuous
and a,(f)#0 on some interval [ provided ane knows n linearly independent
sofutions @y, d,, ..., ¢, of the homogeneous equation L (r)=0 on I. Using
the second-order case for motivation, we try to find »# functions uy, u,, ..., 1,

net all constant, so thal
W=t iy +iiyd, + e,

will be a solution of L(y)=f on I If (see the second-order case)
H;':ﬁ] +H_I!'|;‘I-'I+...+p;¢l=ﬂ on -r. t]'I.EI'I ri!rll’=”|¢1+h'+-”q¢:‘ on ‘[ and if'




[ " 1-":_: j
Al . P =
Hinear Somhomog e Vaatioms 0 oy %

T

manner we lind thay §f Iy, o
¥ t. iw

algebraic equations gp | Mo are chosen 1o salinfy

the system of lincar
u?¢[+ff1¢|-] -!r.,._l,_ulﬂli; l:[.
Wiy +udyd Frchild.  on
b} I'_=’+Hr:'f":"_1:'+-.-.|.ua#:—u=n. et
1y ehlp = 1

+H’i¢'l1"_1:l+‘_.+ulq¢lq.—1|= j

iy
then the function

Wa=udh, FHyhat o g,
will satisly L {¥)=fon /.

, MNole that the dcttrmipunt of cocfficients of the system of equations (3.31)
is Wid;.¢s...., ). which is different from zero for cvery | in [ since
thye tfz.-o0 oy are lincarly independem solutions of Lvi=0on [

Exercise

* B Verily that the function ¢ =ud,+u,d; +uyd, is a solution of Ly{y¥)=/on L
[Hinr: Solve (3.31) by Cramer’s rule and integrate 10 find u,, us. uy.]

Thus the entire problem is reduced to solving the algebraic system
(3.31). Since iis determinant of coefficients is Wi{p,. ¢,...., §,). and wince
the solutions ¢..... ¢, of L(¥)=0 on [ are lincarly independent on /.
Wit y...., $()#0 for + on [ and (3.31) always has a unique solution for
the quantities u}..... w, on 1. In fact, letting W (1) be the a by # d:terminapl
having the same elements as W{d,,.... ¢,) (f) except with (0.0,..., 1} as us
jth column, we see that Cramer's rule (Appendix 1) gives

AU A
e van R

The u; are obtained by integration. 50 that

3 Wi Sl
ﬂfp[f}=2 ¢;{r}j Wi ¢,.-J--. PRYETRE ds, | 1?..3.1]
J=1

o S

nd ¢ are any two points of /. . .
Whii:: E‘:?a::-e therefore ::,kﬂch:d the derivation of the [ollowing result, which

generalizes Theorem 3. |

Theorem 4. Let . 2 ¢, be n linearly independent solutions of the equat-
COFE . 1% wrasn e

rion

— o ——




CHAPTER 4

Linear Systems of
Differential Equations

stems of linear differential

In this chapter we will study the theory Of's)’ : ] s
equations, together with an outline of the basic theory of nonlinear systen

at the end of the chapter. As we shall see presently, malhe"‘m[_'czls':;oﬂilds
of physical systems somewhat more compllcat-ed lhan- lhosclmt .ca]g i
in Chapters 1, 2, 3 (motion of several interacting parucles.1e ectri ik
works, population problems involving more than one Specics, etc.) o
lead to systems of more than one differential equation. Such systems can
be reduced in most instances to linear systems of ﬁ.rsi-ordcr differential
equations with the aid of certain simplifying assumptions. To study these
linear systems, we shall make usc of linear algebra (_veclqr spaces and
matrix algebra). As a very special case of every result obtained in ‘lhlS chaq:er
we will obtain a corresponding result for a scalar linear differential equation
of second (or higher) order, such as those studied in Chapter 3. Thus students
Samiliar with linear algebra can study this development directly and omit

Chapter 3.

4.1 INTRODUCTION

We shall consider sysrems of first-order linear differential equations of the
form

Yi=ay () yi+ay,(f) y, + et ag,(t) v+, (1)
Ya=ay (1) y; +a,,(t) y, t ot a,,(t) y,+9, (1) (4.1)

Yan=0n (1) Y1+ a3 (1) y5+ - +au (1) yotga (1),

where the given functions a;(r), where i, j=1,...n and g:(1). where
i=1,..., n, are continuous on some fixed interva] & Unless men;io;ied spe-
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4.1

cifically otherwise the

where p(r) and q(r) are given function 82
Sy;;tem (4.1) is linear in ; s.
equation y'=2y? j V2., ¥, and Y1 Vi

of " : s++s Yo The scalar
much more complicated equati A nonlinear differentia]

_ equation. These
N not be considered in this chapter:
Chapter 1. niinear equations have been studied in

Example 1. Consider the system

Yi=w —Iy; 4+ ¢
1=ty Ly, (43)
=yt v -y 4267,
where £ is the'real line, (1] e <100 - Here, n=3, and in the notation of (6.1)

nl)=¢
axn(f)=-1 g,()=0
ayy ()= -1 gi(t)=2¢"".

| 0
A(l)={r’ 0 —1}. (44)
L 1 =i

A(r) is a matrix whose entries are functions. The properties of matrix addition,

multiplication by scalars, and matrix multiplication with constant entries also hold

for matrices whose entries are functions defined on a common interval #. Let y and y'
be the column vectors

Wi r Vi
y=1r2|, ¥= }":‘-
Yal... LY

¢
g()=] 0 |. (4.5)
2e”".
Then, observing that matrix vector multiplication of A(f) and y gives
=ty
A(r)y{ Yy =3
nt¥e—
we see that system (4.3) may be represented conveniently in the matrix vector form
y=A(1) y+g(0),
where A(f) and g(r) are given respectively by (4.4) and (4.5)-

ay, (=1 ag ()=~ ay(f)=0
a ()=r? az(1)=0
ay (=1 ay,()=1

Consider now the array

and let g(r) be the vector
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, the 7 x n matrix
Returning (o the general case of system (4.1), we definc

() apa(t) - aya(t)
A({)= :21(” a!?(r) " ﬂ:,:!(f) ] (46)
ay (1) () - aum(0)

. ; i j=1,..., n. Next, define the
whose entries are the #? functions a,;(1). where 1, j=1,...,

vectors g(z). v, y' by the relations
9, (1) 1y

s={ 20, ¥ P2, vl ). -
gnl?) n Vn
Then the system (4.1) can be written in the form
y'=A{)y+e(). (4.8)

Exercise
1. Given the system
Yi=y,+cost
{.r‘: =)
Define the matrix A(r) and the vectors y. ¥, g(r), and write this system in the
form (4.8).

Before proceeding with the definition of a $olution and a discussion of
the system (4.8), we need the following definitions.

Definition 1. A matrix (such as A (#)) or a vector (such as g(r)) is continuous
on an interval # if and only if each of its entries is a continuous Junction at each
point of 5.

Definition 2. An nxn marrix B(1) or a vector u(f) with n components, de-
Jfined on an interval 5 and given respectively by

byy(t) byy(r) - bya(?) uy (¢)
B(1)= bzl.:(f) bz:;(f) bzz(f] . u()= ”25(3} ’
bnl (I) bn.'z “) e bnﬂ (f) u, (f)

is differentiable on 5 if and oni v if each of its entries is differentiable at ever y
point of F. Their derivatives are given by

Ba() bal) b0 G0
.B'(f)= bll:(f) b22(r) biln.(f) , I.I’(f)= ”:".:(t)

?

b bal) -y b0 (1)
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respectively. Similarly, the matrix B(1) or the vector u(t) is integrable on an

interval (c, d) if and only if each of its entries is integrable on the interval (c, d)
Their integrals are given by

LS

by, (1) dt by, (1) dt

d

B(r) di= "n(')df jbumd:

——

d . d d :
J b, (¢) dt [ bo(t)dt - I b..(t) dt
I_ [4 (4 [

]"(f] | | w0

Exercises
u‘/ 2. Evaluate the derivatives of each of the following vectors or matrices:

[ e q
a) B[r)=[sint 0 cost for—oo<t<om.
7 1

b) B(‘)=[ cost sim]

for—am<i<om.
—sint  cost

¢ B(n)= [Ze" {2!+1)82‘] for—o<t<oo.

logt
d) u[t}=[ t logt l for 0<t<oo (and where logt is the natural
t* logt logarithm of 1).




