
Chapter One: A tomic Structure

* Fundamental particles of an atom

*An *atom* is the smallest unit quantity of an element that is capable of existence, either alone or in chemical combination with other atoms of the same or another element.

*The fundamental particles (or *subatomic* or *elementary* particles) of which atoms are composed are the *Proton*, *Electron* and *Neutron*.

	Proton	Electron	Neutron
Symbol	P ⁺	e	N ⁰
Charge	+1	-1	0
Rest Mass (Kg)	1.673×10 ⁻²⁷	9.109×10 ⁻³¹	1.675×10 ⁻²⁷
Mass (amu)	1	0.0005	1
Location	Inside nucleus	Outside nucleus	Inside nucleus
Discovery	1919, Rutherford	1897, Thomson	1932, Chadwick

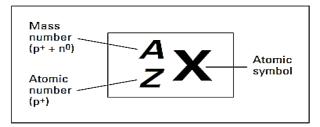
* By international agreement, a carbon atom that contains six protons and six neutrons has an atomic weight of exactly 12 *amu*, so we can define **Atomic Mass Unit** (*amu*) as *1/12th* of the mass of a ${}^{12}{}_{6}$ C atom so that it has the value 1.660 * 10⁻²⁷ kg.

* A neutron and a proton have approximately the same mass and, relative to these, an electron has *negligible* mass.

<u>*Notice</u>: The mass of an electron is *much smaller* than that of either a *proton* or *neutron*. It takes almost *2,000 electrons* to equal the mass of a *single proton*.

* The charge on a *proton* is *positive*, with (opposite sign), to that on a *negatively* charged *electron*; a *neutron* has **no** charge.

*In an atom of any element, there are *equal* numbers of *protons* and *electrons* and so an atom is neutral.


* The nucleus of an atom consists of *protons* and *neutrons* (with the exception of *protium*, the **nucleus** of (**H**) cation has only *single proton* without *neutron*), and is positively charged.

* The electrons occupy a region of space around the nucleus.

* Nearly all the mass of an atom is concentrated in the nucleus, but the volume of the nucleus is only a tiny fraction of that of the atom.

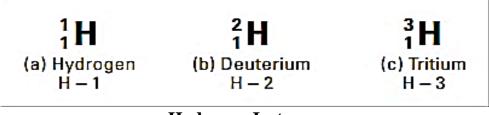
* The radius of the nucleus is about 10^{-15} m (1 femtometer = 10^{-15} m) while the atom itself is about 10^5 times larger than this.

✤ Atomic number, mass number and isotopes

* <u>Atomic number</u>, Z, which is equal to the number of *protons* (p^+) .

* In electrically neutral atom, Z also equals the number of *electrons* (e^{-}).

* <u>Mass number</u> (or Atomic Weight), A, is the number of protons (p^+) and neutrons (\mathbf{n}^0) in the nucleus.


* So number of *neutron*

$n^0 = Atomic Weight (A) - Atomic number (Z)$

* **Ex:-** Fe nucleus which has $(26 p^+)$ and $(30 n^0)$, is denoted as ${}^{56}_{26}$ Fe.

**Isotopes:-* Are atoms of the same element that differ only in the number of neutrons (mass number or atomic weight). Some isotopes occur naturally while others may be produced artificially.

* **Isotopes:** - (Atoms of the same element that have an *identical* number of *protons* (*same atomic number*) but *different* numbers of *neutrons* (*different mass numbers*). The figure below shows the three hydrogen isotopes, *Hydrogen* or (**Protium**) which has $(1p^+, 0n^0)$, *Deuterium* which has $(1p^+, 1n^0)$ and *Tritium* which has $(1p^+, 2n^0)$.

Hydrogen Isotopes

* **<u>Isotopes</u>** have the same position in the periodic table, the same chemical properties, and the same atomic charge.

* **Isobars**:- Are atoms of different elements that have the same mas number, but they have different atomic numbers. For instance Cl-37 and Ar-37 have the same mass number.

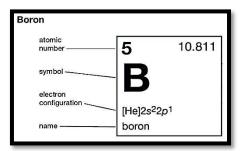
* Table below shows the average isotopic abundances of some elements.

Hydrogen (H)	Carbon (C)	Nitrogen (N)	Oxygen (O)
¹ H – 99.984%	¹² C - 98.89%	$^{14}N - 99.64\%$	¹⁶ O – 99.763%
² D - 0.0156%	$^{13}C - 1.11\%$	¹⁵ N – 0.36%	¹⁷ O – 0.0375%
			¹⁸ O – 0.1995%

*<u>Note</u>:- Since the atomic number is constant for a given element, isotopes are often distinguished only by stating the atomic masses, e.g. ${}^{12}C$ and ${}^{13}C$.

* <u>*Relative atomic mass (RAM)*</u>:- The relative atomic mass of an atom is the weighted mean of the mass numbers of its isotopes.

RAM = [(abundance of 1st isotope%) * (mass of isotope)] + [(abundance of 2nd isotope%) * (mass of isotope)] + (etc.)			
	100		


*<u>*Ex*</u>: The natural abundance for Boron isotopes is $19.9\%^{10}$ B (10.013 amu*) and $80.1\%^{11}$ B (11.009 amu*). Calculate the relative atomic mass of boron.

Relative atomic mass (RAM) = [(19.9%) (10.013)] + [(80.1%) (11.009)]

100

= 10.811

(Note: - that this is the value of atomic mass given on the periodic table).

H.W.Calculate RAM for naturally occurring Mg if the isotope
distribution is $78.99\%^{24}$ Mg, $10.00\%^{25}$ Mg and $11.01\%^{26}$ Mg; accurate
masses are 23.99, 24.99 and 25.98.[Ans. 24.31]

<u>H.W.</u> Calculate the value of RAM for naturally occurring chlorine if the distribution of isotopes is $75.77\%^{35}_{17}$ Cl and $24.23\%^{37}_{17}$ Cl. Accurate masses for ³⁵Cl and ³⁷Cl are 34.97 and 36.97. **[Ans. 35:45]**