

Firmicutes: The Low G + C Gram-Positive Bacteria

Copyright © McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display.

23.1 Class Clostridia

- 1. Identify several *Clostridia* spp. that form endospores
- 2. Outline the reaction by which some *Clostridia* can ferment amino acids, and relate this carbon substrate to their environmental distribution and pathogenic potential
- 3. Identify the terminal electron acceptors used by *Desulfotomaculum* spp.
- 4. Distinguish phototrophy in the heliobacteria from that of other anoxygenic phototrophic bacteria
- 5. Discuss the importance of *Veillonella* spp. to human disease

Gram-Positive Bacteria

- Grouped based on shape (rods, cocci, or irregular) and ability to form endospores
- Bergey's Manual of Systematic Bacteriology, 2nd edition used phylogenetic relationships
 - Low G + C (Volume 3)
 - High G + C (Volume 4)

Low G + C Gram-Positive Bacteria Bergey's Manual

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Placed in phylum Crenarchaeota Archaea Eurvarchaeota **Firmicutes** Aquificae Thermatogae – 10 orders, 34 families Chloroflexi Deinococcus-Thermus – divided into 2 classes **Firmicutes** Clostridia Actinobacteria Bacilli Proteobacteria Spirochetes Cyanobacteria Planctomycetes and Chlamydiae Chlorobi

Bacteroidetes

Class Clostridia

- 3 orders, 11 families
- Largest genus is *Clostridium*
 - obligately anaerobic, fermentative, Gram-positive, endospore forming

Table 23.1 Ch	haracteristics of Selected Members of the Class <i>Clostridia</i>							
Genus	Dimensions (μm), Morphology, and Motility	G + C Content (mol%)	Oxygen Relationship	Other Distinctive Characteristics				
Clostridium	0.3–2.0 \times 1.5–20; rod-shaped, often pleomorphic, nonmotile or peritrichous flagella	22–55	Anaerobic	Usually chemoorganotrophic, fermentative, and catalase negative; form oval or spherical endospores				
Desulfotomaculum	0.3–1.5 \times 3–9; straight or curved rods, peritrichous or polar flagella	37–50	Anaerobic	Reduce sulfate to H_2S , form subterminal to terminal endospores; stain Gram negative but have Grampositive wall; catalase negative				
Heliobacterium	1.0 imes 4-10; rods that are frequently bent, gliding motility	52-55	Anaerobic	Photoheterotrophic with bacteriochlorophyll <i>g;</i> stain Gram negative but have Gram-positive wall; some form endospores				
Veillonella	0.3–0.5; cocci in pairs, short chains, and masses; nonmotile	36–43	Anaerobic	Stain Gram negative; pyruvate and lactate fermented but not carbohydrates; parasitic in mouths, intestines, and respiratory tracts of animals				

© Alfred Pasieka/Getty Images

Genus Clostridium

Over 100 species in distinct
 phylogenetic clusters

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fermentative metabolism

- ferment amino acids using Stickland reaction
 - oxidation of one amino acid using another as electron acceptor
 - sodium motive force to drive amino acid uptake
- fermentation products responsible for unpleasant odors associated with putrefaction

Genus Clostridium...

- Great practical importance
 - food spoilage through the Strickland reaction
 - industrial production of butanol
 - toxin production

Important Species of *Clostridium*

- C. botulinum
 - food spoilage (especially canned foods);
 botulism
- C. tetani tetanus
- C. perfringens gas gangrene
- C. acetobutylicum
 - manufacture of butanol

Genus Desulfotomaculum

- Endospore forming
- Reduces sulfate and sulfite to hydrogen sulfide during anaerobic respiration
- Stains Gram-negative but in electron micrographs is seen to have a Gram-positive cell wall

Genera Heliobacterium and Heliophilum

- Anaerobic, photosynthetic
 - bacteriochlorophyll g
 - have photosystem similar to green sulfur bacteria
 - pigments in plasma membrane
 - differ from anoxygenic photosynthetic bacteria in that they grow autotropically

Genus Veillonella

- Gram-negative but placed in order
 Clostridiales
- Anaerobic, chemoheterotrophic
 - all have complex nutritional requirements
- Normal biota of mouth, GI tract, urogenital tract of humans and animals
- Found in infections of head, lung, female genital tract

23.2 Class Bacilli - 1

- 1. List terminal electron acceptors and fermentation products produced by *Bacillus* spp. and staphylococci
- 2. Discuss reasons that make *Bacillus subtilis* an important model organism
- 3. List three reasons why *Bacillus* spp. are of practical importance
- 4. Summarize the evolution and emergence of MRSA, and list at least two diseases caused by *Staphylococcus aureus*
- 5. Describe the structure and medical importance of *Listeria monocytogenes*

23.2 Class Bacilli - 2

- 6. Identify the genera that are considered lactic acid bacteria, and discuss their importance in the food industry
- 7. Distinguish between enterococci and streptococci
- 8. Name bacterial genera capable of hemolysis, and differentiate between α -hemolysis and β -hemolysis

Class Bacilli

- Large variety of Gram-positive organisms
- Contains two orders, *Bacillales* and *Lactobacillales*, 17 families and over 70 genera
 - includes cocci, rods, and nonspore forming rods

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 23.2 Characteristics of Members of the Class Bacilli								
Genus	Dimensions (µm), Morphology, and Motility	G + C Content (mol%)	Genome Size (Mb)	Oxygen Relationship	Other Distinctive Characteristics			
Bacillus	0.5–2.5 \times 1.2–10; straight rods, peritrichous flagella, sporeforming	32–69	4.2–5.4	Aerobic or facultative	Catalase positive; chemoorganotrophic			
Caryophanon	$1.5-3.0 \times 10-20;$ multicellular rods with rounded ends, peritrichous flagella, nonsporing	41-46	Nd ¹	Aerobic	Acetate only major carbon source; catalase positive; trichome cells have greater width than length; trichomes can be in short chains			
Enterococcus	$0.6-2.0 \times 0.6-2.5$; spherical or ovoid cells in pairs or short chains, nonsporing, sometimes motile	34–42	3.2	Aerotolerant	Ferment carbohydrates to lactate with no gas; complex nutritional requirements; catalase negative; occur widely, particularly in fecal material			
Lactobacillus	0.5–1.2 \times 1.0–10; usually long, regular rods, nonsporing, rarely motile	32–53	1.9–3.3	Facultative or microaerophilic	Fermentative, at least half the end product is lactate; require rich, complex media; catalase and cytochrome negative			
Lactococcus	0.5–1.2 \times 0.5–1.5; spherical or ovoid cells in pairs or short chains, nonsporing, nonmotile	38–40	2.4	Aerotolerant	Chemoorganotrophic with fermentative metabolism; lactate without gas produced; catalase negative; complex nutritional requirements; in dairy and plant products			
Leuconostoc	0.5–0.7 \times 0.7–1.2; cells spherical or ovoid, in pairs or chains; nonmotile and nonsporing	38-44	Nd	Facultative	Require fermentable carbohydrate and nutritionally rich medium for growth; fermentation produces lactate, ethanol, and gas; catalase and cytochrome negative			
Staphylococcus	0.9–1.3; spherical cells occurring singly and in irregular clusters, nonmotile and nonsporing	30–39	2.5–2.8	Facultative	Chemoorganotrophic with both respiratory and fermentative metabolism; usually catalase positive; associated with skin and mucous membranes of vertebrates			
Streptococcus	0.5–2.0; spherical or ovoid cells in pairs or chains, nonmotile and nonsporing	34-46	1.8–2.2	Aerotolerant	Fermentative, producing mainly lactate and no gas; catalase negative; commonly attack red blood cells (α - or β -hemolysis); complex nutritional requirements; commensals or parasites on animals			
Thermoactinomyces	0.4–1.0 in diameter; branched, septate mycelium resembles those of actinomycetes	52–54.8	Nd	Aerobic	Usually thermophilic; true endospores form singly on hyphae; numerous in decaying hay, vegetable matter, and compost			

1 Nd: Not determined; genome not yet sequenced.