- ﬂm
Limear Systems of Differcatial B
1= o

_ { first-order equations such as (4.40) sylfstmnf!licull Vi

To study 5}';[(.'1'!15:“1“':‘: vectors. We define ¥ 0 be a poing i, .

3 mn\tl‘lifﬂl H."_ nt ce. E.. with mordinﬂll‘.'ﬂ U'p b by ."n)~ Unli:ss ﬂlllc;,

dimensional Euclldgan Spamq;mlrm | n-dimensional Euclidean Space, thy, is

e mdrid@[:?:;j.rmﬂ n:‘p‘] of the vector y are real numbers, However, the
the coondi Vpoesos )

ies over to the complex case with only Min
: ' developed here carnes OV T
entire thcf:::] ‘d:“q]]idmdlfalc‘d where necessary. We next define funcngns
changes, Whic

Y=Lty J=hoan
and thus the system (4.40) can be written in the form
vi=h(ty)
Ya=h(t. 3"}
vo=/(r ).

Proceeding heuristically (we will be more precise below), we next observe
that 7. 'f“ can be regarded as n components of the vector-valued function

f defined by |
fle. y)=col(f, (¢, y),..., fa(t, ¥),

where col means column vector. We also define

(4.45)

y'=col(yi,.... yl).

Thus the system of n first-order equations (4.40) (and all the systems which

arose earlier in this section (see also (4.45))) can be written in the very compact
form

y=f(t,y) (4.46)

Equation (4.46) resembles the familiar single first-order equation y’ = 11, y),
with v, f replaced by the vectors y, f, respectively.

Example 3. We may write the system (4.42) above

Yi=5,
Yz '-:5'[!- Y1 J"!}
as y'=f{r, ¥)withy =(y, ¥;) and

f: (¢, Y= A, Y b=y,

21, Y= 1111, Y ya)=g(t, Yis ya)
50 tha:

f(r. y) =col(y,, 5‘“-)’1»1’2”-
he vector ¥ is defined by the relation

I-f“:ﬁfjfz oot [y 2 I;.‘!___( 2 " 1/2
) 1—‘-ZI Iyl .

The Euclidean length of |
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Notice that [y,| is well defined for y, complex and thus [y is also defined ff:-r
a complex vector y. We need the notion of length in order to measure d'n.-
tances between solutions of systems. However, for the purpose of dealing with
systems such as (4.46) it turns out to be more convenient to define a different

quantity for the length (or norm) of a vector y than the familiar Euclidean
length, namely,

I¥l=1yl+lysl 4+ U"..|=i_zl Iyl

Again, [y| i1s well defined for either real or complex vectors y. No confusion
need arise from using the absolute value sign for different purposes: on the
left-hand side |y] is the notation for length of the vector y: on the night-hand
side we sum the absolute values of the components of y. Observe, for ex-
ample, ify=(3+i, 3—i), then Jy| =(13+1* +]3—-1%)"?=(10+10)"* =(20)" *
and |y|=13+i]+|3 =i =(10)"*+(10)"*=2(10)"*; clearly |y| > ly! in this case
and in fact, |y] =ﬁ||3rt[. In general, the quantities {|y] and |y| are related, as
follows.

Exercise
4. Ify is an n-dimensional vector, E,, show that
Iyl slyl</n Iyl
[Hint: Use the inequality 2|uv| < [u]* + |o|* and show 1¥1* < |y]* sniyi®]

The important point about this inequality is that |y| is small if and only if
Iyl is small.

The length function |y| has the following important properties:
i) |y|=0and |y|=0if and only if y=0.
i) if ¢ is any complex numbser, |cy|=|c| |y|.
iii) for all y and z, |y +z| <|y|+|2|.
The proofs are immediate from well-known properties of complex numbers.
For example, to prove (ii) we have
eri= 3, levd= 3. el lyi=ld & i=lci i

Similarly for (iii) we use the inequality |u+r|< |u|+ |v| valid for any complex
numbers ¥ and v.

Exercise
5. Show that the Euchdean length [y] of a vector y also satisfies the propertics

(i), (ii), (iii) above. [ Hint: To prove (iii) you will need 10 apply the Schwarz inequality
for sums, that is,

13 abi*< ¥ laf )f. b2
jm 1 i=1 i=



Eigenvalues, Eigenvectors,
and Linear Systems
with Constant Coefficients

We have seen in Chapter |1 how to solve the scalar equation y’'=ay, and we
know that every solution is of the form e”c, where ¢ is a constant. In this
chapter we will learn how to find a fundamental matrix of the system y' = Ay,
where A is a constant n x n matrix. The explicit calculation of a fundamental
matrix will lead us naturally to the study of eigenvalues and eigenvectors of
matrices. As in Chapter 4, some knowledge of linear algebra is essential,
but for students with this knowledge, this chapter, which contains the results
of Sections 3.4 and 3.5 as very special cases, can be studied instead of those
sections. We emphasize that the techniques discussed in this chapter are not
applicable to systems for which the coefficient matrix is not constant.

5.1 THE EXPONENTIAL OF A MATRIX

In order to find a fundamental matrix of the system
y' = Ay, (5.1)

we first need to define the exponential of a matrix. If M isa nxn matrix, we
define the matrix exp M (or ) to be the sum of the series

o0

M* M3 M* M*
expM=I+M+—2T+E!—+--*+ﬁ+"-=ZIE—. (5.2)

k=0

Where [ is the n x n identity matrix. (Note that M° =17 and 0!=1.) To justify
this definition, we must show that the right-hand side of (5.2) makes sense.
It is not difficult to define a suitable notion of convergence of a series of
matrices and to show, using this definition, that exp M is well defined for
every matrix Me# . This is done in Appendix 4.

165
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if P and M commute (MP=PM). then
exp(M+ P)=c¢xp M-exp P. (5‘3]

To prove this. we apply the definition (5.2) to the lefi-hand side of (5.3),

We obtain ;
(M+ P)
exp(M+P)= s~ s {5.4)
L=

By the binomial theorem and MP= PM,
L

[.“+Plk= Z ﬁﬁ&%n—i M'P*-1,

I=0
(If x, v are real or complex numbers and k>0 is an integer, the binomia]
theorem states that (v+3)'=Y4t.o KY[MA=DT] x»*"" If x and y are
matrices which commute. the same result holds.) Therefore, canceling k!,
we obtain

exp(M + P)= Z E % %] (5.5)

On the other hand.

L ) o y
expM-expP= Z f:—fz ;
t=0 . Jj=0 ’

By multiplication of absolutely convergent series, we have
expM-expP= ) C,
k=0,
i (5.6)

] -1
c=) M P
I' (k=)
I=0
Comparison of (5.6) with (5.5) proves (5.3).
A useful property is that if T is 2 nonsingular n x n matrix

T~ exp M) T=exp(T~'MT). (5.7)
Exercises

I. Venly(5.7).  [Hins: Use (5.2)]
L I Me#_ show thar-

4) exp (e, M+ c;M)=exp ¢, M €Xp 3 M for any ¢, C,€F

4 A A,

-

L9

- S B e




sl

w !
b} {(‘“]"=t"". f.»_, ":u -/ _Y\____‘
) (€% =, where & Is any Integer. *‘: ¥ MY
d) ¢®=1 where 0 is

the 112 1 7614 Matrix.

(5.1)
Theorem 1. The matrix

P(t)=exp Ar
is the fundamental mayrix of (5.1) with ®(0)=1 on —
Proof. That ®(0)=1 is obvioys from

(5.2). Using (5.2) with M= Ar (well
qgﬁr:ed for —o0 <1< and EVery nxn matrix A), we have by diﬁ'crcLLia-
tion _

LWI<w,

2 3.2 -

T T+'*-+(—kj]—!]+-~-=»i exp A1,
— 0 <t< . Therefore, ex
are solutions of (5.1)). Sin
shows that @(¢) is a funda

P At is a solution matrix of (5.1) (its columns

ce det®(0)=det/=1, Theorem 2. Section 4.3,
mental matrix of (5.1). |

It follows from Theorem | and E

q. 4.30 (Section 4.3) that every solution ¢
of the system (5.1) has the form

d()=(expAr)e (- <t<wm) (5.9)
for a suitably chosen constant vector c.

Exercises

3. Show that if ¢ is that solution of (5.1) satisfying ¢(1,) =n, then O(0)=[exp A(1—15)m
-0 <<,

4. Show that if ®(r)=€*, then &' (1)=e~*.

We now proceed to find some fundamental matrices in certain special
cases; that is, we evaluate exp At for certain matrices A.

Example 1. Find a fundamental matrix of the system y'=Ay if A 1s a diagonal
malrix, d, 0

d
A= :

0 'd.

" 1t is casy to prove that the familiar theorems on d_ifl'crcn_lialion of power senes
(Section 6.2) with real or complex coefficients hold essentially without change for power
series having n x n matrices as coefficients.
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From (5.2).
di 2
[ d, 0 I I l’_+
- ctpzli’=f+ -I-i+ d: 2'
y 0 J. n
GO Ea
P = e
| g o &
L 1 -
[exp dy! 0
exp dt
0 . exp d,t

and by Theorem 1 this

in the present case each equation of the system is )y

intcgatcd separately.

Example 2. Find a fundamental matrix of y'=Ay if

Since

Y
[ 5K o]

and since these two matrices commute, we have

30 0 1
expAr=exp 0 3 L-exp 00 {

_E!-i
“lo

But

oo ofls of 50}

et

and the infinite series terminates after two terms. Therefore
e »

b

exp At =¥ [‘; :]

and by Theorem | this is a fundamental matrix.

=dl.".l (-k= 1,.

s\%. AT

is a fundamental matrix. This result is, of course, obvious, since
..,n) and can be
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1
- i |
Exercises e . J
5. Find a fundamenta] matnx of 1pe System y' = 4y if - Sa _\~
e 1

and check your answer by direct integray;

on of S <s
6. Find a fundamental mayrix of the system r':‘;f; given system,
91 . ® P
A= 2l S
0 0

where A is an nx p matrix,

)

o

7. Find a fundamental matrix of the system Y'=Ay. where 4 is the n x n matrix

21 0
A= = 1
Fyc I
0 2
IS wrong with the following calculation for ap arbitrary continuous matrix
A(r)?

3:: [exp GA(S) ds)]= A1) exp (J.,.i{s) ds).

Lo

9. Consider the system .
1y’ = Ay,
where 4 is a constant matrix_ Show that |¢4

=¢*'* s 2 fundamental marrix for1#0
In two ways: (i) by direct substitution,

(1) by making the change of variable 1] = ¢".

3.2 EIGENVALUES AND EIGENVECTORS OF MATRICES

In order to be able to handle mo

re complicated problems and in order to
obtain a general

representation of solutions of (5.1) (that is, if we want 1o
evaluate explicitly the entries of the matrix exp(Ar), we v:ull nexd to intro-
duce the notions of eigenvalue and eigenvector of a matrix.

To motivate these concepts, consider the system y'= Ay, and look for a
solution of the form

o()=e'c, c#0.

where the constant 4 and the vector c are to be determined. Such a form
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G o Ale? ;
1s suggested by the above examples. Substitution shows thate“'cisa solution

if and only if ;
. '
M‘“€=44‘~' C.

Since ¢* £ 0. this condition becomes
(i1-A)c=0

which can be regarded as a linear homogeneous algebraic system for the
vector ¢ By elementary lincar algebra (sce for example [3] '!_'heorcm. L
Section 3.8 and Theorem 2. Section 4.5) this system has a nontrivial solution
if and only if / is chosen in such a way that

det (Al - A)=0.

This suggests the following definitions. Unless otherwise stated we shall
assume that our field of scalars is the complex numbers.

Definition 1. Let A be a real or complex nx n matrix. An eigenvalue of A is
a scalar 1. such that the algebraic system

(Al—A)x=0 (5.10)

has a nontrivial solution. Any such nontrivial solution of (5.10) is called an
eigenvector of A corresponding to the eigenvalue 1.*

Definition 2. The polynomial of degree n,
p(Z)=det(il — A)
is called the characteristic polynomial of A.**

Therefore, the calculation preceding Definition | shows that e*c is a solu-
tion of the linear system y'= Ay if and only if A is an eigenvalue of 4 and ¢ is
a corresponding cigenvector. We will return to a discussion of the system
¥'=Ay in Section 5.3 after we have become familiar with properties of eigen-
values and eigenvectors.

In view of the remarks immediately preceding Definition 1, the eigen-
values of A are the roots of the polynomial equation p(4)=0. As p()) is a
polynomial of degree n, there are exactly n eigenvalues, not necessarily
distinct. In particular, there is at Jeast one eigenvalue and one eigenvector for
every matrix A. If /=/, is a simple root of the equation p(1)=0, then 1, is
called a simple eigenvalue. If /=4 is a k-fold root of the equation p(4)=0

* Even though the entries of A are real. the scalar 7 may be complex (see Example |
following).
** The function p defined by the expression p(ﬂ:del(ihd} is a polynomin
| ! al of
degree n. We shall tacitly assume that such determinantal p-olynomialfcc;gey the rules
of determinants.
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«then 7, is an eigen-
; tant term i ay e 0 .
1=0is not an eigenvalue ofA,th:np(g},m‘ ar'::l :: :;](:slc‘: P(0)=det (- A), if

| ‘ se A is nonsingular.
gxample 1. Find the cigenvalues ang corresponding eigenvectors of the matr:
rnx

A=[ 3 5]
-5 3Y
The cigenvalucs of A are roots of the equation

5 3=} 57 .
det(A J.I}=dcl[_5 3_}.]=;.‘—6i+34=ﬂ.

]

corresponding to the eigenvalue A, =345/ must satisfy the lincar homogeneous

algebraic system
- 5i 51 u
A=-1 = L .

Thus, u,, 4, satisfy the system of equations

Thus, 41,2 =3%35i. The eigenvector

"'jul +u2=0
— Uy —iuy=0

(]

is an eigenvector for any constant a. Similarly, the eigenvector

|

corresponding to the eigenvalue 1,=3—5i is found to be
i
all

Example 2. Find the eigenvalues of the matrix

2 =l
o1
Consider the equation det(2/—A)=0.
ges [J.—2 -1 ]:(1—2] {J,—tt]+l=i:—6‘;'+9=ﬂ'

and, therefore,

——

for any constant p.

I i

-

\‘ 12
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R —— of multiphicity two. To find a cormm“dins
A=, -

cigenvector we consider the system
(3-A)e=0

1 -11[«] [0] ol ¢ —c3=0
[I -I] el [0 ¢ —c=0.

=¢. is an cigenvector. Thus, the vector

_—I
cA:hl.

where 2 is any scalar, is an cigenvector corresponding to the eigenvalue 1=3,

or

Any vector ¢ with components ¢,

Exercises
1. Compute the eigenvalues and corresponding eigenvectors of each of the I‘o]lowing
matnces.

5 ~8. 1 ! [1 2
3 [_1 f] A 94 3]
T 00 2 -
- 4 i3 10 3 [3 -1 1
d}_;]] e [8 1 -1 oz o1
i 5 1- —1 LI =f 2
(-1 00 -1 10
g] o -10 | 1 -1 0
[ 0 05 0 05
(d =3 3
) |4 =5 3| (eigenvaluesare —1,2, —2)
g =d 2 :
e
|1 =11 {Cigtm‘a]ucsare—l.-—l,.'ij
ERE
[0 1 o
k) 0 0 I (eigenvaluesare —1, ~2 -3)
| -6 —-11 —6
[0 1 ¢
l) 0 0 1 (eigenvalues are —1, — ], —2)
| B =8 i
[4 1 0 0 0]
04 100
m |0 0 4 0 0
0 00 40
(00000




5.1 lh“-‘r‘h‘mmufﬂmkn m

3 -1 -4 2

2 3 -2 -4 . o
ls el <3 3 [Hint: Characteristic polynomial is (; — I¥ (2417 ]
[ 2 -1 =3 R

5. Show that if A is a triangular matrix of the form

dyy

a=|?

dy; ... a,
a3

: 0o, .
0 .70

the eigenvalues of A are i=aq,, where i = l.....n.

: 4
You will note that in Example | preceding, the two gigenvedto d
y are linearly independent if «#0 and f+#0, since gen rs 1; an

det[u, v] =dct[:l. ’?;]:lzﬁ;éﬂ.

Therefore, the vectors u and v form a basis of (complex) two-dimensional
Euclidean space. However, in Example 2, the eigenvectors form only a one-
dimensional subspace. In applications to differential equations as well as
in matrix theory it is important to know whether the set of all eigenvectors
(corresponding to the various eigenvalues) of a given matrix A form a basis.
As Example 1 shows, even if the matrix 4 is real, the cigenvectors may
have complex components. Thus, we consider the eigenvectors as vectors
with complex components. If the n x n matrix 4 has n distinct eigenvalues,

the corresponding eigenvectors form a basis for complex n-dimensional
Euclidean space.

Theorem 1. A set of k eigenvectors corresponding to any k distinct eigenvalues
is linearly independent.

Proof. We shall prove the theorem by induction on the number k of eigen-
vectors. For k=1, the result is trivial. Now, assume that every set of (p—1)
eigenvectors corresponding to (p— 1) distinct eigenvalues of a given matrix
A is linearly independent. Let v,, ..., v, be eigenvectors of A corresponding
to the eigenvalues A,,..., 4, respectively, with Ai#4; for i#]. Suppose
that there exist constants ¢, ¢, ..., ¢, not all zero, such that

C171+f:\'2+‘"+f’\"=0. (51”

We may assume c,#0. Applying A—4, I to both sides of this equation,
and using (4 —2,1) v;=(4;—4,) v;(j=1,..., n), we obtain i
Cz (Az _— ).1) "2 +C3tﬂ.3 = ‘J'l) ‘rJ S sy +‘:P ).P—'ll} \"=B- (s'l"}

But v,, vs,..., v, are linearly independent by the inductive hypothcsis,_an:l
therefore c;(4,—4,)=0, where j=2.3,....P. Since A;#4,. where j=2,
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3., p.and (5.1 1) becomes ¢,¥y =0, Since

- ]
ve ¢, =0, where =& S : Lt .
N OP “L‘[l::‘ u:.:ll which shows that ¥y, ..o v are lincarly independent. This
‘| =, t', = h "

proves the theorem by induction. |
: the charactenistic polynomial of an 7 X n matyix

here are at most distinct eigenvalues, Since

‘ dimensional space, there are at mog;
i < § n a subspace of » : _

lhf ﬂgc;?zﬂdf;;?ml eigenveclors. Of course, in any casc, there exists gy
rca::c:r:c.cigcmrdor since there is at least one (distinct) eigenvalue,

Example 3. Determine the subspace spanned by the eigenvectors of the matrix 4

in Example 2
As we saw in Example 2
I1=I[I] a#0

We remind you that since
is a polynomial of degree 7 1

1

1 an eigenvector corresponding 10 the cigenvalue =30l A ﬂrmU]lipli?ily 3 foranysilis
2 0. Since 4 =3 is the only eigenvalue of A, every cigenvector of A is of this form for

some 30 Thus, the set of all eigenvectors of A 1s the subspace of two-dimensional

b

Clearly, this subspace is the line passing through the point (1, 1) and the origin.

space spanned by the vector

Exercises

3. Determine the subspace, and its dimension, spanned by the eigenvectors of each
matrix in Exercise 1.

4. In the matrix 4 of Exercise 2 assume the diagonal elements a;;, where i=1,..., n,
are all disunct. Find the dimension of the subspace spanned by the eigenvectors

of A.

5.3 CALCULATION OF A FUNDAMENTAL MATRIX

We have seen in Theorem 1, Section 5.1, that exp 14 is a fundamental

matrix of the linear system with constant coefficients, y'= Ay. We have also
seen in Examples 1 and 2, Section 5.1, how to compute exp A in certain
special cases; in particular, we have seen how to compute exp 1A when A
is diagonal. We will now show how to compute a fundamental matrix ¢ of
the system y'= Ay when A has n linearly independent eigenvectors. This is,
in particular, true if all the cigenvalues of A are distinct, We postpone to
Section 5.5 consideration of the completely general case of an arbitrary

maltrix A.

Suppose the matrix A has n linearly independent eigenvectors v 1y Vayeens Vi
corresponding 1o the (not necessarily distinct) eigenvalues 4,, 4,,..., Ay

e




g}

C
I‘k"l'h ﬂ. F " ol “.tﬁ
s

T discuss; 8
otivated by thc‘ ion at the be
::ch yector function &iNning of Section 5.2, we claim thyy
¢;(3)=cxp[5_,;) v,

j=| ..... n
is a solution of y'=Ay, on - D<I<u, For

®(0)=exp(iy) sy,
=exp(i) Av,
=Aexp(iy) v,
=Ab(0)  j=1,. ,

where we have used the fact that AV=iy.j=1.. n Define

(1) =[d, (1), d,(1)..... b, ()]
Since each column of @ is a solution of y'= 4 b _ _
y'=Ayon —w<t<m. We have Y. @ 15 a solution matrix of

det ®(0)=det[y, ... v.]#0,

because the vectors v, v,, ..., v_are linearly
Theorem 2, Section 4.3, that det ¢(r)#0
fundamental matrix of y'= Ay on —
the following result.

independent. It now follows from
for —o<r<x and that (1) 1s a
L <t<w. We have therefore proved

| Theorem 1. Let A be a constant matrix (real or complex). Supposev,,

v, are n linearly independent eigenvectors corresponding respectively to the
eigenvalues 4y, A, ..., A,. Then

Vi

®(t)=[exp(4,1) vy, exXp(42t) Vs ..., exp(4,0) V]

is a fundamental matrix of the linear system with constant coefficients ¥y = Ay
on — o0 <t<00. In particular this is the case if the eigenvalues Ry dasai A,
are distinct.

Example 1. Find a fundamental matrix of the system y'= Ay if

15
"z[—s 3]‘
By Example 1, Section 5.2, 2, =3+ 5i and 4, =3—5i are eigenvalues of A and

A} Al

are (linearly independent) eigenvectors corresponding 10 . 4y respectively. By
Theorem 1
el“_m. &,i-\-il'lr
¢{f]=[h,|3+51}: c'”-!m]

is a fundamental matrix on — o0 <f<®.
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' ield a

In general. Theorem | does not yield exp 14, cven lﬁogﬂ‘ti:n :fsi;cc exp
fundamental matrix (1) of y" = Ay. By Corollary 2 to Theorem 2, 1< a0, there exists a
14 and @(1) arc both fundamental matrices of y'=Ay on —x' < '
nonsingular matrix C such that (5.13)

up"{ =¢(f) C.
Setung =0 in (5.13), we obtain C=9"*(0). Thus.

exprd=a() @1 (0). (5.14)

Example 2. Find exp 14 if 4 is the matrix in Example 1. -
By (5.14), Example 1 and Example 3, Section 5.2, we have successively

t.l.\-*.'--‘u '-143-3.1, 1 i -1
EIP I'.'l =["_13‘ LT fi."_!'nl] {" ]

1 &_\-sm ﬁ,q.',*sm ] =i
=;[I'l."3.5m t,;.\-sm == 1
1 (Jusm_l_t..s-sm _l-(cq_\+5m_‘,1.'l—5m
=;[,-(¢.|J-sm_t,qs-sm) e(.!*Sl‘)r+t,l.'v-Sl'll

—eM| ©cos 5t sin 5
—sin 5t cos 5t |
If 4 is real. exp 14 is real from the definition (5.2). Thus, Eq. 5.14 gives at the
same ume a way of constructing a real fundamental matrix, whenever A is real.
Example 2,is a special case of this remark.
Exercises

I. Find a fundamental matrix of the system y’'= Ay, also find exp 14 for each of the
following coefficient matrices.

a) A =[ : :] (see Exercise 1(c), Section 5.2)

4 3
-2 1
) "'=[—| —2]
"l 0 3
c)A4=|8 1 -]
5 1 -1
2 3 3]
d) A=| 4 -5 3 (see Exercise 1(i), Section 5.2)
4 -4 2]
[0 =& @7
e)A=| 0 0 I (see Exercise 1(k), Section 5.2)
-6 —11 —6




Calculation of # Fundamental Matrix im

7. Show that thescalar second.order different; '
to the system y’= Ay with Mtial equation s 4+ pu' 4 qu=0isequivalent

p =[ 0 1
~q4  -p
and compute the eigenvalues iy lyof A,

3. Compute a fundamental matrix for the system ; . L o
p* #4q, and construct the general solulio:s;fl in Exercise 2 if 7, #/,, that is, if

' he scalar second-order equation
An alternative way of producin

= gt g a real fundamental matrix if A i
2 x 2 matrix is contained in the following exercises fAisa real

Exercises

4. Given the matnx

o2
show that A>=—1, A>=—4, A*=] and compute A™

positive integer.
5, Use the result of Exercise 4 and the definition (5.2) to show that

i Cos [ sint
~sin [ cost |

- it : P e
[HIHE.COSI=I—2—!+E+---. sm(:l—.}_!..i.s_!..-.._]

. Where m is an arbitrary

6. Compute &', if

[Hint: Use Exercises 4 and 5.]

We close this section with the solution of the nonhomogeneous system

y'=Ay+g(l), (5.15)
where A is a constant matrix and g is a given continuous function on
— o <t<oo. The variation of constants formula (Theorem 1, Section 4.4)
with @(r)=exp 14 as a fundamental matrix of the homogeneous system now
becomes particularly simple in appearance. We have &~ (s)=exp(—sA).
®(r) @' (s)=exp[(t—s) 4]; if the initial condition is ¢(to)=n. (/)=
exp [(r—1o) A] n and the solution of (5.15) is

]

d(r)=exp[(t—to) A] n+J.exp[{t—s) Alg(s)ds —wo<i<x, (5.16)
Io

where ¢'4 is the fundamental matrix of the homogeneous system that we

can construct by the method shown in this section. Note how easy it is to
compute the inverse of @ and also @(f) ' (s) in this case. However, 1t may
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not be possible to evaluate the integral m
cases

Example 3. Find the soluton ¢ of the system

dinon
3 S L
otms[ﬂ if 4-[_5 3] and  g() [0]‘
From Example 2 preceding. we have
of o=l an S
f\p,.{=f— _ﬁns‘ m‘SSl N

Substituting m ($.16). we obtam (using 1,=0)

| cosS snd 0

= [_mﬂ m&] [1] PO
b S

=4
L]

.‘_J,,_-' cos 5(t—3) 5in5{r-5)] [e-.]ds
r | —sinSi{r—s) cos5(r—3) 0
LAl
sy
WmE AN vo-n -a| €OsS(t—3)
= CDSSJ' - Ve L "f [_sin S{r_s) ds.

°
In this case. we can evaluate the integrals as follows

‘m=r,,[:;ﬂ]*(,‘ “:"'[ cos 5t cos 5s+sin 51 sin js]ds
1:.

5t —sin 5t cos Ss+cos 5 sin Ss

Using the formulas (these can be found by integration by parts)

-y f-‘. = =
jt cisds=16+35{—4m555+55m55) p
o
: r-il a=f
s o - —4 sin 55—
J-r sin 5s ds Iﬁ-i-ljl sin 55— 35 cos 55) -
4]
we obtamn
Fcos‘ir{c-ul 4,008 5145 5in 1)+
D cos 5+ 35 sin l]+‘ﬁ
) Jr-u 5
+810 51 ¢ — (—4 sin 51— 5 cos 51)+ —
sin 5t | 41 41
$()=e" +
cos 5t jr—« 4
= 3 i - SN
sin -'l ai ( 4cos5:+55m5:}+4i}
+00s 5 e i 3
cos 5t _4_1_[_4“"5'_5%55'“47}

(5.16) explicitly except in special

yv'= Ay + g(f) satsfying the initial con-

-
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‘mplification seems pointless. Y

wgrther ST . ou will note that even .

f:’nbﬁ‘" leads to a rather complicated answer : uch a simple example
i L

Esﬁl’fim
7 Find the solution ¢ of the system

Y =Ay+glt)

in cach of the following cases:

-1 1 2
a) Nm:[ |]' A =[4 3]' ﬂm’[ﬂ (see Exercse 1a)

0 | = 0
b) $(0)=0. A=]| 0 0 1]. :(r}=[0]

-6 =11 - e
(see Exerase l2).
1 2 -3 3
c) d(1)= [0 . A=|4 -5 3] . g(t) arbitrary
0 4 -4 2
(see Exerase 1d).

8. By converting to an equivalent system, find the general solution of the scalar
equation

Y =y=/0),

where [ is continuous, by using the theory of this section.
9. Use the results of this section and Exercise 5 to find the general solution of the
scalar equation
Yi+y=/01).
where f'is continuous.
10. Suppose m is not an eigenvalue of the matnx A. Show that the nonhomogencous
system

!" = A}’+t¢""
has a solution of the form

dl0)=p™

and calculate the vector p in terms of A and .
I1. Suppose m is not an eigenvalue of the matrix A. Show that the nonhomogencous

system
[
y=dAy+ ) f
j=0

has a solution of the form

i g

o= e

[}



