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Chapter Four
Growth of Cloud Droplets by Diffusion

Flux
 A flux is the amount of something passing through a unit of area in a unit of time.

 The units of flux are the units of whatever is being transported, divided by area and
time. Examples are:

Mass flux: kg m−2 s−1

Energy flux: J m−2 s−1

Particle flux: m−2 s−1

 The flux is actually a vector that points in the direction of the transport.

 In component form in Cartesian coordinates the flux vector is:

ˆ ˆ ˆ
x y zF F i F j F k  


(4.1)

Growth Rate of Droplet by Diffusion
 Once a cloud droplet forms it continues to grow by diffusion of water vapor onto its

surface (condensation).

 Figure 1 illustrates a droplet of radius R with radial vapor fluxes at the surface of the

droplet denoted by RF


Figure 1: Convergence of radial vapor fluxes RF


at the surface of the droplet results in

droplet growth.
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 For simplicity we will assume that the fluxes are axisymmetric, meaning that the fluxes

only change with distance from the droplet, not with the angle.  Another way of saying

this is that the fluxes are isotropic.

 If we multiply the flux at the surface of the droplet by the surface area of the droplet

we obtain the rate of change of molecules of the droplet,

24 R

dn
R F

dt
   (4.2)

- Note that FR itself is negative, since it is pointing inward toward the droplet. That is
why there is a negative in front of (4.2), so that dn/dt will be positive.

 The flux FR at the surface of the droplet is given by Fick’s first law of diffusion F D N  


where D is the diffusivity, and is ˆ ( ) ( / )R R RF k D N D N r       . Therefore (4.2)

becomes:

24
R

dn N
DR

dt r

     
(4.3)

- Keep in mind that n is the number of water molecules in the droplet itself, whereas N
is the number density of water vapor molecules in the air.

 We find (∂N/∂r)R as follows:

- We assume that N does not change with time, so that from Fick’s second law of

diffusion 2N
D N

t


 


we have:

2 0N  (4.4)

- In spherical coordinates with the droplet at the origin, and since the vapor
concentration is axisymmetric, (4.4) becomes

2 0
N

r
r r

      
(4.5)

- Integrating (4.5) twice with respect to r results in

1
2( )

c
N r c

r
   (4.6)

where c1 and c2 are the constants of integration. We find them by applying the
boundary conditions

( )

( )
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(4.7)
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where Nb is the background vapor concentration well away from the droplet.

- Applying the boundary conditions (4.7) to (4.6) results in

1

2

( )b R

b

c N N R

c N

 



- Putting these constants back into (4.6) results in

( )
( ) b R

b

N N R
N r N

r


   (4.8)

- And finally, by taking ∂/∂r of (4.8) and evaluating the result at r = R, we get

b R

R

N NN

r R

    
(4.9)

 Putting (4.9) into (4.3) gives us our growth-rate equation for the droplet,

4 ( )b R

dn
DR N N

dt
   (4.10)

- If the background vapor concentration is larger than that at the droplet surface, Nb >
NR , the droplet will grow due to condensation.

- If the background vapor concentration is smaller than that at the droplet surface, Nb

< NR , the droplet will shrink due to evaporation.

Growth Rate in Terms of Droplet Mass and Radius

 Equation (4.10) can be converted to an equation for the mass growth rate, dm/dt, as
follows:

- Multiply both sides of (4.10) by the molar mass of water, Mw, and divide by Avogadro’s
number, NA,

4 ( )w w
b R

A A

M Mdn
DR N N

N dt N
   (4.11)

- Since mass is

w

A

M
n m

N


and absolute humidity is
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(4.11) becomes

4 ( )vb vR

dm
DR

dt
     (4.12)

 What would be most convenient is to have an equation for the growth-rate in terms of the
radius of the droplet. We can construct this using the chain rule for derivatives,

dR dR dm

dt dm dt
 (4.13)

- The mass of a droplet is

34

3 lm R 

so

2

1

4 l
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dm R



(4.14)

 From (4.12), (4.13) and (4.14) we get

( )vb vR
l

dR D
R

dt
   


(4.15)

Other Equations Needed to Solve for Growth Rate

 Equation (4.15) gives us the ability to integrate forward in time to find an expression
for R(t), the radius of the droplet at any future time t.

- We do not know what value of ρvR to use, since this depends on the temperature of
the surface of the droplet.

- However, we can assume that at the surface of the droplet the air is saturated, so that
ρvR = ρvs, where ρvs is the saturation absolute humidity .

- From the ideal gas law for water vapor

s
vR vs

v R

e

R T
    (4.16)

where TR is the temperature at the surface of the droplet.

* Note that TR is not necessarily the same as the air temperature. The droplet
warms or cools depending on whether there is condensation or evaporation
at the droplet’s surface.

- es is the saturation vapor pressure over a curved, impure droplet which we know to be
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so that
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(4.18)

 Equations (4.15) and (4.18) are two equations, but we have three unknown quantities: R,
ρvR, and TR. therefore we still need one more equation in order to have a closed set that we
can solve.

 The third equation comes from balancing the gain of latent heat due to condensation
with the loss of sensible heat due to thermal diffusivity.

- The gain of latent heat due to condensation is given by

4 ( )latent v v vb vR

dm
J L RL D

dt
      (4.19)

- The sensible lost to the air by diffusion is

4 ( )sensible R bJ RK T T    (4.20)

where K is the thermal diffusivity of air and Tb is the temperature of the air.

- Balancing the sensible and latent heats by setting (4.19) equal to (4.20) results in

( )vb vR R b
v

K
T T

L D
     (4.21)

Calculations of Growth Rates

 Equations (4.15), (4.18) and (4.21) are three equations for three unknown quantities, R,
ρvR, and TR. The equations are rewritten here,

( )vb vR
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 We can solve these three equations to find the growth rate and radius of a droplet at any
future time, t.

 However, the equations are quite complex and cannot be solved analytically. They need
to be solved numerically.

 A somewhat simplified, though not as accurate, set of growth equations is
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 (4.24)

where the saturation vapor pressure used in calculating Fd is that for a flat surface of
pure water

 These equations still need to be integrated numerically. The result for a droplet starting
at radius ro = 0.75 µm is shown in Figure 2.

 Note that after 20 hours the droplet is still only has a radius slightly larger 60 µm.

 Figure 3 shows the effect of doubling the mass of solute. Although the droplet initially
grows faster with more solute, the growth rates quickly become the same.

Final Comments on Diffusional Growth

 In order to be large enough to fall fast enough to reach the ground without evaporating,
a droplet has to reach a size of at least 0.1 mm in diameter (0.05 mm or 50 µm in
radius).

 A typical raindrop has a diameter of 2 mm (radius of 1 mm, or 1000 µm).

 Clouds can form and rain start to fall in a matter of 30 minutes or so.

 Diffusional growth explains how very tiny, brand-new cloud droplets grow to typical
cloud droplet sizes, but is too slow to explain how precipitation forms.
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Figure 4: Growth of droplet initially of radius 0.75 µm for a solute of 100 femtograms of NaCl.

Figure 5: Growth of droplet initially of radius 0.75 µm for two different solute masses.


