IH

complex nx 1 matrix A(r) is continuous on an Mteryq)

em 1. If the .
?T;r:n the solutions of the system
: y=A(Y (4‘24}

on f form @ vector space V of dimension 1 over the complex numbers.
In view of the remarks preced
cant that, according 10 Theorem
(o find a finite number of solutions.
vector space V.
Proof of Theorem 1. We have already established that the solutisms form
a vector space V over the complex numbers. To e.st:flbhsh thE.lt the dlmf:nsi.;;,n
of Vis n. we need to construct a basis for ¥ consisting of # linearly indepep,.
dent vectors in V, that is, of n linearly independent solutions of (4.24) o -
We proceed as follows. Let f, be any point of # and let 6,, @5, ..., o, be -
n linearly independent points (vectors) in complex Euclidean n-space, (for
example, e, e,, ..., €,

ing the statement of tl_-n: theorem, it jg signifi.
1, to find any solution of (4.24) j Suffices

namely, a set that forms a basis fo, the

(L]
I
i

«jth row

0

are obviously n such vectors.) By Theorem I, Section 4.2, the system (4.24)

possesses i solutiops by, ¢,,_. -+ §,. each of which exists on the entire interval
. and each solution 9; satisfies the initial condition

o;{ta)=0;, j=1,2....n. (4.25)

2.-.., §,, are linearly independent on
ation of linear combinations of vector

function i :
S. but with scalar (constant) coefficients. Suppose there exist complex

constanis ay, a,,..., a,, such that

a9, (0)+ay,(1)+ vt a,0,(0)=0 for every t on £,

In particular, putting ;= '

» PULling 1=1,, and using the initial conditions (4.25), we have
| “1Gt+“zﬁz+"‘+an°'n=0-
.BL: this implies that @1, 4y,..., a, are all zero be
independence of the givep vectors ¢, ¢ .-

1» ¥2,.

linearly independent op & :

se of the assumed linear
fuy U',,- Thus* ¢ll ¢2v"'9 ¢ﬂ are

© complete the proof
We must show that these » linearly independent

SEEP———————



4.3

: that ; :
W (1) of (4.24) can be expr 15, they have the Property

essed as g linear inati
¢y, G20 ©a. We proceed a5 follows, Com;::: t:Ln:t::ll:;

I,I‘ at ro and lt:l ¢(19)= o Si-l-“:t lhe
for complex Euclidean n-space, there exi .

) [ c
such that the constant vector 4 . Xisl unique co

that any solution
of the solutions
¢ of the solution

m"a'nts c‘! CI' weeyg €

Ty +fz“1+'--+c_u_.
Now, consider the vector

=101 4200+ - 4 . (1).
Clearly, ¢(¢) is a solution of (4.24) on s Why? Pr _ '
initial value of ¢ is (using 4.25) (Why? Prove this.) Moreover, the

d(to)=c,6, t60,+--+¢,0,=a.

Therefore, ¢(¢) and (i) are both solutions of (4.24) on # with &(to)=(ro)
=o. Thus, by the uniqueness part of Theorem 1. Section 4.2, ()= () for

every r on.#, and the solution () is expressed as the unique linear combina-
tion

‘|-'(f)=f‘l¢'1[f)+fz¢z(f)+--~+cu¢,,{t) foreveryrons.  (4.26)

Exercise

1. Show that this expression of Y (r) as a linear combination ofd(1)..... §,(r)is unique.
[Hint: Assume Y(1)=d, ¢, (1)+ - +d, $.(r) in addition to (4.26) and show that
dj=c;, where j=1,...,n.]

Thus, we have shown that the solutions ¢,, é,, ..., &, of (4.24) span the
vector space V. Since they are also linearly independent, they form a basis
for the solution space ¥, and the dimension of V is n. This completes the
proof of Theorem 1. |

We often say that the linearly independent solutions ¢,._.... ¢, form a
Jundamental set of solutions. There are clearly infinitely many different funda'-
mental sets of solutions of (4.24). namely, one corresponding to every basis
Gy,..., 6, of Euclidean n-space.

Exercise

2. Prove the following analog of Theorem 1 fo‘l' systems with real coeﬁ':C!.ﬂlllS: !f_ll::;_
real nxn matrix A(f) is continuous on an interval #, then the ;a- aE) i}]:l:?n;ms
(4.16) on  form a vector space of dimension n ovet the real mlxm tl':a hemj
is not a trick question; just check that the proof of Theorem 1 app :

When we wish to apply Theorem 1, it is useful to m‘util: Ihcde m?i:i::ig;
following manner: The system (4.24) possessesn linearly independen



[quations
Iu S‘mdnm'ﬂﬂﬁllw

bin;;rian of those n solutions. In pracﬁcc_ this
nv manner, n solutions of (4.24) and show

" re lincarly independent. We shall devote considcrat_ﬂe altention g
:E{“ 'I:c : a*ri':snl]‘::v:r:s'later i, this chapter. Unfortunately even in special cqge,
1S 1N § S ",
his is :l:)?a trivial problem, because there does not exist a procedure fq,
il space Vin the completely general case.

finding a basis for the solution :
We now apply Theorem | 10 the scalar linear homogeneous second-orde,

differential equation

on the interval J. Moreover,

pressed as @ wnique lincar mn!
means that it suffices to find. In @

¥ +pl)y +q(1) y=0, (4'27)
where p and g are continuous functions on the interval 5.

Corollary I to Theorem 1. Let p and q be continuous on the interval g
Then equation (4.27) possesses two linearly independent solutions s, (1), (t) on
the interval 5. Moreover, if Y(1) is any solution of (4.27) on &, then theye
exist unique consiants c,, ¢, such that

V(t)=c, ¥, (t)+c,¥,(t) foreverytin.s.

Proof. By the method of Example 6, Section 4.1, the scalar equation (4.27)
1s equivalent to the linear system

}“':: 0 l She yl
—al) —p(0 |¥* y—[h}. (4.28)

which is a special case of (4 24). By Theorem I, the ' i

| [(4.24) » there exist two linearly

;?STWIP(T‘:;; (vector) solutions ¢, (1), $. (1) of (4.23) such that every solution
of (4.28) has the form ¢(r)=c,¢,{r)+c2¢;,(r). By the equivalence of

(4.27) and (4.28),
_[ %) W

Thus. ¢, (1) + c,,(1)=0 on # Se_n Wi 0+ ey (1) =0 for every ¢ in S,
on J. ¢;=0, c,=0. Therefore nce &, (1), ¢, (1) are linearly independent
€ ¥1() and Y2(1) are linearly independent

on £. Also, every solution () :
i3 of (4.27
ponding vector solutiopn ¢[r]( of 1}£ )is the first component of the corres-

D) =,01 1)+ c2(0), (1) hae theer:z;ti,n;rfiisils(i;‘iidi 10 has he for
1 2¥2\1).
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llary 2 10 Theorem 1. [¢ Pis....p, be : _
g_"‘:;:: (he differential equation Continuous on the interval §.

Y4y (1) yr- v 4 -+ p,(1) y=0

pssesses n linearly f"d"Pe"f"e”’ solutions y, (),.... V.(t) on the interval 5
Moreover, if (1) is any solution of (4.29) 0n #, then there exist unique ronsrm:.;
£1y-res Cn SUCh that 'H‘]=f|¢’l(f)+fz¢'z(f}+'--+c,\&.(r).

(4.29)

Exercise

3. Prove Corollary 2 to Theorem 1.

We can interpret Theorem | in a different and useful way. A matrix of n
rows whose columns are solutions of (4.24) is called a sofurion matrix. Now,
if we form an n x n matrix using # linearly independent solutions as columas,
we will have a solution matrix on . and also its columns will be linearly
independent on . A solution matrix whose columns are linearly indepen-
dent on . is called a fundamental matrix for (4.24) on #.... Let us denote
the fundamental matrix formed from the solutions ¢1. ,,..., &, as columns
by @. Then the statement that every solution Y is the linear combination
(4.26) for some unique choice of the constants ¢, ..., ¢, is simply that

V(t)=2(r)c, (4.30)
where @ is the fundamental matrix constructed above and ¢ is the column

vector with components c,, ..., ¢,. (The vector ®() ¢ is obtained by forming
the linear combination of columns of @ () with €}, ..., @5 coefficients.) It

| is clear that if ¢ is any other fundamental matrix of (4.24) in .#, then the above
solution { can be expressed as

VY()=®()é foreverytons
for a suitably chosen constant vector €. Clearly, every solution of (4.24) on .
can be expressed in this form by using any fundamental matrix.
We see from the discussion above that to find any solution of (4.24) we
need to find a fundamental matrix. A natural question, then, is the following.
Suppose we have found a solution matrix of (4.24) on some interval #; can

We test in some simple way whether this solution matrix is a fundamental
matrix? The answer is contained in the following result.

Theorem 2. A solution mairix &(1) of
deiilil (4.24)

is a fundamental matrix if and only if det ®(1)#0 for everv t in . Further,
if det @(10)#0 for some to in S, then det ®(1)#0 for all t in 5. (By det @(1)
We mean the determinant of the matrix #().)

] Proof. 1f det ®(1)#0 for every 1 in #, then the columns of the solution

B
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matrix &(¢) are linearly independent on f. For suppose there exist Constantg

Cy..... ¢, Such that
Ctd’l(’)"‘fzd’z{‘)"'"‘+Cn¢'n(’)=0
where &, (1)..... $, (1) are the columns of @(r). This can be written ip the

forevery tin 5,

form '
®(1)c=0 foreverytin S,

11

Fix r at t=1, in #. Then ®(15) €=0 is a system of n algebraic equations
for the n unknowns Cseees €& Since det D(10)#0, ¢, =0, ¢,=0,.. .. ¢, =0
by Cramer’s rule. This proves that the columns

b1 (0)..-.. da(t)

are linearly independent: hence ®(¢) is a fundamental matrix on &,
Conversely, suppose ®(¢) is a fundamental matrix of (4.24) on #. Let
¢ () be a solution of (4.24) on J. By Eq. (4.30), there exists a unique vector
¢ such that ¢(r)=d(s) ¢ for every 1 in 4. Fix t, in #; then, in fact, the
constant vector ¢ is uniquely determined by solving the algebraic system
®(10) x=0(1,). Since this algebraic system has a unique solution for each
right-hand side ¢ (z,), the coefficient matrix ®(r), has rank n. Hence D(1o) is
nonsingular, and therefore, det D(10)#0. This is true for each fixed foin S,
and therefore det ®(r)0 for each 7 in J. It may appear that the vector ¢
depends on the choice of to- However, it does not for the following reason.
Since ¢ (1)=® (1) ¢ for every 1 in J, it #1,in S, then ¢(1,)=®(t,) c. Thus,
the unique solution of the algebraic system ®(1;) x=¢(r,) is the same vector
c obtained as the unique solution of the algebraic system D(10) x=0(1,).
Finally, if det &(1,)#0 for some foin S, let 6, =¢,(1,), ... ¢, =,(o)
The vectorsa,. ..., g, are linearly independent, and therefore form a basis for
Euclidean n-space. We claim that the solutions ¢, (1), ..., ¢,(¢) are linearly
independent on #; for if not, there exist scalars €1y €34..., ¢, not all zero

such that

where

101 (1) +¢20: () + - +¢,¢,()=0 on .

Putting r=1,, we obtain

€101 +C20,+-- 4 ¢,0,=0
which contradicts.the linear independence of G1-.., 6,. Hence, &(1) is a
fundamental matrix of (4.24). Therefore, by the second part of the proof,
det #(1)#0 for every rin .7, |
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der is warned that a matrix ma

The rea
terval, although its column

: y have i : e
g4ero 0N some In ts determinant identically

s are linearly independent. Indeed

1.0 12
000

carly det &(1)=0, —oo<r<oo, and yet the column i
: / ; s are |
dent. This, according to Theorem 2, cannot happen for so?utliz;:r:::'

let

Theﬂ cl
indepen
(4.24)-

gxample 1. Show that

I (e
db(:)_[ 0 e']
fundamental matrix for the system

1 1 ;
= . where =]

We first show that (1) is a solution matrix. Let &, (1) denote the first column of ®(1)y

o {31 oo

if ¢, (1) denotes the second column of ®(r), we have

isa

then

for — o0 <t<oo. Similarly,

w24 DIEHE oo

for — oo <1< oo. Therefore, @()=[1 (). $: (1)] is a solution matrix for —oo<1<c0.
By Theorem 2, since det #(f)=¢'#0, (1) isa fundamental matrix for —a0 <1<
By Theorem 2 also, it is enough to compute det ®(1) at one point, for instance 1=0.

Since ®(0)=1, this gives det ¢(0)=1#0.

Exercises
4. Show, with the aid of Theorem 2, that
cost sinf
— sinf  cost
is a fundamental matrix for the system y'=Ay, where

01
A=l _y of
5. Show, with the aid of Theorem 2, that
[ exp(ryf) expl(r 2'}]

r, exp(rit) T2 exp(r)




atial tions

' = Ay, where
is a fundamental matrix for the system ¥'=AY

0 1]
A=|:-d2 =1 ’

: G B - -

dry, r; are the distinct roots of the quadratic equation 2 +a,2+a,=0. (We shal|
.:n r;li.n: tion 5.3, Exercise 1, how to construct this fundamental matrix.)
ca SC'C oy ¥

Corollary I to Theorem 2. If ®(1) is a fundamental ma{r:’x of y'=A (1] Y on
an interval 5 and if Ce # ,, is a nonsingular constant matrix, then ¢ (1) Cisalso
a fundamental matrix of y'=A(f)y on S .

Proof. Let ®(1)= [¢:(2). d:(0)..... &,(1)]. Then the co.lumns 'nf. 45_(1} C
are linear combinations of the columns of ®(r) (by matrix mulluphcatmn),
Since the columns of & (r) are solutions, ®(1) Cis a solution matrix on.f. B‘.n
det &(r) C=det &(1) det C. By Theorem 2, det @(1)#0 on .#, and since C is

nonsingular, det C#0. Thus, det ®(f) C# 0on S and, again by Theorem 2,
®(1) Cis a fundamental matrix on J. 1

Exercise

6. Show that Ce(r), where C js a conslant

matrix and @(r) is a fundamental matrix,
need not be a solution matrix Y=A()y

The converse of Corollary 1 is also trye,

Corollary 2 to Theorem 2. If &(1) and ¥ (1) are two Jundamental matrices of
Y'=A(1)Y on S, then there

exists a nonsingular constant matrix C such that
Y(t)=®(r) Con s.

Proof. Letting ¥; be the jth column of ¥, we see from (4.30) that Y;=dc,
J=1..,n w 1

constant vectors. Therefore, if we define

columns are the vectors ¢ pI=1,..., n we
have at once that P(t)=d(1) C for CVEry t on .. Since
det ¥ (1) =det P(1) detC
and since det @ and det are both differeny from zero on s (why?), we
also have det C#0 so that C is a nons

ingular constant matrix, |
Exercises

7. a) Show that

q:a(4t}=|:'[zlr ‘l]
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is a fundamental matrix for (he system Y"‘-'f(!)y "
= ' W Te

01
A[l): =2 2]

£ 1
on any interval # not including the origin.

b) Does the fact that det #(0)=0 contradict Theorem 79

t if a real homogeneoy
§. Show tha : S system of two .
fundamental matrix first-order equations has 2

0| ]

then 0

cost sint

—sint  cost
is also a fundamental matrix. Can you find another real fundamental matrix?
[Hint: Let ®(t)=[d,(1). d,(r).] Show that R, (1) and R, (1) are solutions of
y'=Ay, A real, where & is the real part. By the real part of a vector we mean,

of course, the real part of each component. A similar result holds for the
imaginary parts of ¢, (1) and ¢, ().]

We shall now apply Theorem 2 to the scalar linear homogeneous second-
order equation

y'+p(t) ¥ +4(r) y=0, (4.27)

where p and g are continuous functions on a given interval #. As we have
seen in the proof of Corollary 1 to Theorem 1, (4.27) is equivalent to the

system
| 0 1 || 48
y)"[—q(f) —p(f)]y’ ’ [.v:] 2

If #(¢) is a solution matrix of (4.28) on %, then ®(t)=[®; (1). ¢(1)], where

V(1)
o= 3100 ¢_;tr}=[¢;(,)]
With ¥, (1), ¥, (1) solutions of the scalar equation (4.27). By Theorem 2, (i)
'S a fundamental matrix of (4.28) on f if and only if

det & (1) =det [:g; Eg gz E:ﬂ 40 fortinS.

the
This determinant is called the Wronskian of ¥, (1) and ¥ (1)- I:i‘;']sb; o)
Proof of Corollary 1 of Theorem 1, if det @(f)#0, then the so !
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i de it on S, und every
jon (4.27) are linearly mdf-l‘c'.“"' (0 and v, (1)
iz (1) of the scalar cqution K210 5 5 dombination of ¥ ( 2 7).

solution of (4.27) can be writien i :1““
This is one-hall of the following restit.

ions Wy, Wy of (4.27) on S are lnearly
Vronskian

NOR'A0
W [, (1), 2 (r)] = det [ﬁt fﬂ w';(f}]

Corollary 3 to Theorem 2. T“"” .m!m;
independent on S if and only {f their

is different from zero for all tin S |
Proof. We must still prove that if the solutions Wi, t,b;,‘ are Il.nc.urlyrr }ﬂd;:-
pendent on ., then their Wronskian is different from zero for L_VLI'% f 1|!1. ofF
Suppose there is at least one 7 on J such that IV.[WI{?}. W2 (1)) =0. (If no
such 7 exists, then there is nothing to prove.) Consider the algebraic system

ayry (7)+ a2 (f)=0

ay; () +axy (1) =0,
for the unknowns a,, a,. By the theory of linear homogencous algebraic
equations, this system has a nontrivial solution a,, a,, where a,, a, are not
both zero. Consider the function y(r)=a,y, (1)+ay,(1). Since (4.27) is
linear, y is a solution of (4.27) on .#, and ¥ (7)=0, y'(/)=0. By Corollary 1
to Theorem 1, Section 4.2, there is only one solution to the initial value
problem consisting of (4.27) together with the initial conditions y(1)=0,
V'()=0. Since the identically zero function is a solution of this initial value
problem, we conclude that y(f)=0 on .#. Therefore, aypy (1)+ayup,(1)=0
lor every ¢ in . Since a,, a, are not both zero, W, and ¥, are linearly
dependent on . Thus, if ¢, and ¢, are lincarly independent on .#, there
can be no such 7, and W[y, (1), y,(1)] #0 for every rin .J. |

By Corollary I to Theorem | cvery solution of equation (4.27) on . has
the form ¢, , + ¢,y for some unique choice of the constants ¢y, ¢,5. For this
reason a pair of linearly independent solutions, such as Wy, s, of Eq (4.27)
are said to form a fundamental set of solutions, B o

Exercises

9. Show that e*, e~ * are linearly independent solutions of y"—d4y=0op —0<i<m

10. Show that ™" cos , /312, =112 sin /3 i
Ly {2 . i g
Y'+Y +y=00n —w<r<ep, V302 are linearly independent solutions of

P | - . i ;
WhqShoi that g7, ye' ifg linearly independen; solutions of -4

v SR s o 2“,1+y=0 -

12. Show that sin 1%, cos 1 are Jinear]y ;
s ¥ independent so)y; "
O<t<w or —ww<1<0. Show that Wisin 12, i 11}0“5 of ty"—y +4ry=0 on
not contradict Corollary 3 of Theorem 29 0)=o. Why does this fact
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| lnveny Ilmmmtmuﬂjﬂm L

13, 0) Let hyo tha e any wo solutions o yome Intervy| ¢
- iy (1) 1y =0, where g, iy e continuoy f. :

the Wronskian Wby, o) (1) satisfie the ent-order linear ey il
! el equation

w-_.“"lm W % TORY B
T R B i

of L{y)=ayf1) )
; Yt
Hiul At} 40 an ¢ . !ihm:f IL:I

[Hint:

. oy
W', th) '(”"LM Ef::: iii:;‘ = (ehyeh =) = = ithy.

Now, use the fact that g, b, are solutions of £(y)=0 on £ 10 replice
¢y and (b3 by terms involving dy, i, ¢y, 5. If y5T Men collect terms you
should get Eq. (*).]

-~ 'h] By solving (*). derive Abel's fornudu:

L~

a (s
WWH-‘l":l}[‘]:W(‘f’l-‘l":}t'n)“l‘(—J.“l'('lJ'i).
agl)
for 1o, f on #. This gives another way of secing that if the Wronskian is
different from zero at one point, then it is never zero.
14. State the analog of Corollary 3 10 Theorem 2 for the lincar third-order
differential equation
L L) =aolt) y e () () ¥ +aslt) y=0.

- ’ H — h
15. Show that ¢, cos ¢, sin I are linearly independent solutions on — @ </<®W of the

differential equation y" —y"+)' = y=0.
16. Show that

- tlm
| ¢,lrl='+z 77356 (m—1) (Bn)
m=1
— r.!-n*l
#0=1+ ) s
m=1

nterval — 0 <1< {Here

ofyf=ty=00n fhe: and ¢, are solutions of

are lincarly independent solutions y becn shown that ¢,

you may assume that it has alread

¥ ~1y=0, but how could you verify this?) log of Corollary
- i a
By a similar argument we can establish thtdfolI:wmg an
¥ er n.
3 to Theorem 2 for the scalar equation e W, onf of
fﬂmlpl|¢2,..l‘ [

Corollary 4 to Theorem 2. A sl of n solut (4.29)

=0|
Y 41 (0) ettt ltld
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] ﬂﬂd
5 ar s li i ndent on I if
W 4 P ¢ continuous on J. 15 l'!l'lfﬂl"_} fﬂtk’pf
G [ LT "

only if the Wronskian e (0
(1) A0 ;

W0 O] =det | V10 V2
OBt O R 2 U

is different from zero for every t on 5.

: is said to form a
A sct of n linearly independent solutions of Eq-l[d‘z.g) ]sg;:.g":ry 3 1o
Sundamental set of solutions (sce the remarks following
Theorem 2 in the second-order case).

Exercises

17. Prove Corollary 4 to Theorem 2. [Hint: Imitate the proof of Corollary 3 to
Theorem 2.] ) : : -
18. In each of the following, let ¢, (r) and ¢, (1) be solutions of the differential equation

L(y)=y"+p(t) ' +4(t) y=0
on some interval .#, where p and q are continuous on 7.

a) It ¢, (1)= $2(19)=0 for some 1, in #, show that the solutions ¢, and ¢, cannot
form a fundamental set of solutions on .f.

b) If the solutions ¢, and ¢ both have a maximum or minimum at some point
/1 n .2, show that ¢, and ¢ cannot torm a runaamental set of solutions on .7 .
¢) Let ¢, and ¢, form a fundamental set of solutions on .# which both have
an inflection point at some point £, in J. Show that p(t:)=q(r;)=0.
d) Let ¢, and ¢y form a fundamental set of solutions on . Show that
Vi=¢,+¢y, = $2—2¢, also form a fundamental set of solutions on .#.
19. a) Let ¢, and ¢, be solutions of L[‘I')‘—"'I"'—‘?I}"-ﬁ“f:—2)_!‘20 on the interval
—0<i<a, satisfying the initial conditions e()=1, ¢1(1)=4. ¢,(1)=3,

@2(1)=1. Are these solutions linearly independent on — o0 < 1< o0?Justify your
answer,

b) Show that y, (r)=exp () is a solution of the equation L(y)=0and find a second
lincarly independent solution On —ao <r<oo. [Hint: Look for g solution
ol the form Ya()=u() ¥, (1); substitute and find u(r) to make Vi ¥, linearly
independent solutions. )
¢) Find the solutions ¢, and ¢, in part (a).
20. Given that the equation

!J'"—{3r+l)_l."+2j'=0, >0
has a solution of the form & for some
find what ¢ must be: then find
Exercise 19(b).]

C ﬁnq the general svlytion. [Hint: Firg
a second linearly independent solution as in
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21. a) One solution of the cquation
Lb”"""""'}’i-(f’—i)

is t~""? sin 1. Find the general solutio
i, n of the equation L (y)=3/"2 & t
>0, [Hm!. Use the method suggested in E!’.cl"cisc I‘)(b) prg\-)igu;ly ]sm e
b) Repeat part (a) for the equation -

y=0, (>0

2ty (1 =41) ¥ + (2 - 1) y=¢.

! \ concrete examples, we advise that
he study the solution of linear scalar d;

: ! _ ' ifferential equations with constant
coeflicients as carried out in Sections 3.4 and 3.5. While this material is an

casy SP‘-‘Ciﬂl‘C“.S‘: of linear systems with constant coefficients, to be studied in
Chapter 5, it is, nevertheless, helpful to see the special case first.

4.4 LINEAR NONHOMOGENEOUS SYSTEMS

We now use the theory developed in Sections 4.2 and 4.3 to discuss the
form of solutions of the nonhomogeneous system

Y=A(1)y+g(r), (4.31)
where A(¢) is a given continuous matrix and g(¢) is a given continuous vector
on an interval 7. The entire development rests on the assumption that we can
find a fundamental matrix of the corresponding homogencous systemy’ = A ()y.
The vector g(r) is usually referred 1o as a forcing term because if (4.31)
describes a physical system, g(r) represents an external force. By Theorem 1,
Section 4.2, we know that given any point (1, n). & in J, there is a
unique solution ¢ of (4.31) existing in all of .# such that é(10)=n.

To construct solutions of (4.31), we let ®(r) be a fundamental matrix of
the homogeneous system’y =A(1)y on #; & exists as a consequence of
Theorem 1, Section 4.3 (see also remarks immediately following its proof).

Suppose ¢, and ¢, are any solutions of (4.31) on #. Then ¢, — o, is a solu-
tion of the homogeneous system on #.

Exercise
1. Verify this fact.

By Theorem 1, Section 4.3, and the remarks immediately following its proof
(in particular, see Eq. 4.30), there exists a contant vector ¢ such that

¢, —P,=0c. (4.32)

Formula (4.32) tells us that to find any solution of (4.31), we need only
know one solution of (4.31). (Every other solution differs from the known
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: Slcm- he ls‘ u l I : ¥

known as variation of constants, to determine a 50 '=(Ar)y. Let @
we know a fundamental matrix for the homogencous system ¥ =( Y ¢
be such a fundamental matrix on . We attempt to find a solution ¥ 0
(4.31) of the form

Y (n)=2(1) v(1). (4.33)

where v is a vector to be determined. (Note that if v is a constant vector, thfn
V satisfies the homogeneous system and thus for the present purpose ¥ f=e
is ruled out.) Suppose such a solution exists. Then substituting (4.33) into
(4.31). we find for all 7 on S a6 — S0k ‘-n}
V()= (1) (1) + (1) V(1) = A1) (1) v(1)+()-
Since @ is a fundamental nfatrix of the homogeneous system, @' (1) = A (¢) ‘9_(’)*
and the terms involving A (1) @(r) v(¢) cancel. Therefore, if Y (1)=(r) v(s)isa
solution of (4.31), we must determine v(r) from the relation
o(1) v'(1)=g(1).

Since @ (1) is nonsingular on .# we can premultiply by &~* (1) and we have, on
integrating,

"(f)=J' @ '(s)g(s)ds, 1o ton.f

and, therefore, (4.33) becomes

Y(1)=2(1) |- @' (s)g(s)ds, to tonJ. (4.34)

1o

Thus, if (4.31) has a solution y of the form (4.33), then  is given by (4.34).
Conversely, define by (4.34), where @ is a fundamental matrix of the
homogeneous system on #. Then, differentiating (4.34) and using the
fundamental theorem of calculus, we have

¢f(r)=¢r(r)f @7 (s) g(s) ds+ () ™ (1) g (1)

[}

— A() #() f 571 (s) (5 ds-+5(0),

and using (4.34) again,
V()=A() W ()+g()

S P

B B

SR s B
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for every 1 on s, Obviously, (t0)=0. Thus, we have proved the variation
of constants formula:

Theorem 1. If disa Jundamental matrix of y'=A(t)y on #, then the Sunc-

tion f
() =(1) [ ™ (s) g(s) ds
T
is the (unique) solution of (4.31) satisfying the initial condition
Y(1o)=0
and valid on 5.

Combining Theorem 1 with the remarks made at the beginning of this
section, we see that every solution ¢ of (4.31) on _{ has the form

| 0=b+¥() | (4.35)

where s is the solution of Eq. (4.31) satisfying the initial condition (1) =0,
and ¢, is the solution of the homogeneous system satisfying the same initial
condition at 1, as ¢, for example b, (10)=n.

Example 1. Find the solution of the initial-value problem

A el

We have seen in Example | Section 4.3 that | :

th[g r::]q_ . ;

is a fundamental matrix of the associated homogencous system on —xm <r<om.
Taking the inverse of the matrix ®(r). we obtain b

O ’ _ =%
) lo al W
&b 1{5}: eh 2[0 l]{' .

Thus, by Theorem 1 the solution Y satisfying the initial condition

¢t0)=[g]
is '

__r_‘-‘.‘

¢ W]l [Te¥]  *
{5 “llla ]
'Hl'—v“"l]:[ﬂc'-f"’].

o 0




7 )

4. Consider the system y'=

1% Lisear System of Differestial

‘ng homogeneous system Snlisrying the
1rT\‘.‘-*T"ndms

Since @(0) = /. the solution of the e

mitial conditron Tt
YO =

) -17 [e-1 r’].
o.trl--ﬂﬂ[ .J" ¢
By (4.35). the desired solution 18

-1 i(f""_')]
¢tr1=¢.m+*l'l=[" ¢ ]+[ D

@ —$(e+e”) |

Exercises

2. Consider the system y' = Ay +g{r), where

s : int
oo} ] w2
1 2t
¢m=[‘§ ’:z.]

is 2 fundamental matrix of y'=Ay. Find that solution ¢ of the nonhomo-
gencous system for which
I
¢(0J=[_I]‘

stem y'=Ay+g(r) with A the same as in Exercise 2 and

r.(r)=[ f]
I
¢101=[ i ,J.

A(1) y+g(1), where

Venfy thar

3. Find the solution ¢ of the sy
with

satisfying the initial conditiop

0]
A[IJ: -22 4
re g(r)-—-[:,],

I



*

A

Find the solution ¢ satisfying the initial condition

¢(z)=[l]

and determine the interval of validity of this solutj U
matrix given in Exercise 7. Section 43) ution. [ Hint: Use the fundamenta)

We now consider -lhc form of the variation of constants formula for the
i scalar second-order linear nonhomogeneous differential equation

Y'+p(0) Y +q(1) y=r(),

(4.36)
where p. ¢, and r are continuous on an interval #. We hay

. e seen m Corollary
1 to Theorem 1, Section 4.3, that the corresponding homogeneous equation

Y +p(t) ¥ +4(1) y=0 (427)

has two linearly independent solutions . i, on .#. These solutions are the
first components of the (vector) solutions,

w0={30} wo-(i]

of the equivalent system

! — 0 l - N -5
"[—qm —p(r)]" "[yz]' e

We apply Theorem 1 to the system

' 0 1 0
J =[—q(r) —p(r)]”[r(r)]' ’{ij ()

which is equivalent to (4.36). Since ¥, (1), ¥, (1) are linearly independent
solutions of (4.27), by the equivalence of the equations (4.27) and (4.2%), the

I 00 200
*0=[31 Vi)

is a fundamental matrix of the system (4.28) on J. Let

w0= )]

be the solution‘\of(4.37) satisfying the initial condition u(ty)=0. By Theorem

1,
' 0
u(f)=2(r) J ¢- l(s)[r(s)] ds.

fo
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From
ST T va(s) ‘W:(‘)}
? ("“déiir{(.i')[ AT AL
! V5 (s) —d':(s)}
W0 vs 0] [ Ui
we oblain

-15)[ © ! —wlmr(.«)].
i [fl-*l] TP (), 02 ()] [ ¥ () r(9)

and therefore

' 1 = y3(s) r(s) ds
el f ISR [ il ""J

=j. ! ¥i(t) alr) [_'#1{5)"(3)]45
WY (s) o ()] [ vi() ya(e) || ws(s)r(s)

=j I V() ¥ (s) =y, (1) Wz(s)]r(s) .
W['J"l (s). ¥ (‘n wa(t) wl(s)-dfl (r) Y1(s)

The solution of (4.36) satisfying the initial conditions y(1,)=0, y'(to)=0
is. by the equivalence of (4.36) and (4.37), the first component u, (1) of u().

Therefore this solution is
_ (W20 9.0~ :6] (9,
(1)= Wy, (s) v, (s)] &

Thus we have proved the variation of constants formula for the scalar second-
order linear equation:

Corollary to Theorem 1. Let y, (), W2 (1) be linearly independent solutions of

Y'+p(t) Y +q(t) y=0 (4.25)
on an interval 5. Then the function
D20 92 )6, (1) ¥29)] (s
) m—j JUACNAE) R 1438)

is the unique solution of
Y'+p(t) y'+q(t) y=r(1) (4.36)
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on J satisfying the initial conditi t1e)=0, y’

solution of (43} o3 1oy 0 fw::ns ¥(te)=0, y'(15)=0. Moreover, every
wt)=c (1) +copa(t)+ uy (1) (4.39)

Jor some unique choice of the constants ¢, c,.

This last expression (4.39) is called the general solution of (4.36).

Example 2. Find a particular solution of the differential equation

y'+ y=tant 1‘t-\:r<]'l
L] 2 2 -
We apply the corollary to Theorem 1 directly using the linearly independent solu-

tions ¢, (1) =cos 1, Y, (r) =sin  of the homogeneous equation y* + y=0. We have

| cost sint
W) ()= | 5050 iy

Hence formula (4.38) yields (using 1o =0) the particular solution

]
u, ()= j(sin: COss—cos! sin s) tan s ds

(1]

)
=sin lj sins ds—cost 5 sin s tan s ds

0
]

=sint(1 —cost)+cost j (coss—secs) ds
0

=sint(l —cost)+cost(sint—log [sect +tant)).
=sint—cost log |sect+tani|.

We note that, since sin ¢ is a solution of the homogeneous equation, the function
u(t)= —cost log |sect +tant|

i1s also a particular solution. We also remark that we could apply Theorem 1 directly
by first converting the given differential equation to an equivalent system of first-order
equations as was done for Eq. (4.36); however, for second-order scalar equations, it is
more efficient to employ the Corollary.

Exercises pe

-

5. Verify by direct substitution that u,(r) is a solution of (6.36) on f satisfying the
initial conditions u, (10)=0, u, (¢5)=0.

6. Find the general solution of each of the following differential equations.




e
!
aar Syt of DS

| mum if k=(q—p*12)"
Jlation is 8 maxmum T ¢ - Called
o 8 f th OEUET, " yh happens in the caxe 11221 3,
Ry, aplitude of the oOINStioR ¥ inversely proportional ¢ g,
that at resonane® T corresponding homOBEneotE equation, sec Exerciee 14

ONLINEAR SYSTEMS OF FIRST-ORDER EQUATIONS
stems of first-order differential cq_uations can be treated in
way which has many points of similanty _w:lh the treatment given 4,
Scc};ion 4. and 4.2 for lincar systems. While the algebraic structure o
solution sets does not carry Over to nonlinear sysiems, much of the notation
basic existence theory, and reduction of scalar cquations of order n 1o system,
is much the same as in the lincar casc. In this section we shall study systeme
of first-order differential equations of the form

ﬁ=hﬂJphwudﬂ

/. = L. Vi Yisonss "

JE' Sty ) ; ) (440

45 N
Nonlinear sy

Yo Sult, Yye Yz s i)
where f,. fu.....f, are n given functions defined in some region D of
(n+ 1)-dimensional Euclidean space and »y, yy..... ¥, are the n unknown
functions. To solve (4.40) means to find an interval / on the 7 axis and »

functions ¢,,..., ¢, defined on / such that

i) @1, d3(1)..... dolr) exist for cach 7 in /.
i) the point (1, ¢, (1)..... ¢,(1) remains in D for each 1 in /
i) gy(r)=/£i(r, &y (1), &3(0)..... ¢o(0) foreachrin/  (j=1,... n)
Thus (4.40) is the analog of the single equation v =/{r, v) studied in
Chapter 1. Naturally, the functions f, may be real or complex-valued. We
shall assume the real case unless otherwise stated. While the geometnc iﬁtcr—
{l:tr;ﬂ:"“on is no longer so immediate as in the case n= 1, a solution of (4.40)
cu;:relsj.na[;? [of: {"3‘?"““{%- <« @, onan interval /) can be visualized as a
given by the ﬂ ,}" !mcnslonul region D, with each point p on the curve
il i th:(::; Lndltr! {r. @i (1)..... ¢,(1) and with ¢;(¢) being the com-
pretation reduces fnnllhn: l‘;-::f iO lgc curve in the direction y,. This inter-
defined by any solution of {:ﬁijnlt:;m :,hm n=1 and the curve in D
curve. The initial-value problem asmcia:cdcr-c o AT I e Berd Xgnrion
prohlcm_of finding a solution (in the se :‘jllh a system such as (4.40) 1s the
given point Po: (1o, 1y, 1y, .., n.) (we dm'f clined above) passing through a
double :Suhs‘:fif"s) of D.In gcnc;ﬂl - 0 not wnite (£, 3. Voo) tO avond
EXCEpLin very special cases, Nc\-énl:gdnnm €Xpect to be able to solve (4.40)
€S, 1018 desired to obtain as much
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information as possible about the behavior of solutions of systems. For this
reason we shall develop a considerable amount of theory for systems of
differential equations.

Example 1. Consider the second-order equation

y =gl v v) (4.41)

where ¢ is a given function. Put y=y,. v =y, then one has v} =y, and from (4.41)

¥ =y;=g(r. ¥,. y;) Thus (441) s apparently equivalent to the system of two first-
order equations

Yi=n

442
Yi=alt. y,.¥)) i

which 15 a special case of (4.40) with n= 2. f,(f, ¥y, ¥y) =¥y ot vy va)=alr 5. ¥3)
To see thes equivalence let ¢ be a solution of (4.41) on some interval /. then v, =@ lr)
;=& (1) 5 a solution of (4 47) on /. Conversely, ket ¢,. ¢, be a solution of (442) on ],
then y =&, (1) (that s, the first component) is a solution of (441) on [

Exercise

1. Wnite a system of two first-order differential equations equivalent 1o the second-

order oquaton
r 4-? un i) =0
L

with mutal conditions #{0) =0, # (0) =0, which describes the motion of a sample
pendulum (Section 2.2)

Example 2. The scalur equation of ath order

Yagly.y.... " (443
can be reduced 10 a system of n first-order equations by the change of vanable

==y oo =" Then (443) 5 scen 10 be equivalent to the system

}"1"')1

Yi=j,

: (449)

fl':-)l

Yemolt.yi yaecu yd
another special case of (2.40)
Exercises

1 Establsh the equivalence of (4.43) and (4 43)
X Reduce the sysiem

vy ":’)’i
2ry+ Y=

to the form (4.30) [ Hoer: Solve for ) and ¥ |




