Chapter Four Growth of Cloud Droplets by Diffusion

Flux

- A flux is the amount of something passing through a unit of area in a unit of time.
- The units of flux are the units of whatever is being transported, divided by area and time. Examples are:
Mass flux: $\mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{-1}$
Energy flux: $\mathrm{J} \mathrm{m}^{-2} \mathrm{~s}^{-1}$
Particle flux: $\mathrm{m}^{-2} \mathrm{~s}^{-1}$
- The flux is actually a vector that points in the direction of the transport.
- In component form in Cartesian coordinates the flux vector is:

$$
\begin{equation*}
\vec{F}=F_{x} \hat{i}+F_{y} \hat{j}+F_{z} \hat{k} \tag{4.1}
\end{equation*}
$$

Growth Rate of Droplet by Diffusion

- Once a cloud droplet forms it continues to grow by diffusion of water vapor onto its surface (condensation).
- Figure 1 illustrates a droplet of radius R with radial vapor fluxes at the surface of the droplet denoted by \vec{F}_{R}

Figure 1: Convergence of radial vapor fluxes \vec{F}_{R} at the surface of the droplet results in droplet growth.

- For simplicity we will assume that the fluxes are axisymmetric, meaning that the fluxes only change with distance from the droplet, not with the angle. Another way of saying this is that the fluxes are isotropic.
- If we multiply the flux at the surface of the droplet by the surface area of the droplet we obtain the rate of change of molecules of the droplet,

$$
\begin{equation*}
\frac{d n}{d t}=-4 \pi R^{2} F_{R} \tag{4.2}
\end{equation*}
$$

- Note that F_{R} itself is negative, since it is pointing inward toward the droplet. That is why there is a negative in front of (4.2), so that $d n / d t$ will be positive.
- The flux F_{R} at the surface of the droplet is given by Fick's first law of diffusion $\vec{F}=-D \nabla N$ where D is the diffusivity, and is $F_{R}=-\hat{k} \cdot D(\nabla N)_{R}=-D(\partial N / \partial r)_{R}$. Therefore (4.2) becomes:

$$
\begin{equation*}
\frac{d n}{d t}=4 \pi D R^{2}\left(\frac{\partial N}{\partial r}\right)_{R} \tag{4.3}
\end{equation*}
$$

- Keep in mind that n is the number of water molecules in the droplet itself, whereas N is the number density of water vapor molecules in the air.
- We find $(\partial N / \partial r)_{R}$ as follows:
- We assume that N does not change with time, so that from Fick's second law of diffusion $\frac{\partial N}{\partial t}=D \nabla^{2} N$ we have:

$$
\begin{equation*}
\nabla^{2} N=0 \tag{4.4}
\end{equation*}
$$

- In spherical coordinates with the droplet at the origin, and since the vapor concentration is axisymmetric, (4.4) becomes

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(r^{2} \frac{\partial N}{\partial r}\right)=0 \tag{4.5}
\end{equation*}
$$

- Integrating (4.5) twice with respect to r results in

$$
\begin{equation*}
N(r)=-\frac{c_{1}}{r}+c_{2} \tag{4.6}
\end{equation*}
$$

where c_{1} and c_{2} are the constants of integration. We find them by applying the boundary conditions

$$
\begin{align*}
& N(r \gg R)=N_{b} \tag{4.7}\\
& N(R)=N_{R}
\end{align*}
$$

where N_{b} is the background vapor concentration well away from the droplet.

- Applying the boundary conditions (4.7) to (4.6) results in

$$
\begin{aligned}
& c_{1}=\left(N_{b}-N_{R}\right) R \\
& c_{2}=N_{b}
\end{aligned}
$$

- Putting these constants back into (4.6) results in

$$
\begin{equation*}
N(r)=-\frac{\left(N_{b}-N_{R}\right) R}{r}+N_{b} \tag{4.8}
\end{equation*}
$$

- And finally, by taking $\partial / \partial \mathrm{r}$ of (4.8) and evaluating the result at $r=R$, we get

$$
\begin{equation*}
\left(\frac{\partial N}{\partial r}\right)_{R}=\frac{N_{b}-N_{R}}{R} \tag{4.9}
\end{equation*}
$$

- Putting (4.9) into (4.3) gives us our growth-rate equation for the droplet,

$$
\begin{equation*}
\frac{d n}{d t}=4 \pi D R\left(N_{b}-N_{R}\right) \tag{4.10}
\end{equation*}
$$

- If the background vapor concentration is larger than that at the droplet surface, $\mathrm{N}_{\mathrm{b}}>$ N_{R}, the droplet will grow due to condensation.
- If the background vapor concentration is smaller than that at the droplet surface, N_{b} $<\mathrm{N}_{\mathrm{R}}$, the droplet will shrink due to evaporation.

Growth Rate in Terms of Droplet Mass and Radius

- Equation (4.10) can be converted to an equation for the mass growth rate, $d m / d t$, as follows:
- Multiply both sides of (4.10) by the molar mass of water, M_{w}, and divide by Avogadro's number, N_{A},

$$
\begin{equation*}
\frac{M_{w}}{N_{A}} \frac{d n}{d t}=\frac{M_{w}}{N_{A}} 4 \pi D R\left(N_{b}-N_{R}\right) \tag{4.11}
\end{equation*}
$$

- Since mass is

$$
\frac{M_{w}}{N_{A}} n=m
$$

and absolute humidity is

$$
\frac{M_{w}}{N_{A}} N=\rho_{v}
$$

(4.11) becomes

$$
\begin{equation*}
\frac{d m}{d t}=4 \pi D R\left(\rho_{v b}-\rho_{v R}\right) \tag{4.12}
\end{equation*}
$$

- What would be most convenient is to have an equation for the growth-rate in terms of the radius of the droplet. We can construct this using the chain rule for derivatives,

$$
\begin{equation*}
\frac{d R}{d t}=\frac{d R}{d m} \frac{d m}{d t} \tag{4.13}
\end{equation*}
$$

- The mass of a droplet is

$$
m=\frac{4}{3} \pi \rho_{l} R^{3}
$$

so

$$
\begin{equation*}
\frac{d R}{d m}=\frac{1}{4 \pi \rho_{l} R^{2}} \tag{4.14}
\end{equation*}
$$

- From (4.12), (4.13) and (4.14) we get

$$
\begin{equation*}
R \frac{d R}{d t}=\frac{D}{\rho_{l}}\left(\rho_{v b}-\rho_{v R}\right) \tag{4.15}
\end{equation*}
$$

Other Equations Needed to Solve for Growth Rate

- Equation (4.15) gives us the ability to integrate forward in time to find an expression for $R(t)$, the radius of the droplet at any future time t.
- We do not know what value of $\rho_{v R}$ to use, since this depends on the temperature of the surface of the droplet.
- However, we can assume that at the surface of the droplet the air is saturated, so that $\rho_{v R}=\rho_{v s}$, where $\rho_{v s}$ is the saturation absolute humidity.
- From the ideal gas law for water vapor

$$
\begin{equation*}
\rho_{v R}=\rho_{v s}=\frac{e_{s}}{R_{v} T_{R}} \tag{4.16}
\end{equation*}
$$

where T_{R} is the temperature at the surface of the droplet.

* Note that T_{R} is not necessarily the same as the air temperature. The droplet warms or cools depending on whether there is condensation or evaporation at the droplet's surface.
- $\quad e_{s}$ is the saturation vapor pressure over a curved, impure droplet which we know to be

$$
\begin{equation*}
e_{s}=e_{o}\left(1+\frac{a}{R}-\frac{b}{R^{3}}\right) \exp \left[\frac{L_{v}}{R_{v}}\left(\frac{1}{T_{o}}-\frac{1}{T_{R}}\right)\right] \tag{4.17}
\end{equation*}
$$

so that

$$
\begin{equation*}
\rho_{v R}=\frac{e_{o}}{R_{v} T_{R}}\left(1+\frac{a}{R}-\frac{b}{R^{3}}\right) \exp \left[\frac{L_{v}}{R_{v}}\left(\frac{1}{T_{o}}-\frac{1}{T_{R}}\right)\right] \tag{4.18}
\end{equation*}
$$

- Equations (4.15) and (4.18) are two equations, but we have three unknown quantities: R, $\rho_{\nu R}$, and T_{R}. therefore we still need one more equation in order to have a closed set that we can solve.
- The third equation comes from balancing the gain of latent heat due to condensation with the loss of sensible heat due to thermal diffusivity.
- The gain of latent heat due to condensation is given by

$$
\begin{equation*}
J_{\text {latent }}=L_{v} \frac{d m}{d t}=4 \pi R L_{v} D\left(\rho_{v b}-\rho_{v R}\right) \tag{4.19}
\end{equation*}
$$

- The sensible lost to the air by diffusion is

$$
\begin{equation*}
J_{\text {sensible }}=-4 \pi R K\left(T_{R}-T_{b}\right) \tag{4.20}
\end{equation*}
$$

where K is the thermal diffusivity of air and T_{b} is the temperature of the air.

- Balancing the sensible and latent heats by setting (4.19) equal to (4.20) results in

$$
\begin{equation*}
\rho_{v b}-\rho_{v R}=\frac{K}{L_{v} D}\left(T_{R}-T_{b}\right) \tag{4.21}
\end{equation*}
$$

Calculations of Growth Rates

- Equations (4.15), (4.18) and (4.21) are three equations for three unknown quantities, R, $\rho_{\nu R}$, and T_{R}. The equations are rewritten here,

$$
\begin{gathered}
R \frac{d R}{d t}=\frac{D}{\rho_{l}}\left(\rho_{v b}-\rho_{v R}\right) \\
\rho_{v R}=\frac{e_{o}}{R_{v} T_{R}}\left(1+\frac{a}{R}-\frac{b}{R^{3}}\right) \exp \left[\frac{L_{v}}{R_{v}}\left(\frac{1}{T_{o}}-\frac{1}{T_{R}}\right)\right] \\
\rho_{v b}-\rho_{v R}=\frac{K}{L_{v} D}\left(T_{R}-T_{o}\right)
\end{gathered}
$$

- We can solve these three equations to find the growth rate and radius of a droplet at any future time, t.
- However, the equations are quite complex and cannot be solved analytically. They need to be solved numerically.
- A somewhat simplified, though not as accurate, set of growth equations is

$$
\begin{gather*}
R \frac{d R}{d t}=\frac{S-1-\frac{a}{R}+\frac{b}{R^{3}}}{F_{k}+F_{d}} \tag{4.22}\\
F_{k}=\left(\frac{L_{v}}{R_{v} T_{b}}-1\right) \frac{L_{v} \rho_{l}}{K T_{b}} \tag{4.23}\\
F_{d}=\frac{\rho_{l} R_{v} T_{b}}{D e_{s \infty}^{*}} \tag{4.24}
\end{gather*}
$$

where the saturation vapor pressure used in calculating F_{d} is that for a flat surface of pure water

- These equations still need to be integrated numerically. The result for a droplet starting at radius $r_{o}=0.75 \mu \mathrm{~m}$ is shown in Figure 2.
- Note that after 20 hours the droplet is still only has a radius slightly larger $60 \mu \mathrm{~m}$.
- Figure 3 shows the effect of doubling the mass of solute. Although the droplet initially grows faster with more solute, the growth rates quickly become the same.

Final Comments on Diffusional Growth

- In order to be large enough to fall fast enough to reach the ground without evaporating, a droplet has to reach a size of at least 0.1 mm in diameter $(0.05 \mathrm{~mm}$ or $50 \mu \mathrm{~m}$ in radius).
- A typical raindrop has a diameter of 2 mm (radius of 1 mm , or $1000 \mu \mathrm{~m}$).
- Clouds can form and rain start to fall in a matter of 30 minutes or so.
- Diffusional growth explains how very tiny, brand-new cloud droplets grow to typical cloud droplet sizes, but is too slow to explain how precipitation forms.

Figure 4: Growth of droplet initially of radius $0.75 \mu \mathrm{~m}$ for a solute of 100 femtograms of NaCl .

Figure 5: Growth of droplet initially of radius $0.75 \mu \mathrm{~m}$ for two different solute masses.

